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1 Introduction

In this paper, we study a special case of the celebrated Metropolis algorithm – the In-

dependence Metropolis Sampler (IMS), for finite state spaces. The IMS is often used in

designing components of more complex Markov Chain Monte Carlo algorithms. Using an

acceptance-rejection mechanism described in section 3, the IMS simulates a Markov chain

with target probability p = (p1, p2, . . . , pn), by drawing samples from a more tractable prob-

ability q = (q1, q2, . . . , qn).

In the last two decades a considerable number of papers have been devoted to studying

properties of the IMS. Without trying to be comprehensive, we shall briefly review some

of the results that were of interest to us. For finite state spaces, Diaconis and Hanlon [3]

and Liu [9] proved various upper bounds for the total variation distance between updated

and target distributions for the IMS. They showed that the convergence rate of the Markov

chain is upper bounded by a quantity that depends on the second largest eigenvalue:

λslem = 1−min
i
{qi

pi

}.

A complete eigenanalysis of the IMS kernel was performed by Liu (1996). He also compared

the IMS with other two well known sampling techniques, rejection sampling and importance

sampling. By making use of Liu’s results, Smith and Tierney [12] obtained exact m-step

transition probabilities for IMS, for both discrete and continuous state spaces.

In the continuous case, if denoting by

r∗ = 1− inf
x
{q(x)

p(x)
},

Mengersen and Tweedie [10] showed that if r∗ is strictly less than 1, the chain is uniformly

ergodic, while if r∗ is equal to 1, the convergence is not even geometric anymore. Similar

results were obtained by Smith and Tierney. These results show that the convergence rate

of the Markov chain for the IMS is subject to a worst-case scenario. For the finite case, the

state corresponding to the least probability ratio qi/pi is determining the rate of convergence,

that is just one state from a potentially huge state space decides the rate of convergence of

the Markov chain. A similar situation occurs in continuous spaces. To illustrate it, let us

consider the following simple example.

Example: Let q and p be two Gaussians having equal variances and the means slightly

shifted. Then q, as proposal distribution, will approximate the target p very well. However,
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it is easy to see that infx{q(x)/p(x)} = 0 and therefore the IMS will not have a geometric

rate of convergence. This dismal behavior motivated our interest for studying the mean first

hitting time as a measure of ”speed” for Markov chains. This is particularly appropriate

when dealing with stochastic search algorithms, when the focus could be on finding indi-

vidual states rather than on the global convergence of the chain. For instance, in computer

vision problems, one is often searching for the most probable interpretation of a scene and,

to this end, various Metropolis-Hastings type algorithms can be employed. See Tu and Zhu

[13] for examples and discussions. In such a context, knowledge of the behavior of the first

hitting time of some states, like the modes of the posterior distribution of a scene given the

input images, is of interest.

The IMS was thoroughly studied, but most of the analysis focused on its convergence

properties. Here, we analyze its first hitting time and derive formulas for its expectation and

variance. These formulas are expressed mostly in terms of the eigenvalues of the transition

kernel.

• We first review some general formulas for first hitting times. Then, we derive a formula

for the mean f.h.t for ergodic kernels in terms of its eigen-elements and show that when

the starting distribution of the chain is equal to one of the rows of the transition kernel,

the mean f.h.t will have a particularly simple form.

Using this result together with the eigen-analysis of the IMS kernel (briefly reviewed in

section 3), we prove the main result, which gives an analytical formula for the mean f.h.t of

individual states, as well as bounds.

• We show that, if in running an IMS chain the starting distribution is the same as the

proposal distribution q, then after ordering the states according to their probability

ratio, and if denoting by λi the ith eigenvalue of the transition kernel, we have:

i) E[τ(i)] =
1

pi(1− λi)

ii)
1

min{qi, pi} ≤ E[τ(i)] ≤ 1

min{qi, pi}
1

1− ‖p− q‖TV

,

where τ(i) stands for the f.h.t of i, and ‖p− q‖TV denotes the total variation distance

between the proposal and target distributions.

The result can be extended from individual sets to some subsets of state space, as we shall

see in section 3. We then illustrate these results by a simple example.
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• We conclude the section by proving that when starting from j 6= i, the mean f.h.t of

i are decreasing, with the smallest being equal to the mean f.h.t of i when starting

from q:

If q1/p1 ≤ q2/p2 ≤ . . . ≤ qn/pn then :

E1[τ(i)] ≥ E2[τ(i)] ≥ . . . ≥ Ei−1[τ(i)] ≥ Ei+1[τ(i)] = . . . = En[τ(i)] = E[τ(i)],∀i.

Next, in section 3.5 and section 3.6 we focus on the tail distribution and the variance of the

f.h.t for the IMS and we determine:

• An exponential upper bound on the tail: P (τ(i) > m) ≤ exp{−m(piw1)}, ∀m > 0.

• If Z denotes the fundamental matrix associated with the IMS kernel then:

V ar[τ(i)] =
2Zii(1− λi)− 3pi(1− λi) + 2pi − 1

p2
i (1− λi)2

,∀i.

Various bounds on the variance are also presented.

Further, in section 4 we show how a special class of Metropolis-Hastings algorithms can

outperform the IMS in terms of mean first hitting times.

• We prove that if Q is a stochastic proposal matrix satisfying Qji/pi ≥ 1, Qij/pj ≥
1,∀i,∀j 6= i, and R is the corresponding Metropolis-Hastings kernel then, for any

initial distribution q,

EQ
q [τ(i)] ≤ 1 +

1− qi

pi

,

and as a corollary,

EQ
q [τ(i)] ≤ 1

min{qi, pi} ≤ EIMS
q [τ(i)] ∀i,

where we denoted by EIMS
q [τ(i)] the mean f.h.t of the IMS kernel associated to q and

p.

• We conclude by presenting lower and upper bounds on the hitting times for general

Metropolis-Hastings kernels.
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2 General f.h.t for finite spaces

Consider an ergodic Markov chain {Xm}m on the finite space Ω = {1, 2, . . . , n}. Let K be

the transition kernel, p its unique stationary probability, and q the starting distribution.

For each state i ∈ Ω, the first hitting time is defined below.

Definition 2.1 The first hitting time for a state i is the number of steps for reaching i for

the first time in the Markov chain sequence, τ(i) = min{m ≥ 1 : Xm = i}.
E[τ(i)] is the mean first hitting time of i for the Markov chain governed by K.

For any i, let us denote by K−i the (n − 1) × (n − 1) matrix obtained from K by

deleting the ith column and row, that is, K−i(k, j) = K(k, j),∀k 6= i, j 6= i. Also let

q−i = (q1, ..., qi−1, qi+1, ..., qn). Then, it is immediate that P (τ(i) > m) = q−iK
m−1
−i 1, where

1 := (1, 1, ..., 1)′. This leads to the following formula for the expectation:

Eq[τ(i)] = 1 + q−i(I−K−i)
−11, (2.1)

where I denotes the identity matrix. The existence of the inverse of I −K−i is implied by

the sub-stochasticity of K−i and the irreducibility of K (Bremaud [2]).

More generally, the mean f.h.t of a subset A of Ω is given by

Eq[τ(A)] = 1 + q−A(I−K−A)−11, ∀A ⊂ Ω. (2.2)

A different route is to consider the first hitting times if starting from a fixed j 6= i. Here,

we should define a different stopping time, by not counting starting from j as an initial step,

but for simplicity, we will use the same notation and refer to Ej[τ(i)] as the mean f.h.t of i

when starting from state j. Then, for all j 6= i, one has Ej[τ(i)] = (Zii−Zji)/pi. Z denotes

the fundamental matrix, which, we recall, is defined to be Z = (I − K + P )−1, where P

denotes the matrix having all rows equal to p. When starting from q instead from a fixed

state j, one has:

Eq[τ(i)] = 1 +
∑

j 6=i

qjEj[τ(i)] = 1 +
1

pi

∑

j 6=i

qj(Zii − Zji). (2.3)

For the rest of the paper we shall drop the subscript q whenever this will not create any

notation confusion.
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The variance of the f.h.t can also be derived from the fundamental matrix Z. It is known

that the second moment of τ(i), when starting from j, is determined by:

Ej[τ(i)]2 =
2

pi

(Z2
ii − Z2

ji)−
1

pi

(Zii − Zji) +
2

p2
i

Zii(Zii − Zji),∀j 6= i, (2.4)

where the first term refers to the matrix Z2. Hence, it is immediate that the second moment

of the f.h.t when starting from q is just:

E[τ(i)2] = 1 +
2

pi

∑
j

qj(Z
2
ii − Z2

ji)−
1

pi

∑
j

qj(Zii − Zji) +
2Zii

p2
i

∑
j

qj(Zii − Zji), (2.5)

which readily leads to a formula for the variance. For more on the properties of the funda-

mental matrix Z and its connections to hitting times refer to Kemeny and Snell [6].

Next, we will show how knowing the eigen-structure of the transition matrix allows the

direct computation of the mean f.h.t.

Let {λj}0≤j≤n−1 be the eigenvalues of K and let vk = {vkl}0≤l≤n−1, and uk = {ukl}0≤l≤n−1

be their corresponding right and left eigenvectors, such that U ′V = I, where U ′ = {uk}k, V =

{v′k}k. As K is a stochastic matrix with stationary probability p, we have λ0 = 1 and we

can fix v0 = 1 and u0 = p respectively. Moreover, all the eigenvalues have real values and

|λj| < 1,∀j > 0.

Proposition 2.1 . Using the same notations as before, for any ergodic kernel K and any

initial distribution q, the mean first hitting time of i ∈ Ω is

E[τ(i)] = 1 +
1

pi

n−1∑

k=1

1

1− λk

uki(vki −
∑

l

qlvkl).

In particular, if q is chosen to be row jth of K for arbitrary j ∈ Ω, then

E[τ(i)] =
1

pi

n−1∑

k=1

1

1− λk

uki(vki − vkj) +
δij

pi

.

Proof: Using (2.3),

E[τ(i)] = 1 +
1

pi

∑

j 6=i

qj(Zii − Zji). (2.6)

Let us recall that Z and K share the same system of eigenvectors, while the eigenvalues

of Z are β0 = 1, βj = 1/(1 − λj), ∀1 ≤ j ≤ n − 1. Therefore, we can apply the spectral

decomposition theorem (see Bremaud [2]), to get:

Zli =
n−1∑

k=0

βkvkluki = v0lu0i +
n−1∑

k=1

1

1− λk

vkluki = pi +
n−1∑

k=1

1

1− λk

vkluki,∀l, i.
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Therefore,

Zii − Zji =
n−1∑

k=1

1

1− λk

(vki − vkj)uki. (2.7)

From (2.7) and (2.6), we get

E[τ(i)] = 1 +
1

pi

∑

j 6=i

qj(Zii − Zji) = 1 +
1

pi

∑

j 6=i

qj

n−1∑

k=1

1

1− λk

(vki − vkj)uki,

which, by changing the summation order, turns into

E[τ(i)] = 1 +
1

pi

n−1∑

k=1

1

1− λk

uki

∑

j 6=i

qj(vki − vkj). (2.8)

Noting that
∑

j 6=i qj(vki − vkj) can be rewritten as vki −
∑

l qlvkl, the first part of the proof

is completed. For the second part, assume that q = Kj·. This implies that
∑

l qlvkl =
∑

l Kjlvkl = (Kvk)j. But as vk is a right eigenvector for λk, we get
∑

l qlvkl = λkvkj and by

plugging this into the general formula just proved,

E[τ(i)] = 1 +
1

pi

n−1∑

k=1

1

1− λk

uki(vki − λkvkj) = 1 +
1

pi

n−1∑

k=1

1

1− λk

uki(vki − vkj + (1− λk)vkj).

Or

E[τ(i)] = 1 +
1

pi

n−1∑

k=1

1

1− λk

uki(vki − vkj) +
1

pi

n−1∑

k=1

ukivkj. (2.9)

We have to consider two cases:

i) j = i. In this case,
∑n−1

k=1 ukivkj =
∑n−1

k=0 ukivki − pi = 1− pi since
∑n−1

k=0 ukivki = 1.

Therefore, from (2.9) it follows that E[τ(i)] = 1/pi, the first sum cancelling for j = i.

ii) j 6= i. Then, again,
∑n−1

k=1 ukivkj =
∑n−1

k=0 ukivkj − pi = δij − pi = −pi. Now, using

(2.9)

E[τ(i)] = 1 +
1

pi

n−1∑

k=1

1

1− λk

uki(vki − vkj)− 1 =
1

pi

n−1∑

k=1

1

1− λk

uki(vki − vkj). 2

3 Hitting time analysis for the IMS

Here, we shall capitalize on the previous result to prove our main theorem. But first, let us

set the stage by briefly introducing the IMS.
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3.1 The Independence Metropolis Sampler

The IMS is a Metropolis-Hastings type algorithm with the proposal independent of the

current state of the chain. It has also been called Metropolized Independent Sampling

(Liu [9]). The goal is to simulate a Markov chain {Xm}m≥0 taking values in Ω and having

stationary distribution p (the target probability) . To do this, at each step a new state

j ∈ Ω is sampled from the proposal probability q = (q1, q2, . . . , qn) according to j ∼ qj,

which is then accepted with probability

α(i, j) = min{1, qi

pi

pj

qj

}.

Therefore, the transition from Xm to Xm+1 is decided by the transition kernel having the

form

K(i, j) =





qjα(i, j), j 6= i,

1−∑
k 6=i K(i, k), j = i.

The initial state could be either fixed or generated from a distribution whose natural choice

in this case is q. In section 3.3, we show why it is more efficient to generate the initial state

from q instead of choosing it deterministically.

It is easy to show that p is the invariant (stationary) distribution of the chain. In other

words, pK = p. Since from q > 0 it follows that K is ergodic, then p is also the equilibrium

distribution of the chain. Therefore, the marginal distribution of the chain at step m, for

m large enough, is approximately p.

However, instead of trying to sample from the target distribution p, one may be interested

in searching for a state i∗ with maximum probability: i∗ = arg maxi∈Ω pi. Here is where the

mean f.h.t can come into play. E[τ(i)] is a good measure for the speed of search in general.

As a special case we may want to know E[τ(i∗)] for the optimal state.

As it shall become clear later, a key quantity to the analysis is the probability ratio

wi = qi/pi. It measures how much knowledge the heuristic qi has about pi, or in other

words how informed is q about p for state i. Therefore we define the following concepts.

Definition 3.1 A state i is said to be over-informed if qi > pi and under-informed if qi < pi.

There are three special states defined below.
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Definition 3.2 A state i is exactly-informed if qi = pi. A state i is most-informed (or

least-informed) if it has the highest (or lowest) ratio wi: imax = arg maxi∈Ω{ wi }, imin =

arg mini∈Ω{ wi }.

Liu [9] noticed that the transition kernel can be written in a simpler form by reordering the

states increasingly according to their informedness. Since for i 6= j, Kij = qj min{1, wi/wj},
if w1 ≤ w2 ≤ . . . ≤ wn it follows that

Kij =





wipj i < j,

1−∑
k<i qk − wi

∑
k>i pk i = j,

qj = wjpj i > j.

Without loss of generality, we shall assume for the rest of the paper that the states are

indexed such that w1 ≤ w2 ≤ . . . ≤ wn, to allow for this more tractable form of the

transition kernel.

Proposition 2.1 can be used to compute mean first hitting times whenever an eigen-

analysis for the transition kernel is available. In practice, this situation is quite rare though.

However, such an eigen-analysis is available for the IMS. We review these results below and

then proceed with our results.

3.2 The eigenstructure of the IMS

A first result concerns the eigenvalues and right eigenvectors of the IMS kernel.

Theorem 3.1 (J. Liu, 1996) Let Tk =
∑

i≥k qi and Sk =
∑

i≥k pi. Then, the eigenvalues

of the transition matrix K are λk = Tk − wk · Sk,∀ 1 ≤ k ≤ n − 1, λ0 = 1, and they are

decreasing as λ0 > λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ 0. Moreover, the right eigenvector corresponding

to λk, k > 0 is vk = (0, · · · , 0, Sk+1,−pk, · · · ,−pk), with the first k − 1 entries being 0 and

v0 = (1, 1, . . . , 1)′.

Remark: It is easy to see now that the eigenvalues of K are ”incorporated” in the diagonal

terms of K through the equality Kii = λi + qi, which will be often used later on.

Smith and Tierney [12] computed the exact k-step transition probabilities for the IMS.

One of their results reveals in fact the very structure of the left eigenvectors. Suppose δk is

the unit vector with 1 in the k’th position (1 ≤ k ≤ n) and 0 everywhere else. They showed

that:
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Proposition 3.2 (Smith and Tierney, 1996) For 1 ≤ k ≤ n− 1,

δk = pkv0 +
1

Sk

vk − pk

k−1∑
j=1

vj

SjSj+1

while for k = n,

δn = pnv0 − pn

n−1∑
j=1

vj

SjSj+1

.

As a corollary, the left eigenvectors of K are given by:

Corollary 3.3

u0 = p, uk = (0, 0, . . . , 0,
1

Sk

,− pk+1

SkSk+1

, . . . ,− pn

SkSk+1

)T , 1 ≤ k ≤ n− 1,

where for k > 0 the first k − 1 entries are 0.

3.3 Main Result

We are now able to compute the mean f.h.t for the IMS and provide bounds for it, by

making use of the eigen-structure of the IMS kernel as well as of Proposition 2.1.

Theorem 3.4 Assume a Markov chain starting from q is simulated according to the IMS

transition kernel having proposal q and target probability p. Then, using previous notations:

i) E[τ(i)] =
1

pi(1− λi)
, ∀i ∈ Ω,

ii)
1

min{qi, pi} ≤ E[τ(i)] ≤ 1

min{qi, pi}
1

1− ‖p− q‖TV

,

where we define λn to be equal to zero and ‖p − q‖TV denotes the total variation distance

between p and q. Equality is attained for the three special states from Definition 3.2.

Proof: i) Let us first note that we are in the situation from the second part of Proposition

2.1. That is, after reordering the states according to their probability ratios, our initial

distribution q is equal to the nth row of K as it can easily be seen.

Then, from Proposition 2.1, one has:

E[τ(i)] =
1

pi

n−1∑

k=1

1

1− λk

uki(vki − vkn) +
δin

pi

. (3.1)
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From Theorem 3.1, vki = vkn,∀k < i, while from Corollary 3.3, uki = 0 for k > i. Hence

uki(vki − vkn) = 0,∀k 6= i. If i = n, then E[τ(i)] = δin/pi = 1/[pn(1− λn)], while for i < n

one has

E[τ(i)] =
uii(vii − vin)

pi(1− λi)
.

Using the eigen-analysis for the IMS, we can write uii(vii− vin) = (Si+1− (−pi))/Si = 1,

so the expectation becomes E[τ(i)] = 1/[pi(1− λi)], and the proof of i) is completed.

ii) By using i) it is obvious that E[τ(i)] ≥ 1/pi since 0 ≤ λi < 1. Therefore, we

only need to show that 1 − λi ≤ wi which would imply that E[τ(i)] ≥ 1/qi. Noting that

λi = qi + qi+1 + . . . + qn − (pi + pi+1 + . . . + pn)wi, we need to prove that

wi =
qi

pi

≥ q1 + q2 + . . . + qi−1

p1 + p2 + . . . + pi−1

.

This is follows quickly since for any j < i, wj ≤ wi ⇐⇒ qj ≤ pjwi.

To prove the upper bound, let us first get a more tractable form for ‖p − q‖TV . We

partition the state space into two sets: under-informed and over-informed with the exactly-

informed states in either set: Ω = Ωunder∪Ωover. As the states are sorted, let k ≤ n be their

dividing point

Ωunder = {i ≤ k : qi ≤ pi}, Ωover = {i > k : qi > pi},

where Ωover can be the empty set if q = p. By definition, ‖p− q‖TV = 1
2

∑
i |pi − qi|. Since

∑
i∈Ω(pi − qi) = 0, we have

‖p− q‖TV =
1

2

∑
i∈Ω

|pi − qi| = 1

2

∑
i∈Ωunder

(pi − qi) +
1

2

∑
i∈Ωover

(qi − pi)

=
∑

i∈Ωover

(qi − pi) = Tk+1 − Sk+1, (3.2)

where we define Tn+1 = Sn+1 = 0. We prove the upper bound for the under-informed and

over-informed states respectively.

Case I. upper bound for under-informed states i ≤ k.

For under-informed states, qi = min{pi, qi}. As λi = Ti − wiSi, it follows that:

pi(1− λi) = pi(1− Ti) + qiSi = pi(1− Ti+1)− piqi + qiSi+1 + qipi = pi(1− Ti+1) + qiSi+1.

Therefore, pi(1−λi) ≥ qi(1−Ti+1+Si+1). By using (3.2), we get min{pi, qi}(1−‖p−q‖TV ) =

qi(1−Tk+1+Sk+1). Thus, we only need to show that Si+1−Sk+1 ≥ Ti+1−Tk+1. By definition,
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this is equivalent to pi+1 + pi+2 + . . . + pk ≥ qi+1 + qi+2 + . . . qk, which is obviously true

because states i + 1, . . . , k are under-informed. Equality is attained for pj = qj, ∀j ∈ [i, k],

which is at the exactly-informed states.

Case II. upper bound for over-informed states i > k.

As min{pi, qi} = pi, it suffices to show that pi(1 − λi) ≥ pi(1 − Tk+1 + Sk+1), or λi ≤
Tk+1 − Sk+1. Because λi ≤ λk+1, it suffices to prove that λk+1 ≤ Tk+1 − Sk+1, or Tk+1 −
wk+1Sk+1 ≤ Tk+1 − Sk+1, which is trivial since wk+1 ≥ 1 for over-informed states. Equality

in this case is obtained if λi = λi−1 = . . . = λk+1 and wk+1 = 1 which is equivalent to

wk+1 = wk+2 = . . . = wi = 1.

Theorem 3.4 can be extended by considering the first hitting time of some particular

sets. The following corollary holds true.

Corollary 3.5 Let A ⊂ Ω of the form A = {i+1, i+2, . . . , i+k}, with w1 ≤ w2 ≤ . . . ≤ wn.

Denote pA := pi+1 + pi+2 + . . . + pi+k, qA := qi+1 + qi+2 + . . . + qi+k, wA := qA/pA and

λA := (qi+1 + . . . + qn) − (pi+1 + . . . + pn)wA. Then i) and ii) from Theorem 3.4 hold

ad-literam with i replaced by A.

Proof: We will only prove part i) since the proof of ii) is analogous to the one in Theorem

3.4.

Let A = {i + 1, i + 2, . . . , i + k}. We notice that w1 ≤ w2 ≤ . . . ≤ wi ≤ wA ≤ wi+k+1 ≤
. . . ≤ wn. Therefore, if we consider A to be a singleton, the problem of computing the mean

f.h.t of A reduces to computing the mean f.h.t of the singleton A in the ”reduced” space

ΩA := {1, 2, . . . , i, {A}, i+k +1, . . . , n}. The new proposal (respectively target) probability

would be q restricted to the space ΩA by putting mass qA on the state {A} (similarly for p).

It is easy to check that K−A = K−{A}, where the last matrix is obtained if we consider A

to be a singleton (it is essential that the ordering of the states according to the probability

ratios is the same in Ω as in ΩA). Now, we can apply (2.2) to obtain

EΩ[τ(A)] = 1 + q−A(I−K−A)−11′ = 1 + q−{A}(I−K−{A})
−11,

and by using Theorem 3.4 for ΩA, EΩ[τ(A)] = EΩA
[τ({A})] = 1/[pA(1− λA)]. We used the

subscripts Ω or ΩA to indicate which space we are working on. 2

In the introduction part we hinted at showing why generating the initial state from q is

preferable to starting from a fixed state j 6= i. The following result attempts to clarify this

issue.
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Proposition 3.6 Assuming that w1 ≤ w2 ≤ . . . ≤ wn, the following inequalities hold true:

E1[τ(i)] ≥ E2[τ(i)] ≥ . . . ≥ Ei−1[τ(i)] ≥ Ei+1[τ(i)] = . . . = En[τ(i)] = E[τ(i)],∀i ∈ Ω.

Proof: We saw that

Ej[τ(i)] =
1

pi

n−1∑

k=1

1

1− λk

uki(vki − vkj),∀j 6= i.

i) j > i. Then one has uki(vki − vkj) = uki(vki − vkn),∀k > 0 and therefore,

Ej[τ(i)] =
1

pi

n−1∑

k=1

1

1− λk

uki(vki − vkn) = E[τ(i)].

ii) j < i. Let us compute the difference Ej[τ(i)]− Ej+1[τ(i)] for arbitrary j.

Ej[τ(i)]− Ej+1[τ(i)] =
1

pi

n−1∑

k=1

1

1− λk

(vki − vkj)uki − 1

pi

n−1∑

k=1

1

1− λk

(vki − vk(j+1))uki =

=
1

pi

n−1∑

k=1

1

1− λk

(vk(j+1) − vkj)uki. (3.3)

If j < i − 1 then for k < j we have vk(j+1) = 0 = vkj, while for j + 1 < k < i,

vk(j+1) = −pk = vkj, so in both cases the difference is zero, which cancels the corresponding

terms in (3.3). The terms for k > i cancel too, because uki = 0. The only remaining terms

are those for k = j, j + 1. Therefore,

Ej[τ(i)]− Ej+1[τ(i)] =
1

pi

[ 1

1− λj

(vj(j+1) − vjj)uji +
1

1− λj+1

(v(j+1)(j+1) − v(j+1)j)u(j+1)i

]
.

We note that (vj(j+1)−vjj)uji = (−pj−Sj+1)(−pi/(SjSj+1)) = pi/Sj+1. Similarly, (v(j+1)(j+1)−
v(j+1)j)u(j+1)i = Sj+2(−pi/(Sj+1Sj+2)) = −pi/Sj+1. Hence,

Ej[τ(i)]− Ej+1[τ(i)] =
1

pi

( 1

1− λj

− 1

1− λj+1

) pi

Sj+1

=
1

Sj+1

( 1

1− λj

− 1

1− λj+1

)
≥ 0.

Equality case is obtained if wj = wj+1 which implies λj = λj+1. Therefore, if states j and

j + 1 have the same informedness, it would make no difference from which one of them the

sampler would start.

The only thing left to prove is that Ei−1[τ(i)] ≥ E[τ(i)]. To do this, we note that one

can write (3.3) with i− 1 in the place of j and i + 1 instead of j + 1. This gives

Ei−1[τ(i)]− Ei+1[τ(i)] =
1

pi

i∑

k=1

1

1− λk

(vk(i+1) − vk(i−1))uki.
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As before, all the terms cancel except for k = i− 1, i and analogously,

Ei−1[τ(i)]− Ei+1[τ(i)] =
1

Si

( 1

1− λi−1

− 1

1− λi

)
≥ 0.

As Ei+1[τ(i)] = Ej[τ(i)] = E[τ(i)],∀j > i, the proof of Proposition 3.6 is completed.2

3.4 Example

We can illustrate the main results in Theorem 3.4 through a simple example. We consider a

space with n = 1000 states. Let p and q be mixtures of two discretized Gaussians with tails

truncated and then normalized to one. They are plotted as solid (p), dashed (q) curves in

Fig.1a. Fig.1b plots the logarithm of the expected first hitting-time ln E[τ(i)]. The lower

and upper bounds from Theorem 3.4 are plotted in logarithm scale as dashed curves which

almost coincide with the hitting-time plot. For better resolution we focused on a portion of

the plot around the mode, the three curves becoming more distinguishable in Fig.1c. We

can see that the mode x∗ = 333 has p(x∗) ≈ 0.012 and it is hit in E[τx∗ ] ≈ 162 times on

average for q. This is much smaller than n/2 = 500 which would be the average time for

exhaustive search. In comparison, for an uninformed (i.e uniform) proposal the result is

E[τx∗ ] = 1000. Thus, it becomes visible how a ”good” proposal q can influence the speed

of such a stochastic sampler.
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Figure 1: Mean f.h.t and bounds
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3.5 Tail Distribution

It is known (Abadi [1]) that the distribution of first hitting times is generally well approxi-

mated by an exponential distribution. This can be illustrated on a small example.

Consider a state space with N = 10 states, with p and q being discretized mixtures

of Gaussians as before. Fig. 2a plots the tail distributions of the f.h.t for all the states

of the space. It is apparent that their shapes generally resemble exponential tails. In

Fig. 2b, we plotted both the tail distribution of the f.h.t (in solid) and the corresponding

exponential distribution (dashed) for an arbitrary state (i = 3). Even though we are not

able to quantify the approximation error in general, we can give an exponential upper bound

on the tail distribution of the f.h.t. The bound is shown in Fig. 2c.
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Figure 2: Tails, exponential approximation and the upper bound

Proposition 3.7 For all i ∈ Ω, P (τ(i) > m) ≤ (1 − qi)(1 − piw1)
m ≤ exp{−m(piw1)},

∀m > 0.

Proof: For all j 6= i we can write Kji = pi min{wi, wj}. This shows that Kji ≥ piw1,∀j 6=
i. Or, equivalently, 1−Kji ≤ 1− piw1, ∀j 6= i. By writing this set of inequalities in matrix

form, one gets K−i1 ≤ (1 − piw1)1. Now, we can iterate this inequality and therefore,

Kl
−i1 ≤ (1− piw1)

l1, ∀l.
We recall that P (τ(i) > m) = q−iK

m−1
−i 1. Hence, by taking l = m − 1 we shall obtain

P (τ(i) > m) ≤ (1− piw1)
m−1q−i1, or finally, P (τ(i) > m) ≤ (1− qi)(1− piw1)

m−1.
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For the second of the inequalities we note that wi ≥ w1, so 1 − qi ≤ 1 − piw1, which

readily gives P (τ(i) > m) ≤ (1 − piw1)
m. But (1 − piw1)

m ≤ exp{−m(piw1)}, since

exp{−x} ≥ 1− x, ∀x, and the proof is completed. 2

Remarks: 1) We note that the last of the inequalities in Proposition 3.7 holds also for

the exponential distribution µ(i), having mean equal to E[τ(i)]. That is, P (µ(i) > m) ≤
exp{−m(piw1)}, ∀m > 0. To see why, note that λi ≤ λ1 = 1 − w1, so E[τ(i)] = 1/[pi(1 −
λi)] ≤ 1/(piw1) or 1/E[τ(i)] ≥ piw1. Then, obviously, P (µ(i) > m) = exp{−m/E[τ(i)]} ≤
exp{−m(piw1)}.

2) We can always use Markov’s inequality to upper bound the tail distribution with

respect to the expectation of the f.h.t of some i. That is, for any k positive integer, one has:

P (τ(i) > kE[τ(i)]) ≤ 1

k
.

If we were to avoid the use of eigenvalues, whose values might be too difficult to compute,

we could rely on the upper bound from Theorem 3.4 which combined with the above gives:

P (τ(i) ≥ kd 1

min{pi, qi}(1− ||p− q||)e) ≤
1

k
.

3.6 Variance

In this section, we derive a formula for the variance of the f.h.t for the IMS. We show that:

Theorem 3.8 If Z is the fundamental matrix associated to the IMS kernel and using the

same notations as before, the variance of the first hitting time of i is given by:

V ar[τ(i)] =
2Zii(1− λi)− 3pi(1− λi) + 2pi − 1

p2
i (1− λi)2

, ∀i ∈ Ω.

Proof: Already knowing the expectation of the f.h.t reduces the problem of computing the

variance to finding E(τ(i)2). This is given by (2.5):

E[τ(i)2] = 1 +
2

pi

∑
j

qj(Z
2
ii − Z2

ji)−
1

pi

∑
j

qj(Zii − Zji) +
2Zii

p2
i

∑
j

qj(Zii − Zji).

We can rewrite the above as:

E[τ(i)2] = 1 +
2

pi

(Z2
ii −

∑
j

qjZ
2
ji)−

1

pi

(Zii −
∑

j

qjZji) +
2Zii

p2
i

(Zii −
∑

j

qjZji). (3.4)
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Let us note that
∑

j qjZji =
∑

j KnjZji = (KZ)ni. Also, recall that

KZ = Z + P − I. (3.5)

Thus,
∑

j qjZji = Zni + pi − δni. Similarly,
∑

j qjZ
2
ji =

∑
j KnjZ

2
ji = (KZ2)ni. From (3.5)

it also follows that KZ2 = Z2 + P − Z, hence
∑

j qjZ
2
ji = Z2

ni + pi − Zni. By transforming

(3.4) we get

E[τ(i)2] = 1+
2

pi

(Z2
ii − Z2

ni − pi + Zni)− 1

pi

(Zii − Zni − pi + δni)+
2Zii

p2
i

(Zii − Zni − pi + δni),

which further reduces to

E[τ(i)2] =
2

pi

(Z2
ii − Z2

ni)−
3

pi

(Zii − Zni) +
2Zii

p2
i

(Zii − Zni) +
δni

pi

(
2Zii

pi

− 1). (3.6)

For i = n (3.6) becomes E[τ(n)2] = (2Znn−pn)/p2
n, so V ar[τ(n)] = E[τ(n)2]− (E[τ(n)])2 =

(2Znn − pn)/p2
n − 1/p2

n or finally,

V ar[τ(n)] =
2Znn − pn − 1

p2
n

,

which is what I wanted since λn = 0.

If i < n, let us rewrite (3.6), for clarity:

E[τ(i)2] =
2

pi

(Z2
ii − Z2

ni)−
3

pi

(Zii − Zni) +
2Zii

p2
i

(Zii − Zni). (3.7)

We use the spectral decomposition theorem for Z2 and obtain

Z2
li = pi +

n−1∑

k=1

1

(1− λk)2
vkluki,∀ l, i.

Therefore, we have

Z2
ii − Z2

ni =
n−1∑

k=1

1

(1− λk)2
uki(vki − vkn),

which, just as before, leads to

Z2
ii − Z2

ni =
uii(vii − vin)

(1− λi)2
=

1

(1− λi)2
. (3.8)

It is also noted that Zii − Zni = piEn[τ(i)]. At the same time, from Proposition 3.6,

En[τ(i)] = E[τ(i)] = 1/[pi(1− λi)]. Therefore,

Zii − Zni =
1

1− λi

. (3.9)
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Now using (3.8) and (3.9) in (3.7) we obtain

E[τ(i)2] =
2

pi(1− λi)2
− 3

pi(1− λi)
+

2Zii

p2
i (1− λi)

.

Or

E[τ(i)2] =
2Zii(1− λi)− 3pi(1− λi) + 2pi

p2
i (1− λi)2

.

Since V ar[τ(i)] = E[τ(i)2]− E[τ(i)]2 and E[τ(i)] = 1/(pi(1− λi)), it is immediate that

V ar[τ(i)] =
2Zii(1− λi)− 3pi(1− λi) + 2pi − 1

p2
i (1− λi)2

. 2

3.6.1 Bounds for the variance

Two corollaries of Theorem 3.8 will offer bounds on the variance of the f.h.t.

By bounding the term Zii in Theorem 3.8, we obtain Corollary 3.9, which gives bounds

for the variance mainly in terms of the expectation of the f.h.t:

Corollary 3.9 Let us denote Ei := E[τ(i)], for any i ∈ Ω.Then,

Ei(Ei − 1) ≤ Ei[(1 + 2qi)Ei − 3] ≤ V ar[τ(i)] ≤ Ei[
2(1 + qi)

w1pi

− Ei − 3],

with equality if wi = wi−1 = . . . = w1.

Proof: For the proof we first need to prove the following lemma.

Lemma 3.10
1 + qi − pi

1− λi

≤ Zii ≤ 1 + qi − pi

w1

,

with equality if and only if wi = wi−1 = . . . = w1.

Proof of the lemma: We use again the identity

Zii = pi +
n−1∑

k=1

1

1− λk

vkiuki.

As 1/(1− λk) = 1 + λk/(1− λk), we can rewrite Zii as

Zii = pi +
n−1∑
j=1

vkiuki +
n−1∑

k=1

λk

1− λk

vkiuki = 1 +
n−1∑

k=1

λk

1− λk

vkiuki = 1 +
i∑

k=1

λk

1− λk

vkiuki.
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Note that 1/(1− λi) ≤ 1/(1− λj) ≤ 1/(1− λ1),∀ 1 ≤ j ≤ i, which gives

1 +
1

1− λi

i∑

k=1

λkvkiuki ≤ Zii ≤ 1 +
1

1− λ1

i∑

k=1

λkvkiuki.

Since
∑i

k=1 λkvkiuki =
∑n−1

k=1 λkvkiuki = Kii− pi = qi + λi− pi, it follows that 1 + (qi + λi−
pi)/(1 − λi) ≤ Zii ≤ 1 + (qi + λi − pi)/(1 − λ1), or further, (1 + qi − pi)/(1 − λi) ≤ Zii ≤
(1 + qi − pi + λi − λ1)/(1− λ1).

The lemma is proved if, for the right hand side term, we use 1 − λ1 = w1 and λi ≤ λ1.

Clearly, equality on both sides is obtained if and only if wi = wi−1 = . . . = w1.

Going back to the proof of Corollary 3.9, we note that, starting from the left side, the

first inequality is trivial since Ei ≥ 1/qi. Also, proving that Ei[(1 + 2qi)Ei − 3] ≤ V ar[τ(i)]

is just a matter of applying Lemma 3.10 and regrouping the terms.

For the upper bound we notice that w1 = 1−λ1 ≤ 1−λi, which gives pi ≤ pi(1−λi)/w1.

This combined with the upper bound for Zii will show that

Zii(1− λi) + pi ≤ (1 + qi − pi)(1− λi)

w1

+
pi(1− λi)

w1

=
(1 + qi)(1− λi)

w1

.

Since from Theorem 3.8, V ar[τ(i)] = [2Zii(1 − λi) − 3pi(1 − λi) + 2pi − 1]/[p2
i (1 − λi)

2], it

follows that V ar[τ(i)] ≤ [2(1 + qi)(1− λi)/w1 − 3pi(1− λi)− 1]/[p2
i (1− λi)

2], which easily

turns into the pursued upper bound since, from Theorem 3.4, Ei = 1/[pi(1 − λi)]. The

equality case shows up if λi = λi−1 = . . . = λ1, which is equivalent to wi = wi−1 = . . . = w1.

The bounds given by Corollary 3.9 can be further simplified, but weakened at the same

time, if one uses the known lower bound for Ei on the left and maximizes the upper bound

with respect to Ei. Thus, one gets:

Corollary 3.11 If Mi := 1/ min{qi, pi}, for any i ∈ Ω, then

Mi(Mi − 1) ≤ Mi[Mi(1 + 2qi)− 3] ≤ V ar[τ(i)] ≤
(1 + qi

w1pi

− 3

2

)2

.

Proof: Obviously, for the lower bounds we apply inequality Ei ≥ Mi to the previous corol-

lary. To prove the upper bound, we refer again to Corollary 3.9 and for simplicity, let us

denote

2
(1 + qi)

w1pi

− 3 := a.

Then, Corollary 3.9 gives V ar[τ(i)] ≤ Ei(a− Ei). Consequently, a ≥ Ei > 0, and since the

maximum value of function f(x) := x(a− x) on (0, a) is obtained for x = a/2, we conclude

that f(Ei) ≤ a2/4, which is the upper bound.
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4 IMS vs. a special class of Metropolis-Hastings

kernels

We have seen that for the IMS the mean f.h.t is always bounded below by 1/pi, for all

proposal probabilities q. We shall prove that for more general Metropolis kernels, the mean

f.h.t can be lower than 1/pi, and thus show formally, what was otherwise clear intuitively,

that, because of its independence from the current state, the IMS kernel can be inferior to

other samplers in terms of speed of hitting a certain state.

Firstly, we recall that a Metropolis-Hastings kernel R, induced by a proposal stochastic

matrix Q can be written as Rij = Qij min{1, Qjipj/(Qijpi)}, for any i 6= j (Hastings [5]).

Theorem 4.1 Let Q be a stochastic proposal matrix satisfying the condition Qji ≥ pi,∀j 6=
i.

Then, for any initial distribution q, the Metropolis-Hastings Markov chain that uses Q

as a proposal matrix has the property that

EQ
q [τ(i)] ≤ 1 +

1− qi

pi

, ∀i ∈ Ω,

with equality for Q equal to the stationary matrix.

Proof: Let R be the Metropolis-Hastings kernel associated to the proposal Q and the

target probability p. Let i ∈ Ω. As Qji ≥ pi and Qij ≥ pj, it follows that Rji =

min{Qji, Qijpi/pj} ≥ pi,∀j 6= i. This implies that 1−Rji ≤ 1− pi or Rj·1n−1 ≤ 1− pi. As

the previous inequality holds true for all j 6= i, we get that R−i1 ≤ (1− pi)1 or equivalently

(I−R−i)1 ≥ pi1.

The inverse of I− R−i exists and it is equal to
∑

m Rm
−i and therefore (I− R−i)

−1 ≥ 0.

This said, we can multiply the inequality (I − R−i)1 ≥ pi1 by q−i(I − R−i)
−1 and get

q−i(I − R−i)
−11 ≤ (1 − qi)/pi or finally, EQ

q [τ(i)] ≤ 1 + (1 − qi)/pi, where we have used

formula (2.1) for the mean f.h.t when starting from q. We have equality if Rji = pi,∀j 6= i,

which is fulfilled if Q equals the stationary matrix. Naturally, there are also other Q’s that

accomplish equality, the condition being that either Qji = pi or Qij = pj, ∀j 6= i. 2

Combining Theorem 3.4 and Theorem 4.1, one gets:
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Corollary 4.2 For any initial distribution q and Q satisfying the assumption in Theorem

4.1,

EQ
q [τ(i)] ≤ max{ 1

pi

,
1

qi

} ≤ EIMS
q [τ(i)],

where we denoted by EIMS
q [τ(i)] the mean f.h.t of the IMS kernel associated to q and p.

Proof: The proof is immediate since, obviously, 1 + (1− qi)/pi ≤ max{1/pi, 1/qi}, with

equality if and only if qi = pi or, in other words, if i is an exactly-informed state for q. 2

The above corollary thus gives a simple way to construct Metropolis-Hastings samplers

that would perform better than a corresponding IMS sampler in terms of first hitting times.

It is worth noting that there are known examples of samplers that satisfy the condition

in Theorem 4.1. Such a sampler is the ”Metropolized Gibbs Sampler” (Liu [8]) or simply

MGS. A recent application of this sampler is described in Tu and Zhu [13].

For the MGS, the proposal matrix Q is defined as: Qij = pj/(1 − pi), ∀i 6= j which

satisfies the above mentioned condition.

Interestingly, the MGS can also be viewed as a particular case of the IMS. To see this,

let us remark that after metropolizing Q through the usual acceptance-rejection mechanism,

one gets the transition kernel having elements:

Rij =





pj

1−pi
if i < j,

1−∑
k 6=i Rki if i = j,

pj

1−pj
if i > j.

Without loss of generality, we assume that p1 ≤ p2 ≤ . . . ≤ pn. Now, if we denote by

qi := pi/(1 − pi),∀i < n and qn := 1 −∑
i<n qi, we note that R has the same form as the

IMS transition matrix corresponding to p and q for w1 ≤ w2 ≤ . . . ≤ wn. Therefore, if using

as initial distribution the newly defined q, all the previous results pertaining to the IMS

apply also to the MGS.

Remark: The MGS is a modified Gibbs sampler, the main difference being that it will

never propose the current state. Thus, it travels through the state space in a more efficient

manner. However, a M-H acceptance probability needs to be introduced to maintain the

correct invariant distribution. Rejections could still cause the sampler to stay in the same

state. Nevertheless, Liu [8] showed that the MGS is more efficient than the ordinary Gibbs
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sampler in the sense that the asymptotic variance of the estimators based on the Markov

chain samples is smaller for the MGS than for the Gibbs sampler. Thus, the expected gain

in efficiency would justify metropolizing the stationary probability p.

A recent review of various types of ”efficiency” definitions for MCMC samplers as well

as theoretical results linking these types of efficiency notions can be found in Mira [11]. Our

approach is to consider the mean first hitting time as an indicator of efficiency when the

focus is on searching for a few states through a finite state space.

5 General bounds for expected f.h.ts for Metropolis-

Hastings kernels

It turns out that one can get lower and upper bounds on the expected f.h.t for any

Metropolis-Hastings kernel by a reasoning similar to the one in Theorem 4.1 as shown

with the result below.

Theorem 5.1 Let p and Q be the target probability and the proposal matrix respectively for

a Metropolis-Hasting sampler. Let M = maxi,j Qij/pj and m = mini,j Qij/pj. We assume

m > 0. Then for any initial distribution q, the expected f.h.ts are bounded by

pi +
1− qi

M
≤ piE

Q
q [τ(i)] ≤ pi +

1− qi

m
,∀i.

Equality is attained if Qij = pj,∀i, j.
Proof: The proof is similar to the one for Theorem 4.1 so it will only be sketched. Firstly

one shows that mpi ≤ Kji ≤ Mpi which then leads to (mpi)1 ≤ (I − K−i)1 ≤ (Mpi)1,

which in turn, by an argument analogous to the one in Theorem 4.1, gives (1− qi)/Mpi ≤
q−i(I −K−i)

−11 ≤ (1 − qi)/mpi. Now using the corresponding identity for expected f.h.t,

EQ
q [τ(i)] = 1 + q−i(I−K−i)

−11, one immediately gets the result stated in Theorem 5.1.2

For some particular choices of q, the bounds can be made more ”concrete”. Two partic-

ular choices seem both intuitive and convenient:

i) qi =
∑

j

αjQji,∀i, (
∑

j

αj = 1)

ii) qi =
maxj Qji∑
k maxj Qjk

, ∀i.
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It is immediate to check that both i) and ii) are valid probability distributions. The first

one is just a linear combination of the elements on the ith column, which in the particular

case when the proposal does not depend on the current state (the IMS), reduces to the

proposal distribution for the IMS. The second distribution described above would use the

maximum value of the proposal matrix on each column as an initial step, after normalization.

Using them as initial distributions for the Markov chain and applying Theorem 5.1 one

can derive the corollary below:

Corollary 5.2 Within the setup from Theorem 5.1, the following hold:

1) If the initial distribution is given by i) then 1/M ≤ piE
Q
q [τ(i)] ≤ 1/m, ∀i.

2) If the initial distribution is given by ii), then max{1/n, 1/M} ≤ piE
Q
q [τ(i)] < 1 +

1/m, ∀i.

Proof: To prove 1), let us first notice that from the way M and m where defined it

follows that mpi ≤ qi ≤ Mpi. Therefore

pi +
1− qi

M
≥ pi +

1−Mpi

M
=

1

M

and analogously

pi +
1− qi

m
≤ pi +

1−mpi

m
=

1

m

which proves 1) by means of Theorem 5.1.

For 2), we first need to show that mpi/n < qi ≤ Mpi, ∀i. We note that

1 =
∑

k

Q1k ≤
∑

k

max
j

Qjk <
∑

k

1 = n

Therefore,
maxj Qji

n
< qi =

maxj Qji∑
k maxj Qjk

≤ max
j

Qji

Hence mpi/n < qi ≤ Mpi,∀i. Now, as for 2), one will get

1

M
≤ piE

Q
q [τ(i)] < pi +

1− pim/n

m
< 1 +

1

m

The only thing left to prove is that piE
Q
q [τ(i)] ≥ 1/n. In order to show this, we employ

the second basic identity for the kernel K, which is pK = p. If we denote by u the n − 1

dimensional vector obtained from row i of K after deleting component Kii, we can write

p−iK−i + piu = p−i or p−i(I −K−i) = piu. We note that Kij ≤ Qij ≤ maxi Qij < nqj, ∀j.
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Therefore, u < nq−i so p−i(I−K−i) < (npi)q−i. As before, it follows that p−i1 < (npi)q−i(I−
K−i)

−11 or 1− pi < (npi)(E
Q
q [τ(i)]− 1). Hence piE

Q
q [τ(i)] > pi + (1− pi)/n, implying that

piE
Q
q [τ(i)] > 1/n which concludes the proof of the corollary.2

Naturally, because of their generality the bounds developed in this section are quite

weak in general, as m and M can take very extreme values in practice, rendering the

bounds useless for such cases.

6 Conclusion

We were able to perform a detailed first hitting analysis of one special type of Metropolis-

Hastings sampler, the Independence Metropolis Sampler. More practical general non-

independence Metropolis-Hastings samplers seem to be too complex to allow for a detailed

analysis. In the spirit of this paper, such an analysis could only be done if the eigenstruc-

ture of the kernel matrix would be available. This is typically not the case for most of the

practical applications. However, even when the eigenstructure is unknown, insights into the

behavior of mean first hitting time are possible, as seen in Theorem 4.1. Also, we have

derived lower and upper bounds for the expected first hitting time for general Metropolis-

Hastings algorithms. We are hoping that future work will allow obtaining better bounds in

the case of the tail distribution for the IMS and further for more general cases. This would

make our results more useful and amenable for using them in practice.
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