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Abstract Videos of natural environments contain a wide
variety of motion patterns of varying complexities which are
represented by many different models in the vision litera-
ture. In many situations, a tracking algorithm is formulated
as maximizing a posterior probability. In this paper, we pro-
pose to measure the video complexity by the entropy of the
posterior probability, called the intrackability, to character-
ize the video statistics and pursue optimal video represen-
tations. Based on the definition of intrackability, our study
is aimed at three objectives. Firstly, we characterize video
clips of natural scenes by intrackability. We calculate the in-
trackabilities of image points to measure the local inferential
uncertainty, and collect the histogram of the intrackabilities
over the video in space and time as the global video statis-
tics. We find that a PCA scatter-plot based on the first two
principle components of intrackability histograms can re-
flect the major variations, i.e., image scaling and object den-
sity, in natural video clips. Secondly, we show that different
video representations, including deformable contours, track-
ing kernels with various appearance features, dense motion
fields, and dynamic texture models, are connected by the
change of intrackability and thus develop a simple crite-
rion for model transition and for pursuing the optimal video
representation. Thirdly, we derive the connections between
the intrackability measure and other criteria in the literature
such as the Shi-Tomasi texturedness measure, conditional
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number, and Harris-StephensR score, and compare with the
Shi-Tomasi measure in tracking experiments.

1 Introduction

1.1 Motivation and objective

Videos of natural environments contain a wide variety of
motion patterns of varying complexities which are repre-
sented by many distinct models in the vision literature. Fig. 1
illustrates four typical representations: (i) A moving contour
representing a slowly walking human figure in near view;
(ii) A kernel (window with interior feature points) repre-
senting a fast moving car in middle distance; (iii) A dense
motion (optical) flow field representing a marathon crowd
motion; and (iv) An appearance based spatio-temporal auto-
regression (STAR) model representing the fire flame where
it is hard to track any distinct elements. The complexity of
these video clips are affected by a few major factors, namely,
the object scale, the object density, and the stochasticity of
the motion. Apparently, the change of these factors triggers
transitions among these representations. Fig. 2 shows two
sequences of motion at distinct scales: the bird flock and the
marathon crowd, where the individual bird or person is rep-
resented by a contour, a kernel and a motion vector at three
scales respectively.

These representations have been studied extensively for
various tasks in the vision literature, for example, contour
tracking (Maccormick and Blake, 2000; Sato and Aggarwal,
2004; Black and Fleet, 2000), kernel tracking (Comani-
ciu et al, 2003; Collins, 2003), PCA basis tracking (Ross
et al, 2008; Kwon et al, 2009), motion vectors of points -
– sparse (Shi and Tomasi, 1994; Tommasini et al, 1998;
Segvic̀ et al, 2006; Serby et al, 2004; Veenman et al, 2001)
or dense (Horn and Schunck, 1981; Ali and Shah, 2007),
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Fig. 1 Examples of motion patterns and their representations: (a) A slowly walking human figure at near view is represented by a contour;
(b) A fast moving car in middle distance is represented by a kernel (window with multiple interior feature points); (c) A moving crowd in far
view is represented by a dense motion field; and (d) the dynamic texture of fire has no distinct element that is trackable, and is represented by
auto-regression models on its image intensities without explicit motion correspondence.

(a) (b) (c)

(a) (b) (c)

Fig. 2 The switch of video representations is triggered by image scaling (camera zooming) and density changes. (a) In high resolution, the bird
shape and human figure are described by their contours; (b) In middle resolution, they are represented by a kernel with feature points; and (c) In
low resolution, the people and birds are modeled by moving points with dense optical flow.

and dynamic texture (Szummer and Picard, 1996; Fitzgib-
bon, 2001; Soatto et al, 2001) or textured motion (Wang and
Zhu, 2003). However, no attempt, to our best knowledge,
has been made to formally characterize the video complex-
ity and to establish connections and conditions for the tran-
sitions among these representations in the literature. In fact,
the automated selection and switching of representations on-
the-fly is of practical importance in real-time applications.
For example, tracking an object over a long range of scales
will need different representations. A surveillance system
must also adapt its tracking task when the number of targets
in a scene suddenly increases and cannot be tracked individ-
ually due to limitated computing resources. If the computing
resource allows, it should output more detailed information
for further processing, database indexing or human inspec-

tion. When the number of objects at near distance increases,
heavy occlusions always happen and we have to change to
track parts and discard some objects. When the number of
objects at far distance increases, we can change to model
motion flow and count number of objects. For example, (Ali
and Shah, 2008) and (Cong et al, 2009) track high density
crowd scenes with a motion field.

In this paper, we study an information theoretical cri-
terion called the intrackability as a measure of the video
complexity. By definition, the intrackability is the entropy
of the posterior probability which a tracking or motion anal-
ysis algorithm tries to maximize, and thus reflects the dif-
ficulty and uncertainty in tracking certain elements (pixels,
feature points, lines, patches). We will use the intrackabil-
ity to characterize the video statistics, explain the transition
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between representations, and pursue the optimal video rep-
resentation for an given video clip. (Here, to pursue means
solving selection of image elements in a sequential greedy
way.) More specifically, our study is aimed at the following
three objectives.

Firstly, we are interested in characterizing the global statis-
tics of video clips and developing a panoramic map for the
variety of video representations. We calculate the intracka-
bilities of some atomic image elements (patches) to measure
the local inferential uncertainty, and then we collect his-
tograms of the intrackabilities over the video in space and
time as the global video statistics. We find that these his-
tograms can be roughly decomposed into three bands which
correspond to three distinct motion regimes: (i) Low intrack-
ability band for the trackable regime, which corresponds to
image areas with distinct feature points or structured tex-
ture areas that can be tracked with high accuracy. (ii) High
intrackability band for the intrackable regime, which corre-
sponds to image areas with no distinct texture, for exam-
ple, flat areas or extremely populous areas. (iii) Medium in-
trackability band which contains mostly texture areas where
structures become less distinguishable. We use regimes to
refer to them because they do not have a rigorous prede-
fined boundaries like classes. Using a PCA analysis on these
square root histograms, we find that the first two eigen-vectors
represent two major changes in the video space: the transi-
tion between the trackable and the intrackable motion and
the transition between structure and texture. We plot the scat-
ter plot and map natural video clips to these two axes to gain
insight into the variations of video complexity.

Secondly, we are interested in developing an informa-
tion theoretical criterion to guide the transition and selection
of video representations, in contrast to the common prac-
tice that the video representations are manually selected for
different tasks. Our criterion is a sum of the intrackability
of the tracked representation (W as a vector) and its com-
plexity (the number of variables in W ). By minimizing this
criterion (over W ), our algorithm automatically chooses an
optimal representation for the video clip which is often hy-
brid – mixing various representations for different areas in
the video. In the spectrum of representations, the most com-
plex one is the dense motion flow where each pixel or fea-
ture point is tracked and W is a long vector, and the sim-
plest one is the dynamic texture or textured motion where
no velocity is computed as there are no distinct and track-
able elements and W is a short statistical description of the
motion impression. Intuitively, when the ambiguity (or in-
trackability) is large, we reduce the representationW by two
ways: (i) dropping certain elements, for example, remove el-
ements that are not trackable, or drop the motion direction
in the tangent direction of a contour element; or (ii) merg-
ing some descriptions, for example, combining a number of
feature points that have similar motion in a kernel. In ex-

periments, we show that different video representations, in-
cluding deformable contours, tracking kernels with various
appearance features, dense motion fields, and spatial tempo-
ral auto-regression models are selected by the algorithm for
different video clips.

Thirdly, we compare our intrackability measure with three
other criteria in the literature: (i) the texturedness measure
for good features to track (Shi and Tomasi, 1994), (ii) Harris
R score (Harris and Stephens, 1988) for corner detection and
(iii) the conditional number for robust tracking in (Fan et al,
2006). We show that all three measures are related to dif-
ferent formula of the two eigenvalues in the local Gaussian
distribution over the possible velocity. The intrackability is
a general measure that is closely related to the three criteria.
We also compare the intrackability with Shi-Tomasi mea-
sure by tracking experiments.

1.2 Related work in the literature

For the first objective of characterizing statistics of video
clips, our work is closely related to natural image statis-
tics. For natural images, some interesting properties are ob-
served in their histograms of filtered responses, such as high
kurtosis, that leads to sparse coding and scale invariance
in gradient histograms (we refer to (Srivastava et al, 2003)
for a comprehensive review), and various image models are
learned to account for these statistical observations. The work
that most directly inspired our study is (Wu et al, 2008).
In (Wu et al, 2008) the entropy of posterior probability is
defined as imperceptibility, which is then shown theoreti-
cally to guide the transitions of our perception of images
over object scales. In general, (Wu et al, 2008) identified
three regimes of models along the axis of imperceptibil-
ity: (i) the low entropy regime for structured images (rep-
resented by sparse coding), (ii) the high entropy regime for
textured images (represented by Markov random fields); and
(iii) the Gaussian noise regime for flat images or images with
stochastic texture. A perceptual scale space representation
was studied in (Wang and Zhu, 2008). While these works
characterize the statistical properties of image appearance,
our study is focused on the global statistics of local motion.
We replace the histograms of filtered responses by the his-
tograms of local intrackability, which divide videos into var-
ious regimes of representations.

Our work is closely related to another stream of research
— image scale-space theory, which was proposed by (Witkin,
1983) and (Koenderink, 1984) and extended by (Lindeberg,
1993). The Gaussian and Laplacian pyramids are two multi-
scale representations concerned in scale-space theory. A Gaus-
sian pyramid is a series of low-pass filtered and down-sampled
images. A Laplacian pyramid consists of band-passed im-
ages which are the difference between every two consecutive
images in the Gaussian pyramid. Scale-space theory studied
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discrete and qualitative events, such as appearance of ex-
tremal points (Witkin, 1983), and tracking inflection points.
The image scale-space theory has been widely used in vision
tasks. In this paper, we study the motions of points, contours
and kernels, rather than the appearances of image patches in
terms of Gaussian and Laplacian pyramids. We study the
transitions of these higher level representations over scales
and object density, rather than appearance of extremal points
and drifting of inflection points.

For the second and third objectives of representation pur-
suit and tracking feature selection, our work is related to
the various criteria for feature selection (Marr et al, 1979;
Dreschler and Nagel, 1981; Yilmaz et al, 2006) in the vast
literature of motion analysis and tracking. The corner detec-
tor (Harris and Stephens, 1988) has been used as a tracking
feature selector for years. It is defined on eigenvalues of a
matrix collected from image gradients. For tracking based
on sum-of-squared-differences (SSD), (Shi and Tomasi, 1994)
selected good features by a texturedness measure which is
also defined on the same matrix as (Harris and Stephens,
1988). (Nickels and Hutchinson, 2002) analyzed variations
of probability distributions of SSD motion vectors, and mea-
sured the uncertainty in terms of a covariance matrix from
Gaussian fitting. For tracking based on kernels, (Fan et al,
2006) gave a reliability measure for kernel features based on
condition number of a linear equation system. Covariance is
also used in (Zhou et al, 2005) as an uncertainty measure
for SSD, MeanShift and shape matching. For multi-frame
adaptive tracking, (Collins et al, 2005) used log likelihood
ratio scores of objects against the background as a goodness
measure. These measures are all associated with specified
feature descriptions (e.g., SSD, kernel) and tracking model.
A recent work (Pan et al, 2009) used a forward-backward
tracking strategy to evaluate the robustness of a tracker —
first the object is tracked forward for a few frames, then
tracked backward from the end frame of forward tracking
to the beginning one, and the difference of the initial posi-
tion and the backward tracked result is used as a measure of
the robustness.

There are numerous works in psychophysics, e.g. (Pylyshyn
and Vidal Annan, 2006), that studied the human perception
of motion uncertainty, and showed that human vision loses
track of objects (dots) when the number of dots increases or
their motion is too stochastic.

(Han et al, 2005) first proposed to use entropy to select
the best template for tracking, but no detailed investigation
was made. The authors proposed the intrackability concept
in two short papers (Li et al, 2007b,a) in the context of
surveillance tracking. The intrackability concept was also
mentioned in (Badrinarayanan et al, 2007). The contents
presented in this paper are much more general than these
papers and are not published elsewhere. Another interesting
work related to ours is (Kadir and Brady, 2001). They in-

vestigated the use of entropy measures to identify regions of
saliency in scale space, and obtained reasonable results on a
broad class of images and image sequences. They also used
it for tracking feature selection. The key difference between
their work and ours is that they use the entropy of image pix-
els, that is, they first collect the histogram from a template,
then compute the entropy of the histogram; while we use the
entropy of posterior probability of motion perception.

1.3 Contributions and paper plan

In summary, this paper makes the following contributions to
the literature.

1. The paper defines intrackability quantitatively to mea-
sure inferential uncertainty and uses it to characterize
video into different regimes of representations. Thus we
draw some connections between different families of mod-
els in the motion/tracking literature.

2. The paper shows that intrackability can be used to pur-
sue a hybrid representation composed of feature points,
contours and kernels for various videos.

3. The paper shows that intrackability is a general criterion,
and derives its relation to three other measures in the
literature.

This paper is organized as follows. We first define in-
trackability and give a simple method for computing it on a
simple probability model in Section 2. Then, we use the his-
togram of the intrackability measure to characterize natural
videos in Section 3 and show the connections and transitions
of different representations through scaling. Then in Sec-
tion 4, we adopt the intrackability criterion for pursuing op-
timal video representations. Section 4 explains the relation-
ship between intrackabilities and video representation. First,
we give brief introductions of popular representations for
motions in the literature. Then representation projection is
introduced to explain how these representations can be con-
vertible in a coarse-to-fine manner. Finally, based on a crite-
rion considering both intrackability and level of details, an
algorithm for automatic construction of hybrid representa-
tions is proposed, which produces representations that con-
sist of feature points, contours and kernels. In Section 5, we
show how intrackability is related to other criteria for se-
lecting features to track. The paper is concluded in Section
6 with a discussion.

2 Intrackability: definition and computation

2.1 Definitions of intrackability

Let I(t) be an image defined on a window Λ at time t, and
I[τ ] = (I(1), · · · , I(τ)) a video clip in a time interval [1, τ ],
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and W the representation of this video selected for various
tasks, e.g., motion vectors, or positions of control points of
contours. In a Bayesian view, the objective of motion analy-
sis is to compute W by maximizing a posteriori probability

W ∗ = argmax
W

p(W |I[τ ]). (1)

The optimal solution W ∗, however, does not contain infor-
mation about the uncertainty of the inference and can not
tell whether the selected representation is appropriate for
the video sequence. A common measure for the uncertainty
is the entropy of the posterior probability, we call it the in-
trackability.

Definition 1 (video intrackability) Intrackability of a video
sequence IΛ[τ ] for a representation W is defined by,

H{W |I[τ ]} = −
∑
W

p(W |I[τ ]) log p(W |I[τ ]). (2)

Here log is natural logarithm. We use the natural logarithm
because it is more amenable to probability models of expo-
nential family.

In this paper, we will focus on middle level represen-
tations that are local in space and time, e.g. pixels, points,
lines, kernels etc., and W does not contain high level con-
cepts, such as action and events. Thus the volume Λ × τ is
quite small. In a simplest case, W = u is the motion vec-
tor of a feature point, patch, or kernel and I and I′ are two
consecutive frames. Then the intrackability isH{u|I, I′}.

Definition 2 (local intrackability) Intrackability of a local
element between two image frames I, I′ for its velocity u is
H{u|I, I′}.

In the next two sections, we will use H{u|I, I′} as a local
intrackability to characterize the global video complexity.

In general, good features to track should be discrimina-
tive in both appearance and dynamics. Both factors are in-
tegrated in the intrackability measure, because the posterior
probability p(W |I[τ ]) encodes both appearance and motion
information.

It is worth noting that H is an unbounded differential
entropy for continuous variables W and I. In this paper, we
discretize both W and I in a finite set of values to obtain a
non-negative bounded Shannon entropy.

2.2 Computing the local intrackability

The local intrackability can be exactly computed for a speci-
fied appearance and motion probability model. We take SSD
appearance model with uniform motion prior as an example,
in which the posterior probability is

p(u|I, I′) ∝ exp

{
−
∑

x∈P ‖I(x)− I′(x+ u)‖2

2σ2

}
. (3)

where P is the patch around point considered and I(x) is
the pixel intensity. Here we assumes white, Gaussian noise.
For generality, we calculate

∑
x∈P ‖I(x)− I′(x+u)‖2 us-

ing the SSD method for each patch of 5 × 5 pixels, and we
enumerate all possible velocities between two frame I, I′ in
the range of u ∈ {−12, ...,+12}2 pixels.

A

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

B

Fig. 3 Posterior probability map of SSD model — (A) patches with
numbers; (B) probability map of each numbered patch. Better viewed
in color.

Fig. 3(B) shows the full posterior probability maps for
20 typical patches in a video clip in (A). We then compute
the local entropy as defined in Definition 2. This is quite time
consuming but it is an accurate account of the intrackability.
The computation can be accelerated by sub-sampling the ve-
locity vectors or computing SSD in a gradient descent man-
ner. The probability maps in Fig. 3(B) have a large shape
variation. There are 4 typical cases

1. Spot shape, for example, 0, 1, and 3; these patches are
often corner points and have lowest intrackability;

2. Ridge shape, for example, 2, 14, 16, 17; these patches
are edges or ridges and have mid-level intrackability;

3. Multi-modal, for example, 4, 5, 6; these patches are fea-
ture points with similar nearby distractors or imperfect
edges, and also have mid-level intrackability;

4. Uniform, for example, 7, 15, 19; these patches are often
flat regions and have highest intrackability.

In summary, one can see that many of the probability maps
cannot be approximated by a simple distribution such as 2D
Gaussian.
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3 Statistical characteristics of video complexity

This section presents an empirical study on the statistics of
natural video clips. We use local intrackability to character-
ize the video complexity and illustrate the changes of repre-
sentations over two main axes of changes. Our objective is
to gain insight into the various regimes of motion patterns.

3.1 Histograms of local intrackability

As local intrackability is computed in a local space-time vol-
ume, we collect a histogram of the intrackabilities by pool-
ing them over the image lattice Λ, following the study of
natural image statistics where people collected histograms
of local filtered responses.

In our first experiment, we collect a set of 202 video
clips of birds from various websites, such as National Geo-
graphic and Flickr. Each clip has 6 frames and is resized to
the same size (176 × 144) so that the intrackability is com-
puted in the same range. The reason why we choose bird
videos is that birds are captured at a wide range of scales
(distance), density, and motion dynamics against clean sky
or water. They are ideal for studying the change of repre-
sentations. As we set u in the range of {−12, ...,+12}2, the
maximum value of intrackability is log(25 × 25) ≈ 6.4.
We select 60 bins for the histogram of local intrackability
and thus treat it as a 60-element vector. To better calculate
the distance (i.e., Bhattacharyya distance (Comaniciu et al,
2003)) between histograms, we take the square root of each
element.

Fig. 4 shows six typical examples of the square-rooted
histograms of local intrackabilities. From our experiments,
we observe that there are in general three regimes of motion
patterns in these video.

– Flat or noisy videos, such as examples 1 and 6 where
the birds are far away and very dense. The intrackability
is mostly focused on the right end of the histogram. By
flat or noisy videos, we mean the situations where pixel
values are almost invariant or dominated by white noise.

– Structured videos, such as example 2, where the birds
are close and sparse. The intrackability histogram is widely
spread as it contains elements that are trackable (e.g. the
corners of bird shapes) and elements that are intrackable
(flat patches inside and outside the birds). By structured
videos, we mean the situations where discriminable edges
and junctions can be spotted.

– Textured video, such as example 4, where the birds are
dense but distinguishable from each other. The birds gen-
erate texture images of middle granularity. By textured
video, we mean the situation where there are many sim-
ilar appearance features organized as a uniform pattern.

As we zoom-out from example 4 to examples 3, 5, and
6, we gradually observe a clear migration from the low in-
trackability bins to the high intrackability bins, and finally
it will end up like example 1. Row 3 of Fig. 4 verifies our
intuitive observation. We conduct a PCA analysis over the
202 square-rooted histograms. The mean histogram has two
peaks at two ends. The two eigen-vectors clearly identify
the two major transitions. The first eigen-vector shows the
change between the trackable (textured or structured, in-
trackability in [0, 4.5]) and the intrackable (flat or noise, in-
trackability in [4.5, 6]), reflecting the increasing complex-
ity. The second eigen-vector shows the change between the
highly trackable [0, 2] and the less trackable [4, 4.5], reflect-
ing the change of granularity in scaling. That is, the first
axis tell trackable from intrackable and trackable has three
cases — highly trackable, middle trackable and less track-
able, which are further described by the second axis.

3.2 Scatter plot and variation directions

In our second experiment, we visualize the two types of tran-
sitions observed in the previous step. We embed the 202

bird videos in the two dimensions spanned by the two eigen-
vectors, and show the result in Fig. 5. We collect the videos
on the boundary of the scatter plot and find the two curves
representing the two major changes between the most in-
trackable videos (flat videos on the upper-left corner) and
the most trackable (large grained textures on the upper-right
corner). We call the flat videos intrackable and large grained
textures as trackable, this conflicts with intuition that the flat
ones are easier to track. More precisely, the upper-left videos
include objects that are easier to track, but the videos them-
selves are not. Before we select which elements to track,
we have no idea of objects (suppose we do not have back-
ground modeling or object detection). If we try to track all
the elements in a video, the intrackabilities of blank areas
are higher because of the aperture problem. We need to re-
move the blank regions, which are both difficult to track and
meaningless in most cases. This is the motivation of repre-
sentation pursuit in Section 4.

Why is this interesting? Traditional vision research on
video has been studied in two separate domains: (i) trackable
motion including motion flow analysis and object tracking,
and (ii) intrackable motion or textured motion. Our experi-
ment shows, perhaps for the first time in the literature, that
there is a continuous transition between the two domains.
Furthermore, this transition occurs along two axes. The bot-
tom of Fig. 5 visualizes some videos along the two curves.
The first row displays videos along the upper boundary of
the plot and reflects the change of bird density. The second
row displays videos along the lower boundary and reflects
the change of bird granularity through scaling. The videos
in the interior of the plot in Fig. 5 contain birds of different
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Fig. 4 (Row 1-2) Six examples of the square-rooted histograms of local intrackabilities. (Row 3) Three components are fit to the mean histogram,
and the first two eigen-vectors of these square-rooted histograms reveal the transitions between the three components.

sizes and numbers and therefore are mixtures of the ones
on the boundary. Such observations call for a unified frame-
work for modeling all video patterns and for a continuous
transition between the various motion representations.

As the two curves form a loop of two continuous changes,
we re-organize the videos on the boundary and visualize
them in Fig. 8.

For tracking tasks, we are interested in trackable ele-
ments in a video and most intrackable areas are discarded
to reduce computing burden. We apply a threshold (1/3 of
the maximal intrackability value) on each video to obtain a
set of trackable elements, and the sum of the intrackabilities
of all trackable elements in a video provides the uncertainty
of the tracking task. Fig. 9 plots the total sum of the intrack-
abilities in these trackable areas for all the videos on the
blue curve and red curve in Fig. 5. This figure illustrates that

the sum achieves the peak at populous videos, which means
that they are the most difficult to track when we have dis-
carded the intrackable uniform regions and textured regions
with high intrackabilities. For videos with modest number
of objects, each feature point has less ambiguity. For flat or
noisy videos, the number of trackable points is almost zero,
so the tracking algorithm can do nothing. Therefore, it has
to switch to appearance models, such as the spatio-temporal
auto-regression (STAR) model, to represent the video ap-
pearance without explicitly computing the motion. In this
sense, intrackability is indeed a good measure for the transi-
tion of models.

In our third experiment, we extend the study of bird video
to general natural video clips in the same way. We collected
a set of 237 video clips containing a large variety of ob-
jects, such as people, birds, animals, grass, trees, water with
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Fig. 5 PCA embedding of histograms of intrackabilities for the 202 bird videos in two dimensions. Red and blue curves show two typical
transitions: The blue curve (top) shows density changes of elements (objects) in the video: from a few birds to thousands of birds. The red curve
(bottom) shows scales changes in the videos: from fine granularity to large granularity. In the bottom, the first row shows the video examples on
the blue curve and the second row shows the video examples on the red curve.

different speed and density in natural environments. Fig. 10
shows the results of the two-dimensional embedding.

The result coincides with the bird experiments. The 237

video clips are bounded by the two typical transition curves.
The bottom of Fig. 10 shows the typical video clips along
the two curves.

For comparison, we use Shi-Tomasi texturedness mea-
sure and Harris-Stephen R score to do the same PCA. The
results are shown in Fig. 6 and 7 respectively. Shi-Tomasi
is a local measure that only accounts for the gradient infor-
mation in the patch, and does not take into account similar
objects in the surrounding neighborhood. Therefore, it takes
videos of dense small objects as trackable, and puts them on
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Fig. 6 PCA embedding of histograms of Shi-Tomasi texturedness measure for the 202 bird videos in two dimensions. Red and blue curves
enclosing the region are not as reasonable as in Fig. 5.

the left side of Fig. 6. In the results of the Harris-Stephens
R score (Fig. 7), the structural videos are concentrated in a
small region near the right side.

4 Pursuing hybrid video representations

In this section, we study a method for automatically select-
ing the optimal video representations based on an intracka-
bility measure. We start with an overview of some popular
representations in four different regimes.

4.1 Overview of four video representations

We have discussed the four distinct representations in Fig. 1:
contour, kernel or PCA Basis, dense motion field, and joint
image appearance model. We divide them into two cate-
gories. For the first three types of representations, there are
a number of elements to track, so we call them the trackable
motion. We denote the appearance and geometry of these el-
ements by a dictionary ∆ = {ψ1, ..., ψn} and their motion
velocity by W = (u1, ...,un). For the fourth representa-
tion, there is nothing to track and thus W does not contain
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Fig. 7 PCA embedding of histograms of Harris-Stephens R score for the 202 bird videos in two dimensions. Red and blue curves show two typical
transitions on the boundary. The lower curve is the same as in Fig. 5. But the upper curve is not as reasonable as in Fig. 5. Additionally, the hollow
near the upper curve makes use difficult to determine its real boundary.

velocity variables and only has some parameters. We call it
intrackable motion.

Trackable motion For the contour, kernel, PCA basis,
and dense motion, the posterior probability is

p(W |I, I′;∆) ∝ p(u1, · · · ,un)
n∏
i=1

p(IΛi
|ui, I′;ψi) (4)

In the above formula, p(IΛi
|ui, I′;ψi) is the local likelihood

probability for tracking an element ψi in a patch (domain)
Λi discussed before,

p(IΛi |ui, I′;ψi) ∝ exp

{
−
∑

x∈Pi
‖I(x)− I′(x+ ui)‖2

2σ2

}
which is consistent with Eq. 3 if we assume a uniform mo-
tion prior. For clarity and generality, we use the SSD mea-

sure based on the image patch I(x) and I′(x + ui) for x ∈
Pi, this could be replaced by other features defined on ψi(x)
and ψ′i(x+ u).

The joint probability p(u1, · · · ,un) is a contextual model
for the coupling of these moving elements.

– In contour tracking (Maccormick and Blake, 2000; Sato
and Aggarwal, 2004; Black and Fleet, 2000), all the points
may show a rigid affine transform plus some local small
deformations. Furthermore the velocity ui = (u⊥i , u

‖
i )

is reduced to u⊥i containing only the direction perpen-
dicular to the contour. The tangent speed is discarded as
it cannot be inferred reliably (due to high entropy). The
element ψi could be the patch or image profile along the
normal direction of the contour at key points.
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Fig. 8 The continuous change between different videos through two major axes:the change of density and the change of granularity.

– In kernel tracking (Comaniciu et al, 2003; Collins, 2003),
a kernel in the shape of an ellipse, rectangle or other geo-
metric primitive is defined for an object, and all the inte-
rior feature points are assumed to have the same velocity
(rigid) or adjacent points are assumed to have similar ve-
locity. The element ψi could be a feature descriptor like
SIFT or PCA basis.

– In the dense motion field, (u1, · · · ,un) is regulated by
a Markov random field (Horn and Schunck, 1981; Black
and Fleet, 2000). The element ψi is either a pixel or a
feature point.

These models p(u1, · · · ,un) essentially reduce the random-
ness of the motion or equivalently the degrees of freedom in
W . In the next subsection, we will pursue such representa-
tions by reducing the variables in W .

Intrackable motion When the motion includes a large
number of indistinguishable elements, it is called dynamic
texture (Szummer and Picard, 1996; Fitzgibbon, 2001; Soatto
et al, 2001) or textured motion (Wang and Zhu, 2003), such
as fire flame, water flow, evaporating steam etc. As the mov-
ing elements are indistinguishable, the velocity cannot be
inferred meaningfully and W is empty. These videos are

represented by appearance models directly, typically by re-
gression models. An example is the spatio-temporal auto-
regression (STAR) model,

I(x, t) =
∑

(y,s)∈∂(x,t)

αy−x,s−tI(y, s) + n(x, t), ∀x, t. (5)

That is, the pixel intensity at x and frame t is a regression of
other pixels in the spatio-temporal neighborhood (∂(x, t))
plus some residual noise n(x, t). The model is represented
by parameters Θ = (αy−x,s−t) which are often homoge-
neous in space and time, learned by fitting certain statistics.
The size of the spatio-temporal neighborhood may be se-
lected for different videos. In general, one can rewrite the
video IΛ[0, T ] in a Gaussian Markov random field model,

p(IΛ[0, T ];Θ) ∝ exp

{
−
∑T
t=1

∑
x∈Λ n

2(x, t)

2σ2
o

}
. (6)

4.2 Automatic selection of hybrid representations

A natural video often includes multiple objects or regions of
different scales and complexities and thus is best represented
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Fig. 10 PCA embedding of histograms of intrackabilities for the 237 natural videos in two dimensions. Red and blue curves show two typical
transitions: The blue curve (top) shows density changes of elements (objects) in the video. The red curve (bottom) shows scales changes in the
videos: from fine granularity to large granularity. In the bottom, the first row shows the video examples on the blue curve and the second row shows
the video examples on the red curve.

by a hybrid representation. Fig. 11 shows an example. The
bird in the foreground is imaged at a near distance. Some
spots (the head, the neck, the leg, and the tips of the wings)
are distinguishable from the surrounding areas and there-
fore their intrackability is low as shown in (b). They should
be represented by key points or kernels that can be tracked
over a number of frames. The points along the bird outline
are less trackable and have higher intrackability value in (b).
But after projecting to line segments through merging ad-
jacent points and dropping the tangent directions from W ,
these line segments become trackable. Fig. 11(c) shows the
intrackability map of the lines. For the remaining areas, the
wavy water in the background is textured motion and the
interior of the bird is flat area. These are intrackable, and

thus are represented by STAR (or MRF) models. The so-
called tri-map in (d) illustrates the three different regimes
of models calculated according to their intrackabilities. This
representation will have to change as the bird flies close to
or away from the camera, or as the number of birds changes,
as many other videos have shown in the previous section.

Automated selection and on-line adaptation of such hy-
brid representations is of practical value for both computer
and biological visual systems. Given the limited resources
(memory and computing capacity), the system must per-
form a trade-off between more detail and less intrackability
wisely. Psychological experiments show that human vision
changes the task and perception as well when the complex-
ity exceeds the system capacity (Pylyshyn, 2004, 2006).
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(b) Point intrackability map

(c) Line intrackability map

(a) Input video

(d) Tri-map

Intrackability
Score S(W)

(f) hybrid representation W*

(e) 

Fig. 11 Pursuing a hybrid video representation. From an input video (a), we compute the intrackability map (b) and projected line intrackability
map (c) where darker points have lower intrackability. The trimap (d) visualizes the three different representations: red spots are trackable and
represented by key points or kernels; green areas are trackable after projecting to line segments and therefore are represented by contours, and the
black area is intrackable motion and is represented by STAR models. We plot the intrackabilityH(W )|I, I′ and S(W ) in (e) where the horizontal
axis is the number of variables in W from simple to complex. The optimal representation W ∗ (f) corresponds to the minimum cost S(W ) shown
by the star point on the curve in (e).
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Fig. 9 Total intrackabilities in entire video and trackable area for each
video on the boundary. Top curve is the sums of intrackabilities in en-
tire videos; bottom curve is the sums of intrackabilities in trackable
areas. The red and blue curves correspond to those in Fig. 5.

The criterion that we use for selecting the hybrid repre-
sentation W ∗ includes two objectives:

– The representation should be as detailed as possible so
that it does not miss important motion information. This
encourages representation with high complexity.

– The representation should be inferred reliably. In other
words, it has a lower uncertainty or entropy.

The two objectives are combined into the following func-
tion,

S(W ) = H{W |IΛ[t, t+ τ ]} −A(W ). (7)

We assume W is fixed in a short duration τ ,H{W |IΛ[t, t+
τ ]} is the instance intrackability defined before, and A(W )

is the description (coding) length for the variables in W . We
minimize the criterion S(W ) to obtain the best representa-
tion, W ∗ = argminW S(W ).

Fig. 11(e) gives an example of the criterion S(W ) against
the number of variables in W . By minimizing this function,
we obtain a representation W ∗ which is shown in Fig. 11(f).
It consists of a number of trackable points, lines, contours
and intrackable regions.

MAP is a popular method for video representation, e.g.,
(Wang et al, 2005; Wang and Zhu, 2008). Video representa-
tion can be decomposed into two sub problems, 1) choosing
variables and 2) estimating the values of the selected vari-
ables. The MAP work in fact addresses both of these with a
single criterion. In this paper, we encourage separate inves-
tigation of the two and focus on the first problem, which is
more important. Our answer to the first problem is to select
what are good for the second problem. After the variables
are determined, the estimation of their values can be accom-
plished by MAP, expectation or sampling.
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Hybrid 
representations
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Example 3:   

Hybrid 
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Example 4: 
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Fig. 12 Trimaps and pursued hybrid representations at different thresholds: red — trackable points, green — trackable lines in projected direction,
black — intrackable points. For each video, from left to right, the threshold varies from high to low. The first video can be best represented by
contours. The second video can be best represented by kernels. The third video can be best represented by dense points. The fourth can be best
represented by appearance models.
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Fig. 13 More results of hybrid representation pursuit in 12 video clips. In each example, we show the hybrid representations: red crosses are
trackable points, red ellipses are grouped kernels; and green curves are the trackable contours. In the background, we show the cost curves S(W )
in black and the intrackability curve in red. The asterisks on the black curves indicate the minima. The horizontal axis is the number of variables
in W . The vertical axis is the intrackability or the cost.



16

In the following, we introduce the representation projec-
tion operators that compute W ∗ and realize the transition
between the models.

4.3 Representation projection

We start with an overly detailed representationWo = (u1, ...,uN )

with N being the number of points that are densely sampled
in the image lattice. The motion velocities ui, i = 1, 2, ..., N

are assumed to be independent in the range of [−12, 12]2
pixels. Therefore we have

S(Wo) =

N∑
i=1

H{ui|I, I′} − λ · 2N,

where λ is the description length of each velocity direction.
Wo is the most complex representation, corresponding to
the right end of the plot in Fig. 11(e). We convert it to a
hybrid representation W ∗ by representation projection with
four types of operators. Each operator will reduce S(Wo) in
a greedy way (i.e. pursuit).

1. Point dropping. We may drop the highly intrackable
points (or image patches). By dropping an element ui from
W , the change of S(W ) is

∆i = −H{ui|I, I′}+ 2λ < 0.

In other words, points with H{ui|I, I′} < 2λ remain in W
as “trackable points” which are indicated by the red crosses
in Fig. 11(f). We also perform a local-non-maximum sup-
pression. Because our local intrackability is estimated based
on patches, any points within a neighborhood (say 5× 5) of
the trackable points will be suppressed.

2. Velocity projection. For the remaining points, we project
the velocity u to one dimension u⊥ so that the projected ve-
locity has the lowest intrackability,

H{u⊥|I, I′} = min
ξ
H{〈ξ,u〉|I, I′}

in which ξ is a unit vector representing the selected orien-
tation. If the patch contains an edge, the most likely orien-
tation ξ is the normal direction of the edge. Fig. 11(c) illus-
trates the projected intrackability. If we let u′ be the compo-
nent of u that is perpendicular to u⊥, that is u = (u⊥, u

′).
Then we have

H{u|I, I′} = H{(u⊥, u′)|I, I′} (8)

= H{u⊥|I, I′}+H{u′|u⊥, I, I′} (9)

in which H{u′|u⊥, I, I′} is the conditional entropy of u′

given u⊥, and is always non-negative. Therefore we have

Proposition 1 Intrackability decreases with representation
projection, i.e.,H{u⊥|I, I′ } 6 H{u|I, I′}.

While u is intrackable, its component u⊥ may still be track-
able along the normal direction. Thus, we replace the ele-
ment ui by u⊥ in W . This leads to a change of S(W ):

∆i = H{ui|I, I′} −H{u⊥|I, I′ }+ λ < 0.

In other words, we drop the direction which has large en-
tropy.

By thresholding the intrackability map and projected in-
trackability map, we obtain a trimap showing the trackable,
trackable in one direction and intrackable regions. Fig. 11(d)
shows a dense trimap where a red point is trackable, a green
point is trackable in a projected direction, and a black point
is intrackable. Fig. 12 shows the trimaps for four examples
with different choices of thresholds.

3. Pair linkage. After eliminating the points in the pre-
vious two steps, we further reduce S(W ) by exploring the
dependency between the elements. We sequentially link ad-
jacent points or lines into a chain structure (contours). Sup-
pose the resulting contour has k points/lines (u1,u2, ...,uk),
we assume these elements follow a Markov chain, so

p(u1,u2, ...,uk|I, I′) = p(u1|I, I′)
k∏
i=2

p(ui|ui−1, I, I′).

Proposition 2 Pair linking reduces the intrackability

H{u1, ...,uk|I, I} =
k∑
i=1

H{ui|I, I′} −
k∑
i=2

M(ui,ui−1|I, I′)

6
k∑
i=1

H{ui|I, I′}, (10)

whereM(ui,ui−1|I, I′) > 0 is the conditional mutual in-
formation between two adjacent elements.

The mutual information is defined as

M(ui,ui−1|I, I′) (11)

=
∑

ui,ui−1

p(ui,ui−1|I, I′) log
p(ui,ui−1|I, I′)

p(ui|I, I′)p(ui−1|I, I′)
(12)

= H{ui|I, I′} −H{ui|ui−1, I, I′} (13)

Eq. (12) shows that it is Kullback-Leibler divergence from
p(ui,ui−1|I, I′) to p(ui|I, I′)p(ui−1|I, I′), and therefore non-
negative.

In S(W ), the reduction of the intrackability is the mu-
tual information at each step, the number of variablesA(W )

remains the same, though we may need to index the chain
structure with a coding length of ε. So each time by linking
a pair of elements ui, we have a change of S(W ) by

∆i = −M(ui,ui−1|I, I′) + ε < 0. (14)

We computeM(ui,ui−1|I, I′) by Eq. (13). To compute the
conditional entropy H{ui|ui−1, I, I′}, one may enumerate
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all possible combinations of (ui,ui−1), then compute the
conditional probability, joint probability and entropy. As a
faster approximation, we find the optimal solution u∗i−1 first,
and then computeH{ui|u∗i−1, I, I′}. T-junctions can be found
automatically when we greedily grow the set of projected
trackable elements by pair linking.

4. Collective grouping. This operator is to group a num-
ber of adjacent elements in an ellipse simultaneously into a
kernel representing a moving object. Given the velocity u0

of the kernel, the grouped elements u1, ...,uk are assumed
to be conditionally independent,

p(u0,u1,u2, ...,uk|I, I′) = p(u0|I, I′)
k∏
i=2

p(ui|u0, I, I
′).

Therefore the change of S(W ) is

∆1..k = H{u0|I, I′} −
k∑
i=1

M(ui,u0|I, I′) < 0

In practice, we place an ellipse around each trackable point
in the trimap, and if it contains a few trackable points, for
which the best estimations of velocities are very close, then
we group them into a kernel.

4.4 Experiment on pursuing hybrid representation

The precise optimization of S(W ) is computationally in-
tensive, so we use a greedy algorithm which starts with the
dense point representation Wo, then sequentially applies the
four operators to reduce S(W ). The final result is a hybrid
representation consisting of: trackable points (red crosses),
trackable lines (green), contours (green), kernels (red ellipses),
and the remaining intrackable regions.

In addition to the results in Fig. 11 and 12, we tested the
pursuit algorithm on a variety of video clips. Fig. 13 shows
12 examples representing videos of different complexities.
In row 1: the foreground objects (bird, human, and fish) ex-
hibit high resolution in a flat background. The contours and
short lines dominate the representation. In row 2: the objects
(birds, fish, and people) exhibit low resolution and are well
separated from the background. Thus, they are represented
by kernels. In row 3, the objects (still people, fish, birds)
exhibit low resolution and high density. As many elements
are still distinguishable in their neighborhood, they are rep-
resented by dense trackable points. In row 4, there are no
trackable elements; the video becomes a texture appearance
and thus described by STAR model.

From the final pursuit results, one can see that most of
the feature points and the object contours are captured suc-
cessfully. The junctions on car (especially the window cor-
ner) and person (cloth corners) are well classified as sparse
feature points, and the edges and contours are well classified

as lines. The horizontal line between the water and sand in
the first row is not selected as a trackable line due to weak
edge contrasts and similar lines in the neighborhood.

Fig. 14 shows additional results on two longer sequences.
The top row shows a swimming shark represented by con-
tour and feature points. The bottom row shows a moving
camera approaching a car. At first, the car is very far away,
and appears as a feature point. As the camera approaches,
it is represented by a kernel. As the camera approaches fur-
ther, more details are revealed, and it is represented by a set
of contours, kernels and feature points.

Fig. 15 shows comparisons with trimaps of the Harris-
Stephens corner detector. One can see that, when no similar
distraction is present nearby, the results of Harris-Stephens
are very similar to ours. But when objects present at smaller
scale, Harris-Stephens reports more possible edges. For tex-
tured video like water, Harris-Stephens fails to report them
as intrackable, while intrackablity succeed because it takes
into account the similar distractions nearby. The Harris-Stephens
trimaps are determined by tuning parameters such that re-
sults for large scale objects are similar to ours.

5 Comparison with other tracking criteria

In this section, we compare the intrackability with two other
measures for robust tracking, namely the Shi-Tomasi tex-
turedness measure and the conditional number.

5.1 Intrackability and the Shi-Tomasi texturedness measure

(Shi and Tomasi, 1994) proposed a texturedness criterion for
good points to track in two frames. To compare with this cri-
terion, we rewrite the local posterior probability for a point
velocity u = (ux, uy) that we discussed before,

p(u|I, I′) ∝ exp

{
−
∑

x∈P |I(x)− I′(x+ u)|2

2σ2

}
.

As is common in optical flow computation, one assumes the
image is differentiable with (Ix, Iy) being the image gradi-
ent. By Taylor expansion we have

I′(x+ u) = I(x) + uxIx + uyIy. (15)

Then we can rewrite p(u|I, I′) in a Gaussian form,

p(u|I, I′) = 1

2πdet1/2(Σ)
exp{−1

2
uΣ−1u′}. (16)

where the inverse covariance matrix is,

Σ−1 =

(∑
x∈P I2x(x)

∑
x∈P Ix(x)Iy(x)∑

x∈P Ix(x)Iy(x)
∑

x∈P I2y(x)

)
(17)
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Fig. 14 Experiments on longer sequences.

Image Intr. Harris-Stephens Image Intr. Harris-Stephens

Image Intr. Harris-Stephens Image Intr. Harris-Stephens

Image Intr. Harris-Stephens Image Intr. Harris-Stephens

Image Intr. Harris-Stephens Image Intr. Harris-Stephens

Image Intr. Harris-Stephens Image Intr. Harris-Stephens

Image Intr. Harris-Stephens Image Intr. Harris-Stephens

Fig. 15 Comparison with trimaps of the Harris-Stephens detector. For objects at large scales (Row 1∼2), or smaller scales without similar distrac-
tions nearby (Row 3), the results of Harris-Stephens and intrackability are similar. For objects at small scales with very similar distractions nearby
(Row 4 and left of Row 5), Harris-Stephens is too optimistic. For the textured videos (right of Row 5 and Row 6), Harris-Stephens fails to tell
textures from edges.



19

In
tra

ck
ab

ili
ty

Sh
i-T

om
as

i

Frame 0

Frame 20

Frame 0

Frame 20

Frame 0

Frame 13

Frame 13

Frame 0 Frame 0

Frame 17

Frame 17

Frame 0

Fig. 16 Tracking comparison: In the first column, the intrackability measure tracks slightly better than Shi-Tomasi measure. In the second and
third columns, the intrackability measure can distinguish subtle trackable points from the clothes, but Shi-Tomasi measure selects more repetitive
feature points and makes more mismatches across frames.

Let λmax ≥ λmin be the two eigen-values of Σ−1, then the
local intrackability is

H{u|I, I′} = 1 + log 2π +
1

2
det(Σ),

= 1 + log 2π − 1

2
log λmaxλmin.

Therefore, large eigen-values leads to lower intrackability
and thus to better points to track. In the projected direction
u⊥, we drop the dimension that has lower eigen-value, and
the intrackability of an oriented line is

H{u⊥|I, I′} =
1

2
+

1

2
log 2π − 1

2
log λmax

In comparison, (Shi and Tomasi, 1994) used λmin as a tex-
turedness measure. Larger λmin means higher intensity con-
trast in the patch and thus a better point to track.

We can see that the differences between intrackability
and the Shi-Tomasi measure are

1. Shi-Tomasi uses Taylor expansion as an approximation
of a local image patch. This assumes that the image is
continuous and may be violated in textured motion.

2. λmin is used instead of log λmaxλmin measure.

It is worth noting that the Shi-Tomasi texturedness mea-
sure is most effective in a video regime corresponding to the
rightmost extreme in Fig. 5 (bird flock) and Fig. 10 (marathon)
where the objects are dense and still distinguishable from the
surroundings. In our pursued hybrid representations, most
trackable points are selected in this regime in Fig. 13 (row
3).
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We compare with (Shi and Tomasi, 1994) in selecting
good features to track in frame-to-frame tracking. The Shi-
Tomasi criterion measures texturedness in a single image
patch of 5 × 5 pixels, in contrast our intrackability is com-
puted between frames in a [−12, 12]2 displacement range
and thus encompasses a larger neighborhood. As Fig. 16 il-
lustrates, we manually initialize a polygonal region for the
object of interest, then trackable points are pursued in the
region and tracked across frames by finding the best SSD
matches. After point-wise matching, an affine transforma-
tion is fit to obtain a current polygon for the object region.
For an object with no self-similar feature, our results are
similar to or slightly better than the Shi-Tomasi measure, see
the first column in Fig. 16. But for objects with many self-
similar features, the Shi-Tomasi measure will be misguided
to choose these self-similar ones, which often results in mis-
matches between frames. In Figure 16, the second and third
column show that the intrackability measure can distinguish
the more informative points on collars, shoulders, buttons
and pockets in most places, but the Shi-Tomasi measure fails
to do so in more places.

To make quantitative comparison of the performances,
we annotate the ground truth of the vertices of outer poly-
gons for the three sequences in Fig. 16 and measure the av-
erage errors of all vertices over time. Let xi,t be the ground
truth of the position of the i-th vertex in frame t, x̂i,t be
its estimated value by a tracking algorithm, and M be the
number of vertices. The tracking error of frame t is defined
as

Errort =
1

M

∑
i

‖xi,t − x̂i,t‖ (18)

The resultant error curves are shown in Fig. 17.
Harris-Stephens R score (Harris and Stephens, 1988) is

also based on the matrix in Eq. (17). It is defined as R =

det(Σ−1) − ktrace(Σ−1)2, which is equivalent to R =

λmin ∗λmax− k(λmin +λmax)
2, where k is a small weight.

It is clear that our intrackability measure log(λmin ∗ λmax)

is the log of an upper bound to R score.

5.2 Intrackability and the condition number

(Fan et al, 2006) proposed to use the conditional number of a
matrix as an uncertainty measure in tracking a kernel. Unlike
point tracking, a kernel tracking uses a histogram feature in
a larger scope. Let h0 be the histogram as a model of the
target. In the next frame, mean-shift is used to find the opti-
mal motion vector u of the target, starting from a predicted
position. Let h1 be the histogram at the predicted position,
Fan et al. (Fan et al, 2006) began with the linearized kernel
tracking equation system

Mu =
√
h0 −

√
h1 (19)

where M = (d1, · · · ,dm)
T is a matrix composed of cen-

ters of mass of all color bins and dj is the j-th mass center.
Let A = MTM be the matrix with two eigenvalues λmax

and λmin. The condition number of A is λmax/λmin > 1.
Small condition number will result in a stable solution to
Eq 19 and thus a better kernel to track.

To compare with this measure, we rewrite the local pos-
terior probability for the velocity u according to this setup,

p(u|h0,h1) ∝ exp

{
−‖Mu− (

√
h0 −

√
h1)‖2

tr(A)

}
. (20)

where the trace tr(A) = λmax + λmin is introduced to nor-
malize the histogram differences. This is also a two dimen-
sional Gaussian with covariance matrix

Σ = tr(A)A−1. (21)

Therefore, the local intrackability is the entropy of p(u|h0,h1).

H{u|h0,h1} = 1 + log 2π − log

√
λmaxλmin

λmax + λmin
(22)

= 1 + log 2π − log

√
λmax/λmin

λmax/λmin + 1
. (23)

This is a monotonically increasing function with respect to
the condition number λmax/λmin as λ1/λ2 > 1.

In light of the same derivation process, other covariance
related measures such as those mentioned in (Zhou et al,
2005) can all be regarded as an intrackability under some
Gaussian distribution assumption.

6 Discussion

Despite the vast literature in motion analysis, tracking, and
video coding, the connections and transitions between vari-
ous video representations have not been studied. In this pa-
per, we study the intrackabilities of local image entities (points,
lines, patches) as a measure of the inferential uncertainty.
Using the histogram of the intrackabilities pooled over the
video in space and time as the global video statistics, we
map natural video clips in a scatter plot and examine the
different regimes. We find two major axes in the plot repre-
senting image scaling and change of object density respec-
tively. As a video may contain multiple patterns in different
regimes, we develop a model selection criterion based on
the intrackability and model complexity to pursue a hybrid
representation which integrates four components: trackable
points, trackable lines, contours, and textured motion. This
criterion guides the transition of representations due to im-
age scaling and change of object density.

In representing generic images, researchers have devel-
oped sparse coding models for structured image primitives,
such as edges, bars, and corners etc. and texture models
based on Markov random fields for stochastic textures which
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Fig. 17 Quantitative performance comparison — left is the magazine sequence (left column in Fig. 16), middle is the phone-call sequence (middle
column in Fig. 16), and right the cloth sequence (right column in Fig. 16).

do not have distinct elements. The integration of these mod-
els has led to a primal sketch model conjectured in (Marr
et al, 1979). In an ongoing project, we are extending the
hybrid representation to a video primal sketch model as a
generic video representation for effective coding and for mod-
eling various actions.
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