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Abstract Videos of natural environments contain a wide
variety of motion patterns of varying complexities which
are represented by many different models in the vision lit-
erature. In many situations, a tracking algorithm is formu-
lated as maximizing a posterior probability. In this paper,
we propose to measure the video complexity by the entropy
of the posterior probability, called the intrackability, to char-
acterize the video statistics and pursue optimal video rep-
resentations. Based on the definition of intrackability, our
study is aimed at three objectives. Firstly, we characterize
video clips of natural scenes by intrackability. We calcu-
late the intrackabilities of image points to measure the local
inferential uncertainty, and collect the histogram of the in-
trackabilities over the video in space and time as the global
video statistics. We found that the histograms of intracka-
bilities can reflect the major variations, i.e., image scaling
and object density, in natural video clips by a scatter plot
of 2D PCA. Secondly, we show that different video repre-
sentations, including deformable contours, tracking kernels
with various appearance features, dense motion fields, and
dynamic texture models, are connected by the change of in-
trackability and thus develop a simple criterion for model
transition and for pursuing the optimal video representation.
Thirdly, we derive the connections between the intrackabil-
ity measure and other criteria in the literature such as the
Shi-Tomasi texturedness measure, conditional number, and
compare with Shi-Tomasi measure in tracking experiments.
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1 Introduction

1.1 Motivation and objective

Videos of natural environments contain a wide variety of
motion patterns of varying complexities which are repre-
sented by many distinct models in the vision literature. Fig. 1
illustrates four typical representations: (i) A moving contour
representing a slowly walking human figure in near view;
(ii) A kernel (window with interior feature points) repre-
senting a fast moving car in middle distance; (iii) A dense
motion (optical) flow field representing a marathon crowd
motion; and (iv) An appearance based spatio-temporal auto-
regression (STAR) model representing the fire flame where
it is hard to track any distinct elements. The complexity of
these video clips are affected by a few major factors, namely,
the imaging scale, the object density, and the stochasticity of
the motion. Apparently the change of these factors triggers
transitions among these representations. Fig. 2 shows two
sequences of motion at distinct scales: the bird flock and the
marathon crowd, where the individual bird or person is rep-
resented by a contour, a kernel and a motion vector at three
scales respectively.

These representations have been studied extensively for
various tasks in the vision literature, for example, contour
tracking (Maccormick and Blake, 2000; Sato and Aggarwal,
2004; Black and Fleet, 2000), kernel tracking (Comani-
ciu et al, 2003; Collins, 2003), PCA basis tracking (Ross
et al, 2008; Kwon et al, 2009), motion vectors of points -
– sparse (Shi and Tomasi, 1994; Tommasini et al, 1998;
Segvic̀ et al, 2006; Serby et al, 2004; Veenman et al, 2001)
or dense (Horn and Schunck, 1981; Ali and Shah, 2007),
and dynamic texture (Szummer and Picard, 1996; Fitzgib-
bon, 2001; Soatto et al, 2001) or textured motion (Wang and
Zhu, 2003). However, no attempt, to our best knowledge,
has been made to formally characterize the video complex-
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Fig. 1 Examples of motion patterns and their representations: (a) A slowly walking human figure at near view is represented by a contour; (b) A
fast moving car in middle distance is represented by a kernel (window with multiple interior feature points); (c) A moving crowd in far view is
represented by dense motion field; and (d) the dynamic texture of fire has no distinct element that is trackable, and is represented by auto-regression
models on its image intensities without explicit motion correspondence.

(a) (b) (c)

(a) (b) (c)

Fig. 2 The switch of video representations is triggered by image scaling (camera zooming) and density changes. (a) In high resolution, the bird
shape and human figure are described by their contours; (b) In middle resolution, they are represented by a kernel with feature points; and (c) In
low resolution, the people and birds are modeled by moving points with dense optical flow.

ity and to establish connections and conditions for the tran-
sitions among these representations in the literature. In fact,
the automated selection and switching of representations on-
the-fly is of practical importance in real-time applications.
For example, tracking an object over a long range of scales
will need different representations. A surveillance system
must also adapt its tracking task when the number of of tar-
gets in a scene suddenly increases and cannot be tracked
individually due to limitation of computing resource. If the
computing resource allows, it should output more detailed
information for further processing, database indexing or hu-
man inspection. When the number of objects at near distance
increases, heavy occlusions always happen and we have to
change to track parts and discard some objects. When the

number of objects at far distance increases, we can change
to model motion flow and count number of objects. For ex-
ample, (Ali and Shah, 2008) and (Cong et al, 2009) track
high density crowd scenes with motion field.

In this paper, we study an information theoretical crite-
rion called the intrackability as a measure of the video com-
plexity. By definition, the intrackability is the entropy of the
posterior probability which a tracking or motion analysis al-
gorithm tries to maximize, and thus reflects the difficulty
and uncertainty in tracking certain elements (pixels, feature
points, lines, patches). We will use the intrackability to char-
acterize the video statistics, explain the transition between
representations, and pursue the optimal video representation
for an given video clip.
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More specifically, our study is aimed at the following
three objectives.

Firstly, we are interested in characterizing the global statis-
tics of video clips and developing a panoramic map for the
variety of video representations. We calculate the intracka-
bilities of some atomic image elements (patches) to measure
the local inferential uncertainty, and then we collect the his-
togram of the intrackabilities over the video in space and
time as the global video statistics. We find that these his-
tograms can be roughly decomposed in three bands which
correspond to three distinct motion regimes: (i) Low intrack-
ability band for the trackable regime, which correspond to
image areas with distinct feature points or structured tex-
ture areas that can be tracked with high accuracy. (ii) High
intrackability band for the intrackable regime, which cor-
respond to image areas with no distinct texture, for exam-
ple, flat areas or extremely populous areas. (iii) Medium in-
trackability band which contains mostly texture areas where
structures become less distinguishable. Using a PCA anal-
ysis on these square root histograms, we find that the first
two eigen-vectors represent two major changes in the video
space: the transition between the trackable and the intrack-
able motion and the transition between structure and texture.
We plot the scatter plot and map natural video clips to these
two axes to gain some insights for the variations of video
complexity.

Secondly, we are interested in developing an informa-
tion theoretical criterion to guide the transition and selection
of video representations, in contrast to the common prac-
tice that the video representations are manually selected for
different tasks. Our criterion is a sum of the intrackability
of the tracked representation (W as a vector) and its com-
plexity (the number of variables in W ). By minimizing this
criterion (over W ), our algorithm automatically chooses an
optimal representation for the video clip which is often hy-
brid – mixing various representations for different areas in
the video. In the spectrum of representations, the most com-
plex one is the dense motion flow where each pixel or fea-
ture point is tracked and W is a long vector, and the sim-
plest one is the dynamic texture or textured motion where
no velocity is computed as there are no distinct and track-
able elements and W is a short statistical description of the
motion impression. Intuitively, when the ambiguity (or in-
trackability) is large, we reduce the representationW by two
ways: (i) dropping certain elements, for example, remove el-
ements that are not trackable, or drop the motion direction
in the tangent direction of a contour element; or (ii) merg-
ing some descriptions, for example, combine a number of
feature points that have similar motion in a kernel. In ex-
periments, we show that different video representations, in-
cluding deformable contours, tracking kernels with various
appearance features, dense motion fields, and spatial tempo-

ral auto-regression models are selected by the algorithm for
different video clips.

Thirdly, we compare our intrackability measure with three
other criteria in the literature: (i) the texturedness measure
for good features to track (Shi and Tomasi, 1994), (ii) Har-
ris R score (Harris and Stephens, 1988) for corner detection
and (iii) the conditional number for robust tracking in (Fan
et al, 2006). We show that all the three measures are related
to different formula of the two eigenvalues in the local Gaus-
sian distribution over the possible velocity. The intrackabil-
ity is a general measure that are closely related to the three
criteria. We also compare the intrackability with Shi-Tomasi
measure by tracking experiments.

1.2 Related work in the literature

In the vast literature of motion analysis and tracking, there
are various criteria for feature selection (Marr et al, 1979;
Dreschler and Nagel, 1981; Yilmaz et al, 2006). The cor-
ner detector (Harris and Stephens, 1988) has been used for
tracking feature selector for years. It is defined on eigenval-
ues of a matrix collected from image gradients. For track-
ing based on sum-of-squared-differences (SSD), (Shi and
Tomasi, 1994) selected good feature by a texturedness mea-
sure which is also defined on the same matrix as (Harris
and Stephens, 1988). (Nickels and Hutchinson, 2002) an-
alyzed variations of probability distributions of SSD motion
vector, and measured the uncertainty in terms of covariance
matrix from Gaussian fitting. For tracking based on kernels,
(Fan et al, 2006) gave a reliability measure for kernel fea-
ture based on condition number of a linear equation sys-
tem. Covariance is also used in (Zhou et al, 2005) as an
uncertainty measures for SSD, MeanShift and shape match-
ing. For multi-frame adaptive tracking, (Collins et al, 2005)
used log likelihood ratio scores of objects against the back-
ground as a goodness measure. These measures are all asso-
ciated with specified feature descriptions (e.g., SSD, kernel)
and tracking model. A recent work (Pan et al, 2009) used a
forward-backward tracking strategy to evaluate the robust-
ness of a tracker — first the object is tracked forward for a
few frames, then tracked backward from the end frame of
forward tracking to the beginning one, and the difference of
the initial position and the backward tracked result is used
as a measure of the robustness.

Our work is closely related to image scale-space theory,
which was proposed by (Witkin, 1983) and (Koenderink,
1984) and extended by (Lindeberg, 1993). The Gaussian
and Laplacian pyramids are two two multi-scale represen-
tations concerned in scale-space theory. A Gaussian pyra-
mid is a series of low-pass filtered and down-sampled im-
ages. A Laplacian pyramid consists of band-passed images
which are the difference between every two consecutive im-
ages in the Gaussian pyramid. Scale-space theory studied
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discrete and qualitative events, such as appearance of ex-
tremal points (Witkin, 1983), and tracking inflection points.
The image scale-space theory has been widely used in vision
tasks. In this paper, we study the higher level representations
— points, contours and kernels, rather than low level ones —
Gaussian and Laplacian pyramids. We study the transitions
of these higher level representations over scales and object
density, rather than appearance of extremal points and drift-
ing of inflection points.

Our work is closely related to another stream of research
– natural image statistics. For natural images, some interest-
ing properties are observed in their histograms of filtered
responses, such as high kurtosis that led to sparse coding
and scale invariance in gradient histograms (we refer to (Sri-
vastava et al, 2003) for a comprehensive review), and vari-
ous image models are learned to account for these statisti-
cal observations. The work that most directly inspired our
study is (Wu et al, 2008). In (Wu et al, 2008) the entropy of
posterior probability is defined as imperceptibility, which is
then shown theoretically to guide the transitions of our per-
ception of images over scales. In general, (Wu et al, 2008)
identified three regimes of models along the axis of imper-
ceptibility: (i) the low entropy regime for structured images
(represented by sparse coding), (ii) the high entropy regime
for textured image (represented by Markov random fields);
and (iii) the Gaussian noise regime for flat images or images
with stochastic texture. A perceptual scale space represen-
tation was studied in (Wang and Zhu, 2008). While these
work characterize the statistical properties of image appear-
ance, our study is focused on the global statistics of local
motion. We replace the histograms of filtered responses by
the histograms of local intrackability, which divide videos
into various regimes of representations.

There are numerous work in psychophysics, e.g. (Pylyshyn
and Vidal Annan, 2006), that studied the human perception
of motion uncertainty, and showed that human vision loses
track of objects (dots) when the number of dots increases or
their motion is too stochastic.

(Han et al, 2005) first proposed to use entropy to select
the best template for tracking, but no detailed investigation
was made. The authors proposed the intrackability concept
in two short papers (Li et al, 2007b,a) in the context of
surveillance tracking. The intrackability concept was also
mentioned in (Badrinarayanan et al, 2007). The contents
presented in this paper are much more general than these
papers and are not published elsewhere. Another interesting
work related to ours is (Kadir and Brady, 2001). They in-
vestigated the use of entropy measures to identify regions of
saliency in scale space, and obtained reasonable results on a
broad class of images and image sequences. They also used
it for tracking feature selection. The key difference between
their work and ours is that they use the entropy of image
pixels, while we use the entropy of posterior probability.

1.3 Contributions and paper plan

In summary, this paper makes the following contributions to
the literature.

1. The paper defines intrackability quantitatively to mea-
sure the inferential uncertainty and uses it to character-
ize video into different regimes of representations. Thus
we draw some connections between different families of
models in the motion/tracking literature.

2. The paper shows that the intrackability can be used to
pursue a hybrid representation composed of feature points,
contours and kernels for various video.

3. The paper shows that the intrackability is a general cri-
terion, and derive its relation to three other measures in
the literature.

This paper is organized as follows. We first define the
intrackability and give a simple method for computing it on
a simple probability model in Section 2. Then we use the
histogram of the intrackability measure to characterize nat-
ural videos in Section 3 and show the connections and tran-
sitions of different representations through scaling. Then in
Section 4, we adopt the intrackability criterion for pursuing
optimal video representations. Section 4 explains the rela-
tionship between intrackabilities and video representation.
First, we give brief introductions of popular representations
for motions in the literature. Then representation projection
is introduced to explain how these representations can be
convertible in a coarse-to-fine manner. Finally, based on a
criterion considering both intrackability and level of details,
an algorithm for automatic construction of hybrid represen-
tations is proposed, which produces representation consist
of feature points, contours and kernels. In Section 5, we
show how intrackability are related to other criteria for se-
lecting features to track. The paper is concluded in Section
6 with a discussion.

2 Intrackability: definition and computation

2.1 Definitions of intrackability

Let I(t) be an image defined on a window Λ at time t, and
I[τ ] = (I(1), · · · , I(τ)) a video clip in a time interval [1, τ ],
and W the representation of this video selected for vari-
ous tasks, e.g., motion vectors, positions of control points of
contours. In a Bayesian view, the objective of motion analy-
sis is to compute W by maximizing a posteriori probability

W ∗ = argmax
W

p(W |I[τ ]). (1)

The optimal solution W ∗, however, does not contain infor-
mation about the uncertainty of the inference and can not
tell whether the selected representation is appropriate for
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the video sequence. A common measure for the uncertainty
is the entropy of the posterior probability, we call it the in-
trackability.

Definition 1 (video intrackability) Intrackability of a video
sequence IΛ[τ ] for a representation W is defined by,

H{W |I[τ ]} = −
∑
W

p(W |I[τ ]) log p(W |I[τ ]). (2)

Here log is natural logarithm. We use the natural logarithm
because it is more amenable to probability models of expo-
nential family.

In this paper, we will focus on low level representations
that are local in space and time, e.g. pixels, points, lines, ker-
nels etc, and W does not contain high level concepts, such
as action and events. Thus the volume Λ× τ is quite small.
In a simplest case, W = u is the motion vector of a fea-
ture point, patch, or kernel and I and I′ are two consecutive
frames, then the intrackability isH{u|I, I′}.

Definition 2 (local intrackability) Intrackability of a local
element between two image frames I, I′ for its velocity u is
H{u|I, I′}.

In the next two sections, we will use H{u|I, I′} as a local
intrackability to characterize the global video complexity.

In general, the good features to track should be discrimi-
native in both appearance and dynamics. Both factors are in-
tegrated in the intrackability measure, because the posterior
probability p(W |I[τ ]) encodes both appearance and motion
information.

It is worth noting that H is an unbounded differential
entropy for continuous variables W and I. In this paper, we
discretize both W and I in a finite set of values to obtain a
non-negative bounded Shannon entropy.

2.2 Computing the local intrackability

The local intrackability can be exactly computed for a speci-
fied appearance and motion probability model. We take SSD
appearance model with uniform motion prior as an example,
in which the posterior probability is

p(u|I, I′) ∝ exp

{
−
∑

x∈P ‖I(x)− I′(x+ u)‖2

2σ2

}
. (3)

where P is the patch around point considered and I(x) is
the pixel intensity. Here we assumes white, Gaussian noise.
For generality, we calculate

∑
x∈P ‖I(x)− I′(x+u)‖2 us-

ing the SSD method for each patch of 5 × 5 pixels, and we
enumerate all possible velocities between two frame I, I′ in
the range of u ∈ {−12, ...,+12}2 pixels.

A

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

B

Fig. 3 Posterior probability map of SSD model — (A) patches with
numbers; (B) probability map of each numbered patch. Better viewed
in color.

Fig. 3(B) shows the full posterior probability maps for
20 typical patches in a video clip in (A). We then compute
the local entropy as defined in Definition 2. This is quite
time consuming but it is an accurate account of the intracka-
bility. The computation can be accelerated by sub-sampling
the velocity vectors or computing SSD in a gradient descent
manner. The probability maps in Fig. 3(B) are quite wild in
shapes. There are 4 typical cases

1. Spot shape, for example, 0, 1, and 3, these patches are
often corner points and have lowest intrackability;

2. Club shape, for example, 2, 14, 16, 17, these patches are
edges or ridges and have mid-level intrackability;

3. Multi-modal, for example, 4, 5, 6, these patches are fea-
ture points with similar distractors around or imperfect
edges, and also have mid-level intrackability;

4. Uniform, for example, 7, 15, 19, these pathes are often
flat regions and have highest intrackability.

In summary, one can see that many of the probability maps
cannot be approximated by simple distribution such as 2D
Gaussian.

3 Statistical characteristics of video complexity

This section presents an empirical study on the statistics of
natural video clips. We use the local intrackability to char-
acterize the video complexity and illustrate the changes of
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representations over two main axes of changes. Our objec-
tive is to gain some insights regarding the various regimes
of motion patterns.

3.1 Histograms of local intrackability

As the local intrackability is computed in a local space-time
volume, we collect the histogram of the intrackabilities by
pooling them over the image latticeΛ, following the study of
natural image statistics where people collected histograms
of local filtered responses.

In our first experiment, we collect a set of 202 video
clips of birds from various websites, such as National Ge-
ography and Flickr. Each clip has 6 frames and is resized to
the same size (176 × 144) so that the intrackability is com-
puted in the same range. The reason why we choose bird
videos is that birds are captured in a wide range of scales
(distance), density, and motion dynamics against clean sky
or water. They are ideal for studying the change of repre-
sentations. As we set u in the range of {−12, ...,+12}2, the
maximum value of intrackability is log(23 × 23) ≈ 6. We
select 60 bins for the histogram of the local intrackability
and thus treat it as a 60-element vector. To better calculate
the distance (i.e., Bhattacharyya distance (Comaniciu et al,
2003)) between histograms, we take the square root for each
element.

Fig. 4 shows six typical examples of the square-rooted
histograms of local intrackabilities. From our experiments,
we observe that there are in general three regimes of motion
patterns in these video.

– Flat or noisy videos, such as examples 1 and 6 where the
birds are far away and very dense. The intrackability is
mostly focused on the right end of the histogram.

– Structured videos, such as example 2, where the birds
are close and sparse. The intrackability histogram is widely
spread as it contains elements that are trackable (e.g. the
corners of bird shapes) and elements that are intrackable
(flat patches inside and outside the birds).

– Textured video, such as example 4, where the birds are
dense but distinguishable from each other. The birds gen-
erate texture images of middle granularity.

As we zoom-out from example 4 to examples 3, 5, and 6,
we gradually observe a clear migration from the low intrack-
ability bins to the high intrackability bins, finally it will end
up like example 1. Row 3 of Fig. 4 verifies our intuitive ob-
servation. We conduct a PCA analysis over the 202 square-
rooted histograms. The mean histogram has two peaks at
two ends, therefore, we tried to use a mixture of two distribu-
tions p0(h) = λ0 exp(λ0h) and p1(h) = λ1 exp(λ1(hmax−
h)), where hmax is the last bin of the histogram. However,
we found that it is not enough to cover the middle part.
Thus, we introduce one more Gaussian. Therefore, the mean

histogram can be fitted with three mixed sub-distributions.
The two eigen-vectors clearly identify the two major transi-
tions. The first eigen-vector shows the change between the
trackable (textured or structured) and the intrackable (flat
or noise), reflecting the increasing complexity. The second
eigen-vector shows the change between the highly trackable
and the less trackable, reflecting the change of granularity in
scaling.

For comparison, we use Shi-Tomasi texturedness mea-
sure and Harris-Stephen R score to do the same PCA. The
results are shown in Fig. 6 and 7 respectively. Shi-Tomasi
is a local measure that only accounts for the gradient infor-
mation in the patch, and does not take into account similar
objects around. Therefore, it takes videos of dense small ob-
jects as trackable, and puts them on the left side of Fig. 6. In
the results of Harris-Stephen (Fig. 7), the structural videos
are concentrated in a small region near the right side.

3.2 Scatter plot and variation directions

In our second experiment, we visualize the two types of tran-
sitions observed in the previous step. We embed the 202

bird videos in the two dimensions spanned by the two eigen-
vectors, and show the result in Fig. 5. We collect the videos
on the boundary of the scatter plot and find the two curves
representing the two major changes between the most in-
trackable videos (flat videos on the upper-left corner) and
the most trackable (large grained textures on the upper-right
corner). We call the flat videos intrackable and large grained
textures as trackable, this conflicts with intuition that the flat
ones are easier to track. More precisely, the upper-left videos
include objects that are easier to track, but the videos them-
selves are not. Before we select which elements to track,
we have no idea of objects (suppose we do not have back-
ground modeling or object detection). If we try to track all
the elements in a video, the intrackabilities of blank areas
are higher because of the aperture problems. We need to re-
move the blank regions, which are both difficult to track and
meaningless in most cases. This is the motivation of repre-
sentation pursuit in Section 4.

Why is this interesting? Traditional vision research on
video has been studied in two separate domains: (i) track-
able motion including motion flow analysis and object track-
ing, and (ii) intrackable motion or textured motion. Our ex-
periment shows, perhaps the first time in the literature, that
there is a continuous transition between the two domains.
Furthermore this transition occurs along two axes. The bot-
tom of Fig. 5 visualizes some videos along the two curves.
The first row displays videos along the upper boundary of
the plot and reflects the change of bird density. The second
row displays videos along the lower boundary and reflects
the change of bird granularity through scaling. The videos
in the interior of the plot in Fig. 5 contain birds of different
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Fig. 4 (Row 1-2) Six examples of the square-rooted histograms of local intrackabilities. (Row 3) Three components are fit to the mean histogram,
and the first two eigen-vectors of these square-rooted histograms reveals the transitions betweem the three components.

sizes and numbers and therefore are mixed video of the one
on the boundary. Such observations call for a unified frame-
work for modeling all video patterns and for a continuous
transition between the various motion representations.

As the two curves form a loop of two continuous changes,
we re-organize the videos on the boundary and visualize
them in Fig. 8.

For tracking tasks, we are interested in trackable ele-
ments in a video and most intrackable areas are discarded
to reduce computing burden. We apply a threshold (1/3 of
the maximal intrackability value) on each video to obtain a
set of trackable elements, and the sum of the intrackabili-
ties of all trackable elements in a video provides the uncer-
tainty of the tracking task. Fig. 9 plots the total sum of the
intrackabilities in these trackable areas for all the videos on
the blue curve and red curve in Fig. 5. This figure illustrates
that the sum achieves the peak at populous videos, which
means that they are the most difficult to track when we have

Fig. 9 Total intrackability in trackable area for each video on the
boundary, the red and blue curves correspond those in Fig. 5.

given up the intrackable uniform region and textured region
with high intrackabilities. For videos with modest number
of objects, each feature point has less ambiguity. For flat or
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Fig. 5 PCA embedding of histograms of intrackabilities for the 202 bird videos in two dimensions. Red and blue curves show two typical
transitions: The blue curve (top) shows density changes of elements (objects) in the video: from a few birds to thousands of birds. The red curve
(bottom) shows scales changes in the videos: from fine granularity to large granularity. In the bottom, the first row shows the video examples on
the blue curve and the second row shows the video examples on the red curve.

noisy videos, the number of trackable points is almost zero,
so the tracking algorithm can do nothing. Therefore, it has
to switch to appearance models, such as the spatio-temporal
auto-regression (STAR) model, to represent the video ap-
pearance without explicitly computing the motion. In this
sense, the intrackability is indeed a good measure for the
transition of models.

In our third experiment, we extend the study of bird video
to general natural video clips in the same way. We collected
a set of 237 video clips containing a large variety of objects,
such as people, birds, animals, grasses, trees, water with dif-
ferent speed and density in natural environments. Fig. 10
shows the results of the two-dimensional embedding.

The result coincide with the bird experiments. The 237

video clips are bounded by the two typical transition curves.
The bottom of Fig. 10 shows the typical video clips along
the two curves.

4 Pursuing hybrid video representations

In this section, we study a method for automatically select-
ing the optimal video representations based on an intracka-
bility measure. We start with an overview of some popular
representations in four different regimes.
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Fig. 6 PCA embedding of histograms of Shi-Tomasi texturedness measure for the 202 bird videos in two dimensions. Red and blue curves show
two typical transitions in Fig. 5.

4.1 Overview of four video representations

We have discussed the four distinct representations in Fig. 1:
contour, kernel or PCA Basis, dense motion field, and joint
image appearance model. We divide them into two cate-
gories. For the first three types of representations, there are
a number of elements to track, so we call them the trackable
motion. We denote the appearance and geometry of these el-
ements by a dictionary ∆ = {ψ1, ..., ψn} and their motion
velocity by W = (u1, ...,un). For the fourth representa-
tion, there is nothing to track and thus W does not contain
velocity variables and only has some parameters. We call it
intrackable motion.

Trackable motion For the contour, kernel, PCA basis,
and dense motion, the posterior probability is

p(W |I, I′;∆) ∝ p(u1, · · · ,un)
n∏
i=1

p(IΛi
|ui, I′;ψi) (4)

In the above formula, p(IΛi
|ui, I′;ψi) is the local likelihood

probability for tracking an element ψi in a patch (domain)
Λi discussed before,

p(IΛi
|ui, I′;ψi) ∝ exp

{
−
∑

x∈Pi
‖I(x)− I′(x+ ui)‖2

2σ2

}

which is consistent with Eq. 3 if we assume a uniform mo-
tion prior. For clarity and generality, we use the SSD mea-
sure based on the image patch I(x) and I′(x + ui) for x ∈
Pi, this could be replaced by other features defined on ψi(x)
and ψ′i(x+ u).

The joint probability p(u1, · · · ,un) is a contextual model
for the coupling of these moving elements.

– In contour tracking (Maccormick and Blake, 2000; Sato
and Aggarwal, 2004; Black and Fleet, 2000), all the points
may show a rigid affine transform plus some local small
deformations. Furthermore the velocity ui = (u⊥i , u

‖
i )
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Fig. 7 PCA embedding of histograms of Harris-Stephen R score for the 202 bird videos in two dimensions. Red and blue curves show two typical
transitions in Fig. 5.

Increase number of 
objects

Decrease granularity of 
texture

Fig. 8 The continuous change between different videos through two major axes:the change of density and the change of granularity.
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Fig. 10 PCA embedding of histograms of intrackabilities for the 237 natural videos in two dimensions. Red and blue curves show two typical
transitions: The blue curve (top) shows density changes of elements (objects) in the video. The red curve (bottom) shows scales changes in the
videos: from fine granularity to large granularity. In the bottom, the first row shows the video examples on the blue curve and the second row shows
the video examples on the red curve.

is reduced to u⊥i containing only the direction perpen-
dicular to the contour. The tangent speed is discarded as
it cannot be inferred reliably (due to high entropy). The
element ψi could be the patch or image profile along the
normal direction of the contour at key points.

– In kernel tracking (Comaniciu et al, 2003; Collins, 2003),
all the interior feature points are assumed to have the
same velocity (rigid) or adjacent points are assumed to
have similar velocity. The element ψi could be the fea-
ture descriptor like SIFT or PCA basis.

– In the dense motion field, (u1, · · · ,un) is regulated by
a Markov random field (Horn and Schunck, 1981; Black
and Fleet, 2000). The elements ψi is either a pixel or a
feature point.

These models p(u1, · · · ,un) essentially reduce the random-
ness of the motion or equivalently the degrees of freedom in
W . In the next subsection, we will pursue such representa-
tions by reducing the variables in W .

Intrackable motion When the motion includes a large
number of indistinguishable elements, it is called dynamic
texture (Szummer and Picard, 1996; Fitzgibbon, 2001; Soatto
et al, 2001) or textured motion (Wang and Zhu, 2003), such
as fire flame, water flow, evaporating steam etc. As the mov-
ing elements are indistinguishable, the velocity cannot be
inferred meaningfully and W is empty. These videos are
represented by appearance models directly, typically by re-
gression models. An example is the spatio-temporal auto-
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(b) Point intrackability map

(c) Line intrackability map

(a) Input video

(d) Tri-map

Intrackability
Score S(W)

(f) hybrid representation W*

(e) 

Fig. 11 Pursuing a hybrid video representation. From an input video (a), we compute the intrackability map (b) and projected line intrackability
map (c) where darker point has lower intrackability. Then trimap (d) visualizes the three different representations: red spots are trackable and
represented by key points or kernels; green areas are trackable after projecting to line segments and therefore are represented by contours, and the
black area is intrackable motion and is represented by STAR model. We plot the intrackability H(W )|I, I′ and S(W ) in (e) where the horizontal
axis is the number of variables in W from simple to complex. The optimal representation W ∗ (f) corresponds to the minimum score S(W ) shown
by the star point on the curve in (e).

regression (STAR) model,

I(x, t) =
∑

(y,s)∈∂(x,t)

αy−x,s−tI(y, s) + n(x, t), ∀x, t. (5)

That is, the pixel intensity at x and frame t is a regression of
other pixels in the spatio-temporal neighborhood (∂(x, t))
plus some residual noise n(x, t). The model is represented
by some parameters Θ = (αy−x,s−t) which are often ho-
mogeneous in space and time. These parameters are learned
by fitting certain statistics. The spatio-temporal neighbor-
hood may be selected for different videos. In general, one
can rewrite the video IΛ[0, T ] in a Gaussian Markov random
field model,

p(IΛ[0, T ];Θ) ∝ exp

{
−
∑T
t=1

∑
x∈Λ n

2(x, t)

2σ2
o

}
. (6)

4.2 Automatic selection of hybrid representations

A natural video often includes multiple objects or regions of
different scales and complexities and thus is best represented
by a hybrid representation. Fig. 11 shows an example. The
bird in the foreground is imaged at a near distance. Some
spots (the head, the neck, the leg, and the end of the wings)
are distinguishable from the surrounding areas and there-
fore their intrackability is low as shown in (b). They should
be represented by key points or kernels that can be tracked
over a number of frames. The points along the bird outline
are less trackable and have higher intrackability value in (b).
But after projecting to line segments through merging ad-
jacent points and dropping the tangent directions from W ,

these line segments become trackable. Fig. 11(c) shows the
intrackability map of the lines. For the remaining areas, the
wavy water in the background is textured motion and the
interior of the bird is flat area are intrackable and thus are
represented by STAR (or MRF) models. The so-called tri-
map in (d) illustrates the three different regimes of models
calculated according to their intrackabilities. This represen-
tation will have to change as the bird fly near or away from
the camera, or the number of birds changes as many other
videos have shown in the previous section.

Automated selection and on-line adaptation of such hy-
brid representations is of practical values for both computer
and biologic visual systems. Given the limited resources (mem-
ory and computing capacity), the system must perform a
trade-off between more detail and less intrackability wisely.
Psychological experiments show that human vision changes
the task and perception as well when the complexity exceeds
the system capacity (Pylyshyn, 2004, 2006).

The criterion that we use for selecting the hybrid repre-
sentation W ∗ includes two objectives:

– The representation should be as detailed as possible so
that it does not miss important motion information. This
encourages representation with high complexity.

– The representation should be inferred reliably. In other
words, it has a lower uncertainty or entropy.

The two objectives are summarized into the following func-
tion,

S(W ) = H{W |IΛ[t, t+ τ ]} −A(W ). (7)

We assume W is fixed in a short duration τ ,H{W |IΛ[t, t+
τ ]} is the instance intrackability defined before, and A(W )
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is the description (coding) length for the variables in W . We
minimize the criterion S(W ) to obtain the best representa-
tion, W ∗ = argminW S(W ).

Fig. 11(e) gives an example of the criterion S(W ) against
the number of variables in W . By minimizing this function,
we obtain a representation W ∗ which is shown in Fig. 11(f).
It consists of a number of trackable points, lines, contours
and intrackable regions.

MAP is a popular method for video representation, e.g.,
(Wang et al, 2005; Wang and Zhu, 2008). Video representa-
tion can be decomposed into two sub problems, 1) choosing
variables and 2) estimating the values of the selected vari-
ables. The MAP work in fact treats both of them in a single
criterion. In this paper, we encourage separate investigation
of the two and focus on the first problem, which is more im-
portant. Our answer to the first one is to select what are good
for the second problem. After the first one is determined, the
estimation of the values can be accomplished by MAP, ex-
pectation or sampling.

In the following, we introduce the representation projec-
tion operators that compute W ∗ and realize the transition
between the models.

4.3 Representation projection

We start with an overly detailed representationWo = (u1, ...,uN )

with N be the number of points that densely sampled in the
image lattice. The motion velocity ui, i = 1, 2, ..., N are as-
sumed to be independent in the range of [−12, 12]2 pixels.
Therefore we have

S(Wo) =

N∑
i=1

H{ui|I, I′} − λ · 2N,

where λ is the description length of each velocity direction.
Wo is the most complex representation corresponding to the
right end of the plot in Fig. 11(e). We convert it to a hybrid
representation W ∗ by representation projection with four
types of operators. Each operator will reduce S(Wo) in a
greedy way (i.e. pursuit).

1. Point dropping. We may drop the highly intrackable
points (or image patches). By dropping an element ui from
W , the change of S(W ) is

∆i = −H{ui|I, I′}+ 2λ < 0.

In other words, any point with H{ui|I, I′} < 2λ remains
in W as a “trackable points” which are indicated by the red
crosses in Fig. 11(f). We also perform a non-local-maximum
suppression. Because our local intrackability is estimated
based on patches (say 11×11 pixels), thus any points within
a neighborhood (say 5 × 5) of the trackable points will be
suppressed.

2. Velocity projection. For the remaining points, we project
the velocity u to one dimension u⊥ so that the projected ve-
locity has the lowest intrackability,

H{u⊥|I, I′} = min
ξ
H{〈ξ,u〉|I, I′}

in which ξ is a unit vector representing the selected orien-
tation. If the patch contains an edge, the most likely orien-
tation ξ is the normal direction of the edge. Fig. 11(c) illus-
trates the projected intrackability. If we let u′ be the compo-
nent of u that is perpendicular to u⊥, that is u = (u⊥, u

′).
Then we have

H{u|I, I′} = H{(u⊥, u′)|I, I′} (8)

= H{u⊥|I, I′}+H{u′|u⊥, I, I′} (9)

in which H{u′|u⊥, I, I′} is the conditional entropy of u′

given u⊥, and is always non-negative. Therefore we have

Proposition 1 Intrackability decreases with representation
projection, i.e.,H{u⊥|I, I′ } 6 H{u|I, I′}.

While u is intrackable, its component u⊥ may still be track-
able along the normal direction. Thus, we replace the ele-
ment ui by u⊥ in W . This leads to a change of S(W ):

∆i = H{ui|I, I′} −H{u⊥|I, I′ }+ λ < 0.

In other words, we drop the direction which has large en-
tropy.

Fig. 11(d) shows the tri-map in dense point where a red
point is trackable, a green point is trackable in a projected
direction, and a black point is intrackable. Fig. 12 shows the
trimaps for four examples with different choices of thresh-
olds.

3. Pair linkage. After eliminating the points in the pre-
vious two steps, we further reduce S(W ) by exploring the
dependency between the elements. We sequentially link ad-
jacent points or lines into a chain structure (contours). Sup-
pose the resulting contour has k points/lines (u1,u2, ...,uk),
we assume these elements follow a Markov chain, so

p(u1,u2, ...,uk|I, I′) = p(u1|I, I′)
k∏
i=2

p(ui|ui−1, I, I′).

Proposition 2 Pair linking reduces the intrackability

H{u1, ...,uk|I, I} =
k∑
i=1

H{ui|I, I′} −
k∑
i=2

M(ui,ui−1|I, I′)

6
k∑
i=1

H{ui|I, I′}, (10)

whereM(ui,ui−1|I, I′) > 0 is the conditional mutual in-
formation between two adjacent elements.
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Hybrid 
representations

Trimaps

Example 1:
contour

Hybrid 
representations

Trimaps

Example 2:
kernels

Hybrid 
representations

Trimaps

Example 3:   

Hybrid 
representations

Trimaps

Example 4: 

motion flow

appearance

Fig. 12 Trimaps and pursued hybrid representations at different thresholds: red — trackable points, green — trackable lines in projected direction,
black — intrackable points. For each video, from left to right, threshold varies from high to low. The first video can be best represented by contours.
The second video can be best represented by kernels. The third video can be best represented by dense points. The forth can be best represented
by appearance models.
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Fig. 13 More results of hybrid representation pursuit in 12 video clips. In each example, we show the hybrid representations: red crosses are
trackable points, red ellipses are grouped kernels; and green curves are the trackable contours. In the background, we show the score curves S(W )

in black and the intrackability curve in red. The asters on the black curves indicate the minima. The horizontal axis is the number of variables in
W . The vertical axis is the intrackability or the score.
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The mutual information is defined as

M(ui,ui−1|I, I′) (11)

=
∑

ui,ui−1

p(ui,ui−1|I, I′) log
p(ui,ui−1|I, I′)

p(ui|I, I′)p(ui−1|I, I′)
(12)

= H{ui|I, I′} −H{ui|ui−1, I, I′} (13)

Eq. (12) shows that it is Kullback-Leibler divergence from
p(ui,ui−1|I, I′) to p(ui|I, I′)p(ui−1|I, I′), and therefore non-
negative.

In S(W ), the reduction of the intrackability is the mu-
tual information at each step, the number of variablesA(W )

remains the same, though we may need to index the chain
structure with a coding length of ε. So each time by linking
a pair of elements ui, we have a change of S(W ) by

∆i = −M(ui,ui−1|I, I′) + ε < 0. (14)

We computeM(ui,ui−1|I, I′) by Eq. (13). To compute the
conditional entropy H{ui|ui−1, I, I′}, one may enumerate
all possible combinations of (ui,ui−1), then compute the
conditional probability, joint probability and entropy. As a
faster approximation, we find the optimal solution u∗i−1 first,
and then computeH{ui|u∗i−1, I, I′}. T-junctions can be found
automatically when we greedily grow the set of projected
trackable element by pair linking.

4. Collective grouping. This operator is to group a num-
ber of adjacent elements in an ellipse simultaneously into a
kernel representing a moving object. Given the velocity u0

of the kernel, the grouped elements u1, ...,uk are assumed
to be conditionally independent,

p(u0,u1,u2, ...,uk|I, I′) = p(u0|I, I′)
k∏
i=2

p(ui|u0, I, I
′).

Therefore the change of S(W ) is

∆1..k = H{u0|I, I′} −
k∑
i=1

M(ui,u0|I, I′) < 0

In practice, we place an ellipse around each trackable point
in the trimap, and if there are a few trackable points, for
which the best estimations of velocities are very close, then
we group them into a kernel.

4.4 Experiment on pursuing hybrid representation

The precise optimization of S(W ) is computationally in-
tensive, so we use a greedy algorithm which starts with the
dense point representation Wo, then sequentially apply the
four operators to reduce S(W ). The final result is a hybrid
representation consisting of: trackable points (red crosses),
trackable lines (green), contours (green), kernels (red ellipses),
and the remaining intrackable regions.

In addition to the results in Fig. 11 and 12, we tested the
pursuit algorithm on a variety of video clips. Fig. 13 shows
12 examples representing videos of different complexities.
In row 1: the foreground objects (bird, human, and fish) ex-
hibit high resolution in a flat background. The contours and
short lines dominate the representation. In row 2: the objects
(birds, fish, and people) exhibit low resolution and are well
separated from the background. Thus, they are represented
by kernels. In row 3, the objects (still people, fish, birds)
exhibit low resolution and high density. As many elements
are still distinguishable in their neighborhood, they are rep-
resented by dense trackable points. In row 4, there are no
trackable elements, the video becomes a texture appearance
and thus described by STAR model.

From the final pursuit results, one can see that most of
the feature points and the object contours are captured suc-
cessfully. The junctions on car (especially the window cor-
ner) and person (cloth corners) are well classified as sparse
feature points, and the edges and contours are well classi-
fied as lines. The horizontal line between the water and sand
in the first row is not selected as trackable line due to weak
edge contrasts and similar lines in their neighborhood.

Fig. 14 shows additional results on two longer sequences.
The top row shows a swimming shark represented by con-
tour and feature points. The bottom row shows a moving
camera approaching a car. At first, the car is very far away,
and appears as a feature point. As the camera approaches,
it is represented by a kernel. As the camera approaches fur-
ther, more details are revealed, and it is represented by a set
of contours, kernels and feature points.

5 Comparison with other tracking criteria

In this section, we compare the intrackability with two other
measures for robust tracking, namely the Shi-Tomasi tex-
turedness measure and the conditional number.

5.1 Intrackability and the texturedness measure

(Shi and Tomasi, 1994) proposed a texturedness criterion for
good points to track in two frames. To compare with this cri-
terion, we rewrite the local posterior probability for a point
velocity u = (ux, uy) that we discussed before,

p(u|I, I′) ∝ exp

{
−
∑

x∈P |I(x)− I′(x+ u)|2

2σ2

}
.

As it is common in optical flow computation, one assumes
the image is differential with (Ix, Iy) being the image gra-
dient. By Taylor expansion we have

I′(x+ u) = I(x) + uxIx + uyIy. (15)
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Fig. 14 Experiments on longer sequences.
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Fig. 15 Tracking comparison: In the first column, the intrackability measure tracks slightly better than Shi-Tomasi measure. In the second and
third columns, the intrackability measure can distinguish subtle trackable points from the clothes, but Shi-Tomasi measure selects more repetitive
feature points and makes more mismatches across frames.
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Then we can rewrite p(u|I, I′) in a Gaussian form,

p(u|I, I′) = 1

2πdet1/2(Σ)
exp{−1

2
uΣ−1u′}. (16)

where the inversed covariance matrix is,

Σ−1 =

(∑
x∈P I2x(x)

∑
x∈P Ix(x)Iy(x)∑

x∈P Ix(x)Iy(x)
∑

x∈P I2y(x)

)
(17)

Let λmax ≥ λmin be the two eigen-values of Σ−1, then the
local intrackability is

H{u|I, I′} = log 2π +
1

2
det(Σ),

= log 2π − 1

2
log λmaxλmin.

Therefore, large eigen-values leads to lower intrackability
and thus to better points to track. In the projected direction
u⊥, we drop the dimension that has lower eigen-value, and
the intrackability of a oriented line is

H{u⊥|I, I′} =
1

2
log 2π − 1

2
log λmax

In comparison, (Shi and Tomasi, 1994) used λmin as a tex-
turedness measure. Larger λmin means higher intensity con-
trast in the patch and thus a better point to track.

We can see that the differences between intrackability
and the Shi-Tomasi measure are

1. Shi-Tomasi uses Taylor expansion as an approximation
of local image patch. This assumes that the image is con-
tinuous and may be violated at the boundary or in tex-
tured motion.

2. λmin is used instead of log λmaxλmin measure.

It is worth to note that this texturedness measure is most
effective in a video regime corresponding to the rightmost
extreme in Fig. 5 (bird flock) and Fig. 10 (marathon) where
the objects are dense and still distinguishable from the sur-
roundings. In our pursued hybrid representations, most track-
able points are selected in this regime in Fig. 13 (row 3).

We compare with (Shi and Tomasi, 1994) in selecting
good features to track in frame-to-frame tracking. The Shi-
Tomasi criterion measures texturedness in a single image
patch of 5 × 5 pixels, in contrast our intrackability is com-
puted between frames in a [−12, 12]2 displacement range
and thus is searched in a larger neighborhood. As Fig. 15
illustrates, we manually initialize a polygon region for the
object of interest, then trackable points are pursued in the
region and tracked across frames by finding the best SSD
matches. After point-wise matching, an affine transforma-
tion is fitted to obtain the current polygon of object region.
For an object with no self-similar feature, our results is sim-
ilar to or slightly better than the Shi-Tomasi measure, see
the first column in Fig. 15. But for objects with many self-
similar features, the Shi-Tomasi measure will be misguided

to hit these self-similar ones, which often results in mis-
matches between frames. In Figure 15, the second and third
column show that the intrackability measures can distinguish
the more informative points on collars, shoulders, buttons
and pockets in most places, but Shi-Tomasi measures fails
to do so in more places.

To make quantitative comparison of the performances,
we annotate the ground truth of the vertices of outer poly-
gons for the three sequences in Fig. 15 and measure the av-
erage errors of all vertices over time. Let xi,t be the ground
truth of the position of the i-th vertex in frame t, x̂i,t be its
estimated value by a tracking algorithm, M be the number
of vertices, the tracking error of frame t is defined as

Errort =
1

M

∑
i

‖xi,t − x̂i,t‖ (18)

The resultant error curves are shown in Fig. 16.
Harris-Stephens R score (Harris and Stephens, 1988) is

also based on the matrix in Eq. (17). It is defined as R =

det(Σ−1) − ktrace(Σ−1)2, which is equivalent to R =

λmin ∗λmax− k(λmin +λmax)
2, where k is a small weight.

It is clear that our intrackability measure log(λmin ∗ λmax)

is the log of an upper bound to R score.

5.2 Intrackability and the condition number

(Fan et al, 2006) proposed to use the conditional number of a
matrix as an uncertainty measure in tracking a kernel. Unlike
point tracking, a kernel tracking uses a histogram feature in
a larger scope. Let h0 be the histogram as a model of the
target. In the next frame, mean-shift is used to find the opti-
mal motion vector u of the target, starting from a predicted
position. Let h1 be the histogram at the predicted position,
Fan et al (Fan et al, 2006) began with the linearized kernel
tracking equation system

Mu =
√

h0 −
√
h1 (19)

where M = (d1, · · · ,dm)
T is a matrix composed of cen-

ters of mass of all color bins and dj is the j-th mass cen-
ter. Let A = MTM be the matrix with two eigenvalues
λmax and λmin. The condition number of A is λmax/λmin >
1. Small condition number will result in stable solution to
Eq 19 and thus a better kernel to track.

To compare with this measure, we rewrite the local pos-
terior probability for the velocity u according to this setup,

p(u|h0,h1) ∝ exp

{
−‖Mu− (

√
h0 −

√
h1)‖2

tr(A)

}
. (20)

where the trace tr(A) = λmax + λmin is introduced to nor-
malize the histogram differences. This is also a two dimen-
sional Gaussian with covariance matrix

Σ = tr(A)A−1. (21)
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Fig. 16 Quantitative performance comparison — left is the magazine sequence (left column in Fig. 15), middle is the phone-call sequence (middle
column in Fig. 15), and right the cloth sequence (right column in Fig. 15).

Therefore, the local intrackability is the entropy of p(u|h0,h1).

H{u|h0,h1} =
1

2
+ log 2π − log

√
λmaxλmin

λmax + λmin
(22)

=
1

2
+ log 2π − log

√
λmax/λmin

λmax/λmin + 1
. (23)

This is a monotonically increasing function with respect to
the condition number λmax/λmin as λ1/λ2 > 1.

In light of the same derivation process, other covariance
related measure such as those mentioned in (Zhou et al,
2005) can all be regarded as an intrackability under some
Gaussian distribution assumption.

6 Discussion

Despite the vast literature in motion analysis, tracking, and
video coding, the connections and transitions between vari-
ous video representations have not been studied. In this pa-
per, we study the intrackabilities of local image entities (points,
lines, patches) as a measure of the inferential uncertainty.
Using the histogram of the intrackabilities pooled over the
video in space and time as the global video statistics, we
map natural video clips in a scatter plot and thus in different
regimes. We find two major axes in the plot representing im-
age scaling and change of object density respectively. As a
video may contain multiple patterns in different regimes, we
develop a model selection criterion based on the intrackabil-
ity and model complexity to pursue a hybrid representation
which integrate four components: trackable points, trackable
lines, contours, and textured motion. This criterion guides
the transition of representations due to image scaling and
change of object density.

In representing generic images, researchers have devel-
oped sparse coding model for structured image primitives,
such as edges, bars, and corners etc and texture model based
on Markov random fields for stochastic textures which do
not have distinct elements. The integration of these models
has led to a primal sketch model conjectured in (Marr et al,
1979). In ongoing project, we are extending the hybrid rep-
resentation to a video primal sketch model as a generic video

representation for effective coding and for modeling various
actions.
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