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Abstract—We formulate edge detection as statistical inference. This statistical edge detection is data driven, unlike standard methods for

edge detection which are model based. For any set of edge detection filters (implementing local edge cues), we use presegmented images

to learn the probability distributions of filter responses conditioned on whether they are evaluated on or off an edge. Edge detection is

formulated as a discrimination task specified by a likelihood ratio test on the filter responses. This approach emphasizes the necessity of

modeling the image background (the off-edges). We represent the conditional probability distributions nonparametrically and illustrate

them on two different data sets of 100 (Sowerby) and 50 (South Florida) images. Multiple edges cues, including chrominance and multiple-

scale, are combined by using their joint distributions. Hence, this cue combination is optimal in the statistical sense. We evaluate the

effectiveness of different visual cues using the Chernoff information and Receiver Operator Characteristic (ROC) curves. This shows that

our approach gives quantitatively better results than the Canny edge detector when the image background contains significant clutter. In

addition, it enables us to determine the effectiveness of different edge cues and gives quantitative measures for the advantages of

multilevel processing, for the use of chrominance, and for the relative effectiveness of different detectors. Furthermore, we show that we

can learn these conditional distributions on one data set and adapt them to the other with only slight degradation of performance without

knowing the ground truth on the second data set. This shows that our results are not purely domain specific. We apply the same approach

to the spatial grouping of edge cues and obtain analogies to nonmaximal suppression and hysteresis.

Index Terms—Edge detection, statistical learning, performance analysis, Bayesian inference.

æ

1 INTRODUCTION

EDGE detectors, see [9], are intended to detect and localize
the boundaries of objects (in this paper, we will use

“edge” as a shorthand for object boundary or significant
albedo change, see Fig. 1, and later examples in Figs. 7 and
8). In practice, it is clear that edge detection is an ill-posed
problem. It is impossible to design an edge detector that
will find all the true (i.e., object boundary and significant
albedo change) edges in an image and not respond to other
image features. Examining real images, it is clear that edge
detectors only give ambiguous local information about the
presence of object boundaries.

Most conventional edge detectors are designed by
assuming models of edges. For example, Canny [9] assumes
that edges are step functions corrupted by additive
Gaussian noise. But, as has been widely reported [12], [1],
[30], [39], [24], [35], natural images have highly structured
statistical properties which typically do not agree with the
assumptions made by current edge detectors. It makes
sense, therefore, to formulate edge detection as statistical
inference where the detectability of edges depends both on
the statistics of filters on the edges but also the statistics of

filters off the edges (i.e., on the background image clutter).
These edge and background statistics may be domain
specific and edge detection should take this into account.
(An alternative approach would be to learn a classifier [35]
without learning probability distributions, but we show
there is sufficient data to learn the distributions).

To implement statistical edge detection, we make use of
ground truth segmentations, see Figs. 1, 7, and 8. We first use
two presegmented data sets, Sowerby and South Florida, in
a learning stage to determine probability distributions for the
response of edge detection filters on and off edges. Edge
detection can then be performed using a log-likelihood ratio
test, see [11]. (In addition, these log-likelihood ratios, see
Fig. 1 can be used as a local measure of edge strength [14] in
formulations such as snakes [18] and region competition
[38]). We use standard filters such as the intensity gradient,
the Laplacian of a Gaussian, and filterbanks of oriented filter
pairs (e.g., Gabor filters). To combine different edge cues, we
specify the edge filter to be vector-valued, with components
corresponding to the different cues (e.g., gray-scale, chro-
minance, and multiscale). In other words, we use the joint
distributions of the different edge cues (which is the optimal
way to combine them).

The probability distributions are represented nonparame-
trically by multidimensional histograms. The bin boundaries
are determined adaptively in order to reduce the total number
of bins required. This is necessary to ensure that we have
sufficient data to learn the probability distributions and to
preventoverlearning [34]. Weusecross-validation [29] tocheck
for overlearning. In addition, we sometimes use decision trees
[29] to further reduce the number of bins required.

In our evaluation stage, we determine the effectiveness of
the edge detection filters by two criteria: 1) by evaluating
the Chernoff information [11] and 2) by determining the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 1, JANUARY 2003 57

. S. Konishi and J.M. Coughlan are with Smith-Kettlewell Eye Research
Institute, 2318 Fillmore Street, San Francisco, CA 94115.
E-mail: {konishi, coughlan}@ski.org.

. A.L. Yuille is with the Department of Psychology and Statistics,
University of California at Los Angeles, 7461 Franz Hall, Los Angeles,
CA 90095-1563. E-mail: yuille@stat.ucla.edu.

. S.C. Zhu is with the Department Computer and Information Sciences, The
Ohio State University, Columbus, OH 43210.
E-mail: szhu@cis.ohio-state.edu.

Manuscript received 22 Aug. 2000; revised 15 Feb. 2002; accepted 15 May 2002.
Recommended for acceptance by S. Sarkar.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 112746.

0162-8828/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society



Receiver Operating Characteristic (ROC) curves [15]. The
Chernoff information arises naturally in theoretical studies
by Yuille and Coughlan [36] for determining the detect-
ability of roads in aerial images [14]. ROC curves have been
used by Bowyer et al. to empirically evaluate the perfor-
mance of standard edge detectors on the South Florida data
set [7], [31], [8]. Hence, we can use ROC curves to compare
the performance of statistical edge detection against more
standard edge detectors. In addition, we use the area under
the ROC curve and the Bayes risk.

Most practical edge detectors (e.g., Canny [9]) use post-
processing techniques such as nonmaximal suppression and
hysteresis. Therefore, we extend statistical edge detection to
incorporate spatial grouping cues. These grouping cues are
also learnt fromour imagedatasetsand,notsurprisingly, they
show analogs of nonmaximum suppression and hysteresis.

Our results show that statistical edge detection signifi-
cantly outperforms the Canny edge detector [9] when
evaluated on the Sowerby data set, see Fig. 16. On the South
Florida data set, statistical edge detection performs equiva-
lently to the Canny edge detector and the best of the other
edge detectors evaluated by Bowyer et al. [7], [8]. Our
results also show that it is significantly harder to detect
edges in the Sowerby data set than in the South Florida data
set. This is because there is far more “clutter” in the
Sowerby images which can cause edge detectors to report
false positives, see Fig. 1. We assume that edge detectors
should not report edges in cluttered and textured regions.
Overall, the Sowerby data set is more challenging and
(arguably) more representative of real world images.

We are also able to adapt our probability distributions
between the Sowerby and South Florida data sets with only
a small change in performance. In other words, we can
perform high quality segmentation on South Florida without
needing the ground truth (and similarly on Sowerby).
Moreover, the success of our adaptation also shows that the
image statistics are robust with respect to the ground truth.
Inspection of the Sowerby and South Florida data sets
shows that the ground truths were determined rather
differently, see Section 3.1. If the statistics were very
sensitive to ground truth, then it would be impossible to
adapt them between the two data sets.

Our approach complements recent work on empirical
performance analysis of visual algorithms [6]. Our work

was originally inspired by Geman and Jedynak [14], who
learnt statistics responses for filters on and off highways in
aerial images. We were also influenced by the work of
Balboa and Grzywacz [2], [3], [4], who measured contrast
edge statistics on and off occluding boundaries in two image
domains which, they argued, corresponded to differences in
the receptive field properties of the retinas of animals in the
two different environments and propose an alternative
adaptation procedure [16]. A recent learning method [27] is
rather different from our approach and makes use of
reinforcement learning with high-level feedback. More
recently, Sullivan et al. [33] have learned statistics for image
backgrounds in their work on “Bayesian correlation.”

The structure of this paper is as follows: In Section 2, we
describe the edge filters, the two evaluation criteria, and
how we represent and learn the conditional probability
distributions. Section 3 gives the results of our edge
detection filters on the two data sets using the two
evaluation criteria. In Section 4, we describe how we learn
spatial grouping as an analogy to nonmaximal suppression
and hysteresis. Section 5 shows that we can adapt our
probability distributions from one data set to the other
illustrating that our results are not purely data set specific
nor overly dependent on the ground truth of the data sets.

2 REPRESENTING, LEARNING, AND EVALUATING

EDGE FILTERS

Statistical edge detection involves learning the conditional
probability distributions P ð�jon-edgeÞ and P ð�joff-edgeÞ for
the filter response � conditioned on whether the filter is
evaluated on or off an edge. We can then use the log-

likelihood ratio test, log P ð�ðIðxÞÞjon-edgeÞ
P ð�ðIðxÞÞjoff-edgeÞ > T , to determine if a

pixel x in image IðxÞ is an edge, where T is a suitable
threshold (visually more pleasing edge maps, however, can
be obtained using a further spatial grouping stage, see
Section 4). Following the analysis of Geman and Jedynak
[14], the log-likelihood ratio can also be used as a measure
of edge strength as input to curves detectors such as snakes
[18] or region competition [38].

This requires us to specify a set of edge detection filters�, see
Section 2.1. We evaluate the effectiveness of different edge
filters using performance criteria, see Section 2.2. This requires
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Fig. 1. A typical Sowerby image (top left panel) with its ground truth segmentation (top right panel), and its segmentation using the Canny edge

detector (bottom left panel) and by statistical edge detection (bottom center panel). Statistical edge detection has fewer false negatives in the

textured regions and is also better at detecting edges with are partially defined by texture. By contrast, the Canny detector is slightly better at

precision of certain edges. The log-likelihood ratios are also shown (bottom right panel).



representing the conditional probability distributions by
adaptive nonparametric representations (e.g., histograms), see
Section 2.3. The performance criteria are also used to
determine the adaptive nonparametric representations by
evaluating the effectiveness of the probability distributions
induced by the different possible representations.

Once the nonparametric representations have been
chosen, then learning the probability distributions reduces
to evaluating the filters on the data sets (using the ground
truth to determine which pixels are on and off edges) and
counting the number of responses in each bin.

2.1 The Two Filter Sets

We consider two sets of edge detection filters. The first set
consists of standard edge filters (supplemented by the
Nitzberg filter, which turns out to be very effective). The
second set consists of oriented filter banks partially inspired
by the biology of the human visual system.

2.1.1 The First Filter Set

In this paper, we specify a filter � by a differential (or
difference) operator, the scales at which we apply it, and the
color bands we apply it to. The filters in the first set are
shown in Table 1. The dimension of the filter is the product
of the dimensions of the operator, the number of scales, and
the number of image bands. For example, filter no. 2 in the
table is the Laplacian r2 operator at three scales applied to
image band Y and so is a three-dimensional filter.

For the first filter set, the differential operators are the
magnitude of the image gradient j ~rrj, the Nitzberg operator
~NN [26], and the Laplacian r2 [25]. These are applied at
different scales � by smoothing the image by a Gaussian
filter with variance �2. There are three color bands Y ; I;Q
for Sowerby and one (i.e., gray-scale) for South Florida.

More precisely, the modulus of the gradient and the
Laplacian operators are specified by the equations

~rr�IðxÞ
��� ��� � ~rrGðx;�Þ � IðxÞ

��� ��� and

r2
�IðxÞ � r2Gðx;�Þ � IðxÞ;

where � denotes convolution and Gðx;�Þ is a Gaussian at a
spatial scale parameterized by the standard deviation �. The
Nitzberg operator involves computing the matrix N�ðxÞ ¼
Gðx;�Þ � f ~rrIðx;�Þgf ~rrIðx;�ÞgT where T denotes transpose.
In other words, we take the image gradient at scale � and

then average its outer product by a Gaussian with the same
scale (we found it most effective to use the same value of �
for both scales). The output is the two-dimensional vector
consisting of both eigenvalues ðN1ðx;�Þ; N2ðx;�ÞÞ. This
operator is sensitive to image corners (see chapters 4, 16
by Harris in [5]), which helps it discriminate texture from
edges, as we will see in Section 3.

Our color representation is a variant of the NTSC color
space, with

Y ¼ 0:299Rþ 0:587Gþ 0:114B;

I ¼ ð0:596Rÿ 0:274Gÿ 0:322BÞ=Y ; and

Q ¼ ð0:211Rÿ 0:523Gþ 0:312BÞ=Y :

Here, Y is interpreted to be the gray-scale image and I;Q are
the chrominance vectors. Unlike NTSC, we have normalized
the chrominance by the gray scale. This normalization
enables us to examine the effectiveness of chrominance cues
independent of gray scale. It is important to realize that the
choice of color space representation is relatively unimportant
because we use joint distributions to combine color cues. The only
reason it matters at all is because we determine the bin
boundaries based on the one-dimensional distributions
(which do depend on our choice of color space).

The biology of human vision, combined with more
pragmatic motives, strongly suggests that images should be
processed at different scales, see [25]. In such “scale-space”
approaches, it is not always clear how to best combine the
information given by the edge detectors at different scales. In
statistical edge detection, as described in this paper, the
optimal combination arises naturally by using the joint distribu-
tions of the filters at different scales (subject to the quantiza-
tion procedure we use).

In the rest of this paper, we represent filters by the
operator, the scales it is applied at, and the color bands it is
applied to. For example,r2

�¼1;2;4ðY ; I;QÞmeans that the filter
is the Laplacian of a Gaussian applied at scales � ¼ 1; 2; 4 to
the three color bands Y ; I;Q. This filter is vector-valued with
nine dimensions. The effectiveness of these different combi-
nations is shown in Section 3.2.1.

2.1.2 The Second Filter Set

The second filter set is a filterbank of orientation-tuned
pairs of symmetric (even) and antisymmetric (odd) filters. It
is claimed that the visual cortex uses filterbanks of this type
and that edges can be detected by socalled energy filters
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TABLE 1
The 12 Filters in the First Set

For each filter, we estimate the joint probability distributions of the differential operators, the scales, and the image bands. See text for definition
of ~NN;N1; N2.



which sum the squares of even and odd filter pairs. In the
computer vision literature, Perona and Malik [28] have
advocated filters pairs of this type because of their
sensitivity both to step edges (due to the odd filters) and
to ridge edges (due to the even filters). See also [17].

In this section, we consider two types of filter pairs. First,

we consider even and odd Gabor filter pairs where the even

filter is a cosine Gabor (shifted to eliminate the DC term) and

the odd filter is a sine Gabor with the same orientation and

frequency. We quantize the orientation angles to take four

values. For each angle, the filters are separable with a

component in the direction of the angle and in the orthogonal

direction. The cross-sections of the Gabor filters in the

orthogonal direction is given by the real and imaginary parts

ofGðx;�Þðe2�xi=� ÿ eÿ2ð��Þ2=�2Þ, whereGðx;�Þ ¼ 1ffiffiffiffi
2�
p

�
eÿx

2=ð2�2Þ.

Motivated by biological considerations we set � ¼ �=2. The

Gabors have cross sections of Gðx;�Þ in the direction of the

anglewhere is theaspect ratio. Insummary,eachGabor filter

is described by an angle �, a wavelength �, and the aspect

ration .
A well-known limitation of Gabor filters is their tendency

to “ring” near edges because of their high frequency response.
This motivates our second choice, where the filter pairs also
occur at a quantized set of angles. The cross sections
orthogonal to the angles is the the second derivative of a
Gaussian d2

dx2 Gðx;�Þ and its Hilbert transform defined by

HfðxÞ ¼ ÿ1

�

Z 1
ÿ1

fðzÞ
zÿ x dz:

The cross-section in the direction of the angle is also
Gðx;�Þ. For comparison to the Gabor filters, we define an
effective wavelength � ¼

ffiffiffi
2
p

��. We refer to them as Hilbert
transform filters. (Perona and Malik suggested the use of
Hilbert transform pairs [28]). These Hilbert transform pairs
are run at six orientations (equally spaced).

To represent different ways of combining the filter pairs,
we use the following notation: S� and A� denote symmetric
and antisymmetric filters at orientation �, respectively, where
� is quantized to take between four and six values (chosen to
span the orientation space). We can represent the filterbank
outputbyasingle (high-dimensional) filter~�� ¼ fS�;A�g (with
dimension eight or twelve depending on the number of
angles). Alternatively, there are four or six “energy” filters
S2
� þA2

� tuned to the orientations �. In addition, we test filters
which average over angular direction, S2 ¼

P
� S

2
� and

A2 ¼
P

� A
2
�, as well as the two-dimensional filter fS2; A2g.

Finally, there is the one-dimensional filter S2 þA2. Our
results, see Section 3.2.2, show that a surprising amount of
information is given by S2 þA2.

2.2 Performance Criteria

We use two performance criteria. The first criterion,
Chernoff Information [11] is described in Section 2.2.1. It
is a measure of the ease in determining which of two
distributions generates a set of samples (all members of the
set must be sampled from the same distribution). It arises in
theoretical studies [36] of the difficulty of detecting roads in
aerial images [14]. The second criterion, is the Receiver
Operating Characteristic (ROC) curve [15] of Section 2.2.2.

Two additional measures can be obtained from the ROC
curve. The first is the area under the ROC curve, which can

be shown to be equal to one minus the error rate for the
2-alternative forced choice task [15]. The second measure is the
Bayes risk [29] which can also be obtained directly from the
ROC curve (with equal prior probability for on-edge and
off-edge). Surprisingly, for the edge detectors filters in this
paper there is a simple empirical one-to-one mapping
between the area under the ROC curve and the Chernoff
information, see Section 3.3.2. Moreover, the nature of the
empirical ROC curves suggests that they can be approxi-
mately characterized uniquely by the area under the ROC
curves, see Section 3.3.2. Hence, the ROC curves are also
directly related to the Chernoff information.

Both performance criteria are measures of statistical
discriminability where the discrimination is done using the
log-likelihood ratio test [11]. Therefore, both performance
measures depend only on the induced distributions
P̂P ðrjon-edgeÞ; P̂P ðrjoff-edgeÞ on the log-likelihood ratio

r ¼ log
P ð�jon-edgeÞ
P ð�joff-edgeÞ :

These induced distributions are one-dimensional and em-
pirically are approximately Gaussians with identical var-
iances. This will be important when understanding the
empirical relationship between the Chernoff and ROC curves.

Note that both criteria were derived for discrimination
formulated as probabilistic inference [11], [15]. It is not
straightforward to apply them to edge detectors which are
not formulated in probabilistic terms. For example, the
ROCcurveassumesthat there isaone-dimensionalparameter
that can be varied. For statistical edge detection, this
parameter corresponds to the threshold used for edge
detection. But, conventional edge detectors can contain
several adjustable parameters. For example, the Canny
detector [9] contains three adjustable parameters (one scale
and two thresholds). Bowyer et al. [7], [8] obtain ROC curves
by choosing the optimal selection of these parameters.

2.2.1 Chernoff Information

Our first performance measure, the Chernoff information
[11], is motivated by the following question: suppose we
wish to determine whether a set of samples is more likely to
be on-edge or off-edge. This task is important when
determining whether to “group” a set of image pixels to
form a continuous edge path. The Chernoff information and
the closely related Bhattacharyya coefficient are directly
related to the order parameters determined by Yuille and
Coughlan [36] when analyzing the Geman and Jedynak
theory of curve detection [14]. In this theory, the larger the
Chernoff information between the probability distributions
of filter responses on and off edges, then the larger the order
parameter and the easier it becomes to detect the curve.

Let ~yy ¼ fyðx1Þ; yðx2Þ; . . . ; yðxNÞg be a sequence of inde-
pendent samples of the responses of the edge detector at
positions x1; . . . ; xN . Using the Neyman-Pearson lemma
[11], the optimal test (e.g., the maximum likelihood test) for
determining whether the samples come from P ð:jon-edgeÞ
or P ð:joff-edgeÞ depends only on the log-likelihood ratio,

r � log
P ð~yyjon-edgeÞ
P ð~yyjoff-edgeÞ :

By the assumption of independence, this reduces to

r ¼
PN

i¼1 log P ðyðxiÞjon-edgeÞ
P ðyðxiÞjoff-edgeÞ

n o
.
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The larger the log-likelihood ratio, then the more

probable that the measurement sample ~yy came from the

on-edge rather than off-edge distribution (if the log-

likelihood ratio is zero then both on-edge and off-edge

are equally probable). It can be shown [11] that, for

sufficiently large N , the expected error rate of this test

decreases exponentially by eÿNCðP ð:jon-edgeÞ;P ð:joff-edgeÞÞ, where

Cðp; qÞ is the Chernoff Information [11] between two

probability distributions p and q, defined by:

Cðp; qÞ ¼ ÿ min
0���1

log
XJ
j¼1

p�ðyjÞq1ÿ�ðyjÞ
( )

; ð1Þ

where fyj : j ¼ 1; . . . ; Jg are the variables that the distribu-
tions are defined over (in this paper, each yi corresponds to
a histogram bin). A closely related quantity is the
Bhattacharyya coefficient:

Bðp; qÞ ¼ ÿ log
XJ
j¼1

p1=2ðyjÞq1=2ðyjÞ
( )

: ð2Þ

Empirically, however, we find that the Chernoff
information for our edge detection filters almost always
corresponds to a value of � � 1=2, see Section 3. There-
fore, the Chernoff information and the Bhattacharyya
coefficient give very similar values in our application
domain. The only situation where this does not happen is
when there is too little data and the model starts to
overlearn. In the general case, however, Cðp; qÞ � Bðp; qÞ
for any p; q (because Chernoff information selects � to
minimize logf

PJ
j¼1 p

�ðyjÞq1ÿ�ðyjÞg with respect to � while
the Bhattacharyya coefficient just sets � ¼ 1=2).

To illustrate the Chernoff information, we first calculate it
for two univariate Gaussians with variances �2 and means
�1; �2. Itbecomes ð�1 ÿ �2Þ2=ð8�2Þnats (1nat equals log2 ebits)
and, for the special case when �2 ÿ �1 ¼ �, the Chernoff
information equals 0:125 nats.

2.2.2 Receiver Operating Characteristic Curves

We also evaluate the edge detection filters using ROC
curves [15] for classifying individual pixels.

Pixels are classified as “on-edge *” or “off-edge *”
depending on whether the log-likelihood ratio

log
P ð� ¼ yjon-edgeÞ
P ð� ¼ yjoff-edgeÞ

is above or below a threshold T , respectively. Each
threshold T yields a point on the ROC curve corresponding
to the proportion of correct responses (P ðon-edge�jon-edgeÞ)
and false positives (P ðon-edge�joff-edgeÞ), see Fig. 5.

We use two additional measures which can be derived
from the ROC curve: 1) the area under the ROC curve
(which is one minus the error rate for the 2-alternative forced
choice task (2AFC)) and 2) the Bayes risk given by

ð1=2ÞfP ðon-edge�joff-edgeÞ þ P ðoff-edge�jon-edgeÞg;

where pixel x is classified as “on-edge *” if

P ð�ðIðxÞÞjon-edgeÞ > P ð�ðIðxÞÞjoff-edgeÞ

and as “off-edge *”, otherwise.

2.3 Two Nonparametric Probability Representations

We will consider two nonparametric ways to represent
probability distributions. The first uses multidimensional
histograms with bin boundaries chosen adaptively for each
dimension (one dimension for each visual cue). The number
of bins used by this representation increases exponentially
with the number of visual cues. Learning such a distribution
requires a large amount of training data to avoid overlearning
[34], which occurs when we do not have enough data to learn
the probability distributions accurately (i.e., we can memorize
the distributions but we cannot generalize from them to new
data). This motivates our second representation which uses
decision trees [29] to select those bin boundary cuts which
best help discrimination. This representation enables us to
learn distributions for high-dimensional filters.

We use cross-validation [29] to determine if overlearning
has occurred. This procedure learns distributions on one
part of the data set and checks for consistency by evaluating
them on the rest. For example, suppose we try to learn the
distributions for a nine-dimensional filter with six bins for
each dimension (i.e., 69 bins in total). Then cross-validation
shows that we cannot accurately learn the distributions, see
Fig. 6. In practice, simple clues are often sufficient to tell us
whether overlearning is occurring. First, overlearning only
occurs when the number of bins is of the same order of
magnitude, or larger, than the number of data points.
Second, the our performance criteria will give suspiciously
large values when overlearning is occurring.

The adaptive binning and the decision tree procedure uses
performance measures to determine good choices of bin
boundaries and decision cuts. These performance measures,
Chernoff information and Receiver Operation Characteristic
(ROC) curves, were described in the previous Section 2.2.

2.3.1 Multidimensional Histograms with

Adaptive Binning

Recall that any edge cue (or combination of cues) is
represented by an operator �ð:Þ which can be a linear,
or nonlinear, filter with scalar or vector valued output.
For example, one possibility is the scalar filter ~rrð:Þ

��� ���, see
Section 2.1 for other filters.

Having chosen an edge operator �ð:Þ, we have to quantize
its response values. This involves selecting a finite set of
possible responses fyj : j ¼ 1; . . . ; Jg. The effectiveness of the
operator will depend on this quantization scheme, so care
must be taken to determine that the quantization is robust and
close to optimal.

We illustrate the quantization on the filter j ~rrj�¼1ðY Þ. For
one-dimensional filters, there is always sufficient data to
learn histograms with 256 bins for P ð� ¼ yjon-edgeÞ and
P ð� ¼ yjoff-edgeÞ. Fig. 2 shows that the probability distribu-
tion for P ð� ¼ yjoff-edgeÞ is strongly peaked near y ¼ 0 (i.e.,
the image gradient tends to be small away from edges)
while the peak of P ð� ¼ yjon-edgeÞ occurs at larger values of
y (i.e., the image gradient is likely to be nonzero at edges).
We compute the Chernoff information between these two
distributions to give an upper bound for how well we can
discriminate between the distributions. Then, we select bin
boundaries which maximize the Chernoff information in a
greedy manner and compute how the Chernoff information
increases towards the upper bound as the number of bins
increases. This is plotted in Fig. 2 and shows that the
Chernoff information quickly reaches its asymptotic value
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with only a small number of bins. It became clear that most
of the reliable information can be extracted using only six
adaptive bins for each dimension of the filter (this
adaptation is performed over the entire data set and not
for each individual image).

For higher-dimensional filters, we simply use rectangular
bins with the boundaries given by the one-dimensional
marginals.

2.3.2 The Decision Tree Representation

The main disadvantage of the multidimensional histogram
representation is that the number of bins used increases
exponentially with the dimensionality of the edge filters
and, so, the amount of training data required also grows
exponentially. This puts limits on the dimensionality of the
edge filters that we can use.

The decision tree approach gives a more compact
representation. Moreover, it also allows us to learn
probabilities in situations where overlearning occurs by
adjusting the size of the representation, see Section 2.3.3.

The decision tree procedure consists of adaptively
selecting cuts on any of the one-dimensional filter axes so
as to maximize the Chernoff information, see Fig. 3. We use
a greedy algorithm to select the best choice of bins. That is,
we find the kth cut by adding the bin boundary that
maximizes the Chernoff information given the best kÿ 1
cuts. More precisely, suppose we have an M-dimensional
filter with one-dimensional bin boundaries at fyim : i ¼
1; . . . ; n;m ¼ 1; . . . ;Mg (where n is the number of bins used
in the one-dimensional histograms—typically n ¼ 6 in this
paper). The distributions of the filters are P ð� ¼ yjon-edgeÞ
and P ð� ¼ yjoff-edgeÞ. With no cuts, the two distributions
P ð� ¼ yjon-edgeÞ and P ð� ¼ yjoff-edgeÞ are, of course,
indistinguishable. We then find the best cut yim which

maximizes the Chernoff information between the two
distributions. Then, we choose the second best cut (given
the first best cut), and so on. This is an alternative way of
representing the probability distributions with the number
of bins bounded above by 2k where k is the number of cuts.

The decision tree procedure, see Fig. 4, shows that the bulk
of the information content can often be obtained using
remarkably few decision cuts. For example, with six cuts (i.e.,
n ¼ 6), we typically obtain between 80 and 90 percent of the
total Chernoff information. This gives a good approximation
to the full histograms using at most 26 ¼ 64 bins instead of
69 ¼ 10; 077; 696 bins. Indeed, a single cut (i.e., using the
marginal distribution of a single filter) typically yields
between 40 and 50 percent of the total Chernoff information.
This shows that there is diminishing returns for adding extra
filters of the type we have considered so far and for the binary
on-edge versus off-edge decision task.

2.3.3 Overlearning, Cross-Validation, and

Decision Trees

The decision tree procedure also allows us to learn
probability distributions for high-dimensional filters for
which overlearning occurs. For each number of decision
cuts, we use cross-validation to test whether we are over-
generalizing or not (using either Chernoff or ROC as the
performance criterion). This enables us to determine the
maximum number of decision cuts we can make while
preventing overlearning. The number of on-edge and
off-edge pixels are ð2:35� 106; 34:3� 106Þ on Sowerby and
ð4:31� 105; 12:1� 106Þ on South Florida.

To do cross-validation, we randomly divide the data set
(Sowerby or South Florida) into two sets, set0 and set1. We
learn the distributions on both data sets as a function of the
number of decision cuts. Then, we calculate the Chernoff
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Fig. 2. Left panel: the marginal distributions of the magnitude of the gradient filter on Y at � ¼ 1 (evaluated on the Sowerby data set). The vertical axis

labels the probability density and the horizontal axis labels the filter response. The dark line indicates P ð� ¼ yjoff-edgeÞ and the dotted line shows

P ð� ¼ yjon-edgeÞ. The vertical dashed lines indicate the positions of the bin boundaries which are adaptively chosen. Right panel: the Chernoff

information rapidly reaches an asymptotic value as a function of the number of bins.

Fig. 3. Example of Decision Cuts. No cuts (left panel), one cut (center panel), and multiple cuts (right panel).



information and/or ROC curves within the two data sets (by
evaluating set0 on set0 and set1 on set1) and across the two
data sets by evaluating set0 on set1, and set1 on set0.

For example, we can calculate the ROC curves for the filter

j ~rrj�¼1;2;4ðY ; I;QÞ. The filter is nine-dimensional and, hence,

has 69 ¼ 10:077696� 106 bins which is too large to learn

reliably because it is the same order of magnitude as the

number of on-edge and off-edge pixels in the Sowerby data

set. If we attempt to learn the distributions using the

multiscale histograms, the within-set ROC curves are not

consistent with the between-set ROC’s and, so, we get

overlearning, see left panel of Fig. 5. But, if we use a decision

tree representation with 20 cuts, then all the ROC curves are

consistent, see Fig. 5 (right panel), and there is no over-

learning. The decision tree procedure reduces the number of

bins to 13:8� 103 which is far smaller than the amount of on-

edge and off-edge Sowerby pixels.
Alternatively, we can check for overlearning by using the

Chernoff information. In Fig. 6, left panel, we plot how the
Chernoff information increases with the number of cuts.
Observe that the Chernoff rapidly increases to a plateau at
about 10 cuts but then starts to rise again at 20 cuts. In our
experience, this rise from the plateau is always a sign
of overlearning. To verify this, observe the results of

cross-validation in the right panel of Fig. 6. This rise from

the plateau can be used as a heuristic to check whether

overlearning is occurring.
By this technique, we can use higher-dimensional filters

than is possible with our adaptive histogram approach. This

is particularly useful when using the oriented filterbank, see

Section 2.1.2. The filterbanks require a lot of data because

they involve running filter pairs at four or six orientations.

For example, if we use four orientations, then the filterbank

is eight dimensional and requires 1:679616� 106 bins which

is too large to learn on the South Florida data set. But, the

decision tree approach reduces the number of bins to 104

and prevents overlearning, see Fig. 13.

3 EDGE DISCRIMINATION RESULTS

We now describe our experimental results where the goal is

to determine whether a given pixel is on or off an edge.
We evaluate our approach on both the Sowerby and South

Florida data sets. These data sets differ in important respects

which we describe in Section 3.1.Then, we evaluate cues using

the Chernoff information in Section 3.2 and ROC curves in

Section 3.3. It is shown in Section 3.3.2 that both criteria give

similar results.
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Fig. 5. Cross validation for the Sowerby data set using the filter j ~rrj�¼1;2;4ðY ; I; QÞ. The inset boxes show blown-up sections of the ROC curves. Left

panel shows that the within-set ROC curves (dark bold and dark dashed at top) and across-set ROC curves (light bold and light dashed at bottom)

are not consistent (i.e., do not overlap) and, so, overlearning occurs. Right panel, same as above except that we now use decision trees with 20 cuts.

The resulting ROC curves are now far more consistent.

Fig. 4. The decision trees for the Sowerby (left panel) and South Florida (right panel) data sets. The Chernoff information approaches an asymptote

at about six cuts and a single cut gives over half the total Chernoff information. The filter is j ~rrj�¼1;2;4Y .



3.1 The Two Data Sets

The Sowerby data set contains one hundred presegmented
color images. The South Florida data set contains fifty
grayscale images. These data sets differ both by the nature
of the images and by the methods used to construct the
segmentations (the ground truth).

The Sowerby images, see Fig. 7, are outdoor images taken
in England which all contain a road or a track. The image
background contains a lot of vegetation (e.g., grass, brambles,
trees), which corresponds to texture in the image. The ground
truth includes edges which are not very distinct or poorly
delineated. They include, for example, the boundary between
a footpath and the grass which surround it. Overall, the data
set is a challenge for edge detectors and, in particular, for
those which only use grayscale information. By contrast, the
South Florida data set, see Fig. 8, largely consists of indoor
images. There is very little background texture. Moreover, the
ground truth edges are often visually salient and spatially
localized (e.g., only one pixel wide).

We assume that it is far easier to detect edges correctly in
the South Florida data set than in Sowerby. The edges are
sharper and the background statistics are less complicated
(due to the lack of texture). These assumptions are born out
by our experimental results in the rest of this section.

The ground truths in the two data sets were clearly created
differently, see Figs. 7 and 8. For example, the South Florida
edges are thin and well localized. By contrast, the Sowerby
edges are thick (e.g., often two pixels wide). Moreover, the
South Florida images have a 3-valued ground truth while the
Sowerby images have 2-values. For South Florida, the
3-values correspond to three sets: 1) edge, 2) background,
and 3) pixels close to edges and some texture regions in the
background. By contrast, Sowerby image pixels are labeled
either as edge or nonedge. In our experiments, we always
reclassify South Florida pixels as either edge or nonedge (i.e.,
the nonedge set is the union of sets “1” and “2”).

Five images from the Sowerby set (out of a hundred and
four) have very poor quality edge maps and so we rejected
them. These images are 06-36, 10-19, 13-10, 13-13, and 14-22.

It is very useful for us to have two data sets which differ
both in their statistics and their criteria for ground truth.
First, as we will show in Section 5, we are able to learn the
statistics on one data set and then adapt them to the other
with only a small loss in performance. This shows that
statistical edge detection is robust to errors in the ground
truth (because it would be impossible to achieve this level of
adaptation if the edge statistics were very sensitive to the
rather different ground truth criteria used in the two data
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Fig. 6. Overlearning for the Sowerby data set using filter j ~rrj�¼1;2;4ðY ; I;QÞ. Left panel: The Chernoff information as a function of the number of
decision cuts suggests overlearning. The Chernoff reaches a plateau at 10-20 cuts but then starts slowly rising again, which is a good (empirical)
warning of overlearning. Right panel: Overlearning is confirmed by cross-validation, where we plot the two within-set Chernoffs (solid and dotted) and
the two between-set Chernoffs (dashed lines). The lack of consistency (overlap) between these curves shows that overlearning occurs if we use
more than 20 cuts. The most reliable Chernoff is 0.322.

Fig. 7. Top row: four typical images from the Sowerby data set which contains a variety of urban and rural scenes (the original images are in color).

Bottom row: the ground truth segmentations supplied with the Sowerby image data set. The ground truth is not perfect; some edges are missing and

some are several pixels wide.



sets). Second, statistical edge detection gives only slightly

better results than standard edge detectors on the (easier)

South Florida data set (as evaluated by the Bayes risk—see

Section 3.3.2). But, statistical edge detection does better on

the (harder) Sowerby data set. See Figs. 1 and 17 for visual

comparison and then compare the ROC results for Canny

detector and statistical edge detection in Fig. 16.

3.2 Results Using Chernoff Information

We show results for the first set of filters in Section 3.2.1 and

for the second set of filters in Section 3.2.2.
To calibrate the Chernoff information for individual

cues, we estimated it to be 0:22 nats for the Geman and

Jedynak road tracking application [14]. Recall that it equals

0:125 nats for two univariate Gaussians when the difference

between the two means is equal to the variance. These set a

baseline and, as we will show, we can obtain Chernoff

information significantly higher by combining cues.
To calibrate the Chernoff information for multidimen-

sional filters, we need to know how it can change as a function

of the dimension. It is guaranteed to never decrease but, in

principle, it could increase by an arbitrarily large amount [11].

For example, consider two distributions pði; jÞ ¼ 1=n2 for i ¼
1; ::; n and j ¼ 1; . . . ; n, and qði; jÞ ¼ ð1=nÞ�ij. Then, the

marginal distributions, over i or j, are identical for both

distributions, and so the Chernoff information and Bhatta-

charyya coefficient are zero for the marginals. But, the

Chernoff information and Bhattacharyya coefficient between

p and q are logn and ð1=2Þ logn, respectively.
If we combine two cues which are independent then the

Chernoff information will be less than, or equal to, the sum

of the Chernoff informations for each cue. But, empirically

we always found that the Chernoff information is approxi-

mately equal to the Bhattacharyya coefficient (i.e., � � 0:5,

see Section 2.2.1). If two independent edge cues are

combined, then their Bhattacharyya coefficients will simply

add [11]. Hence, we expect that the Chernoffs will

approximately add if the cues are independent.
In practice, we found that the Chernoff information and

Bhattacharyya coefficients of two coupled cues is usually a

lot less than the sum for the individual cues, see Section 3,

so we conclude that cues are rarely independent.

3.2.1 Results for First Set of Filters

We now show the results on a range of filters, see Table 1.
Recall from Section 2.1 that the basic ingredients are:
1) three differential operators (see below), 2) the three
different colors (image bands Y ; I;Q), and 3) three scales
obtained by convolving the image with a Gaussian at scale
� ¼ 1; 2; 4 pixels.

Our first result, see Fig. 9, compares filter performance of
ðN1; N2Þ; N1; j ~rrj;r2 using filters at different scales, different
choices of color bands, and for Sowerby and South Florida.
The first two panels illustrate the advantages of color over
grayscale. (The advantage of using color for edge detection
has sometimes been doubted in the computer vision com-
munity). It is interesting that the chrominance cues (for which
the grayscale has been factored out) are most effective at large
scales, see center right panel. This corresponds nicely with
biological vision (for which the chrominance filters tend to
have larger spatial scales than the gray-scale filters). The
center left and far right panels show that it is easier to detect
edges in South Florida than it is in Sowerby. Moreover, the
Fig. 9 shows that Sowerby edges are easiest to detect at large
scales while South Florida edges are easiest at low scales (i.e.,
South Florida edges are sharply localized).

The Nitzberg filter ðN1; N2Þ is good presumably because
it can discriminate between edges and textures. Texture is
treated as “corners” with two eigenvalues being large. By
contrast, at regular edges only one eigenvalue is large. But,
this means that the Nitzberg filter often treats true edge
corners as texture, and so classifies them as off-edge.

Fig. 10 shows that multiscale processing is very effective.
The combination of using operators at scales � ¼ 1; 2; 4
always improves the Chernoff significantly. This increase is
particularly strong for the Sowerby data set. Multiscale is
better able to discriminate between texture edges (which
should be discounted) and the edges which correspond to
boundaries. It is also able to detect edges of different widths
(which occur in Sowerby but rarely in South Florida).

We analyze the consistency of these results for each image
by learning distributions fPið:joff-edgeÞg and fPið:jon-edgeÞg
for each image and calculating the Chernoffs. We plot this as
a relief map, see Fig. 11. This shows that although the
Chernoff information varies from image to image the relative
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Fig. 8. Left panel: four typical images from the South Florida data set, which consists primarily of indoor images and man-made objects. Right panel:
the ground truth segmentations supplied with the South Florida image data set.



effectiveness of the filters is approximately the same (we order

the images so that the Chernoff increases monotonically).
Fig. 12 investigates the consistency of the distributions

between images. More precisely, we plot the variations

of fPið:joff-edgeÞg and fPið:jon-edgeÞg relative to the

P ð:jon-edgeÞ and P ð:joff-edgeÞ obtained for the entire data

set. The variations are measured by the Chernoff information.

This shows that the fPið:joff-edgeÞg and fPið:jon-edgeÞg
separate nicely into two nonoverlapping sets. Hence, the

distributions are fairly consistent between images.
Despite the difference between country road scenes in

England (Sowerby data set) and primarily indoor images in

Florida (South Florida data set), perhaps the most striking

observation is that the relative effectiveness of different

filters is approximately unchanged, see Fig. 11.

3.2.2 Oriented Filterbank Results

Overlearning was a significant problem when learning the

statistics of the filterbank and so we often used the decision

tree representation.

The results we obtained for the filterbanks were slightly
surprising, see Fig. 13. We showed that:

1. The energy filters S2 þA2 were very effective and
there was little advantage, as measured by the
Chernoff information, in using the joint distributions
on all the filters (which is the optimal approach).

2. The Hilbert transform filters yield clearly better
performance than Gabor filters, probably due to
their lack of “ringing.”

3. Summing the energy from all different orientations
gave a one-dimensional filter whose performance was
close to optimal (a major surprise to some of the
authors).

4. Finally, the Hilbert transform filters including the
one dimensional filter (see 3) were comparable to the
best of the filters previously tested (the Nitzbergs),
see gray-scale panels in Fig. 6.

These figures are for aspect ratio  ¼ 2 (that is, the filters
are twice as long as their envelope in the frequency-tuned
direction). For aspect  ¼ 1, the Chernoff informations go
down by up to 10 percent. Coupling aspects  ¼ 1 and  ¼ 2
improves performance by about 5 percent (over  ¼ 2).
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Fig. 9. Chernoffs for Sowerby and South Florida. The edge detector operators are labeled by stars for ðN1; N2Þ, crosses for N1, triangles for j ~rrj, and

diamonds for r2. The three leftmost panels plot the Chernoff information for Sowerby for full color, gray scale, and chrominance, respectively. The

far right panel plots Chernoff for South Florida for gray scale. The horizontal axis shows the filter scale (� ¼ 1; 2; 4). Decision trees are not needed.

Fig. 10. The advantages of using multiscale filters. The Chernoff information is shown for: 1 the filter at scale � ¼ 1, f1; 2g the coupled filter for scales
� ¼ f1; 2g, and f1; 2; 4g the coupled filter for scales � ¼ f1; 2; 4g. The Chernoff always increases as we add larger-scale filters. Conventions as in Fig. 9.
Decision trees are required when applying filtersr2; j ~rrj to ðY ; I; QÞ at scales � ¼ 1; 2; 4, and when applying ðN1; N2Þ to chrominance at scales � ¼ 1; 2.



3.3 ROC Results

We can also evaluate the filters using ROC curves, see Fig. 5.
There are two main ROC results. First, see Section 3.3.1, there
is a simple empirical relationship between the area under the
ROC curve and the Chernoff information. Moreover, empiri-
cally most of the form of the ROC curve is determined by the
area under it. Hence, ROC curves and Chernoff information
give very similar results. Second, see Section 3.3.2, we can use
ROC curves to compare statistical edge detection to standard
edge detectors for South Florida and Sowerby.

3.3.1 Relating Chernoff Information and the ROC Areas

In this section, we give a formula that, empirically, relates
the Chernoff information and the ROC curves for our filters
(for both filtersets).

First, when computing the ROC curves for edge discrimi-
nation, see right panel of Fig. 5, we noticed that they looked
surprisingly similar to the ROC curves for univariate
Gaussian distributions with identical variances. This implies
[15] that the form of the ROC curve depends only on the
quantity d0 ¼ j�2 ÿ �1j=�, where �1; �2 are the means of the
Gaussians and �2 is their variance. The area under the
ROC curve depends only on the same quantity d0 and is given

by Aðd0Þ ¼ ð1=2Þf1þ erfðd0=2Þg. So, knowing the area under

the ROC curve is equivalent to knowing the ROC curve.

It is paradoxical that the ROC curves look roughly like

those of univariate Gaussians with identical variances. The

empirical probabilities distributions P ð:jon-edgeÞ and

P ð:joff-edgeÞ are not remotely Gaussians. However, the

ROC curves depend only on the induced distributions

P̂P ðrjon-edgeÞ and P̂P ðrjoff-edgeÞ on the log-likelihood ratio

r ¼ log P ð�jon-edgeÞ
P ð�joff-edgeÞ

n o
(where

P̂P ðrjon-edgeÞ ¼Z
dy�ðrÿ log

P ð� ¼ yjon-edgeÞ
P ð� ¼ yjoff-edgeÞÞP ð� ¼ yjon-edgeÞ;

P̂P ðrjoff-edgeÞ ¼Z
dy�ðrÿ log

P ð� ¼ yjon-edgeÞ
P ð� ¼ yjoff-edgeÞÞP ð� ¼ yjoff-edgeÞÞ:

Empirically, these induced distributions are often approxi-

mately univariate Gaussians with identical variances, at least

in the region of overlap of the two distributions, see Fig. 14.

Therefore, we predict that the area under the ROC curve and
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Fig. 11. The relative effectiveness of filters is fairly consistent over the entire data sets. We plot the Chernoff information as a function of the filter

used and the image number in the data set (with images sorted by magnitude of Chernoff). For Sowerby (left panel) the filters are those from Table 1.

For South Florida (right panel) the filters are r2
�¼1;r2

�¼1;2;4; jrj�¼1; jrj�¼1;2;4; ðN1Þ�¼1; ðN1; N2Þ�¼1.

Fig. 12. We illustrate that the P ð:jon-edgeÞ and P ð:joff-edgeÞ for all the images cluster nicely into two disjoint sets for Sowerby (left panel) and South

Florida (right panel). The filter is jrj�¼1;2;4Y . More specifically, we plot CðP; P ð:jon-edgeÞÞ; CðP; P ð:joff-edgeÞÞ for P ¼ Pið:jon-edgeÞ (pluses) and

P ¼ Pið:joff-edgeÞ (circles), where i ¼ 1; . . . ; 99 labels the image.



the Chernoff information are related as if the edge and
nonedge distributions were univariate Gaussians with
identical variances. It is straightforward to calculate the
Chernoff information to be Cðd0Þ ¼ ð1=8Þðd0Þ2 which, again,
only depends on d0.

Fig. 15 plots the Chernoff information as a function of the
area under the ROC curve. The bold line is the predicted
relationship with the assumption of Gaussian distributions
with equal variance. The dots correspond to the empirical
results of 420 filters on our data sets. All the dots lie very
close to the prediction. The right panel of Fig. 15 plots the
ROC curves for the Univariate Gaussians (solid curve), 2-bin
symmetric distributions p ¼ ða; 1ÿ aÞ; q ¼ ð1ÿ a; aÞ (dashed
line) and 2-bin asymmetrical p ¼ ð1; 0Þ; q ¼ ða; 1ÿ aÞ (line
with short dashes and dotted line). The latter has two curves
depending on whether we relate the ROC area to the
Chernoff information or to the Bhattacharyya coefficient (for
the first two distributions these quantities are equal).

3.3.2 ROC Comparison of Statistical and

Standard Edge Detectors

We now compare the performance of statistical edge
detection with that of the Canny edge detector. In addition,
by using the results of Bowyer et al. [7], [8], we get
comparisons of statistical edge detection to other conven-
tional edge detectors on the South Florida data set.

There are two difficulties in comparing statistical edge
detection to conventional edge detectors. First, conventional
edge detectors usually have a nonmaximal suppression stage
(Bowyer et al. added nonmaximal suppression to all of the
edge detectors they tested). Second, most conventional edge
detectors contain several tunable parameters (three for the
case of Canny). Both difficulties can cause biases in the ROC
curves, see examples in [23], and require nonstandard
methods for evaluating true positives and false positives of

the edge detector responses. We will determine the ROC
curves using both the evaluation method proposed by
Bowyer et al. and a new method developed here. It can be
argued that an advantage of statistical edge detection is that it
requires a single parameter (the threshold) and is straightfor-
ward to evaluate using standard ROC and Chernoff criteria.

Nonmaximal suppression causes two types of problem for
ROC curves which, unless addressed, can make the curves
extremely sensitive to errors in the ground truth. First,
nonmaximal suppression can create a bias on the true
positives by preventing an edge detector from detecting all
the ground truth edges. Small errors in ground truth edge
location may mean that an edge detector responds correctly at
the real position of the edge which suppresses its response at
the ground truth location. In addition, the ground truth edges
may sometimes be two pixels wide and so nonmaximal
suppression will prevent an edge detector from labeling both
pixel points as edges. Second, nonmaximal suppression can
dramatically reduce the number of false positives. This will
happen in sections of the ROC curve where the proportion of
false positives is high (i.e., when many pixels in the image are
incorrectly estimated to be edges). This corresponds to very
impractical choices of the edge detector parameters and so is
not representative of the behavior of the edge detectors with
more realistic parameter settings.

On the South Florida data set, we adjusted our approach so
that it can be directly compared with the results of Bowyer et
al. First, we applied nonmaximal suppression to statistical
edge detection. Second, we used Bowyer et al.’s evaluation
criteria, see next paragraph, to determine the true positive
and false positive rates. Third, we compared the edge
detectors using the Bayes risk (assuming pixels are equally
likely to be on or off edges a priori) because the Bayes risk is
computed from part of the ROC curve which corresponds to
reasonable choices of the edge detector parameter values.
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Fig. 13. Oriented filters on Sowerby (left panels) and South Florida (right panels). See Section 2.2.1 for the label definitions. Gabor filters (top panels)

and Hilbert transform filters (bottom panels). See text for interpretation.



Bowyer et al.’s criteria for determining true positives and
false positives is algorithmic. To evaluate the true positives, a
list is constructed of the ground truth pixels. There is a second
list consisting of the pixels which the detector labels as edges.
The algorithm proceeds by scanning the first list in order. If a
pixel in the first list is within three pixels of an element of the
second list, then a true positive is counted and the element in the
second list is deleted. This means that each element in the
second list can “validate” at most one element of the first list
and hence prevents the algorithm from overcounting the
number of true positives. To evaluate the false positives,
Bowyer et al. count the number of pixels that the edge detector
labels as edges in region (b) of their three-valued ground
truth, see Section 3.1. This means that edge detector responses
within a three-pixel distance of a ground truth edge are
ignored when counting the false positives (as are edge
detector responses in textured regions). These criteria can be
criticized, see [23] for an example where they give a
misleading measure of the performance of an edge detector,
but usually they give intuitively plausible results.

However, these criteria only address the first problem of
nonmaximal suppression (e.g., biases on the true positives).
There will therefore still be distortions in the ROC curves.
Hence, we will evaluate the edge detectors by their Bayes risk
(with equal prior for pixels being on and off edge). The Bayes

risk can be measured from the ROC curve by finding the
point on the curve where the slope is 45 degrees [15] (this is
usually close to the point where the number of false negatives
equals the number of false positives—and is exactly this
point if the distributions are univariate Gaussians with
identical variances).

For the edge detectors evaluated by Bowyer et al., we
obtain approximate values of the Bayes risks in the range
0.035–0.045 [8]. Our statistical edge detection gives a Bayes
risk of 0:0350 using a magnitude of the gradient filter at four
scales � ¼ 0; 1; 2; 4 (with nonmaximal suppression and
Bowyer et al.’s evaluation criteria). Our implementation of
the Canny edge detector gave a similar Bayes risk of 0:0352
(which is consistent with Bowyer et al.’s results and which
validates our implementation). Overall, statistical edge
detection performed as well as any edge detector reported in [8]
using the identical evaluation criteria.

We obtained a significant difference between statistical

edge detection and the Canny edge detector on the more

challenging Sowerby data set. In this case, we did not apply

nonmaximal suppression to statistical edge detection but

instead used an additional grouping stage, described in the

following section. We also modified the evaluation criteria

to address both problems of the ROC curve caused by
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Fig. 14. The induced distributions are often approximately Gaussian in the overlap region with identical variances. Probability density as a function of

the log-likelihood ratio, for (left panel) j ~rrj�¼1;2;4ðY ; I; QÞ, (right panel) j ~rrj�¼1Y .

Fig. 15. Left panel: The predicted relationship (solid line) between Chernoff information and the area under the ROC curve fits our experimental data,

represented by dots, very well for all of our 420 filters combinations on the Sowerby data set. Right panel: The relationship between Chernoff

information and the area under ROC curve for three pairs of distributions, see text.



nonmaximal suppression. The criteria involved using
morphological operators to enlarge the number of pixels
labeled as edges by the edge detector being evaluated and
to produce a buffer zone around the ground truth edges
(Bowyer et al. used a similar buffer zone). They minimize
the bias caused by nonmaxmimal suppression while
allowing for imprecisions in the ground truth segmenta-
tion. More precisely, we defined two binary fields
gðxÞ; g�ðxÞ on the image such that gðxÞ ¼ 1 if pixel x is a
ground truth edge, and g�ðxÞ ¼ 1 if an edge detector labels
pixel x as an edge (gðxÞ ¼ 0 and g�ðxÞ ¼ 0, otherwise). We
defined �:: to be the complement (e.g., �ggðxÞ ¼ 0 if gðxÞ ¼ 1).
We defined n to mean a morphological opening on a binary
field (e.g., g�3ðxÞ ¼ 1 for any pixel x within a three-pixel
distance of a point labeled an edge by our detector).
The proportion of true positives is defined to beP

x gðxÞg�3ðxÞ=
P

x gðxÞ. The proportion of false positives is
defined to be

P
x �gg6ðxÞg�3ðxÞ=

P
x �gg6ðxÞ. These criteria also

have their limitations, see discussion in [23], but also give
plausible results. We tested these criteria by applying them
to statistical edge detection and the Canny edge detector on
the South Florida data set and showed, see [23], that they
gave similar results to those obtained using Boyer et al.’s
criteria (i.e., both edge detectors perform almost identically
on the South Florida data set).

Using these criteria, our results show that the statistical
edge detector is significantly better than Canny on the
Sowerby data set, see Figs. 16 and 17. This applies whether
or not we use grouping for statistical edge detection, see
Section 4. This is not surprising because the Canny detector
uses one scale only and statistical edge detection uses many
scales which are combined optimally (in the statistical sense).
The Sowerby data set is harder to segment than South Florida
because of all the background clutter and, hence, multiscale
processing gives a big advantage, see Fig. 10.

For completeness, we also show the log-likelihood
ratios, see Fig. 17, which can be used as measures of edge
strength [14].

4 SPATIAL GROUPING OF EDGE CUES

Most standard edge detectors use a form of local spatial
grouping. For example, the Canny edge detector [9] uses

nonmaximal suppression and hysteresis. This grouping
exploits prior knowledge of edges in images. Edges are
typically spatially contiguous (hysteresis) and one pixel
wide (nonmaximal suppression). Hysteresis enables low
contrast edges to be detected provided they are close to
high contrast edges. Alternatively, probabilistic models like
Geman and Geman [13] impose prior probabilities so that if
there is an edge at one pixel location then this increases the
probability of there being edges at neighboring pixels.

We nowapplystatisticaledgedetection to includeaformof
spatial grouping. Properties similar to hysteresis and non-
maximal suppression will arise naturally as part of the
learning process. This grouping significantly improves the
visual quality of our edge detection results. But, paradoxically
it only gives a small improvement in our performance criteria.

Our grouping procedure is similar to our method for
learning P ð:jon-edgeÞ; P ð:joff-edgeÞ. The difference is that we
apply a filter bank �1ð:Þ to the posterior distributions
F0ð~xxÞ ¼ P ðedgej�0ðY Þj~xxÞ, where P ðedgej:Þ is the posterior
probability that there is an edge at location ~xx conditioned on
the filter response �0ðY Þ evaluated at ~xx. The intuition is that
the posterior, like the log-likelihood ratio in Fig. 17, is a
measure of edge strength. (The prior probability for a pixel
being an edge is measured as 0:06 from the data sets). Our
grouping procedure convolves the old posterior with
filterbank and learns a new “posterior” F1ð~xxÞ (using the
ground truth) and then repeats the process.

In theory, the full procedure is: 1) start with the true
posterior F0ð~xxÞ ¼ P ðedgej�0ðY Þj~xxÞ, 2) learn

F1ð~xxÞ ¼ P ðedgej�1ðF0Þj~xxÞ;

and 3) iterate to learn Fið~xxÞ ¼ P ðedgej�1ðFiÿ1Þj~xxÞ for
i ¼ 2; 3; . . . . But, in practice, we used a simplified proce-
dure which replaces the third stage by setting Fið~xxÞ ¼
F1ð�1ðFiÿ1ð~xxÞÞÞ for i ¼ 2; 3; ::.

In our experiments, we used the filters �0ð:Þ ¼
j ~rrj�¼0;1;2;4;8;16ð:Þ and �1ð:Þ ¼ ðI; j ~rrj�¼2;8;r2

�¼0;1;2;4;8Þð:Þ, where

I is the identity filter. The most useful filters for grouping

(i.e., for �1) are those that enhance ridges in the posterior

(these ridges correspond to edges in the images). These are

the Laplacian of a Gaussian, supplemented with gradient

filters. The identity filter, of course, is useful (because it

gives the posterior).
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Fig. 16. ROC curves for Sowerby show that statistical edge detection outperforms Canny. Left: Canny edge detector with nonmaximal suppression
and hysteresis. Center: statistical edge detection without grouping. Right: statistical edge detection with grouping (edge-tolerance = 3).



We give examples of grouping in Fig. 18. Overall, our
method is good at hysteresis and enhancing edges between
different textures (i.e., raising edges above threshold
because they lie along ridges and support each other).
Edges in texture are suppressed because strong and weak,
edges tend to suppress nearby weak parallel edges. Our
method also does well at triple points and corners, where
the Canny filter often does poorly. On the other hand, we
do not seem to thin edges as well as nonmaximal
suppression applied to the Canny edge detector. This may
be due to the quantization used in our approach which can
cause neighboring pixels to have identical edge strength
(nonmaximal suppression would not solve this problem).

To quantify the gains by grouping, we calculate the
Chernoff information. This gives values of 0:263 (without
grouping), 0:290 (one level of grouping), 0:282 (two levels of
grouping), and 0:274 (three levels of grouping). The improve-
ment with one level of grouping is small (about ten percent),
but, visually, there are definite improvements, see Fig. 18. The
decrease in Chernoff for two and three levels of grouping are
presumably caused by our simplified procedure.

5 ADAPTATION BETWEEN DATA SETS

In this section, we show that we can learn the conditional
distributions on one data set and adapt them to another with
only slight degradation of performance without knowing the
ground truth on the second. This shows that our results can be
adapted from domain to domain. It also illustrates that our
results are not overly sensitive to the ground truth because
otherwise such adaptation would cause larger degradation
(particularly considering the difference between the ground
truths in Sowerby and South Florida).

We note that Canny discusses adaptation [9] and
described methods for estimating the amount of noise in
images in order to change the parameters of his edge
detector dynamically. But, this adaptation is not commonly

used. More recently, Grzywacz and Balboa [16] have
described a method using Bayesian probability theory, for
how biological vision systems may adapt their receptive
fields from domain to domain based on edge statistics.

Formally, we define rules to estimate distributions
PSjF ð� ¼ yjon-edgeÞ; PSjF ð� ¼ yjoff-edgeÞ for the Sowerby
data set using only knowledge of the edge statistics in
the South Florida data set. Similarly, we use these rules
to estimate distributions PF jSð� ¼ yjon-edgeÞ; PF jSð� ¼
yjoff-edgeÞ for Florida using edge statistics from Sowerby.
(We use the superscripts SjF to indicate the distributions
estimated on the Sowerby data set using the segmentations
from South Florida—and vice versa for F jS .)

Our adaptation approach is based on using different
strategies for estimating the off statisticsPSjF ð� ¼ yjoff-edgeÞ,
PF jSð� ¼ yjoff-edgeÞ, and the on edge statistics PSjF

ð� ¼ yjon-edgeÞ, PF jSð� ¼ yjon-edgeÞ.
The strategy for the off statistics is to exploit the fact that

most pixels in an image are not edges. Thus, for each
domain, we calculate the probability distributions P ð� ¼
yjallÞ of the filter responses for all the pixels (which doesn’t
require us to know the segmentation) to yield our estimate
of P ð� ¼ yjoff-edgeÞ. (More formally, we can express P ð� ¼
yjallÞ ¼ ð1ÿ �ÞP ð� ¼ yjoff-edgeÞ þ �P ð� ¼ yjon-edgeÞ where
� � 0:06 is the proportion of edges in the image. Our
strategy sets � ¼ 0:0 and, by calculating the Chernoff
information, we verify that little information is lost.)

To adapt for P ð�ð~xxÞjon-edgeÞ between data sets, we note
that, for most of our marginal filters �ð~xxÞ, the distribution
P ð�ð~xxÞjallÞ approximates the on-edge distribution

P ð�ð~xxÞjon-edgeÞ

at large �ð~xxÞ, see the left and center panels of Fig. 19. We
therefore have access to P ð�ð~xxÞjon-edgeÞ (up to a scaling
factor) for large �ð~xxÞ, without knowledge of the ground truth.
Empirically, we find that, for large �ð~xxÞ, P ð�ð~xxÞjallÞ drops
approximately exponentially, so if we take logP ð�ð~xxÞjallÞ
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Fig. 17. Top panels shows edges detected using the Canny edge detector. The center panels shows the output of statistical edge detection on the
same images. The bottom panels show the log likelihood ratios which give a measure of edge strength. See Fig. 7 for the images and the ground truth.



and calculate its asymptotic slope for large �ð~xxÞ, it
approximates the asymptotic slope of logP ð�ð~xxÞjon-edgeÞ.
Furthermore, if the statistics of both data sets drops
exponentially, the ratio of the asymptotic slopes of
logP ð�ð~xxÞjallÞ yields a constant scaling factor k which
relates the �ð~xxÞ of the two data sets. For adapting from
South Florida to Sowerby, we measure k ¼ 1:5 for the
magnitude of the gradient filter, see right panel of Fig. 19.
Therefore, we take the distributions PSð� ¼ yjon-edgeÞ
measured on the Sowerby data set and adapt them by a
linear scaling y 7!ky (where k is the scaling factor) so that
the fall-off rate for large y is similar to that of PF ð� ¼ yjallÞ
in the South Florida data set. This yields an estimate
PF jSð� ¼ yjon-edgeÞ of the on edge statistics in South
Florida, see Fig. 20. Similarly, we can estimate the edge
distributions in Sowerby from those measured in South
Florida. It can be shown [23] that similar results hold for
other filters and, moreover, the performance is fairly
insensitive to the value of k.

We have tested this process by adapting the multiscale
filter j ~rrj�¼1;2;4ðY Þ from Sowerby to South Florida and vice

versa. The Fig. 21 shows that the adaptation is very close
despite the very different nature of data sets (and the
different ground truths). On the Sowerby data set, we get
ROC area and Chernoff information of ð0:827; 0:223Þ for the
true distributions (i.e., using distributions

PSð�jon-edgeÞ; PSð�joff-edgeÞÞ

and ð0:825; 0:219Þ for the adapted distributions (i.e., using
PSjF ð�jon-edgeÞ; PSjF ð�joff-edgeÞ). Similarly,wegetROCarea
and Chernoff information of ð0:877; 0:336Þ for the true South
Florida distributions (PF ð�jon-edgeÞ; PF ð�joff-edgeÞ) and
ð0:867; 0:322Þ for the adapted distributions

PF jSð�jon-edgeÞ; PF jSð�joff-edgeÞ:

6 DISCUSSION AND CONCLUSION

It has recently been argued [19], that perception should be
formulated as Bayesian inference. This paper has taken this
argument literally and applied it to the most basic vision

72 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 1, JANUARY 2003

Fig. 18. Grouping examples. Top row: the posterior without grouping: F0ðxÞ. Bottom row: the posterior after grouping F1ðxÞ. See text.

Fig. 19. These figures show that for both Sowerby (left panel) and South Florida (center panel) the asymptotic slope of logP ð�jon-edgeÞ (solid line)

and logP ð�jallÞ (dotted line) are practically identical independent of scale. The horizontal axis labels the scale of the filters and the vertical axis is the

asymptotic slope of the log probability. The right panel shows that the ratios of the asymptotic slopes of logP ð�jon-edgeÞ for Sowerby divided by

South Florida (solid line) and the ratios of logP ð�jallÞ (dotted line) all have (approximately) the same value k ¼ 1:5.

Fig. 20. Adaption of P ð:jon-edgeÞ from South Florida to Sowerby for jrj�¼1Y . The left panel shows (unadapted) P ð:jon-edgeÞ on Sowerby (dotted line)

and South Florida (thin line). The center panel shows P ð:jon-edgeÞ for Sowerby (thin line) and the estimate of P ð:jon-edgeÞ for Sowerby (bold line) by

adapting from South Florida. The right panel shows P ð:jon-edgeÞ for Soth Florida (thin dashed line) and the estimate of P ð:jon-edgeÞ for South Florida

(bold dashed line) by adapting from Sowerby. The adaptation is done by scaling the filter responses y 7!ky, using the method described in Fig. 19.



task of edge detection. We learn the probability distribu-
tions of edge filter responses on and off edges from pre-
segmented data sets, detect edges using the log-likelihood
ratio test, and evaluate different edge cues using statistical
measures (Chernoff information and ROC curves).

This approach enables us to study the effectiveness of
different edge cues and how to combine cues optimally
(from a statistical viewpoint). This allows us to quantify the
advantages of multiscale processing, and the use of
chrominance information. We use two very different data
sets, Sowerby and South Florida, and demonstrate a way to
adapt the edge statistics from one data set to the other.

We compare the results of statistical edge detection to
those of standard edge detectors. On the South Florida data
set our results are comparable to those reported by Bowyer
et al. [7], [8], and Shin et al. [31] for standard edge detectors.
On the Sowerby data set statistical edge detection outper-
forms the Canny edge detector [9] significantly. We note
that the Sowerby data set is significantly harder to segment
than the South Florida data set (we assume that edge
detectors should not respond to texture edges).

Our work was first published as a conference paper [20].
Subsequent work by Sidenblath applied this approach to
motion tracking [32]. We have extended our studies of
statistical cues for regional segmentation [21]. In addition,
we have applied the approach to the task of edge
localization and to quantify the amount of information lost
when the image is decimated [22].
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