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Abstract—This paper addresses the task of detecting and recognizing human-object interactions (HOI) in images. Considering the
intrinsic complexity and structural nature of the task, we introduce a cascaded parsing network (CP-HQOI) for a multi-stage, structured
HOI understanding. At each cascade stage, an instance detection module progressively refines HOI proposals and feeds them into a
structured interaction reasoning module. Each of the two modules is also connected to its predecessor in the previous stage, enabling
efficient cross-stage information propagation. The structured interaction reasoning module is built upon a graph parsing neural network
(GPNN), which efficiently models potential HOI structures as graphs and mines rich context for comprehensive relation understanding.
In particular, GPNN infers a parse graph that i) interprets meaningful HOI structures by a learnable adjacency matrix, and ii) predicts
action (edge) labels. Within an end-to-end, message-passing framework, GPNN blends learning and inference, iteratively parsing HOI

structures and reasoning HOI representations (i.e., instance and relation features). Further beyond relation detection at a
bounding-box level, we make our framework flexible to perform fine-grained pixel-wise relation segmentation; this provides a new
glimpse into better relation modeling. A preliminary version of our CP-HOI model reached 15t place in the ICCV2019 Person in Context
Challenge, on both relation detection and segmentation. In addition, our CP-HOI shows promising results on two popular HOI

recognition benchmarks, i.e., V-COCO and HICO-DET.

Index Terms—Human-Object Interaction Recognition, Cascaded Parsing, Fine-Grained Relation Segmentation

1 INTRODUCTION

H UMAN-object interaction (HOI) recognition aims to
identify meaningful (human, verb, object) triplets from
images, such as (human, read, laptop) in Fig. 1. It plays a
crucial role in many vision tasks, e.g., visual question an-
swering [3]-[5], human-centric understanding [6]-[8], image
generation [9], and activity recognition [10]-[15], to name a
few representative ones. Beyond the traditional visual recog-
nition of individual instances, e.g., human pose estimation,
action recognition, and object detection, recognizing HOIs
requires a deeper semantic understanding of image content.

A successful HOI recognition model must accurately
1) localize and recognize each interacting entity instance
(human, object), and 2) predict the interaction classes (verb).
Since both subtasks are difficult, HOI recognition is a chal-
lenging problem. In this paper, we address HOI recognition
through a novel cascaded parsing framework (CP-HOI). CP-
HOI is able to learn effective instance and mutual relation
representations by cascaded refinement, and parse complex
HOI structures by comprehensive inference. First, with a
broader view of other computer vision and machine learn-
ing related fields, coarse-to-fine and cascade algorithms
have been shown to deal well with complex problems|[16]-
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Fig. 1. Our proposed CP-HOI is able to handle both object-level re-
lation detection and pixel-wise relation segmentation. Given an input
image, CP-HOI performs coarse-to-fine inference over instance detec-
tion (D' ~ D3) and structured interaction recognition (P! ~ p3). The
interaction recognition is achieved by a graph parsing neural network
(GPNN), which alternatively infers meaningful HOI structures and prop-
agates information over the structures. The final parse graph explains
the given scene with the connectivity between nodes (e.g., the strong
edge between the person and laptop) and the edge labels (e.g., read).

[18]. The central idea is to leverage sequences of increasingly
fine approximations to improve learning and inference. This
motivates us to build our HOI recognition model in a
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cascaded manner, with multiple stages to more accurately
identify entities and learn effective HOI representations in
an annealing-style. Second, due to the structured nature of
the task, it is desired to make use of the learned HOI rep-
resentations from a comprehensive view, for better mining
the rich context and understanding the trivial interactions
among the individual entities. Considering this, we further
propose a graph parsing neural network (GPNN), which
explicitly parses meaningful HOI structures, while simulta-
neously reasoning the relations over the learned structures
in a feedback manner. Third, for the two subtasks of in-
stance detection and GPNN-based interaction recognition,
CP-HOI arranges them in a successive manner within each
individual stage, and carries out multi-step, cross-stage in-
ference for each. All the above designs result in a multi-task,
coarse-to-fine HOI recognition framework, which enables
asymptotically improved HOI representation learning as
well as effective HOI structure understanding.

In particular, as shown in Fig. 1, our CP-HOI consists
of an instance detection module ([[]) and a GPNN-based in-
teraction recognition module ([), both working in a cascade
manner. Through the instance localization network, CP-HOI
increases the selectiveness of the instance proposals step-
by-step. With such progressively refined HOI candidates,
more powerful HOI representations can be captured to fur-
ther better support structured HOI reasoning. In addition,
GPNN represents all the detected instances and potential
human-object relations as a complete graph and models the
HOI recognition as a parse graph inference problem. The
meaningful HOI structures are interpreted as a learnable
adjacency matrix, while edge types, which are identified
from the parsing graph, correspond to the inferred inter-
actions. Our approach is thus efficient, as it blends learning
and inference over structures in an end-to-end manner, and
makes use of cascade paradigms for multi-step refinement.

More essentially, previous HOI literature mainly ad-
dresses relation detection, i.e., recognizing HOIs at a
bounding-box level. In addition to addressing this classic
setting, we take a further step towards more fine-grained
HOI understanding, i.e., identifying the relations between
interacting entities at the pixel level (see Fig. 1). Studying
such a relation segmentation setting not only demonstrates
the efficacy and flexibility of our model, but allows us to
explore more powerful HOI representations. This is because
bounding-box based representations only encode coarse
object information with noisy backgrounds, while pixel-
wise mask based features may capture more detailed and
precise cues. By extending our CP-HOI model to the relation
segmentation setting, we empirically study the effectiveness
of bounding-box and pixel-wise mask based relation repre-
sentations as well as their hybrids. Our results suggest that
the pixel-mask representation is indeed more powerful.

Our main contributions are summarized as follows:

o We proffer a cascaded deep structured model, CP-HOI,
which addresses efficient HOI representation learning, as
well as comprehensive relation reasoning simultaneously.

o The cascaded network design empowers CP-HOI with a
high learning capacity, giving rise to more precise HOI
representation modeling. Both the entity detection and
relation reasoning are arranged in a cascaded manner and
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are closely coupled within each cascade stage, yielding a
compact yet powerful HOI reasoning framework.

« Benefiting from the complementary strengths of neural
networks and graphical models, CP-HOI is able to ex-
plicitly model individual entities and mutual relations
as graphs and efficiently parse the optimal HOI struc-
tures/ineteraction labels in an end-to-end manner. It it-
eratively infers the structures and, in turn, broadcasts
information over the learned structure, enabling a more
complete and structured HOI understanding.

o By extending our CP-HOI model to pixel-level HOI un-
derstanding, which has never been touched before, we
show the high flexibility and strong generalizability of our
framework. In addition, to the best of our knowledge, this
work provides the first effective demonstration of fine-
grained HOI representation learning, which provides an
insightful glimpse into the task.

The main modules in our CP-HOI model were adopted
in the winning entry of the ICCV-2019 Person in Context
Challenge' (PIC;9 Challenge), for both Human-Object Inter-
action in the Wild (HOIW) and Person in Context (PIC) tracks.
HOIW addresses relation detection, while PIC focuses on
relation segmentation. Besides, we evaluate the efficacy of
CP-HOI on the V-COCO [19] and HICO-DET [20] datasets.
Overall, CP-HOI consistently achieves promising results
over the four datasets and two different settings, which re-
veals its remarkable performance and strong generalization.

This work builds upon two earlier conference papers[1],
[2]. In[1]?, we proposed GPNN, making the first attempt to
apply neural networks for both structured HOI modeling as
well as iterative inference. In[2]?, we presented a cascaded
HOI recognition framework (C-HOI) that, for the first time,
addresses the task in an end-to-end, cascaded architecture.
These papers have led to several follow-up works by our-
selves[12] and other groups[21]-[26]. For the present paper,
we develop a more powerful HOI recognition model, CP-
HOI, which integrates the structured HOI relation reasoning
and progressive HOI representation learning in a unified,
cascade framework. Thus, CP-HOI inherits the advantages
of GPNN and C-HOI. Based on this, we further consolidate
the overall technique. In addition, the GPNN is improved
with more powerful relation features as well as an edge-
centric message-passing procedure. Moreover, we provide
more comprehensive experiments, thoroughly examining
the effectiveness of our GPNN, C-HOI and CP-HOI models.

2 RELATED WORK

In this section, we briefly review the literature in three related
fields: human-object interaction recognition (§2.1), cascade
neural networks (§2.2), and graph neural networks (§2.3).

2.1 Human-Object Interaction Recognition

Reasoning human actions with objects (like “playing base-
ball”, “playing guitar”), rather than recognizing individual
actions (“playing”) or object instances (“baseball”, “guitar”),
is essential for a more comprehensive understanding of

1. http:/ /picdataset.com/challenge /leaderboard /pic2019
2. GPNN: https:/ / github.com /SiyuanQi/gpnn
C-HOI https:/ /github.com/tfzhou/C-HOI


http://picdataset.com/challenge/leaderboard/pic2019
https://github.com/SiyuanQi/gpnn
https://github.com/tfzhou/C-HOI

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

what is happening in the scene. Such a task requires rea-
soning beyond perception, by integrating information from
human, objects, and their complex relationships. It has a
rich history in computer vision. Early methods were mainly
built upon structured models. Specifically, they studied the
Bayesian model [27], [28], utilized contextual relationships
between humans and objects [29], [30], learned structured
representations with spatial interactions and context [31],
exploited compositional models [32], or referred to a set
of HOI exemplars [33]. Though remarkable results were
achieved, these methods require carefully hand-designed
pipelines and suffer the limited representability of hand-
crafted features (e.g., color, HOG, and SIFT).

With the recent renaissance of neural networks in
computer vision and the availability of large-scale HOI
datasets [19], [20], [34], deep learning based solutions are
now dominant in this field. For instance, Mallya et al. [35]
modified Fast R-CNN [36] for HOI recognition, with the
assistance of visual question answering. In [37], a multi-
branch architecture was explored to address human, object,
and relation representation learning. Based on this idea,
Gkioxari et al. [38] further equipped Faster R-CNN [39]
with a new branch for interaction modeling. To learn more
effective HOI representations, recent leading approaches
widely made use of pose cues [23], [26], [40]-[42], tried
to automatically discover informative human parts [43], or
leveraged context information from the background [44].
Some other efforts addressed long-tail distribution and zero-
shot problems with external knowledge[45]-[48] or transfer
learning [49], [50]. Although promising results have been
achieved by these deep HOI models, there still remain
two unsolved issues. First, they lack a powerful tool to
explicitly represent the structures in the HOI task. Second,
all these models are built upon single-stage pipelines for
learning and inference, which are limited in handling the
inherent challenges in the task. In contrast, we propose
a general architecture that addresses coarse-to-fine feature
learning as well as structured HOI relation reasoning within
a multi-stage pipeline. In addition, previous efforts in HOI
recognition mainly focused on understanding human-object
relations at a bounding-box level. In this work, with the
release of PIC;9, we propose the first solution towards pixel-
level HOI understanding and further study the effectiveness
of different HOI representations (i.e., fine-grained, pixel-
wise masks and classic, bounding boxes).

2.2 Cascade Neural Networks

Cascade is one of the most classic and powerful algorithms
in computer vision. The essence of cascade is to build more
discriminative classifiers by stacking multi-stage classifiers,
such that early stages discard a large number of easy
negative samples so that later stages can focus on handling
more difficult examples[51]. Such anidea has been explored
in various forms, with a history dating back to the 1970’s
(as pointed out by [52]). Cascade methods based on hand-
crafted features have shown wide success in various tasks,
such as generic object detection[17] and face detection[53].
Recently, several efforts have been made towards en-
dowing deep neural networks (DNN) with cascade archi-
tectures. Specifically, current popular two-stage object de-
tectors [39], [54]-[56] can be considered as cascade models,
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where the background regions are removed in the first
stage and the remaining object proposals are further re-
fined in the second stage. Some researchers also explored
the end-to-end learning of more than two cascaded DNNs
and achieved promising results on several tasks, including
generic object detection [54], [57], and instance segmen-
tation [56]. In these methods, the stages are usually all
supervised simultaneously to end-to-end learn gradually
improved features and facilitate performance in a step-by-
step manner. Another representative work is Hourglass[58],
which is a well-known multi-stage pose estimator, with the
particular advantage in modeling long-term dependency
relations among human parts. In this work, we revisit the
general idea of the cascade architecture in HOI recognition.
We couple instance localization and relation recognition
as a cascaded framework, which addresses the inherent
challenges in this task by coarse-to-fine learning HOI rep-
resentations and comprehensively parsing HOI structures.

2.3 Neural Networks with Graphs

DNNs are able to learn flexible data features, but lack intu-
itive high-level structures. Alternatively, graphical models
are powerful at building structured representations, but
often require significant feature engineering. Therefore, in
the literature, several approaches have been proposed to
combine graphical models and neural networks, in order
to leverage their complementary advantages. The most in-
tuitive approach is to build graphical models upon DNN,
where the network that generates features is trained first,
and its output is used to compute potential functions for
the graphical predictor. Typical methods have been used in
human pose estimation [59], human part parsing [60], and
semantic image segmentation[61]. However, these methods
lack a deep integration in the sense that the computation
process of graphical models cannot be learned end-to-end.

An essential branch of DNNs [62], [63], i.e., graph neu-
ral networks (GNNs), was developed to allow end-to-end
learning over graphs and has gained widespread attention
in recent years. One typical trend is to generalize classic
convolution operations directly from Euclidean data (e.g.,
images) to graphs, called Graph Convolutional Networks
(GCNs). Due to the simple architecture, GCNs demonstrate
advantages in handling massive graph data (e.g., millions of
nodes), but suffer from limited modeling ability for complex
structures [63]. Another category of GNNs [64], [65], called
Message Passing Graph Networks (MPGNSs), are more re-
lated to ours, which model the graph elements (i.c., node,
edges) and approximation inference as learnable neural
networks. MPGNSs typically yield complex structures, while
gaining higher flexibility and learning capacity.

GNNs have obtained wide success in many fields, in-
cluding molecular biology [64], computer vision [66]-[72],
and machine learning [65], demonstrating their advantages
in structured modeling. In this paper, we extend previous
graphical neural networks with learnable graph structures,
which effectively addresses the rich and high-level relations
in HOI problems. The proposed GPNN can automatically
infer the meaningful HOI structure and utilize that structure
to enhance information propagation and facilitate further
inference. Although [67], [70] also leverage GNNs to address
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the relation modeling among visual elements for generating
scene graph, our method is unique in: 1) inferring a parse
graph for explicitly modeling HOI structures, 2) exploring
a comprehensive set of relational cues; and 3) adopting a
cascaded learning regime for both visual instance and re-
lation representation modeling. It is worth mentioning that
some recent efforts [49], [73] also explore edge-embedding
learning of graphs, for better modeling structural interac-
tions between human and objects. Specifically, for interac-
tion relation modeling, [49] considers both compositional
and visual phrase representations, while [73] addresses the
importance of spatial configurations. Our model is flexible
enough to encode these cues and goes one step further
to perform multi-step reasoning for relation understanding
and interacting entity localization.

3 OUR ALGORITHM
3.1 Method Overview
3.1.1  Problem Formulation

To identify (human, verb, object) triplets in images, it is de-
sired to accurately 1) localize and recognize individual in-
stances (human, object), and 2) reason the interacted relations
(verb). To achieve this, we tackle the task through a cascaded
and structured reasoning framework, where the cascade
process is carried out to address progressive refinement
over instance localization, and the structured inference is
approached to comprehensively mine inherent context and
efficiently recognize complex relations.

Specifically, for HOI understanding, human and object
entities are first identified from the input image /. Then we
construct a complete HOI graph G = (V,£,)) to include all
the possible relationships between the detected human and
objects as well as address the context among objects. The
human and objects are represented by nodes v € V, which
take unique values from {1, - - - ,|V|}. The potential pairwise
relations between human and objects are defined as edges
e € &, which are two-tuples e = (v, w) € VxV. Each edge e has
an output vector y,, ., € [0, 1], i.e., the scores of Y verb labels
and YV = {Yv,w} (v,w)ee- For relation recognition, we want
to automatically infer a parse graph g = (Vy,&4,Y,), ie., a
sub-graph of G where V, CV and &; C £, by keeping the
meaningful HOI structures and labeling the edges. Given
the node features Xy = {x,},cy and edge features Xg =
{Zv,w} (v,w)ce, We want to infer the optimal parse graph
g* that best explains the data I according to a probability
distribution p:

"= argmax p(ol[) = argmax & [p(¥,G11)p(ol¥, 6. 1)

(
Nargmaxp(?f G p (ng ,g)

1
= argmax p(Vy, Eg, Vg X", G") M
g

0%

—argmaxp 9| Va, Eg, X7 )p(Vg, Eg| X7, G7).

Here X, G* =argmaxy g p(X,G|I) and X ={Ay, Xg}. We
use the complete HOI graph and best feature to approxi-
mate the expectation. p(V,, &,|X* G*) evaluates the graph
structure, and p(Vy|Vy, &y, X'*) is the labeling probability
for the (object) nodes in the parse graph.
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This formulation provides us a principled guideline for
designing our CP-HOI model. To obtain the best feature X',
we propose a cascaded approach that performs coarse-to-
fine object localization and pair-wise relation modeling. To
approximate the computations of argmax, p(V,, &,|X™*, G*)
and argmax, p(Vy|Vy, &, X*), CP-HOLI is equipped with a
graph parsing neural network (GPNN), which jointly estimates
the HOI structure argmax, p(V,, &;|AX™*,G*) and conducts
information diffusion based optimal labeling approximation
argmax, p(Vy|Vy, Eg, ).

3.1.2 Cascaded Parsing Network Architecture

Our method carries out progressive refinement on instance
detection and structured relation recognition at multiple
stages (see Fig.2 (a)). At each stage ¢, the multi-tasking is
achieved by two networks. 1) Obtain the best feature: an
cascaded instance detection network D generates gradually
improved human and object proposals (representations) and
pair-wise relation features. 2) Find the best parse graph: a
GPNN-based relation recognition network P’ infers mean-
ingful HOI structures and predicts action labels. Our CP-
HOI model is organized as:

Cascaded Instance Detection (§3.2): O',G' =D'(I1,0'™"),
Structured Interaction Reasoning (§3.3): g' =P'(x' g, gtil).

Here D! accepts the instance detection results O'~! from
D'~! as arguments and outputs refined O as well as a more
accurate complete graph G'. With this G* and previously
inferred parse graph g'~!, P! generates a new parse graph
estimation ¢ to better explain HOI structures and predict
more accurate relation labels. Notably, the instance detection
D! and interaction reasoning P’ networks work closely, as
P! can benefit from the improved HOI graph Gt, which is
generated from D.

Next we will describe in detail our instance detection
network in §3.2 and GPNN-based interaction recognition
network in §3.3. For notation clarity, for each network, we
mainly focus on one single stage, as the network architec-
tures are similar across different stages.

3.2 Instance Detection and HOI Graph Construction
3.2.1 Cascaded Instance Localization Network

The instance detection network D outputs human and object
candidates O, from which a complete HOI graph G can be
derived and fed into the interaction recognition network P
for HOI structure parsing. Specifically, it is built on a cascade
of detectors, i.e., at stage ¢, D! refines an object region o'~lte
O~ detected from the preceding stage:

O,t—1 = ROIP(I, Oc,t—l)7 (2)
ot = Ht(oot—l)7 (3)

where I is the CNN feature of the input image I, extracted
by a backbone network. Further, 0,:-1 € REDW indicates
the box feature derived from I and the input Rol o'~!
ROIP(-) and H’ represent RolAlign[55] and a bounding box
prediction head, respectively. At each cascade stage t, based
on the output o’ ~! of the previous stage t—1, the detector D is
able to generate a more accurate object o' with an improved
representation o,:, compared with o,:-1.
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Fig. 2. (a) lllustration of our cascaded parsing network (CP-HOI), which identifies a triplet of (person, read, laptop) from an input image. (b)
lllustration of our instance detection module and the pipeline for constructing a complete HOI graph from detected instances (§3.2). Here we
showcase how to extract initial embeddings for nodes: v (person) and w (laptop), and an edge (v, w).

3.2.2 Network Training

Similar to previous cascade object detectors [54], [50], at
each cascade stage, the detector is trained with a certain
interaction over union (IoU) threshold, and its output is re-
sampled to train the next-stage detector with a higher IoU
threshold. In this way, we gradually increase the quality of
training data for deeper stages, thus boosting the selective-
ness against hard negative examples. During training, at
each stage ¢, the training loss L for instance detection
is the same as in Faster R-CNN[39].

3.2.3 Complete HOI Graph Construction

With all the detected object candidates O?, we next describe
how contextual features X are extracted and used to in-
stantiate nodes and edges in the complete HOI graph G*
(see Fig.2 (b)). In the following paragraphs, the superscript
‘t’ is omitted for conciseness, unless necessary.

Node Embedding Initialization. In G, the nodes V are the
human and object candidates O. For each node v € V, its
embedding z, € RY is initialized by:

x, = FCy1(GAP(0,)) €R®, 4)

where FC,(-) stands for a fully connected layer (FC) and
GAP(-) indicates the global average pooling operation. Fur-
ther, o, is the RolAlign feature of v, computed in Eq. (2).
Edge Embedding Initialization. In G, the edges £ represent
the pairwise relations between nodes (detected instances).
For each edge e= (v, w) €&, three types of cues, i.e., semantic
feature s, geometric feature g and visual feature v, are utilized
to obtain an efficient relation (edge) feature x, ,, € RC.

o Semantic feature. This captures our prior knowledge of ob-
ject affordances[74] (e.g., a phone affords calling). We build
s € RY as the frequency of label co-occurrence between
object and action categories [75], where Y denotes the
number of pre-defined actions in an HOI dataset. Note
that, if v and w are both objects, we directly set s=0.
Geometric feature. This characterizes the spatial relation-
ships between human and objects, which are informative
for human-object interactions. For example, consider the
sit on verb; from this we can deduce that the subject
is above the object. Similar to [37], [43], we first adopt

a two-channel mask representation strategy, obtaining
a (2,64,64)-d feature tensor for the two entities. Then,
two conv+pooling operations followed by a FC layer are
applied on the tensor to obtain g € R?%.

o Visual feature. The visual feature v is computed from the
union region of v and w:

v = FC,1 (GAP(ROIP(I, (v, w))) €RC. 5)

Here ROIP(I, (v, w)) indicates the RolAlign feature of the
union region (v, w).
Finally, the edge embedding x, ,, is initialized as:

Ly, w :chl([svg7v})€RC7 (6)

where ‘[]” indicates the concatenation operation.

So far, we have generated the human and object candi-
dates O, as well as initialized a complete HOI graph G,
which contains all the instances and possible interaction
relations. Next, we detail our GPNN-based interaction rea-
soning module which infers an optimal parse graph ¢ € G*
to best explain the HOI structures in the given image I.

3.3 Structured Interaction Reasoning
3.3.1

Our instance detection module D (§3.2) works in a cas-
cade manner, and is used to approximate the complete
HOI graph G* and best instance and relation features
X* (Eq. (1)). To infer the parse graph g from the com-
plete HOI graph G, our structured interaction reasoning
module P is designed to infer meaningful HOI structures
argmax, p(Vy, | X*, G*) as well as predict the action labels
argmax, p(Vy|V,, &, X*) by propagating the information
over inferred HOI structures. As illustrated in Fig. 3, we
introduce four types of functions as individual modules in
the forward pass of a GPNN: link functions, message functions,
update functions, and readout functions. The link functions
estimate the graph structure, giving an approximation of
p(Vg, Eg|X*,G*). The message, update and readout func-
tions together resemble the belief propagation process and
approximate argmaxy, p(¥y|Vy, &g, X).

Graph Parsing Neural Network



JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Feature Adjacency Parse

matrix F'* matrix Al graph gt

EI-»I V EI»EV

Image | with de- Complete HOI

2 S
mi mi %@ my %3) Relation .
'\‘@ ~, Cp labels Y i \f]omt
nference
m\}\,x / —D— mgmx ‘/ eoe —P—b mfw‘ < . ’
ms m2 mg
/
Iteration s = 1 Iteration s = 2 eoe Iterations =S

» Parse Graph
Inference

oEy:

Interaction

tected instances O

graphGg=(V, €,Y)

» Message Passing

recognition result

Fig. 3. lllustration of our GPNN-based structured relation reasoning (§3.3). GPNN takes node and edge features as inputs, and outputs a parse
graph in a message passing fashion. The structure of the parse graph is given by a soft adjacency matrix, computed by the link function. The darker
the color in the adjacency matrix, the stronger the connectivity is. Then message functions compute incoming messages for each node/edge as a
weighted sum of the messages from other edges/nodes. Thicker edges indicate larger information flows. The update functions update the internal
states of each node/edge. This process is repeated for several steps, iteratively and jointly learning the computation of HOI graph structures and
message passing. Finally, for each node, the readout functions output HOI action labels from the hidden edge states.

In particular, the link function (=) is used to infer

the connectivities (affordance) between nodes. A soft ad-
jacency matrix () is thus constructed and used as weights
for messages passing over G. The incoming messages for
nodes/edges are collected by the message function («—),
and then fed into the update function (=) to update
the node/edge states. Finally, the readout function (—+)
computes the target outputs for each edge. These four types
of functions are defined as follows:
Link Function. We first infer an adjacency matrix that
represents connectivities (i.e., the meaningful HOI structure)
between nodes by a link function L(-). L(-) takes the node
features Xy and edge features X as inputs, and outputs the
adjacency matrix A € [0, 1]Vl

Ay = L(To, T, To,w) €0, 1], (7)

where A, ., denotes the (v, w)-th entry of the matrix A4, i.e.,
an affordance score between nodes (instances) v and w. In
this way, the structure of a parse graph g can be approx-
imated by A. Then, we start to propagate messages over
the parse graph and obtain action predictions from final
edge outputs, where the soft adjacency matrix A controls
the information to be passed between nodes and edges.

Message Function. During belief propagation, the hidden
states of the nodes and edges are iteratively updated by
communicating with other connected edges and nodes,
respectively. Specifically, for each node (edge), the message
functions collect information from other edges (nodes):

=2 AvuwMy(hy)ERS,

s _ s—1 s—1 C (8)
mv,w —Av,wMg(hv ahw )GR )

where My (-) and Mg(+) are node- and edge-specific message
functions, respectively. Further, h; and hj ,, are hidden
states of the node v and edge e= (v, w) at the s-th iteration,
respectively; while h) and hJ , are set as the initial node
and edge embeddlngs, ie., x, and Ty, respectively. Finally,
m; and m; , are messages for v and (v,w) at the s-
th iteration, respectively. The connectivity A controls the
information flow between nodes and edges. Eq. (8) allows
information flow from edge to node and vice-versa, via

multiple rounds of message passing.

Update Function. Next, the update functions update the
hidden states of nodes and edges by absorbing the messages
collected in Eq. (8):

hs _U\)(hs_l S)ERC,
h’LS) ;W _Ug(hvw7mv w)eRcv

©)

where Uy (-) and Ug(:) are node- and edge-specific update
functions, respectively. In this way, the message-passing
algorithm runs for S steps for efficient reasoning, by iter-
atively collecting messages (Eq. (8)) and updating node and
edge embeddings (Eq. (9)).

Readout Function. After S message-passing steps, we itera-
tively propagate information over the HOI graph and mine
richer context, thus generating more discriminative node
and edge embeddings (i.e, {h{}vey and {h} ,} 0 w)ee)-
For notation clarity, we rename h? and hfjw as z, and 2y 4,
respectively. Finally, for each edge that connects a pair of
human and object nodes, its final hidden state is fed into the
readout function R(+) to output an action label:

Yow = R(20.w) €[0,1]7 (10)

Here, R(-) computes the scores vy, ,, of ¥ action labels for
edge e= (v, w) by activating its final hidden state z, ,,. Note
that here follows a multi-label classification setting.

Joint Parsing. Based on the above formulations, the mes-
sages are passed along the graph and weighted by the
learned adjacency matrix A. We further extend this process
into a joint learning framework that iteratively infers the
graph structure and propagates the information to infer
edge (interaction) labels. In particular, instead of only learn-
ing A at the beginning, we iteratively infer it with the
updated node and edge features at each step s:

A =LA R RGL). (1)
Then the messages in Eq. (8) are redefined as:
Z A5 My (R ) ERY,

(12)

my ., = Al Mg(hi 1,hz;1)eRc,

In this way, both the graph structure and node/edge states
can be jointly and iteratively learned in a unified framework.
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In practice, we find such a strategy brings better perfor-
mance (detailed in § 4.5).

In addition, in our cascade framework, the initial node
and edge embeddings (ie., {x}},cy and {x} ,}(0w)ece)
at t-th cascade stage are updated by the final ones (ie.,
{271} ey and {zf)’_wl}(vyw)eg) in prior stage:

! — FCXQ(:cf, + zf,fl) S RC7
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& FCxa(@hu + 2650 € RC. (1)

In this way, our GPNN-based structured reasoning is also
organized in a cascaded manner. At each cascade stage,
benefiting from the gradually improved instance and re-
lation features from the object detection network as well
as the structural information generated by the previous
GPNN module, our model performs iterative and structured
reasoning for better explaining the HOI relations.

At t-th cascade stage, object candidates with low in-
teractiveness (i.e., A, ., < 0.1) will be filtered out, before
being fed to next-stage instance detection network D'*1.
This helps improve the training and inference efficiency.
More importantly, this lets our model focus more on those
“relevant” objects and erases the difficulty caused by class
imbalance, as the samples for ‘non-interaction” classes are
much more than the ones of any other interaction classes.

3.3.2 Network Training

Our model is built upon a message parsing based GNN,
which is fully end-to-end trainable as all the functions in
the iterative algorithm are differentiable neural networks.
Moreover, due to its recursive nature, the model is able
to process variable numbers of nodes during training and
inference. When training our graph parsing neural network,
two supervision signals are utilized to guide the learning of
the HOI structure A, as well as edge (action) labeling .

Specifically, given the complete HOI graph G, if an
edge (v,w) is annotated with an action label, we set the
groundtruth value of A, ., as 1, to encourage the infor-
mation flow among the interacting instances (i.e., v and w)
and corresponding edge (v, w). Otherwise, the groundtruth
value of A, ,, is set as 0, to remove the noisy information
from irrelevant instances. In this way, given G of a training
image, all the edges &£ can be further divided into two sub-
sets: E=EUE , where £ and € indicate the sets of annotated
and un-annotated human-object relations, respectively.

Then, at the ¢-th cascade stage, the training loss for
learning the HOI structure A is designed as:

L;tmcture = ﬁtLl + Lﬁank‘ (14)

Here, LtLl refers to the L, loss between A and its ground-
truth. Similarly, £, , is a pairwise ranking hinge loss, which
is used to encourage the annotated edges £ to gain higher
association or affordance scores than the un-annotated ones
£. This is built upon the insight that, although some human-
object pairs are miss-annotated in HOI datasets, the anno-
tated ones tend to be more relevant than those without any
relation labelling. Thus, we can learn the link function L(-)
as a ranking function, which fulfills the following constraint:

V(f}, ﬁ)) - (’D, ’LZ]) : A{;,ﬁ; > Af;,m, (15)
where (,1) € £ and (6,w) € €. Note that (¢, ) = (0, 0)
means (0, W) has a higher ranking than (9, w). For each edge
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(v, w), L(+) gives the ranking score of A, ,, € [0, 1] by Eq. (11).
Then, the ranking loss £! , in Eq. (14) is achieved by:

‘Crank:Z(@!@)Eg Z(ﬁ,u‘;)ei max(O, Aﬁ,u‘; *Aﬁ,w +5)7 (16)

where the margin € is empirically set as 0.2.

For interaction recognition, the binary cross-entropy loss
L& is used to evaluate the discrepancy between the output
scores from edges and corresponding groundtruth targets.
For our GPNN, the overall loss at step ¢ is computed as:

EtGPNN = Létructure + ‘CtCE (17)

It is worth mentioning that the affinity matrix A of G, can
be learned in an implicit manner, i.e,, without using the
loss Ll crure in Eq. (14). In such a case, A can be viewed
as a gating or neural attention mechanism, which allows the
model learn to determine how nodes and edges in the graph
communicate with each other by itself, sharing a similar
spirit to [65]. Experiments about different HOI structure

learning strategies can be found in §4.5.

3.4 Human-Object Interaction Segmentation

So far, we have strictly followed the classic relation detection
setting in HOI recognition [22], [23], [38], [41], i.e., identify
the interaction entities by bounding boxes. Now we focus on
how to adapt our cascade framework to relation segmentation,
which addresses more fine-grained HOI understanding by
representing each entity at the pixel level.

Network Architecture. Inspired by [54], at each cascade
stage ¢, an instance segmentation head St is added into
the instance detection network D!, and the whole workflow
(Egs. (2, 3)) is changed to:

Instance Detection: 0,:—1=ROIP(I,0"™"), 0'=H"(0,:-1),
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Instance Segmentation: o,:=ROIP(I ,0'), 6t:St(oot,a’;Zl),( )

where o' € O indicates a generated object instance mask.
Further, ait_l denotes an intermediate mask representation
of o at stage t—1. It is computed recursively by forwarding
the ROI o with all the proceeding segmentation heads:

t—1

a,; = Tt_l(Oot, azt_g), (19)

where T?~! is a feature transformation module of the seg-
mentation head S'~L It is used to integrate bounding box
and mask based features, detailed in §3.5. In this manner,
direct mask information propagation is introduced between
segmentation heads at different stages, leading to better
segmentation results with a cascade architecture.

Then, the complete HOI graph G is built upon the fine-
grained object instances O. Specifically, the human and
object embeddings are initialized with finer features by
applying pixel-wise ROI with instance masks. For the initial
edge embedding, the geometric feature g is computed based
on pixel-level masks instead of bounding boxes, and the
visual feature v is computed from the masked union regions
of two nodes. Then, with the mask-level G, the GPNN (§3.3)
is further appended for structured relation reasoning.
Network Training. At each cascade stage, a binary cross-
entropy loss L& is used to supervise the learning of S*. The
training of the GPNN-based structured relation reasoning is
still achieved by minimizing the loss in Eq. (17).
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3.5 Detailed Network Architecture

Since both cascaded object detection and structured reason-
ing networks mentioned above are differentiable, our CS-
HOI can be trained in an end-to-end manner. In addition,
our model provides a powerful yet general framework,
which allows the use of different backbone networks. For
fair comparison, we use ResNet-50 [76] as the backbone,
following [23], [26]. We also provide more experiments re-
garding the performance with different backbones.

3.5.1 Instance Detection Network

The instance localization network is a multi-stage detector,
which consists of a sequence of detectors trained with grad-
ually increased IoU thresholds. During our experiments, we
use three cascade detection stages. All three detection heads
have the same architecture used in Faster R-CNN[39]. Each
head resamples all the regressed outputs from the previous
stage and improves the detection progressively.

For interaction segmentation, the instance localization
network at each cascade stage t is trained by multi-tasking,
ie, jointly train segmentation and detection heads. The
feature transformation layer T'~!in Eq.(19) is implemented
by a small neural network, consisting of a 1x1 convolutional
layer, element-wise summation and four 3 x 3 convolutional
layers. First, a’;t_Q is aligned with the ROIAlign feature o'
by the 1 x 1 convolutional layer, and then added to of
through element-wise summation. Finally, the fusion feature
is transformed by the four consecutive convolutional layers.
More implementation details of the segmentation head can
be found in[54].

3.5.2 Structured Relation Reasoning Network

Our GPNN-based relation reasoning network is also orga-
nized in a cascade manner, i.e., three GPNNs are constructed
over the corresponding object detectors. Each GPNN lever-
ages the gradually improved detection results, as well as the
parsing results from the previous GPNN, to infer a more
accurate HOI parse graph. Within each cascade stage, four
neural functions are utilized to resemble a message passing
process, which iteratively performs HOI structure reasoning
as well as action (edge) labelling. For each GPNN, we set the
iteration steps as 3 (i.e., S=3).

Link Function. In a message passing step s, we first con-
catenate all the node features (i.e., {h3 €R},c)) and all the
edge features ({h3 ,, €R}(, u)ee) to form a feature matrix
Fs ¢ RIVIXIVIX3C (T in Fig. 3). The link function L(-) is
implemented as a small neural network with several convo-
lutional layers (with 1 x 1 kernels) and a sigmoid activation.
Then the adjacency matrix A®)€[0, 1]V1*V is computed as:

A® = o(WL x F®), (20)

where Wy, is the learnable parameters of the convolutional
layers and * denotes the convolution operation. The sigmoid
function o normalizes the values in A° to [0, 1]. The essential
effect of multiple convolutional layers with 1x 1 kernels is
similar to fully connected layers applied to each individual
edge, except that the filter weights are shared by all the
edges. Such an operation brings high computation efficiency.
Message Function. In our implementation, the node-specific
and edge-specific update functions (i.e., My (-) and Mg(+)) are
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FC layers, respectively. For Mg(-), the two input node em-
beddings are first combined by the concatenation operation.
Update Function. Recurrent neural networks are natural
choices for simulating the iterative update process, as used
in previous works [64]. Here we apply the Gated Recurrent
Unit (GRU) [77] to implement the update functions Uy (+)
and Ug(-) (Eq. (9)), because of its recurrent nature and
smaller amount of parameters[7/8].
Readout Function. The readout function R(:) in Eq. (10)
consists of two fully connected layers followed by a sigmoid
activation function. For each edge, it computes the scores of
the corresponding HOI for Y action labels.

In this way, GPNN is implemented to be fully differen-
tiable and end-to-end trainable. The error computed by the
training loss can propagate back according to the chain rule.

3.5.3 Overall Training Loss

Since all the modules mentioned above are differentiable,
CP-HOI can be trained in an end-to-end manner. In the
relation detection setting, the entire loss is computed as:

T
L= thl Lioc + LEpan
T it t ot ¢ ¢
=Y, @' Lioc + (B'Lte +7LL, + 6 Liamd)-

Here, £, (§3.2.2) and Lpyy (Eq.(17)) are the losses for
the object localization and GPNN-based relation reasoning
network, defined over the t-th cascade stage, respectively.
The coefficients as, s, v and 0 are used to balance the
contributions of different cascade stages and tasks. There
are three cascade stages used in our method (1" = 3), and
we set o = [1,0.5,0.25], 8 = [1,0.5,0.25], v = 1, and
0 = 0.2. In the relation segmentation setting, the instance
segmentation head S’ is injected into the network (§3.4). The
corresponding instance segmentation loss L is further
added into Eq. (21), with coefficients [1,0.5,0.25].

1)

4 EXPERIMENTS

Comprehensive experiments are conducted on four
datasets, i.e., HOIW, PIC, V-COCO[19], and HICO-DET[20].
The first two are from the PIC;9 Challenge, and the last
two are gold standard benchmarks. For the two challenge
benchmark datasets, HOIW and PIC, we report the perfor-
mance of our winner entry C-HOI[2], one of the preliminary
versions of our CP-HOI, as the test sets are private and
evaluation server has been closed. For the rest two public
datasets, V-COCO and HICO-DET, we report the perfor-
mance of our GPNN [1] and C-HOI [2] models, as well as
their advanced version, CP-HOI, presented in this work.

4.1

Unless otherwise noted, we adopt the following training
settings for all the experiments. We use ResNet-50 [76] as
the backbone. The training includes two ghases: 1) training
the instance localization network with _,_; £{c; and then
2) jointly training the instance localization and interaction
recognition networks with 3°7_ | £f 4 Lo (Bq. (21)).

In the first phase, the network is initialized using
the weights pre-trained on COCO [79]. The three stages
are trained using gradually increased IoU thresholds

Implementation Details
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TABLE 1

TABLE 2

Relation detection results on HOIW test and val Relation segmentation results on PIC test and val sets in PIC19 Challenge. Higher values

sets in PIC;19 Challenge (§4.2).

are better. Please see §4.2 for details.

Challenge ‘ Team H mAP,.; Challenge Team R@100 R@100 R@100 Mean
C-HOI [2] (Ours) 66.04 & mloU: 0.25 mloU: 0.50 mloU: 0.75

GMVM 60.26 C-HOI [2] (Ours) 60.17 55.11 42.29 52.52

PIC;9 Challenge FINet 56.93 PIC;9 Challenge HTC+iCAN 56.21 52.32 37.49 48.67

(HOIW test) F2INet 49.13 (PIC test) RelNet 53.17 49.26 32.44 44.96

TIN [23] 48.64 XNet 38.42 33.15 17.29 29.62

Ride motorcycle

Hold tableware

Fig. 5. Visual results for relation segmentation, on PIC test setin PIC19 Challenge. First column: Instance segmentation results. Last five columns:
Top ranked (human, verb, object,) triplets. For each triplet, the human and object are shown in red and green.

{0.5,0.6,0.7} [54], [56]. We train the network for 12 epochs
with a batch size of 16 and an initial learning rate of 0.02,
which is reduced by 10 at epoch 8 and 11. In the second
phase, the node and edge embeddings are initialized by
Eq. (4) and Eq. (6), respectively. The dimension of each
node/edge feature is set as C' = 1024. The second phase
is trained with an initial learning rate of le-3, which is
decayed by 10 at epoch 16 and 19. We train the network for
20 epoches with a batch size of 128 using four GPUs. During
the two phases, training images are resized to a maximum
scale of 1333 x 800, without changing the aspect ratio, and
horizontal flipping is applied for data augmentation.
Cascade and Structured Inference. During testing, given an
input image, we perform cascade and structured inference
for the object detection and relation prediction simultane-
ously. Post-processing is conducted to obtain more accurate
results: 1) objects with confidence scores smaller than 0.3
are discarded; 2) HOI scores of multiple stages are averaged,
bearing similar mechanisms with model ensemble. For a test
image with resolution 1333x800, the runtime is about 230ms.
Reproducibility: Our model is implemented on PyTorch
and trained on eight NVIDIA Tesla V100 GPUs with 32GB
memory per card. Testing is conducted on a single NVIDIA
TITAN Xp GPU with 12 GB memory.

4.2 Results on PIC,4 Challenge

Dataset: The PIC;9 Challenge includes two tracks, ie.,
HOIW and PIC tracks, each with a standalone dataset:

« HOIW [34] is for human-object relation detection. It has
29,842 training and 8,794 testing images, with bounding
box annotations for 11 object and 10 action categories.
Since it does not provide train/val splits, in our ab-
lation study, we randomly choose 9,999 images for val
and the other 19,843 for train; for the challenge result,
we use train+val for training.

e PIC is for human-object relation segmentation. It has
17,606 images (12,654 for train, 1,977 for val and 2,975
for test) with pixel-level annotations for 143 objects. It
covers 30 relationships, including 6 geometric (e.g., next-
to) and 24 non-geometric (e.g., look, talk).

Evaluation Metrics: Standard evaluation metrics from the
challenges are adopted. For HOIW, the performance is
evaluated by mAP,.;. A detected triplet (human, verb, object)
is considered to be a true positive if the predicted verb is
correct and both the human and object boxes have IoUs of
at least 0.5 with the corresponding ground-truths. For PIC,
we use Recall@100 (R@100), which is averaged over two
relationship categories (i.e., geometric and non-geometric) and
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TABLE 3
Performance comparison on V-COCO test[19] in terms of MAP,.,;¢
(§4.3). 1: an extra pose estimator is used. Higher values are better.
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TABLE 4
Performance comparison on HICO-DET test [20] in terms of
mAP,..;.. Higher values are better. See §4.4 for details.

Methods | Publication | Backbone || mAP, e
Gupta et. al. [19] Arxivl5s ResNet-50-FPN 31.8
Interact [38] CVPR18 ResNet-50-FPN 40.0
iCAN [43] | BMVC18 | ResNet-50 453
Xu et. al. [22] CVPR19 ResNet-50-FPN 459
Wang et. al. [44] ICCV19 ResNet-50 47.3
RPNN [26] ICCV19 ResNet-50 475
TIN [23] CVPR19 ResNet-50 47.8
PMEFNet [40] ICCV19 ResNet-50-FPN 48.6
TPMFNet [40] ICCV19 ResNet-50-FPN 52.0
GPNN [1] (Ours) ECCV18 ResNet-50 440
C-HOIppox [2] (Ours) CVPR20 ResNet-50 48.3
C-HOI a5k [2] (Ours) CVPR20 ResNet-50 489
CP-HOIppox (Ours) - ResNet-50 499
CP-HOl 55 (Ours) - ResNet-50 50.4

three IoU thresholds (i.e., 0.25, 0.5 and 0.75). In our ablation
study, we also consider R@50 and R@20 to measure the
performance under stricter conditions.

Performance on HOIW: Our prior approach, C-HOI [2],
reaches 15 place for relation detection on the HOIW track
(i.e., test set). The Top-5 results are listed in Table 1. As
seen, the results of C-HOI are substantially better than other
teams. In particular, it is 5.78% better than the 2"¢ (GMVM)
and 9.11% better than the 3"¢ (FINet). Our approach also
significantly outperforms one published state-of-the-art, i.e.,
TIN [23]. Fig. 4 presents some visual results on HOIW
test. Our model shows robust to various challenges, e.g.,
occlusions, subtle relationships, efc.

Performance on PIC: Our C-HOI [2] also reaches 1% place
for relation segmentation on the PIC test. We show results
of the top 4 teams in Table 2. Our overall score (52.52%)
outperforms the 2"¢ place by 3.85% and the 3" by 7.56%.
Fig. 5 depicts visual results of two complex scenes on PIC
test. Our method shows outstanding performance in terms
of instance segmentation as well as interaction recognition.
It can identify both geometric and non-geometric relation-
ships, and is capable of recognizing many fine-grained
interactions, e.g., look human, hold tableware. In this track, the
instance localization network is instantiate as Eq. (18). In
Fig. 5, we provide some visual results on PIC test.

4.3 Results on V-COCO

Dataset: V-COCO [19] provides verb annotations for MS-
COCOI[79]. Proposed in 2015, it is the first large-scale dataset
for HOI understanding and remains the most popular one
today. It contains 10,346 images in total (2, 533/2, 867/4, 946
for train/val/test splits). 16,199 human instances are
annotated with 26 action labels, wherein three actions (i.e.,
cut, hit, eat) are annotated with two types of targets (ie.,
instrument and direct object), and three actions (i.e., run,
stand, walk) are annotated with no interaction object.
Evaluation Metrics: We use the original role mean AP
(mAP,4), which is exactly the same as mAP,..; in HOIW.
Performance: Since V-COCO has both bounding box and
mask annotations, we provide two variants of our meth-
ods, i.e., CP-HOIpox and CP-HOI,,s, where CP-HOILpox
is trained with box annotations, while CP-HOI, sk uses
groundtruth masks. For fairness, during evaluation, the

Method f Default Known Object
ull rare non-rare| full rare non-rare
InteractNet [38]]] 9.94 7.16 10.77 - - -
Xuet. al. [22]]| 1470 1326 15.13 - - -
iCAN [43]]| 14.84 1045 16.15 |16.43 12.01 17.75
Wang et. al. [44] || 1624 11.16 1775 |17.73 12.78 19.21
TIN [23]]| 17.03 13.42 1811 |19.17 1551 20.26
No-Frills [42]|| 17.18 12.17 18.68 - - -
RPNN [26]| 17.35 12.78 18.71 - - -
PMEFENet [40]|| 17.46 15.65 18.00 |20.34 17.47 21.20
HOID [50]|| 17.85 12.85 19.34 - - -
GPNN [1] (Ours) || 13.11 9.34 14.23 - - -
C-HOI [2] (Ours) || 18.89 13.51 20.19 |21.70 1545 22.09
CP-HOI (Ours) || 1942 1398 2091 |22.01 15.73 22.80

mask outputs of CP-HOI,s are transformed to boxes.
Table 3 summarizes the results in comparison with seven
state-of-the-arts. CP-HOIlp0x outperforms TIN [23] by 2.1%
and RPNN [26] by 2.4%. CP-HOI sk further improves CP-
HOLjpox by 0.5%, which suggests the superiority of the
mask-level representation over the box-level one. We would
like to note that PMFNet [40] reported a 52.0% mAP, 4. on
V-COCO. However, it relies on an expensive pose estimator,
thus it is unfair to directly compare this with our method.
Without the pose estimator, PMFNet obtains a score of
48.6%, worse than CP-HOIpox. In addition, compared with
its preliminary versions, GPNN [1] and C-HOI[2], CP-HOI
gains significant performance improvements. Some visual
results on V-COCO test set can be found in Fig. 6.

4.4 Results on HICO-DET

Dataset: HICO-DET [20] is currently one of the largest
benchmarks for HOI detection. It offers 38,118 images for
train and 9,658 images for test. Each human instance
is annotated with 600 HOI categories (e.g., scratching a cat,
washing a knife), corresponding to 80 object classes and 117
action verbs. Each image in HICO-DET has on average 1.67
instances for each HOI category.

Evaluation: Following the standard protocol [37], we con-
duct experiments under two different settings: 1) Known
Object setting: for each HOI category (e.g., kicking a ball), the
performance is only evaluated on those images containing
the target object category (e.g., ball). This setting can better
evaluate the accuracy in recognizing (human, verb, object)
triplets; 2) Default setting: for each HOI category, the per-
formance is evaluated on the full test set. This setting is
more challenging since the model also needs to recognize
background images (e.g., images without balls). In both
settings, mAP,,. is used for the metric.

Performance: We compare the performance of our CP-HOI
model with previous famous works in Table 4, on HICO-
DET test. Since only bounding box level HOI annotations
are provided, we only report the scores of our bounding
box based model. We observe that our model performs
well on the Full set of the dataset as well as on Non-rare
classes. Interestingly, even though we do not target them
explicitly, our model achieves competitive performance on
Rare classes too. Compared with GPNN[1] and C-HOI[?],
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Hold knife]

Direct airplane]

Fig. 7. Visual results for relation detection, on HICO-DET test set[20].
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TABLE 5
Ablation study of our CP-HOI model in terms of mAP,.,;.. Higher values are better. See §4.5 for details.
HICO-DET [20]
Aspect Variant V-COCO [19] Default Known Object
full rare non-rare full rare non-rare
Full Model (T Sl’;HSOi 3) H 49.9 19.42 13.98 20.91 ‘ 22.01 15.73 22.80
T=1 46.5 17.28 11.55 18.73 19.94 13.75 20.46
Cascade Architecture T=2 48.5 18.30 12.82 19.90 20.99 14.60 21.78
T=41 49.8 19.40 13.95 20.89 21.98 15.70 22.76
w/o graph 421 14.11 8.87 15.59 16.90 10.43 17.49
Graph w/o Lstructure (Eq. (14)) 46.5 17.04 11.85 19.41 19.78 13.53 20.11
Strucfure w/o L1, (Eq. (14)) 485 18.33 13.05 19.12 20.81 14.76 21.29
w/0 Lyank (Eq. (16)) 49.3 19.11 13.86 19.91 21.65 15.65 22.03
w/o joint parsing 48.7 16.09 10.54 14.85 18.42 13.03 17.98
GPNN-based S=1 479 1791 12.40 19.83 20.55 14.34 21.10
Relation Message S =2 494 18.98 13.40 20.53 21.49 15.21 22.14
Reasoning Passing S=4 49.0 19.02 13.36 20.57 21.59 15.33 22.20
S=5 48.8 18.83 13.17 20.41 21.37 15.13 21.99
Edge w/o visual feature v 39.7 11.61 7.84 10.21 14.51 8.97 14.31
Embedding w/o geometric feature g 46.3 15.35 10.49 16.07 18.05 12.09 19.32
w/o semantic feature s 45.8 14.79 9.98 15.42 17.93 11.67 18.39

our CP-HOI further provides considerable performance
gains. In Fig. 7, we visualize some results on representative
samples from HICO-DE test set.

4.5 Ablation Study

In this section, we analyze the contributions of different
model components to the final performance and examine
the effectiveness of our main assumptions. Table 5 shows the
detailed results on the V-COCO and HICO-DET datasets.

Cascade Architecture. We study the impact of the number
of cascade stages 1" used in our CP-HOI model by varying
it from 1 to 4. The IoU thresholds used for these four stages
are [0.5,0.6,0.7,0.75]. As reported in Table 5, when setting
T = 1 we obtain a 46.5 mAP on V-COCO and 17.28 on
HICO-DET (the Default setting). The scores are significantly

improved by adding a second stage, i.e., 2.0% on V-COCO
and 1.18% on HICO-DET. When further adding more than
three stages, the performance gain is marginal. Hence, con-
sidering the model complexity and performance, we choose
T'=3 as our default setting.

GPNN-based Relation Reasoning. 1) Graph structure analy-
sis. We first investigate the necessity of exploring structural
reasoning via a graphical model for HOI recognition. We
build a baseline model, i.e., w/o graph, by directly feeding
the node and edge features, which are originally used for
GPNN, into a fully connected network for predicting HOI
actions. It can be considered as a much simpler version of
C-HOI [2]. From Table 5, we find that the performance of
w/o graph is significantly worse than our full model over
V-COCO and HICO-DET, in various settings. This demon-
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TABLE 6
Comparison between mask and bbox representations (§4.5).

Relation Representation H V-COCO [19] (mAP,.0;¢)

BBox 49.9
Mask 50.4
BBox + Mask (max) 50.3
BBox + Mask (sum) 50.3

strates the benefits of structural modeling in this problem.

In §3.3.2, GPNN automatically infers parse graph struc-
tures via learning a soft adjacency matrix A using Lstructure
(Eq. (14)). To verify this strategy, we perform experiments
by turning off the Lgyycture in the adjacency matrix learning
(w/o Lepructure in Table 5). We find that explicitly learning
the graph structures provides substantial performance gain.
We further examine the £, and Ly via two baseline
models, i.e., w/o L1, and w/o Lyank. As can be observed, both
constraints provide consistent performance improvement
on V-COCO and HICO-DET.

We next study the effect of jointly learning graph struc-
tures and message passing. By isolating graph parsing from
message passing, we obtain w/o joint parsing, where the
adjacency matrices are directly computed by link functions
from edge features at the beginning. We observe a perfor-
mance decrease in Table 5 on both datasets, suggesting that
learning graph structures and message passing together can
improve the learning ability of our HOI parsing model.

2) Message passing. Now we investigate the performance
with regard to the message-passing iteration step S in
GPNN. We observe that setting S = 2 or S = 3 provides
a substantial performance gain in mAP of 1.5% ~ 2% on V-
COCO, compared to S =1. However, when increasing S to
a certain extent (e.g., S =4 or 5), the performance degrades
slightly. This is because, with the increase of iterations, the
learning ability is improved, while the risk of over-fitting is
also rising. Accordingly, we chose S =3 for a better trade-off
between accuracy and computational complexity.

3) Edge embedding. To better characterize the relations
between entities, our model considers three kinds of edge
features, i.e.,, semantic feature s, geometric feature g and
visual feature v (Eq. (6)). Three variants, w/o s, w/o g, w/o
v are accordingly built by dropping each of the features,
in order to verify their effects. As seen from Table 5, w/o v
leads to a significant performance drop (around 7% ~ 10%
in terms of mAP on both datasets), verifying that the visual
feature is the most important one for modeling human-
object relations. Besides, the geometric and semantic fea-
tures also benefit the performance. Finally, our full model
considering all three features achieves the best performance.
Exploring a Better Relation Representation. Existing HOI
methods typically use coarse bounding boxes represent the
entities; however, is this the best choice? To answer this, we
perform experiments to explore a more powerful relation
representation. We evaluate the performance of our model
on V-COCO test set using four different representations:
1) BBox; 2) Mask; 3) BBox+Mask (max); and 4) BBox+Mask
(sum). Here, 1) and 2) mean that we extract the features
o, and o,, by applying RolAlign over bbox and mask
regions, respectively. 3) and 4) are the fusion of bbox and
mask features with element-wise max and sum operations,
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respectively. Note that the detected entities are the same
for all baselines. The results in Table 6 show that mask
is superior to bbox, with a 0.5% improvement. The two
hybrid representations are better than solely using bbox,
but slightly worse than the purely mask-based. In summary,
the mask-based representation does indeed benefit HOI
recognition as it provides more precise information.

5 CONCLUSION

This paper introduces a cascaded parsing network, CP-HOI,
for coarse-to-fine, structured HOI recognition. It consists of
an instance detection network and an interaction recogni-
tion network, which are densely connected at each stage to
fully exploit the superiority of multi-tasking. The interaction
recognition network is based upon a graph parsing neural
network (GPNN). GPNN is empowered with four distinct
neural functions (link functions, message functions, update
functions and readout functions) for iterative HOI graph
inference and message-passing approximation. Our model
achieves 1°! place on both the relation detection and relation
segmentation tasks in the PIC;g9 Challenge, and also out-
performs prior methods on two gold standard benchmarks,
V-COCO and HICO-DET. Besides, we empirically demon-
strate the advantages of fine-grained masks over bounding
boxes for more precise relation representations, which high-
lights some promising directions for future efforts.
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