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Learning Energy-based Spatial-Temporal
Generative ConvNets for Dynamic Patterns

Jianwen Xie, Song-Chun Zhu, and Ying Nian Wu

Abstract—Video sequences contain rich dynamic patterns, such as dynamic texture patterns that exhibit stationarity in the temporal
domain, and action patterns that are non-stationary in either spatial or temporal domain. We show that an energy-based spatial-temporal
generative ConvNet can be used to model and synthesize dynamic patterns. The model defines a probability distribution on the video
sequence, and the log probability is defined by a spatial-temporal ConvNet that consists of multiple layers of spatial-temporal filters to
capture spatial-temporal patterns of different scales. The model can be learned from the training video sequences by an “analysis by
synthesis” learning algorithm that iterates the following two steps. Step 1 synthesizes video sequences from the currently learned model.
Step 2 then updates the model parameters based on the difference between the synthesized video sequences and the observed training
sequences. We show that the learning algorithm can synthesize realistic dynamic patterns. We also show that it is possible to learn the
model from incomplete training sequences with either occluded pixels or missing frames, so that model learning and pattern completion

can be accomplished simultaneously.

Index Terms—Deep generative models; Energy-based models; Dynamic textures; Generative ConvNets; Spatial-temporal ConvNets.
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INTRODUCTION

1.1 Background and motivation

HERE are a wide variety of dynamic patterns in video
T sequences, including dynamic textures [1]] or textured motions
[2] that exhibit statistical stationarity or stochastic repetitiveness
in the temporal dimension, and action patterns that are non-
stationary in either spatial or temporal domain. Recently we have
witnessed tremendous advance in developing discriminative models
for dynamic pattern recognition, e.g., [3], [4], [S], 6], [7], (8],
[9], and [10], however, the progress in developing generative
models of dynamic patterns for synthesis purpose has been lagging
behind. Synthesizing dynamic patterns has been an interesting but
challenging problem in computer vision and computer graphics.
In this paper, we focus on the task of learning to synthesize
dynamic patterns via generative modeling of dynamic patterns
with a generative version of the convolutional neural network
(ConvNet or CNN), or more specificcally, an energy-based model
with ConvNet parametrization of the energy function.

The ConvNet [11]], [12] has proven to be an immensely success-
ful discriminative learning machine. The convolution operation in
the ConvNet is particularly suited for signals such as images, videos
and sounds that exhibit translation invariance either in the spatial
domain or the temporal domain or both. Recently, researchers
have become increasingly interested in the generative aspects of
ConvNet, for the purpose of visualizing the knowledge learned
by the ConvNet, or synthesizing realistic signals, or developing
generative models that can be used for unsupervised learning.

In terms of synthesis, various approaches based on the ConvNet
have been proposed for synthesizing realistic static images [|13]],
141, [I15]], [16]], [17]. However, there has not been much work in
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the literature on modeling and synthesizing dynamic patterns based
on the ConvNet, and this is the focus of the present paper.

In the pattern theory [18]], [19] of Grenander, a visual pattern
is represented by a probability distribution. Grenander used Gibbs
distributions or energy-based models to approximate probability
densities for image patterns. In this paper, we continue this
paradigm and adopt spatial-temporal convolutional neural networks
(ConvNet or CNN) to parametrize the energy functions of the
energy-based models that are capable of synthesizing realistic
videos of many dynamic patterns.

In terms of generative modeling, generative adversarial net-
works (GAN) [20]] and variational autoencoder (VAE) [21]] have
emerged as two most popular approaches for unsupervised learning
of complex distributions. However, neither GAN nor VAE provides
explicit probability densities of the data that they model, since
they only focus on generating data by learning a mapping from
an easily sampled low dimensional distribution (e.g., Gaussian
distribution) to the target data distribution. Moreover, both GAN
and VAE rely on auxiliary models for training. For example, GAN
adopts a discriminator to train the generator in a minimax two-
player game, but eventually discards the discriminator after the
generator is trained. VAE recruits an encoder as the inference
model to approximate the inference process based on the posterior
distribution, which may cause a gap between the VAE and the
maximum likelihood estimator. This paper proposes a different
model for dynamic patterns. It can be learned without recruiting an
auxiliary model.

1.2 Overview of model and algorithm

We propose to model dynamic patterns by generalizing the energy-
based generative ConvNet model recently proposed by [22].
The energy-based generative ConvNet can be derived from the
discriminative ConvNet. It is a random field model, a Gibbs
distribution, or an energy-based model [23|], [24] that is in the
form of exponential tilting of a reference distribution such as the



Gaussian white noise distribution or the uniform distribution. The
exponential tilting is parametrized by a ConvNet that involves
multiple layers of linear filters and rectified linear units (ReLU)
[[12]], which seek to capture features or patterns at different scales.
The log probability density or the energy function of the model
is the sum of a ConvNet term that is piecewise linear due to the
ReLU non-linearity [25]] and the ¢ norm of the signal that comes
from the Gaussian white noise reference distribution. As a result,
the energy function is piecewise quadratic, and the energy-based
generative ConvNet model is piecewise Gaussian. Moreover, the
local modes of the distribution are auto-encoding, where the auto-
encoding process involves a bottom-up pass that computes the
filter responses followed by a top-down pass that reconstructs the
signal where the multiple layers of filters in the bottom-up pass
serve as the basis functions in the top-down pass. Such an explicit
representation is unique among energy-based models [23]], [24],
and is a result of the fusion between the ReLU piecewise linear
structure and the /5 norm term from the Gaussian white noise
reference distribution.

The energy-based generative ConvNet can be sampled by
the Langevin dynamics. Because of the aforementioned auto-
encoding structure of the energy-based generative ConvNet, the
Langevin dynamics is driven by the reconstruction error, i.e.,
the difference between the current sample and its reconstruction
by the above auto-encoding process. The model can be learned
by the stochastic gradient algorithm [26]]. It is an “analysis by
synthesis” scheme that seeks to match the synthesized signals
generated by the Langevin dynamics to the observed training
signals. Specifically, the learning algorithm iterates the following
two steps after initializing the parameters and the synthesized
signals. Step 1 updates the synthesized signals by the Langevin
dynamics that samples from the currently learned model. Step 2
then updates the parameters based on the difference between the
synthesized data and the observed data in order to shift the density
of the model from the synthesized data towards the observed data.
It is shown by [22] that the learning algorithm can synthesize
realistic spatial image patterns such as textures and objects.

In this article, we generalize the energy-based spatial generative
ConvNet by adding the temporal dimension, so that the resulting
ConvNet consists of multiple layers of spatial-temporal filters that
seek to capture spatial-temporal patterns at various scales. For
dynamic textures, these spatial-temporal filters are convolutional
in the temporal domain, reflecting the statistical stationarity or
stochastic repetitiveness of the patterns in the temporal domain. If
the dynamic textures also exhibit spatial stationarity, we also make
the spatial-temporal filters convolutional in the spatial domain.
For action and motion patterns that are non-stationary in the
temporal domain, the top layer filters are fully connected in the
temporal domain. We provide a mode seeking and mode shifting
interpretation and an adversarial interpretation of the learning
and sampling algorithm. We show that the learning algorithm for
training the model can synthesize realistic dynamic patterns. We
also show that it is possible to learn the model from incomplete
video sequences with either occluded pixels or missing frames, so
that model learning and pattern completion can be accomplished
simultaneously.

1.3 Related work

In this section, we provide a comprehensive review of related work.
Dynamic pattern recognition. Recognizing dynamic patterns
(e.g., actions) with ConvNets has been extensively studied in the
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past few years. (4] applied ConvNets with deep structures on a large-
scale video dataset for classification. [5]] designed a two-stream
ConvNet structure, which incorporates spatial network trained on
still image frames and temporal network trained on motion in the
form of dense optical flow, for action recognition. [|6] trained 3D
ConvNets [3]] on the realistic and large-scale video datasets to
learn both appearance and motion features with 3D convolution
operations. [7] studied modeling long-range temporal structure with
ConvNets and LSTM [27]. [28]] and [9] generalized the residual
networks (ResNets) for the spatiotemporal domain for video action
recognition and dynamic scene recognition. [[10] proposed the
Inception 3D (I3D) model by inflating all the 2D convolution
filters and pooling kernels used by the Inception V1 architecture
[29] into 3D convolutions and pre-training the model on the large-
scale Kinetics human action video dataset [30]. Instead of learning
discriminative spatial-temporal ConvNets of dynamic patterns, our
paper mainly focuses on generative modeling of spatial-temporal
ConvNets for dynamic pattern synthesis.

FRAME models. The FRAME (Filters, Random fields, And
Maximum Entropy) model [31], [32], [33] is a Markov random
field model (or a Gibbs distribution, or an energy-based model) that
defines a probability distribution on the data space. The probability
distribution is the maximum entropy distribution that reproduces
the statistical properties of filter responses in the observed data.
The original FRAME model is a stationary model developed for
modeling texture patterns. A non-stationary version of FRAME
model designed for object patterns was proposed in [34], [35].
The filters used in the above two versions of FRAME models are
the Gabor filters and the isotropic Difference of Gaussian filters.
These are linear filters that capture simple local image features,
such as edges and blobs. Inspired by the recent successes of deep
convolutional neural networks (CNNs or ConvNets) [11]], [12]], the
deep FRAME model [17] replaces the linear filters by the non-
linear filters at a certain convolutional layer of a pre-trained deep
ConvNet. Such filters can capture more complex patterns, and the
deep FRAME model built on such filters can be more expressive.
Our model is a spatial-temporal (3D) generalization of the deep
FRAME model with the non-linear filters in the deep ConvNet
trained by maximum likelihood from the observed data.

Energy-based generative ConvNet. Recently, a deep generative
model directly derived from the discriminative ConvNet model was
proposed in [22]]. The resulting model is an energy-based generative
ConvNet model. The maximum likelihood learning of the model
involves Markov chain Monte Carlo (MCMC) approximation of
the gradient of the data log-likelihood. To address the inefficiency
of MCMC sampling, [36] developed a multi-grid sampling and
learning method for the energy-based generative ConvNet, and
[37]] proposed to recruit a top-down generator [38] serving as
an approximate sampler of the energy-based generative ConvNet
model. [22] did not work on dynamic patterns such as those in
the video sequences. [39] is a generalization of [22] for dynamic
patterns by adopting spatial-temporal ConvNets [3] to capture
spatial and temporal features of the video sequences. Recently,
[40] proposed a volumetric version of the energy-based generative
ConvNet for modeling 3D shape patterns. This paper is an expanded
version of our conference paper in [39].

Dynamic textures. Generating dynamic textures or textured
motions have been studied by [1]], [2], [41], [42]. For instance,
[1] proposed a vector auto-regressive model coupled with frame-
wise dimension reduction by single value decomposition. It is a
linear model with Gaussian innovations. [2]] proposed a dynamic



model based on sparse linear representation of frames. See [43]
for a recent review of dynamic textures. The spatial-temporal
generative ConvNet is a non-linear and non-Gaussian model and is
expected to be more flexible in capturing complex spatial-temporal
patterns in dynamic textures with multiple layers of non-linear
spatial-temporal filters. Recently some researcher have started
to study dynamic texture synthesis by matching feature statistics,
which are extracted by pre-trained convolutional networks, between
synthesized and observed examples, e.g., [44] adopted a pre-trained
ConvNet for object recognition, while [45]] used two pre-trained
ConvNets trained for object recognition and optical flow prediction
separately. Even though a ConvNet structure is also included in our
model, it serves as the energy function of the energy-based model
and is learned from scratch by maximizing the log-likelihood of
the observed data, without relying on other pre-trained networks
for assistance.

Generative adversarial networks of videos. Recently, multiple
video generation frameworks using generative adversarial network
(GAN) [20] were proposed. For example, one can generalize the
existing image-based generative adversarial networks framework
to video generation by using a single generator consisting of 3D
deconvolutional layers. [46] proposed generative adversarial net-
works for video with a spatial-temporal convolutional architecture
that disentangles the scene’s foreground from the background.
TGAN [47]] exploited a 1D temporal generator and a 2D image
generator for video generation. The temporal generator takes a
single latent variable as input and outputs a set of latent variables,
while the image generator transforms these latent variables provided
by the temporal generator into video frames. MoCoGAN [48]
proposed the motion and content decomposed generative adver-
sarial networks for video generation. All of the above methods
need to recruit a discriminator with appropriate convolutional
architecture to evaluate whether the generated videos are from the
training data or the video generator. Different from GAN-based
methods, our model is a deep 3D convolutional energy-based
model with only one single bottom-up 3D ConvNet architecture as
the energy function. Our model generates video clips by directly
sampling from an explicit distribution by MCMC, such as Langevin
dynamics, while the GAN-based methods cannot provide explicit
distributions of the videos that they seek to model. Our model has
an adversarial interpretation. See section for details.

Recurrent neural network. For temporal data, a popular model
is the recurrent neural network [27]], [49]. It is a causal model and
it requires a starting frame. In contrast, our model is non-causal,
and does not require a starting frame. Compared to the recurrent
network, our model is more convenient and direct in capturing
temporal patterns at multiple time scales.

Subsection [3.3] presents a detailed comparison between various
generative models of dynamic patterns that are based on deep
neural networks.

1.4 Contributions

The following are the main contributions of this paper. (1) We
propose an energy-based spatial-temporal generative ConvNet for
modeling video sequences by combining the 3D ConvNets [3] and
the energy-based generative ConvNets [22]. (2) We show that the
model is capable of synthesizing realistic dynamic patterns. (3) We
show that it is possible to learn the model from incomplete data.
(4) We present a mode seeking and mode shifting interpretation
of the learning and sampling algorithm, and we also present an
adversarial interpretation of the algorithm.
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2 ENERGY-BASED SPATIAL-TEMPORAL GENERA-
TIVE CONVNET

2.1 Spatial-temporal filters

To fix notation, let I(x, ) be an image sequence of a video defined
on the square (or rectangular) image domain D and the time domain
T, where x = (x1,22) € D indexes the coordinates of pixels,
and t € T indexes the frames in the video sequence. We can treat
I(x,t) as a three dimensional function defined on D x T . For a
spatial-temporal filter F', we let F' * I denote the filtered image
sequence or feature map, and let [F' * I](z,t) denote the filter
response or feature at pixel x and time ¢.

The spatial-temporal ConvNet is a composition of multiple
layers of linear filtering and ReLU non-linearity, as expressed by
the following recursive formula:
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where | € {1,2,..., L} indexes the layers. {F,El)7 k=1,..,N}
are the filters at layer [/, and {Fi(lfl),i =1,...,N;_1} are the
filters at layer [ — 1. k£ and ¢ are used to index filters at layers
l and [ — 1 respectively, and IV; and N;_; are the numbers of
filters at layers [ and | — 1 respectively. The filters are locally
supported, so the range of (y, s) is within a local support S; (such
as a7 x 7 x 3 box of image sequence). The weight parameters
(w(l’k) (y,s) € Siyi = 1,...,N;_1) define a linear filter that
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operates on (Fi(l_l) xIi =1,...,N_1). The {b; 1} are bias
parameters. The linear filtering operation is followed by ReLU
h(r) = max(0, r). At the bottom layer, [FIEO)*I](I, t) = Ip(x,t),
where k € {R,G,B} indexes the three color channels. Sub-
sampling may be implemented so that in [Flgl) x I](x,t), €
D, C D,and t € T; C T. For example, if the sub-sampling size
is n, we only keep the first pixel and then every n-th pixel after
the first. The sub-sampling operation can be applied to both spatial
and temporal domains.

The spatial-temporal filters at multiple layers are expected
to capture the spatial-temporal patterns at multiple scales. It is
possible that the top-layer filters are fully connected in the spatial
domain as well as the temporal domain (e.g., the feature maps are
1 x 1 in the spatial domain) if the dynamic pattern does not exhibit
spatial or temporal stationarity.

2.2 Energy-based spatial-temporal generative ConvNet
The spatial-temporal generative ConvNet is an energy-based model
or a random field model defined on the image sequence I =
(I(z,t),z € D,t € T). It is in the form of exponential tilting of
a reference distribution ¢(I):

p(I;0) = exp [f(I;0)] q(T), )

Z(0)

where the scoring function f(I;0) is
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where 6 consists of all the weight and bias terms that define
the filters (F,gL),k =1,..,K = Nyp) at layer L, and q is the
Gaussian white noise model, i.e.,

1 1
1) = G o |03l
where |D x 7| counts the number of pixels in the domain
D x T. Without loss of generality, we shall assume o2 = 1.
Z(9) = [exp[f(I;0)]g(I)dI is the normalizing constant or
partition function that is analytically intractable.

The scoring function f(I; ) in (3) tilts the Gaussian reference
distribution into a non-Gaussian model. In fact, the purpose of
f(I;0) is to identify the non-Gaussian spatial-temporal features
or patterns. In the definition of f(I;6) in (3), we sum over the
filter responses at the top layer L over all the filters, positions and
times. The spatial and temporal pooling reflects the fact that we
assume the model is stationary in spatial and temporal domains.
If the dynamic texture is non-stationary in the spatial or temporal
domain, then the top layer filters F; ,EL) are fully connected in the
spatial or temporal domain, e.g., Dy, is 1 x 1.

A simple but consequential property of the ReLU non-linearity
is that h(r) = max(0,7) = 1(r > 0)r, where 1() is the indicator
function, so that 1(r > 0) = 1 if » > 0 and 0 otherwise. As
a result, the scoring function f(I;60) is piecewise linear [25],
and each linear piece is defined by the multiple layers of binary
activation variables (5,(€ piL0) =1 ([F,El) « I|(x,t) > 0), which
tells us whether a local spatial-temporal pattern represented by the
k-th filter at layer [, F, (l), is detected at position x and time ¢. Let

(I, 0) = (5,(5)96 J(L0), Vi, k x t) be the activation pattern of L.

Then §(I; 6) divides the image space into a large number of pieces
according to the value of §(I;6). On each piece of image space
with fixed d(I; 0), the scoring function f(I;6) is linear, because
with fixed value of the indicator function 1(r > 0), the ReLU h(r)
reduces to a linear mapping. Specifically, according to [22]], we can
write

“4)
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where both a and B are defined by 6(I;6) and 6. In fact, B =
0f(I;0)/01, and can be computed by back-propagation, with
K (r) = 1(r > 0). The back-propagation process defines a top-
down deconvolution process [50f], where the filters at multiple
layers become the basis functions at those layers, and the activation
variables at different layers in §(I; ) become the coefficients of
the basis functions in the top-down deconvolution.

p(I; 0) in (2) is an energy-based model [23], [24], whose energy
ion i i 2 that comes from
the reference distribution ¢(I) and the piecewise linear scoring
function f(I;0), i.e.,

E(L0) = —f(T;0) +

1
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where const = —ag 51,0 — ||Bo,s(1,0) |2 /2, which is constant on
the piece of image space with fixed 6(I; 6).

Since &(I;0) is a piecewise quadratic function, p(I;0) is
piecewise Gaussian. On the piece of image space {I: §(I;0) = ¢},
where ¢ is a fixed value of §(I; 0), p(I;6) is N(Bg,s, 1) truncated
to {I : 5(I;0) = 0}, where we use 1 to denote the identity
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matrix. If the mean of this Gaussian piece, By s, is within
{I : §(I;0) = ¢}, then By is also a local mode, and this
local mode I satisfies a hierarchical auto-encoder, with a bottom-up
encoding process 0 = 0(I;6), and a top-down decoding process
1 = By s. In general, for an image sequence I, By 5(1,9) can be
considered a reconstruction of I, and this reconstruction is exact if
I is a local mode of £(I;9).

Our model in (@) directly corresponds to a classifier, specifically
a spatial-temporal discriminative ConvNet, in the following sense
[22]), (511, [52], (53], [54], [55]. Suppose we have C' categories of
video sequences. Let p..(I; 8) be the video sequence distribution
of category ¢, for ¢ = 1,...,C, which is defined according to
model . The ConvNet structures f.(I) may share common lower
layers of parameters. Let p. be the prior probability of category c
for ¢ = 1, ..., C. The posterior distribution p(c|I) for classifying
an example I to the category c is a softmax multi-class classifier
(Spatial-temporal discriminative ConvNet) given by

exp|fe(I;0) + b,
e p— plfe(L;6) + bc] ’ 7
Y1 expfe(I;0) + bc]
where the category-specific bias term b, = log p. — log Z.(0) +

constant. The correspondence to discriminative ConvNet justifies
the energy-based spatial-temporal generative ConvNet model.

2.3 Sampling and learning algorithm

One can sample from p(I;6) of model by the Langevin
dynamics:

e 0
I =1 —— Z
T+1 T 2 a ( 9) + €
62
€2
= iy (L — By sa,0)] + €Zr, ®)

where 7 indexes the time steps, € is the step size, and Z, ~ N(0,1)
is the Gaussian white noise term.

The Langevin dynamics consists of a deterministic part and a
stochastic part. The former is a gradient descent that attempts to
find the minimum of the energy function £(I; 6), while the latter
is a Brownian motion Z,. that prevents the gradient descent from
falling into local minimum traps.

The dynamics is driven by the reconstruction error I—By 51,0).-
The finiteness of the step size € can be corrected by a Metropolis-
Hastings acceptance-rejection step. The Langevin dynamics can be
extended to Hamiltonian Monte Carlo [[56] or more sophisticated
versions [57].

The learning of 6 from training image sequences {I,,, m =
1,..., M} can be accomplished by the maximum likelihood esti-
mation (MLE), which follows an “analysis by synthesis” scheme.

Let L(0) = "M log p(1,,; 6) /M, with p(; §) defined in ,
8L 0
oLO) _ L Z B | 5 @0, ©

where the Eg denotes the expetation with respect to p(I; #), and the
expectation term is due to 5 log Z(6) = Eg[Z; f(I;0)], which is
analytically intractable and has to be approximated by the Monte
Carlo samples [26] produced by the Langevin dynamics. Suppose
we run M parallel chains of Langevin dynamics accordmg to @) to
synthesize M Monte Carlo samples {L,,,, m = 1, ..., M}, then the



Monte Carlo approximation of the gradient of the log-likelihood
function in (9) is given by

a Moo 1 My
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0 can be updated by a stochastic gradient ascent algorithm [26]]
with learning rate 7):
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See Algorithm [I] for a description of the learning and sampling
algorithm. The algorithm keeps synthesizing image sequences
from the current model, and updating the model parameters in
order to match the synthesized image sequences to the observed
image sequences. This is an “analysis by synthesis” scheme. The
convergence of the algorithm has been studied by [26], [58].

Algorithm 1 Learning and sampling algorithm

Input:
(1) training image sequences {I,,,m =1, 7~M}
(2) number of synthesized image sequences M
(3) number of Langevin steps [
(4) number of learning iterations 7'
Output:
(1) estimated model parameters 6 ~
(2) synthesized image sequences {I,,,m = 1,..., M}
Let ¢ < 0, initialize 6(©).
Initialize I,,, form =1, ...,
repeat ~
For each m, run [ steps of Langevin dynamics to update I,
i.e., starting from the current I,,, each step follows equation
®- M
5. Calculate Hebs =30 aef( "
St g T3 04)/0.
6:  Update OUH1) « 9() 4y (HOPs

M, by sampling from ¢(T).

e

0W) /M, and HY™ =

— H®™), with step size

Mt
7. Lett+t+1
g untilt =T

In algorithm [I] the Langevin sampling step involves the
computation of J9f(I;0)/0I, and the parameter updating step
involves the computation of 0 f(I; 6)/06. Because of the ConvNet
structure of f(I;6), both gradients can be computed efficiently
by back-propagation, and the two gradients share most of their
chain rule computations in back-propagation. The whole learning
and sampling algorithm can be considered an alternating back-
propagation algorithm: (1) Sampling back-propagation: changing
the synthesized examples via Langevin dynamics or gradient
descent. (2) Learning back-propagation: changing the model
parameters according to the synthesized examples and the observed
examples by gradient ascent. In term of MCMC sampling, the
Langevin dynamics samples from an evolving distribution because
6 keeps changing. Thus the learning and sampling algorithm
runs non-stationary chains.

3 INTERPRETATIONS AND RELATED MODELS

This section presents interpretations of the learning algorithms, as
well as related models of dynamic patterns.

3.1

Our spatial-temporal generative ConvNet model is an energy-based
model

Adversarial interpretation

p(L;0) = exp[—E(1;0)], (12)

1
Z(0)
where the energy function £(I;0) = — f(L;0) + 1 ||I|2.

The update of 0 is based on OL(6)/06, which can be
approximated by

aLO) 1 L9 1 R0
RGN
a1 & 1o
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13)

where {im, m=1,.., M } are the synthesized image sequences
that are generated by the Langevin dynamics. At the zero tempera-
ture limit, the Langevin dynamics becomes gradient descent:
€ 0
—=£

201 (L)

The algorithm has an adversarial interpretation where the learning
and sampling steps play a minimax game. Consider the value

function V' (I,,,,m = 1, ..., M; 6):

725 m7

m=1

L=1 - (14)
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The updating of 6 is to increase V' by shifting the low en-
ergy regions from the synthesized image sequences {I,,} to
the observed image sequences {I,,}, whereas the updating of
{Im7 m =1,..., M} is to decrease V by moving the synthesized
image sequences towards the low energy regions (i.e., decreasing
ﬁ Z%Zl E(I,,;0)). Therefore, the resulting algorithm approxi-
mately solves the minimax problem below

max min V ({I,,};6).

m

(16)

This is an adversarial interpretation of the learning and sampling
algorithm, but the value function is different from that of the
generative adversarial learning [20]. It can also be considered a
generalization of the herding method [59]] from exponential family
models to general energy-based models.

In our work, we let —E(I;0) = f(I;6) — ||I]|?/202. We can
also let —&£(I;0) = f(I;0) by assuming a uniform reference
distribution ¢(I). Our experiments show that the model with the
uniform ¢ can also synthesize realistic dynamic patterns.

3.2 Mode seeking and mode shifting

The data distribution Py, might have many local modes, if the
observed data are highly varied. Our model parametrized by a
ConvNet structure f(I; ) can be flexible and expressive enough to
fit such a Py, by creating modes to encode the observed examples
with highly diverse patterns. The f(I;6) or equivalently the energy



function £(I; 0) should be learned such that the energy function
places lower values on the observed examples than the unobserved
examples. This can be achieved by the sampling and learning
algorithm presented in Algorithm [T} which can be interpreted as a
process that alternates mode seeking and mode shifting.

The sampling step can be interpreted as mode seeking where
the Langevin dynamics searches for low energy (high probability)
modes in the landscape defined by £(I; #) via stochastic gradient
descent and settles the synthesized image sequences {I,,,} around
the low energy (high density) regions of £(I; 6).

The learning step can be interpreted as mode shifting by shifting
the low energy (high density) regions from the synthesized image
sequences {I,,} towards the observed image sequences {I,,}, or
shifting the major modes (or basins) of the energy function &(I; )
from the synthesized image sequences towards the observed image
sequences, until the observed image sequences stay in the major
modes of the energy landscape.

The learning algorithm will create and sharpen the major modes
to concentrate on the observed image sequences, if those modes
are too diffused around the observed image sequences. The learned
energy landscape might have some major modes that are not
occupied by the observed examples, and these modes will create
examples that are similar to the observed examples.

This mode seeking and mode shifting interpretation is related
to Hopfield network [60]] that uses local modes of energy landscape
to memorize the observed examples. This is also related to attractor
network [[61]] with the Langevin dynamics serving as the attractor
dynamics.

3.3 Comparison with other models of dynamic patterns

The energy-based model is based on a bottom-up ConvNet fy(T)
defined on the video sequence I. There are other models based on
top-down ConvNets.

One generator model [[62] assumes a hidden noise vector z ~
N(0, I4), where I; is the identity matrix of dimension d. Then
I = g(2) + €, where g is parametrized by a top-down spatial-
temporal ConvNet, and € is Gaussian white noise.

The other generator model is a non-linear version of the state
space model or hidden Markov model, where s; = r(st_l, ut),
and I; = g(s¢)+ ¢4, where s, is the state vector, and uy is the noise
vector, and the transition model r is parametrized by a forward
network, and the emission model g is parametrized by a top-down
network. This model is called dynamic generator model [63]. It has
a causal structure. It is a non-linear generalization of the dynamic
texture model [[1]].

The above generator models can be learned by maximum
likelihood. They can also be learned jointly with inference models
as in VAE, or discriminator models as in GAN, or the energy-based
models. In the joint training of the dynamic generator model and
the energy-based model, the former plays the role of actor and the
latter plays the role of evaluator or critic.

In comparison with classical mechanics, the energy-based
model is similar to the Lagrangian formulation which is based
on the action defined on the whole trajectory, whereas the dynamic
generator model is similar to the Hamiltonian formulation which
unfolds the trajectory over time.

In the Gibbs distribution in statistical mechanics, the energy
function is defined on the spatial domain, and the system evolves
over time and converges to the Gibbs distribution [64]. In the
energy-based model studied in this paper, the energy function is
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defined on the spatial-temporal domain, where the time dimension
is treated in the same way as the spatial dimensions. The Langevin
dynamics evolves this spatial-temporal model over a virtue time
(denoted by 7). This treatment is similar to the lattice field theory in
physics, which is also based on a Gibbs distribution whose energy
is defined on the spatial-temporal domain, and the MCMC sampler
evolves the system over a virtue time [64].

In the context of image-based control or intuitive physics, we
can jointly model the actions and the video sequences, using the
energy-based model and the dynamic generator model. The energy
function in the energy-based model can be interpreted as the cost
function for optimal control, and the dynamic generator model
consists of the policy and the dynamics [|65].

Beside the energy-based models and the generator models,
there are also flow-based models [66], where the log-likelihoods
can be computed in closed form. Specifically, I = g(z), where
z is a noise vector that is of the same dimensionality as I, and g
is a composition of a sequence of invertible transformations that
are designed such that the inverse and the Jacobian of g can be
computed in closed form.

4 EXPERIMENTS

We learn the energy-based spatial-temporal generative ConvNet
from video clips collected from DynTex++ dataset of [67] and
the Internet. We show the synthesis results by displaying the
frames in the video sequences. We have posted the synthesis results
on the project page http://www.stat.ucla.edu/~jxie/STGConvNet/
STGConvNet.html, so that the reader can watch the videos.

4.1 Experiment 1: Generating dynamic textures with
both spatial and temporal stationarity

We first learn the model from dynamic textures that are stationary in
both spatial and temporal domains. Because these dynamic textures
exhibit spatial-temporal homogeneity, we use spatial-temporal
filters that are convolutional in both spatial and temporal domains
to design our network f(I;6), which consists of three layers of
spatial-temporal convolution, ReLU nonlinearity, and sub-sampling.
The first layer has 120 15 x 15 x 15 filters with sub-sampling size
of 7 pixels and frames. The second layer has 40 7 x 7 x 7 filters
with sub-sampling size of 3. The third layer has 20 3 x 3 x 2 filters
with sub-sampling size of 2 x 2 x 1. The sub-sampling operation
is useful to reduce the size of the output feature map of each layer
for the sake of efficient computation.

Figure (1| displays 4 results of learning to synthesize water
waves. For each category, the first row displays 7 frames of the
observed sequence, while the second and third rows show the
corresponding frames of two synthesized sequences generated by
the learning algorithm. The qualitative results displayed in Figure|I]
clearly show that our model can learn to generate realistic examples
of dynamic textures with both spatial and temporal stationarity,
such as water waves. The synthesized examples are similar, but
not identical, to the observed video sequence. Generally, when
the number of chains of synthesis increases, the diversity of the
synthesized sequences will also increase.

We use the layer-by-layer learning scheme. Starting from the
first layer, we sequentially add the layers one by one. Each time we
learn the model and generate the synthesized image sequence using
Algorithm [T} While learning the new layer of filters, we refine the
lower layers of filters with back-propagation. Due to the limitation
of the GPU memory and for the sake of computational efficiency,


http://www.stat.ucla.edu/~jxie/STGConvNet/STGConvNet.html
http://www.stat.ucla.edu/~jxie/STGConvNet/STGConvNet.html

(d) water wave 4

Fig. 1. Synthesizing dynamic textures with both spatial and temporal
stationarity. For each category, the first row displays the frames of
the observed sequence, and the second and third rows display the
corresponding frames of two synthesized sequences generated by the
learning algorithm. The observed and the synthesized videos are of the
size 224 x 224 pixels x 50 or 70 frames.

we use M = 3 chains for Langevin sampling. Even with a single
chain, the statistics can still be estimated because of stationarity
in the temporal and spatial domains. We learn an energy-based
spatial-temporal generative ConvNet for each category from one
observed video that is prepared to be of the size 224 x 224 pixels
X 50 or 70 frames. The range of pixel intensities is [0, 255]. Mean
subtraction is used as pre-processing. The number of Langevin

iterations between every two consecutive updates of parameters,

I = 20. The number of learning iterations 7" = 1200, where we
add one more layer every 400 iterations. We use layer-specific
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learning rates, where the learning rate at the higher layer is less
than that at the lower layer, in order to obtain stable convergence.

4.2 Experiment 2: Generating dynamic textures with
only temporal stationarity

Many dynamic textures have structured background and objects
that are not stationary in the spatial domain. In this case, the
network used in Experiment 1 may fail. However, we can modify
the network in Experiment 1 by using filters that are fully connected
in the spatial domain at the second layer to account for spatial
non-homogeneity of the dynamic textures. Specifically, the first
layer has 120 7 x 7 x 7 filters with sub-sampling size of 3 pixels
and frames. The second layer is a spatially fully connected layer,
which contains 30 filters that are fully connected in the spatial
domain but convolutional in the temporal domain. The temporal
size of the filters is 4 frames with sub-sampling size of 2 frames in
the temporal dimension. Due to the spatial full connectivity at the
second layer, the spatial domain of the feature maps at the third
layer is reduced to 1 x 1. The third layer has 5 1 x 1 x 2 filters
with sub-sampling size of 1 in the temporal dimension.

We use end-to-end learning scheme to learn the above 3-layer
energy-based spatial-temporal generative ConvNet for dynamic
textures with only temporal stationarity. At each iteration, the 3
layers of filters are updated with 3 different layer-specific learning
rates. The learning rate at the higher layer is much less than that at
the lower layer to avoid the issue of large gradients.

We learn an energy-based spatial-temporal generative ConvNet
for each category from one training video. We synthesize M = 3
videos using the Langevin dynamics. Figure 2] displays the results.
For each category, the first row shows 6 frames of the observed
sequence (224 x 224 pixels x 70 frames), and the second and
third rows show the corresponding frames of two synthesized
sequences generated by the learning algorithm. We use the same
set of parameters for all the categories without tuning. Figure |§|
compares our method to that of [I], which is a linear dynamic
system model. The image sequence generated by this model appears
more blurred than the sequence generated by our method.

The computational time for each iteration including 20 steps of
Langevin dynamics is roughly 120 seconds on a PC with an Intel
i7-6700k CPU and a Titan Xp GPU. It takes roughly 5 seconds for
each step of Langevin dynamics sampling.

Quantitative evaluation for dynamic texture synthesis is a
particularly challenging task, because there is no unique correct
output when synthesizing new samples of an observed dynamic
texture. The structural similarity (SSIM) index [68]] is designed to
provide a perceptual judgment on the similarity between two videos,
and ranges from -1 to 1, with a larger score indicating greater
similarity. We can calculate the SSIM between the synthesized
image sequence and the original image sequence to examine the
synthesis quality. A larger SSIM indicates a better synthesis quality
due to higher perceptual similarity between the synthesized and
original sequences. We compare our method with some baseline
methods for dynamic textures, such as HOSVD , FFT-LDS
[70], and Doretto et al [1]], in terms of SSIM on 17 dynamic texture
videos in Table[T} Our method outperforms the baseline methods.

Human perception, which is also an important and reliable
measure to evaluate synthesis quality, has been used in [71]],
[43], [72]), [63]. Following the protocal of [[63]l, we conduct a
human perceptual study to evaluate the perceived realism of the
synthesized dynamic textures. Twenty different human observers
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Fig. 2. Synthesizing dynamic textures with only temporal stationarity. For each category, the first row displays 6 frames of the observed sequence,
and the second and third rows display the corresponding frames of two synthesized sequences generated by the learning algorithm. The observed
and the synthesized videos are of the size 224 x 224 pixels x 70 frames. (a) flashing lights. (b) water spray. (c) fountain. (d) spring water. (e) burning
fire heating a pot. (f) burning fire in a stove. (g) waterfall in a mountain. (h) water spray in a fountain.



Fig. 3. Comparison on synthesizing dynamic texture of waterfall. From top
to bottom: segments of the observed sequence, synthesized sequence
by our method, and synthesized sequence by the method of [T].

TABLE 1
A comparison of different dynamic texture models on SSIM

ours HOSVD | FFT-LDS | Doretto
[69] [70] [1]
boiling water 0.8890 0.4777 0.4719 0.8628
falling water 0.4044 0.2246 0.2421 0.3458
fire flames 0.4893 0.2180 0.1491 0.4086
fire in a stove 0.9259 0.4646 0.4895 0.9075
fire heating a pot 0.7969 0.4350 0.4401 0.7853
flashing lights 0.7960 0.2368 0.1982 0.7561
fountain 0.3487 0.1572 0.1114 0.3128
fountain spray 0.5422 0.2366 0.1948 0.4981
rocky waterfall 0.6245 0.1919 0.2281 0.6183
round fountain 0.6662 0.2082 0.2160 0.6617
spring water 0.5703 0.1587 0.2771 0.5561
washing machine 0.9175 0.4520 0.6026 0.9032
water spray 0.3528 0.1615 0.0937 0.3365
water spray in a pool 0.5610 0.2171 0.1560 0.3442
water stream 0.5030 0.1667 0.1808 0.4492
waterfall 0.3045 0.1473 0.1001 0.2566
waterfall in a mountain | 0.5415 0.2272 0.2156 0.5206
[ Avg. [ 0.6020 [ 0.2577 | 02569 [ 0.5602 |

are randomly chosen to participate in the perceptual experiment.
Each participant performs 36 (12 categories X 3 examples) pairwise
comparisons between a synthesized dynamic texture and its real
version. Participants are asked to select which one looks more
realistic after viewing each pair of dynamic textures for a specified
exposure time. The dynamic textures are all shown at the same
resolution (each image frame is of the size 64 x 64 pixels) in the
form of video. The comparisons are randomized across the left-
right order of two videos in each pair and the order of presenting
different video pairs. The exposure time is chosen from discrete
durations between 0.3 and 3.6 seconds. This evaluates how quickly
the difference between two dynamic textures can be perceived.

We record the “fooling” rate, which is the participant error rate
in distinguishing synthesized dynamic textures from real ones, for
each participant. The higher the “fooling” rate, the more realistic
the synthesized dynamic textures. Note that “perfectly” synthesized
results would lead to a “fooling” rate of 50% , indicating that the
participants are unable to differentiate between the synthesized and
real examples, and thus make random guesses.

Our model is compared with four baseline methods, such
as LDS (linear dynamic system) [1]], dynamic generator [63]],
TwoStream and MoCoGAN [48]], on 12 dynamic texture
video sequences (e.g., waterfall, burning fire, waving flag, etc)
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that have been adopted in [63]. We briefly introduce them as
follows. LDS simulates dynamic textures by a first-order auto-
regressive moving average model driven by white zero-mean
Gaussian noise; Dynamic generator is a non-linear generalization
of the linear state space model where the non-linear transformations
in the transition and emission models are parameterized by neural
networks, and its training is based on maximum likelihood, which
is accomplished by the alternating back-propagation through time
algorithm; TwoStream method synthesizes dynamic textures by
matching the feature statistics that are extracted from two pre-
trained convolutional neural networks between synthesized and
observed examples, where the pre-trained convolutional neural
networks are trained for two independent tasks: object recognition,
and optical flow prediction; and MoCoGAN is a motion and content
decomposed generative adversarial network for video generation,
where extra networks, e.g., image and video discriminators, are
recruited to train the video generator in an adversarial manner.

Figure [] shows the comparison results at different exposure
times, where the “fooling” rate decreases as exposure time
increases, and then remains at the same level for longer exposures.
This means that as the given exposure time becomes longer and
longer, it becomes easier for the participants to tell “fake” examples
from real ones. In summary, the dynamic textures generated by our
proposed method are more realistic than other baseline methods.
Besides, since the dynamic generator is a non-linear generalization
of LDS, it is undoubtedly more expressive than LDS. The result also
shows that the LDS outperforms those methods using sophisticated
deep network structures (i.e., TwoStream and MoCoGAN). This
is not surprising because when learning from a small number of
training data (in this experiment, we only have one single training
example), the MoCoGAN, with a large number of parameters that
need to be estimated, may not fit the training data very well by using
an unstable and complicated adversarial training scheme, while
the TwoStream method has a limitation that it cannot synthesize
dynamic textures not being spatially homogeneous (i.e., dynamic
textures with structured background, e.g., burning fire heating a
pot). Our model is simple yet powerful, relying on neither extra
networks nor extra labeled data for pre-training.
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Fig. 4. Limited time pairwise comparison results. Each curve shows the
“fooling” rate / user error (realism) over different exposure times. The
number of pairwise comparisons is 36. The number of participants is 20.

The learning of our model can be scaled up. We learn the fire
pattern from 30 training videos, with mini-batch implementation.
The size of each mini-batch is 10 videos. Each video contains
30 frames (100 x 100 pixels). For each mini-batch, M = 13



parallel chains for Langevin sampling is used. The gradient to

update the model parameters is averaged over all mini-batches.

For this experiment, we slightly modify the network by using
120 11 x 11 x 9 filters with sub-sampling size of 5 pixels and
4 frames at the first layer, and 30 spatially fully connected filters
with temporal size of 5 frames and sub-sampling size of 2 at the

second layer, while keeping the setting of the third layer unchanged.

The number of learning iterations 7" = 1300. Figure |5|shows the
result of learning fire patterns by displaying one frame for each
of 30 observed sequences, the corresponding frame for each of
the synthesized sequences, and three examples of synthesized
sequences. Figure |§| shows another example of learning flowing
cloud patterns from 30 training videos.

i

-st frame of 30 observed sequences

(b) 21-st frame of 30 synthesized sequences
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(c) 3 examples of synthesized sequences

Fig. 5. Learning from 30 observed burning fire videos with mini-batch
implementation. The batch size is 10. For each mini-batch, the number of
parallel chains for synthesis is 13. The observed and synthesized videos
are of the size 100 x100 pixels x 30 frames. (a) displays one frame for
each of 30 observed sequences. (b) displays the corresponding frame
for each of the synthesized sequences. (c) shows three examples (one
example per row) of synthesized video sequences.

4.3 Experiment 3: Generating action patterns without
spatial or temporal stationarity

Experiments 1 and 2 show that the energy-based generative
spatial-temporal ConvNet can learn from video sequences without
alignment. We can also specialize it to learning roughly aligned
video sequences of action patterns, which are non-stationary in
either spatial or temporal domain, by using a single top-layer filter
that covers the whole video sequence.

The action patterns are spatial-temporally aligned in the sense
that (1) for each time step, the target objects in different videos
possess the same locations, shapes, and poses (i.e., spatially
aligned), and (2) the start and end times of the actions in different
videos are the same (i.e., temporally aligned).

We learn a 2-layer energy-based spatial-temporal generative
ConvNet from video sequences of roughly aligned actions. The
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(c) 3 examples of synthesized sequences

Fig. 6. Learning from 30 observed flowing cloud videos with mini-batch
implementation. The batch size is 10. For each mini-batch, the number of
parallel chains for synthesis is 13. The observed and synthesized videos
are of the size 100 x 100 pixels x 30 frames. (a) displays one frame for
each of 30 observed sequences. (b) displays the corresponding frame
for each of the synthesized sequences. (c) shows three examples (one
example per row) of synthesized video sequences.

first layer has 200 7 x 7 X 7 filters with sub-sampling size of
3 pixels and frames. The second layer is a fully connected layer
with a single filter that covers the whole sequence. The observed
sequences are of the size 100 x 200 pixels x70 frames.

Figure [7] displays three results of modeling and synthesizing
actions from roughly aligned video sequences. We learn a model
for each category, where the number of training sequences is 5
for the running cow example, 2 for the running tiger example,
and 2 for the running llama example. The videos are collected
from the Internet and each has 70 frames, with an animal running
at the center of a black background. For each example, Figure |Z]
displays segments of 2 observed sequences, and segments of 2
synthesized action sequences generated by the learning algorithm.
We run M = 8 paralleled chains for the experiment of running
cows, 4 paralleled chains for the experiment of running tigers, and
5 paralleled chains for the experiments of running llamas.

The experiments show that our model can capture non-
stationary action patterns. In general, both appearances and motions
of the animals in the synthesized video sequences are physically
plausible. We also notice that the synthesized action patterns
contain some artifacts (e.g., the appearance of additional limbs
of the animals in the synthesized video sequences), which is due
to the fact that the action patterns in the collected training video
sequences are not perfectly aligned (e.g., at a specific time, the
poses of the animals in different videos are not the same). Note
that synthesizing action patterns can be difficult for the methods of
[1]] and [45]].

One limitation of our model is that it does not involve explicit
tracking of the objects and their parts, therefore the model can



only learn descriptive features of an action pattern for the sake
of synthesis, instead of an explainable action decomposition for
the purpose of understanding. The other limitation is that a single
model can only be used for single category of action pattern.
Unsupervised learning from actions of mixed categories requires
fitting a mixture of energy-based spatial-temporal generative
ConvNet models. However, this would require the estimation of
the intractable normalizing constants Z(6) of the models, because
the EM-type algorithm to fit mixtures of energy-based spatial-
temporal generative ConvNet models involves computation of the
log-likelihood of each video sequence under each model. Our
previous works [34] and [35] have studied this issue. Nevertheless,
the dynamic generator [63] and MoCoGAN [48] adopt top-
down generators, with explicit latent variables accounting for
action categories, to learn from actions of mixed categories in
an unsupervised manner.

synthesized sequences

(a) running cows

synthesized sequences

(b) running tigers

synthesized sequences

(c) running llamas

Fig. 7. Synthesizing action patterns without spatial or temporal stationarity.
For each action video sequence, 6 continuous frames are shown. (a)
running cows. Frames of 2 of 5 training sequences are displayed. The
corresponding frames of 2 of 8 synthesized sequences generated by the
learning algorithm are displayed. (b) running tigers. Frames of 2 observed
training sequences are displayed. The corresponding frames of 2 of 4
synthesized sequences are displayed. (c) running llamas. Frames of 2
observed training sequences are displayed. The corresponding frames
of 2 of 5 synthesized sequences are displayed. The observed sequences
are of the size 100 x 100 pixels x 70 frames.
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4.4 Experiment 4: Learning from incomplete data

Our model can learn from video sequences with occluded pixels.
The task is inspired by the fact that most of the videos contain
occluded objects. Our learning method can be adapted to this task
with minimal modification. The modification involves, for each
iteration, running k steps of Langevin dynamics to recover the oc-
cluded regions of the observed sequences. The additional Langevin
dynamics for recovery is initialized by the observed occluded
sequences, and it only synthesizes the occluded regions, while
keeping the visible parts in the observed sequences unchanged. At
each iteration, we use the completed observed sequences and the
synthesized sequences to compute the gradient of the log-likelihood
and update the model parameters. Our method simultaneously
accomplishes the following tasks: (1) recover the occluded pixels
of the training video sequences, (2) synthesize new video sequences
from the learned model, (3) learn the model by updating the model
parameters using the recovered sequences and the synthesized
sequences. See Algorithm [2] for the description of the learning,
sampling, and recovery algorithm.

Algorithm 2 Learning, sampling, and recovery algorithm

Input:
(1) training image sequences with occluded pixels {I,,,m =

sy M}

(2) binary masks {O,,,m = 1,..., M} indicating the loca-
tions of the occluded pixels in the training image sequences
(3) number of synthesized image sequences M
(4) number of Langevin steps [ for synthesizing image
sequences
(5) number of Langevin steps k for recovering the occluded
pixels
(6) number of learning iterations 7'

Output:
(1) estimated model parameters 6 _
(2) synthesized image sequences {Im, m=1,..,M}
(3) recovered image sequences {I,,,m =1,..., M}

Let ¢ < 0, initialize 0(®.

Initialize L,,,, for m = 1, ..., M, by sampling from ¢(I).

Initialize I;n =1, form=1,.. M.

repeat
For each m, run k steps of Langevin dynamics to recover
the occluded region of Im, i.e., starting from the current I/
each step follows equation (), but only the occluded plxels
in I (specified by O,,,) are updated in each step. _

6:  For each m, run [ steps of Langevin dynamics to update I,,,,

i.e., starting from the current I,,,, each step follows equation

AN

7. Calculate HOP = S (X, 00) /M, and HY" =
S (L 00) /0.

8 Update (!+1) « () 4 y(HOP>s —
n.

9: Lett<+t+1

10: until ¢t =T

H®™), with step size

We design 3 types of occlusions: (1) Type 1: salt and pepper
occlusion, where we randomly place 7 X 7 masks on the 150 x 150
image domain to cover 50% of the pixels of the videos. (2) Type 2:
single region mask occlusion, where we randomly place a 60 x 60
mask on the 150 x 150 image domain. (3) Type 3: missing frames,
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Fig. 8. Learning energy-based spatial-temporal generative ConvNets from occluded video sequences. For each experiment, the first row shows a
segment of the observed sequence, the second row shows a segment of the occluded sequence with black masks, and the third row shows the
corresponding segment of the recovered sequence. The observed occluded sequences are of the size 150 x 150 pixels x 70 frames. (a) type 1: salt
and pepper mask. (b) type 2: single region mask. (c) type 3: 50% missing frames.

where we randomly block 50% of the image frames from each
video. Figure [§] displays two examples of the recovery results for
each type of occlusion. Each video has 70 frames. We can see
that our model can recover the incomplete video sequences, while
learning from them.

To quantitatively evaluate the qualities of the recovered videos,
we test our method on 7 video sequences, which are collected from
DynTex++ dataset of [[67]], with 3 types of occlusions mentioned
above. We use the same model structure as the one used in
Experiment 3. The number of Langevin steps for recovery is set
to be equal to the number of Langevin steps for synthesizing,
which is 20. We run a single Langevin chain for synthesis.
For each experiment, we report the recovery errors measured
by the average per pixel difference between the original image
sequence and the recovered image sequence on the occluded
pixels. The range of pixel intensities is [0,255]. We compare

our results with the results obtained by a baseline method, which
is a generic Markov random field model defined on the video
sequence. The model is a 3D (spatial-temporal) Markov random
field, whose potentials are pairwise £1 or £ differences between
nearest neighbor pixels, where the nearest neighbors are defined
in both the spatial and temporal domains. The image sequences
are recovered by sampling the intensities of the occluded pixels
conditional on the observed pixels using the Gibbs sampler. Table[2]
shows the comparison results for 3 types of occlusions. Our model
significantly outperforms the baseline methods in terms of recovery
errors. Note that the recovery errors are not training errors, because
the intensities of the occluded pixels of the image frames are not
observed in training.

We want to emphasize that (1) our models differ from denoising
auto-encoders , where the training data are fully observed, and
noises are added as a matter of regularization; (2) our experiments



TABLE 2
Recovery errors in occlusion experiments

(a) salt and pepper masks
\ | ours | MRF-¢; | MRF-{3

flag 3.7923 6.6211 10.9216
fountain 5.5403 8.1904 11.3850
ocean 3.3739 7.2983 9.6020
playing 5.9035 | 14.3665 | 15.7735
seaworld | 5.3720 | 10.6127 | 11.7803
traffic 7.2029 | 14.7512 | 17.6790
windmill | 5.9484 8.9095 12.6487

[ Avg. [ 53048 | 10.1071 | 12.8272 |

(b) single region masks

\ | ours | MRF-{; | MRF-{> |
flag 8.1636 10.6586 | 12.5300
fountain 6.0323 11.8299 | 12.1696
ocean 3.4842 8.7498 9.8078
playing 6.1575 | 15.6296 | 15.7085
sea world | 5.8850 12.0297 12.2868
traffic 6.8306 15.3660 | 16.5787
windmill | 7.8858 11.7355 | 13.2036

[ Avg. [ 63484 | 12.2856 | 13.1836 |

(¢) 50% missing frames

\ | ours | MRF-{; | MRF-{; |
flag 5.5992 10.7171 12.6317
fountain 8.0531 19.4331 13.2251
ocean 4.0428 9.0838 9.8913
playing 7.6103 222827 | 17.5692
sea world | 5.4348 13.5101 12.9305
traffic 8.8245 16.6965 | 17.1830
windmill 7.5346 13.3364 | 12.9911

[ Avg. [ 6.7285 | 15.0085 | 13.7746 |

are different from in-painting or de-noising, where the prior model
or regularization has already been learned from fully observed data
or provided; (3) Learning from incomplete data can be difficult for
GAN and VAE.

4.5 Experiment 5: Background inpainting

If a moving object in the video is occluded in each frame, it
turns out that the recovery algorithm will become an algorithm
for background inpainting of videos, where the goal is to remove
the undesired moving object from the video. We use the same
model as the one in Experiment 2 for Figure 2} Figure [9] shows
two examples of removals of (a) a moving boat and (b) a walking
person respectively. The videos are collected from [74]]. For each
example, the first column displays 4 frames of the original video.
The second column shows the corresponding frames with masks
occluding the target to be removed. The third column presents the
inpainting result by our algorithm. The video size is 130 x 174
pixels x 150 frames in example (a) and 130 x 230 pixels x104
frames in example (b). The experiment is different from the video
inpainting by interpolation. We synthesize image patches to fill in
the empty regions of the video by running Langevin dynamics. We
run a single Langevin chain for synthesis. As shown in Figure 9}
our method successfully removes the target objects and inpaints
the regions of the removed objects with reasonable backgrounds.
Both appearance and motion of the inpainted video sequences are
physically plausible.
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(b) removing a walking person in front of fountain

Fig. 9. Background inpainting for videos. For each experiment, the first
column displays 4 frames of the original video. The second column shows
the corresponding frames with black masks occluding the target to be
removed. The third column shows the inpainting result by our algorithm.
(a) a moving boat in the lake (130 x 174 pixels x150 frames). (b) a
walking person in front of fountain (130 x 230 pixels x 104 frames).

5 CONCLUSION

In this paper, we propose an energy-based spatial-temporal genera-
tive ConvNet model for dynamic patterns, such as dynamic textures
and action patterns. The model is in the form of deep spatial-
temporal convolutional energy-based model where the energy
function is defined by a bottom-up spatial-temporal ConvNet. The
model corresponds to a spatial-temporal discriminative ConvNet
classifier in the sense that the latter can be directly derived from
the former. This property makes our model natural for modeling
dynamic patterns. The learning of the model is achieved by
an “analysis by synthesis” scheme: we sample the synthesized
examples from the current model, usually by Markov chain Monte
Carlo (MCMC), and then update the model parameters based on
the difference between the observed training examples and the
synthesized examples. We show that the learning algorithm can
be interpreted as an alternating mode seeking and mode shifting



process, as well as an adversarial minimax optimization process.

Our experiments show that the model can synthesize different
types of realistic dynamic patterns, with well designed spatial-
temporal ConvNet structures serving as energy functions. Besides,
it is possible to learn the model from videos with occluded pixels or
missing frames. This can be achieved by adopting an extra Langevin
dynamics starting from the corrupted training video sequences to
recover the missing information. The resulting learning, sampling,
and recovery algorithm is useful for unsupervised video inpainting,
which includes video recovery (e.g., recovering missing pixels
of frames of a video) and background inpainting (e.g., removing
undesired moving object from a video). We show that learning
from incomplete training data can provide an objective criterion to
evaluate generative models of dynamic patterns.
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