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Learning and Inferring “Dark Matter” and Predicting
Human Intents and Trajectories in Videos

Dan Xie, Tianmin Shu, Sinisa Todorovic and Song-Chun Zhu

Abstract—This paper presents a method for localizing functional objects and predicting human intents and trajectories in
surveillance videos of public spaces, under no supervision in training. People in public spaces are expected to intentionally
take shortest paths (subject to obstacles) toward certain objects (e.g. vending machine, picnic table, dumpster etc.) where they
can satisfy certain needs (e.g., quench thirst). Since these objects are typically very small or heavily occluded, they cannot be
inferred by their visual appearance but indirectly by their influence on people’s trajectories. Therefore, we call them “dark matter”,
by analogy to cosmology, since their presence can only be observed as attractive or repulsive “fields” in the public space. A
person in the scene is modeled as an intelligent agent engaged in one of the “fields” selected depending his/her intent. An
agent’s trajectory is derived from an Agent-based Lagrangian Mechanics. The agents can change their intents in the middle of
motion and thus alter the trajectory. For evaluation, we compiled and annotated a new dataset. The results demonstrate our
effectiveness in predicting human intent behaviors and trajectories, and localizing and discovering distinct types of “dark matter”
in wide public spaces.

Index Terms—scene understanding, video analysis, functional objects, intents modeling, trajectory projection
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1 INTRODUCTION

1.1 Motivation and Objective

T His paper addresses inference of why and how people
move in surveillance videos of public spaces (e.g.,

park, campus), under no supervision in training. Regarding
the “why”, we expect that people typically have certain
needs (e.g., to quench thirst, satiate hunger, get some rest),
and hence intentionally move toward certain destinations in
the scene where these needs can be satisfied (e.g., vending
machine, food truck, bench). Regarding the “how”, we
make the assumption that people take shortest paths to
intended destinations, while avoiding obstacles and non-
walkable surfaces. We also consider three types of human
behavior, including: “single intent” when a person reaches
the destination and stops, “sequential intent” when a person
sequentially visits several functional objects (e.g., buy food
at the food-truck, and go to a bench to have lunch), and
“change of intent” when a person initially heads to one goal
but then changes the goal (e.g. because the line in front of
the food-truck is too long).

The answers to the above “why” and “how” are impor-
tant, since they can be used toward a “deeper” scene and
event understanding than that considered by related work,
in terms of predicting human trajectories in the future,
reasoning about latent human intents and behavior, and
localizing functional objects and non-walkable areas in the
scene.
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Fig. 1: (left) People’s trajectories are color-coded by their
shared goal destination. The triangles denote destinations,
and the dots denote start positions of the trajectories. E.g.,
people may be heading toward the food-truck to buy food
(green), or the vending machine to quench thirst (blue).
(right) Due to low resolution, poor lighting, and occlusions,
objects at the destinations are very difficult to detect only
based on their appearance and shape.

It is worth noting that destinations of human trajectories
are typically occupied by objects that are poorly visible
even by a human eye, due to the low-resolution of our
surveillance videos, as illustrated in Fig. 1. We call these
objects “dark matter”, because they are distinguishable
from other objects primarily by the functionality to attract
or repel people, not by their appearance. A detection of such
objects based on appearance would be unreliable. We use
this terminology to draw an analogy to cosmology, where
existence and properties of dark matter are hypothesized
and inferred from its gravitational effects on visible matter.
Analogously, we consider poorly visible objects at desti-
nations of human trajectories as different types of “dark
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Examples of “dark matter” Human need
Vending machine / Food truck / Table Hunger

Water fountain / Vending machine Thirst
ATM / Bank Money

Chair / Table / Bench / Grass Rest
News stand / Ad billboard Information

Trash can Hygiene
Bush / Tree Shade from the sun

TABLE 1: Examples of human needs and objects that
can satisfy these needs in the context of a public space.
These objects appear as “dark matter” attracting people to
approach them, or repelling people to stay away from them.

matter” exerting attraction and repulsion forces on people.
Each type is defined probabilistically by the corresponding
human-trajectory pattern around the “dark matter”. Tab. 1
lists examples of human needs and objects with “dark-
matter” functionality considered in this paper.

Problem statement: Given a video of a public space,
our problem involves unsupervised prediction of:
• Human intents, trajectories, and behaviors,
• Locations of “dark matter” and non-walkable surfaces,

i.e., functional map of the scene,
• Attraction or repulsion force fields of the localized

“dark matter”.
In this paper, we also consider unsupervised discovery
of different types of “dark matter” in a given set of
surveillance videos. As our experiments demonstrate, each
discovered type groups a certain semantically meaningful
class of objects with the corresponding function in the scene
(e.g., stairs and entrance doors of buildings form a type of
“dark matter” where people exit the scene).

This work focuses on the unsupervised setting where
ground truth for objects in the scene representing “dark
matter” and their functionality is not available in training.
Studying such a setting is important, since providing ground
truth about functionality of objects would be very difficult
in our video domain, in part, due to the low video resolution
and top-down views. Another difficulty for ground-truth
annotation is that functionality of objects is not tightly
correlated with their semantic classes, because instances
of the same object may have different functionality in our
scenes (e.g., a bench may attract people to get some rest,
or repel them if freshly painted).

Key contribution of this paper involves a joint repre-
sentation and inference of:
• Visible domain— traditional recognition categories:

objects, scenes, actions and events; and
• Functional domain — higher level cognition concepts:

fluent, causality, intents, attractions and physics.
To formulate this problem, we leverage the framework

of Lagrange mechanics, and introduce the concept of field,
analogous to gravitational field in physics. Each “dark
matter” and non-walkable surface in the scene generates an
attraction (positive) and repulsion (negative) field. Thus, we
view the scene as a physical system populated by particle-
agents who move in many layers of “dark-energy” fields.

Unlike inanimate particles, each agent can intentionally
select a particular force field to affect its motions, and
thus define the minimum-energy Dijkstra path toward the
corresponding source “dark matter”. In the following, we
introduce the main steps of our approach.

1.2 Overview of Our Approach

Fig. 2 illustrates main steps of our approach.
Tracking. Given a video, we first extract people’s tra-

jectories using the state-of-the-art multitarget tracker of [1]
and the low-level 3D scene reconstruction of [2]. While the
tracker and 3D scene reconstruction perform well, they may
yield noisy results. Also, these results represent only partial
observations, since the tracks of most people in the given
video are not fully observable, but get cut out at the end.
These noisy, partial observations are used as input features
to our inference.

Bayesian framework. Uncertainty is handled by spec-
ifying a joint pdf of observations, latent layout of non-
walkable surfaces and functional objects, and people’s
intents and trajectories. Our model is based on the following
assumptions. People are expected to have only one goal
destination at a time, and be familiar with the scene
layout (e.g., from previous experience), such that they
can optimize their trajectory as a shortest path toward the
intended functional object, subject to the constraint map of
non-walkable surfaces. We consider three types of intent
behavior. A person may change the intent and decide to
switch to another goal destination, have only a single intent,
or want to sequentially reach several functional objects.

Agent-based Lagrangian Mechanics. Our Bayesian
framework leverages the Lagrangian mechanics (LM) by
treating the scene as a physics system where people can be
viewed as charged particles moving along the mixture of
repulsion and attraction energy fields generated by obstacles
and functional objects. The classical LM, however, is not di-
rectly applicable to our domain, because it deterministically
applies the principle of Least Action, and thus provides a
poor model of human behavior.

We extend LM to an agent-based Lagrangian mechan-
ics (ALM) which accounts for latent human intentions.
Specifically, in ALM, people can be viewed as charged
particle-agents with capability to intentionally select one
of the latent fields, which in turn guides their motions by
the principle of Least Action.

Inference. We use the data-driven Markov Chain Monte
Carlo (MCMC) for inference [3], [4]. In each iteration, the
MCMC probabilistically samples the number and locations
of obstacles and sources of “dark energy”, and people’s
intents. This, in turn, uniquely identifies the “dark energy”
fields in the scene. Each person’s trajectory is estimated as
the globally optimal Dijkstra path in these fields, subject
to obstacle constraints. The predicted trajectories are used
to estimate if they arose from “single”, “sequential” or
“change” of human intents. In this paper, we consider two
inference settings: offline and online. The former first infers
the layout of “dark matter” and obstacles in the scene as
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Fig. 2: An example video where people driven by latent needs move toward functional objects where these needs can be
satisfied (i.e., “dark matter”). (Right) A zoomed-in top-down view of the scene and our actual results of: (a) Inferring
and localizing the person’s goal destination; (b) Predicting the person’s full trajectory (red); (c) Estimating the force field
affecting the person (the blue arrows, where their thickness indicates the force magnitude; the black arrows represent
another visualization of the same field.); and (d) Estimating the constraint map of non-walkable areas and obstacles in
the scene (the “holes” in the field of blue arrows and the field of black arrows).

well as people’s intents, and then fixes these estimates for
predicting Dijkstra trajectories and human intent behavior.
The latter sequentially estimates both people’s intents and
human trajectories frame by frame, where the estimation
for frame t uses all previous predictions.

We present experimental evaluation on challenging, real-
world videos from the VIRAT [5], UCLA Courtyard [6],
UCLA Aerial Event [7] datasets, as well as on our five
new videos of public squares. Our ground truth annotations
and the new dataset will be made public. The results
demonstrate our effectiveness in predicting human intent
behaviors and trajectories, and localizing functional objects,
as well as discovering distinct functional classes of objects
by clustering human motion behavior in the vicinity of
functional objects. Since localizing functional objects in
videos is a new problem, we compare with existing ap-
proaches only in terms of predicting human trajectories.
The results show that we outperform prior work on VIRAT
and UCLA Courtyard datasets.

1.3 Relationship to Prior Work
This section reviews three related research streams in the
literature, including the work on functionality recognition,
human tracking, and prediction of events. For each stream,
we also point out our differences and contributions.

Functionality recognition. Recent work has demon-
strated that performance in object and human activity recog-
nition can be improved by reasoning about functionality
of objects. Functionality is typically defined as an object’s
capability to satisfy certain human needs, which in turn
triggers corresponding human behavior. E.g., reasoning
about how people handle and manipulate small objects
can improve accuracy of recognizing calculators or cell-
phones [8], [9]. Some other object classes can be directly
recognized by estimating how people interact with the
objects [10], rather than using common appearance features.
This interaction can be between a person’s hands and the
object [11], or between a human skeleton and the objects

[12]. Another example is the approach that successfully
recognizes chairs among candidate objects observed in the
image by using human-body poses as context for identi-
fying whether the candidates have functionality “sittable”
[13]. Similarly, video analysis can be improved by detecting
and localizing functional scene elements, such as parking
spaces, based on low-level appearance and local motion
features [14]. The functionality of moving objects [15]
and urban road environments [16] has been considered for
advancing activity recognition.

As in the above approaches, we also resort to reasoning
about functionality of objects based on human behavior
and interactions with the objects, rather than use standard
appearance-based features. Our key difference is that we
explicitly model latent human intents which can modify
an object’s functionality – specifically, in our domain, an
object may simultaneously attract some people and repel
others, depending on their intents.

Human tracking and planning. A survey of vision-
based trajectory learning and analysis for surveillance is
presented in [17]. The related approaches differ from ours
in the following aspects. Estimations of: (a) Representative
human motion patterns in (years’) long video footage [18],
(b) Lagrangian particle dynamics of crowd flows [19], and
(c) Optical-flow based dynamics of crowd behaviors [20]
do not account for individual human intents. Reconstruction
of an unobserved trajectory segment has been addressed
only as finding the shortest path between the observed start
and end points [21]. Early work also estimated a numeric
potential field for robot path planning [22], but did not
account for the agents free will to choose and change
goal destinations along their paths. Optimal path search
[23], and reinforcement learning and inverse reinforcement
learning [24], [25], [26] was used for explicitly reasoning
about people’s goals for predicting human trajectories.
However, these approaches considered: i) Relatively san-
itized settings with scenes that did not have many and
large obstacles (e.g., parking lots); and ii) Limited set
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of locations for people’s goals (e.g., along the boundary
of the video frames). People’s trajectories have also been
estimated based on inferring social interactions [27], [28],
[29], [30], or detecting objects in egocentric videos [31].
However, these approaches critically depend on domain
knowledge. For example, the approaches of [26] and [31]
use appearance-based object detectors, learned on training
data, for predicting trajectories. In contrast, we are not
in a position to apply appearance-based object detectors
for identifying hidden functional objects, due to the low
resolution of our videos. Finally, a Mixture of Kalman
Filters has been used to cluster smooth human trajectories
based on their dynamics and start and end points [32].
Instead of linear dynamics, we use the principle of Least
Action, and formulate a globally optimal planning of the
trajectories. This allows us to handle sudden turns and
detours caused by obstacles or change of intent. Our novel
formulation advances Lagrangian Mechanics.

Related to ours is prior work in cognitive science [33]
aimed at inferring human goal destinations based on in-
verting a probabilistic generative model of goal-dependent
plans from an incomplete sequence of human behavior.
Also, similar to our MCMC sampling, the Wang-Landau
Monte Carlo (WLMC) sampling is used in [4] for people
tracking in order to handle abrupt motions.

Prediction and early decision. There is growing interest
in action prediction [34], [35], [36], and early recognition
of a single human activity [37] or a single structured event
[38], [39]. These approaches are not aimed at predicting
human trajectories, and are not suitable for our domain in
which multiple activities may happen simultaneously. Also,
some of them make the assumption that human activities
are structured [38], [39] which is relatively rare in our
surveillance videos of public spaces where people mostly
just walk or remain still. Another difference is that we
distinguish activities by human intent, rather than their
semantic meaning. Some early recognition approached do
predict human trajectories [40], but use a deterministic
vector field of people’s movements, whereas our “dark en-
ergy” fields are stochastic. In[41], an anticipatory temporal
conditional random field (ATCRF) is used for predicting
human activities based on object affordances. These activ-
ities are, however, defined at the human-body scale, and
thus the approach cannot be easily applied to our wide-
scene views. A linear dynamic system of [42], [32] models
smooth trajectories of pedestrians in crowded scenes, and
thus cannot handle sudden turns and detours caused by
obstacles, as required in our setting. In graphics, relatively
simplistic models of agents are used to simulate people’s
trajectories in a virtual crowd [43], [44], [45], but cannot
be easily extended to our surveillance domain. Unlike the
above related work, we do not exploit appearance-based
object detectors for localizing objects that can serve as
possible people’s destinations in the scene.

Extensions from our preliminary work. We extend
our preliminary work [46] by additionally: 1) Modeling
and inferring “sequential” human intents and “change of
intent” along the course of people’s trajectories; 2) Online

prediction of human intents and trajectories; 3) Clustering
functional objects; and 4) Presenting the corresponding new
empirical results. Neither change of intent nor “sequential”
intents were considered in [46].

1.4 Contributions

This paper makes the following three contributions.
• Agent-based Lagrangian Mechanics (ALM). We lever-

age the Lagrangian mechanics (LM) for modeling
human motion in an outdoor scene as a physical
system. The LM is extended to account for human free
will to choose goal destinations and change intent.

• Force-dynamic functional map. We present a novel ap-
proach to modeling and estimating the force-dynamic
functional map of a scene in the surveillance video.

• Human intents. We explicitly model latent human
intents, and allow a person to change intent.

2 AGENT-BASED LAGRANGIAN MECHANICS

At the scale of large scenes such as courtyard, people
are considered as “particles” whose shapes and dimensions
are neglected, and their motion dynamics modeled within
the framework of Lagrangian mechanics (LM) [47]. LM
studies the motion of a particle with mass, m, at positions
x(t) = (x(t), y(t)) and velocity, ẋ(t), in time t, in a force
field ~F (x(t)) affecting the motion of the particle. Particle
motion in generalized coordinates system is determined by
the Lagrangian function, L(x, ẋ, t), defined as the kinetic
energy of the entire physical system, 1

2mẋ(t)2, minus its
potential energy, −

∫
x
~F (x(t)) ~dx(t),

L(x, ẋ, t) =
1

2
mẋ(t)2 +

∫
x

~F (x(t)) ~dx(t). (1)

Action in such a physical system is defined as the time
integral of the Lagrangian of trajectory x from t1 to t2:∫ t2
t1
L(x, ẋ, t)dt.

LM postulates that a particle’s trajectory, Γ(t1, t2) =
[x(t1), ...,x(t2)], is governed by the principle of Least
Action in a generalized coordinate system:

Γ(t1, t2) = arg min
x

∫ t2

t1

L(x, ẋ, t)dt. (2)

The classical LM is not directly applicable to our do-
main, because it considers inanimate objects. We extend
LM in two key aspects, and thus derive the Agent-based
Lagrangian mechanics (ALM). In ALM, a physical system
consists of a set of force sources. Our first extension enables
the particles to become agents with free will to select
a particular force source from the set which can drive
their motion. Our second extension endows the agents with
knowledge about the layout map of the physical system.
Consequently, by the principle of Least Action, they can
globally optimize their shortest paths toward the selected
force source, subject to the known layout of obstacles.
These two extensions can be formalized as follows.
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(a) (b) (c) (d)

Fig. 3: (a) An example of a public space; (b) 3D reconstruction of the scene using the method of [2]; (c) Our estimation
of the ground surface; and (d) Our inference is based on superpixels obtained using the method of [48].

Let ith agent choose jth source from the set of sources.
Then, i’s action, i.e., trajectory is

Γij(t1, t2)

= arg min
x

∫ t2

t1

[1

2
mẋ(t)2+

∫
x

~Fij(x(t)) ~dx(t)
]
dt,

s.t. x(t1) = xi, x(t2) = xj .

(3)

For solving the difficult optimization problem of (3) we
resort to certain approximations, as explained below.

In our domain of public spaces, the agents cannot in-
crease their speed without limit. Hence, every agent’s speed
is upper bounded by some maximum speed. Also, it seems
reasonable to expect that accelerations or decelerations
of people along their trajectories in a public space span
negligibly short time intervals. Consequently, the first term
in (3) is assumed to depend on a constant velocity of the
agent, and thus does not affect estimation of Γij(t1, t2).

For simplicity, we allow the agent to make only discrete
displacements over a lattice of scene locations Λ (e.g.,
representing centers of superpixels occupied by the ground
surface in the scene), i.e., ~dx(t) = ~∆x. Also, we expect
that the agent is reasonable and always moves along the
direction of ~Fij(x) at every location.

From (3) and above considerations, we derive:

Γij(t1, t2) = arg min
Γ⊂Λ

∑
x∈Γ

|~Fij(x) · ~∆x|, (4)

such that x(t1) = xi and x(t2) = xj .
A globally optimal solution of (4) can be found with

the Dijkstra algorithm. Note that the end location of the
predicted Γij(t1, t2) corresponds to the location of source
j. It follows that estimating human trajectories can readily
be used for estimating the functional map of the scene. To
address uncertainty, this estimation is formulated within the
Bayesian framework, as explained next.

3 PROBLEM FORMULATION

This section defines our probabilistic framework in terms of
observable and latent variables. We first define all variables,
and then specify their joint probability distribution. The
notation is summarized in Tab. 2.

Agents, Sources, Constraint Map: The video shows
agents, A = {ai : i = 1, ...,M}, and sources of “dark
energy”, S = {sj : j = 1, ..., N}, occupying locations on
the 2D lattice, Λ = {x = (x, y) : x, y ∈ Z+}. Locations
x ∈ Λ may be walkable or non-walkable, as indicated by
a constraint map, C = {c(x) : ∀x ∈ Λ, c(x) ∈ {−1, 1}},

x A location (x, y) on the ground plane
Γ The trajectory of an agent
ai i-th agent in the video
A All agents in the video
sj Location of the j-th source of “dark energy”
S The lcoations of all sources of “dark energy”

c(x) Indicator of walkability at x.
C A constraint map
Λ 2D lattice

Λ1 The set of walkable locations
rij THe relationship between agent i and source j
R The set of agent-goal relationships
zi Agent i’s behavior type
Z The set of the types of all agents’s behavior
W All latent variables

~F−(x) The repulsion force at location x
~F+
j (x) The attraction force generated by source sj at x

TABLE 2: Notation used in this paper.

where c(x) = −1, if x is non-walkable, and c(x) = 1,
otherwise. Walkable locations form the set Λ1 = {x : x ∈
Λ, c(x)=1}.

Intentions of Agents are defined by the set of agent-
goal relationships R = {rij}. When ai wants to pursue sj ,
we specify their relationship as rij = 1; otherwise rij = 0.
Note that ai may pursue more than one source from S in
a sequential manner, during the lifetime of the trajectory.

Three Types of Agent Behavior: In this paper, we
consider three types of behavior: “single”, “sequential” and
“change of intent”. We follow the definitions of intent types
in [24]. The intent behavior of all agents is represented by
a set of latent variables, Z = {zi}. An agent ai is assigned
zi = “single” when its intent is to achieve exactly one goal,
and remain at the reached destination indefinitely. An agent
ai is assigned zi = “sequential” when its intent is to achieve
several goals along the trajectory. At each goal reached, the
agent satisfies the corresponding need before moving to the
next goal. In our videos, agents with sequential behavior
typically visit no more than 3 destinations. An agent may
also give up on the initial goal before reaching it, and switch
to another goal. This defines zi = “change of intent”. In
our surveillance videos, we observe that “change of intent”
happens relatively seldom, on average for only 1 agent in A
in a given video. Also, we find that the goal-switching may
occur equally likely at any moment, even when people are
quite close to their initial goals (e.g., when seeing a long
line in front of the food-truck).

Repulsion Forces: Sources S exert either repulsive
or attractive forces on agents in A. Every non-walkable
location x′ ∈ Λ\Λ1 generates a repulsion force at agent’s
location x, ~F−x′(x). The magnitude |~F−x′(x)| is defined
as the Mahalanobis distance in terms of the quadratic
(x − x′)2, with covariance Σ = σ2

rI, where I is the
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Fig. 4: Visualizations of the force field for the scene from
Fig. 2. (left) In LM, particles are driven by a sum of all
forces; the figure shows the resulting fields generated by
only two sources. (right) In ALM, each agent selects a
single force ~Fj(x) to drive its motion; the figure shows that
forces at all locations in the scene point toward the top left
of the scene where the source is located. The white regions
represent our estimates of obstacles. Repulsion forces are
short ranged, with magnitudes too small to show here.

identity matrix, and σ2
r = 10−2 is empirically found as

best. Thus, the magnitude |~F−x′(x)| is large in the vicinity
of non-walkable location x′, but quickly falls to zero for
locations farther away from x′. This models our observation
that a person may take a path that is very close to non-
walkable areas, i.e., the repulsion force has a short-range
effect on human trajectories. The sum of all repulsion forces
arising from non-walkable areas in the scene gives the joint
repulsion, ~F−(x) =

∑
x′∈Λ\Λ1

~F−x′(x).
Attraction Forces: Each source sj ∈ S is capable of

generating an attraction force, ~F+
j (x), if selected as a

goal destination by an agent at location x. The magnitude
|~F+
j (x)| is specified as the Mahalanobis distance in terms

of the quadratic (x−xj)
2, with covariance Σ = σ2

aI taken
to be the same for all sources sj ∈ S, and σ2

a = 104

is empirically found as best. This models our observation
that people tend to first approach near-by functional objects,
because, in part, reaching them requires less effort than
approaching farther destinations. The attraction force is
similar to the gravity force in physics whose magnitude
becomes smaller as the distance increases.

Net Force: When ai ∈ A selects sj ∈ S, ai is affected
by the net force, ~Fij(x), defined as:

~Fij(x) = ~F−(x) + ~F+
j (x). (5)

From (5), we can more formally specify the difference
between LM and our ALM, presented in Sec. 2. In LM,
an agent would be affected by forces of all sources in S,
~F LM
ij (x) = ~F−(x) +

∑
j
~F+
j (x). In contrast, in ALM, an

agent is affected by the force of a single selected source,
~Fj(x), along with the joint repulsion force. The difference
between between LM and our ALM is illustrated in Fig. 4.

Trajectories of Agents: In this paper, we make the
assumption that we have access to noisy trajectories of
agents, observed over a given time interval in the video,
Γ′ = Γ′(0, t0) = {Γ′i(0, t0) : i = 1, ...,M}. Given these
observations, we define latent trajectories of agents for any
time interval, (t1, t2), including those in the future (i.e.,
unobserved intervals), Γ = Γ(t1, t2) = {Γi(t1, t2) : i =
1, ...,M}. Each trajectory Γi is specified by accounting for
one of the three possible behaviors of the agent as follows.
Following the principle of Least Action Recall, as specified

in Sec. 2, an optimal trajectory Γij(t1, t2) = [x(t1) =
xi, . . . ,x(t2) = xj ] of ai at location xi moving toward sj
at location xj minimizes the energy

∑
x∈Γij

|~Fij(x) · ~∆x|.
Dropping notation for time, we extend this formulation to
account for the agent’s behavior as

Γi =
∑
j

Γij = arg min
Γ⊂Λ

∑
j

∑
x∈Γ

|~Fij(x) · ~∆x|, (6)

where the summation over j uses: (i) only one source
for “single” intent (i.e., Γi = Γij when rij = 1), (ii)
two sources for “change of intent”, and (iii) maximally
n sources for “sequential” behavior. Note that for the
“sequential” behavior the minimization in (6) is constrained
such that the trajectory must sequentially pass through
locations xj of all sources sj pursued by the agent.

The Probabilistic Model: Using the aforementioned
definitions of variables in our framework, we define
the joint posterior distribution of latent variables W =
{C, S,R,Z,Γ} given the observed trajectories of agents
Γ′ = {Γ′i} and appearance features I in the video as

P (W |Γ′, I)∝P (C, S,R,Z)P (Γ,Γ′|C, S,R,Z)P (I|C),
(7)

where the joint prior is specified as

P (C, S,R,Z) = P (C)P (S|C)P (R|S)P (Z), (8)

with distributions P (C), P (S|C), P (R|S), P (Z), and
P (I|C) defined in Sec. 4. For modeling the joint likelihood
of trajectories in (7), we use the naı̈ve Bayes model:

P (Γ,Γ′|C, S,R,Z) =

M∏
i=1

P (Γi|C, S,R,Z), (9)

where P (Γi|C, S,R,Z) is also defined in Sec. 4.
In the following section, we define the priors and likeli-

hoods of our probabilistic model characterized by (7).

4 DISTRIBUTIONS OF OUR MODEL

This section defines the priors and likelihoods of (8)–(9).
Smoothness of Constraint Map: The prior P (C) en-

forces spatial smoothness of the constraint map C using
the Ising random field:

P (C)∝ exp

β ∑
x∈Λ,x′∈∂x∩Λ

c(x)c(x′)

 , β > 0. (10)

Likelihood of Appearance Features: We model walk-
able locations in the scene in terms of appearance features
I extracted from the video. The likelihood of I is defined
as

P (I|C) =
∏
x∈Λ

P (φ(x)|c(x)=1), (11)

where φ(x) is a feature descriptor vector consisting of:
i) the RGB color at the scene location x, and ii) the
binary indicator if x belongs to the ground surface of
the 3D reconstructed scene. P (φ(x)|c(x)=1) is specified
as a 2-component Gaussian mixture model. Note that
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P (φ(x)|c(x)=1) is directly estimated on our given (single)
video with latent c(x), not using training data.

Modeling Spatial Layout of Dark Matter: The latent
sources of “dark energy”, sj ∈ S, are characterized by
location on the 2D lattice, µj ∈ Λ, and 2 × 2 spatial
covariance matrix Σj of sj’s force field:

S = {sj = (µj ,Σj) : j = 1, ..., N}. (12)

The distribution of S is conditioned on C, where the
total number N = |S| and occurrences of the sources are
modeled with the Poisson and Bernoulli pdf’s:

P (S|C)∝η
N

N !
e−η

N∏
j=1

ρ
c(µj)+1

2 (1− ρ)
1−c(µj)

2 , (13)

where parameters η > 0, ρ ∈ (0, 1), and c(µj) ∈ {−1, 1}.
Distribution of Agent Intentions is conditioned on

S, and modeled using the multinomial distribution with
parameters θ = [θ1, ..., θj , ..., θN ],

P (R|S) =
∏N
j=1 θ

bj
j , (14)

where each θj is viewed as a prior of selecting sj ∈ S,
and sj is chosen bj times to serve as a goal destination,
bj =

∑M
i=1 1(rij = 1), j = 1, ..., N , where 1(·) denotes

the binary indicator function.
Modeling Agent Behavior: We make the simplifying

assumption that R and Z are independent, and that indi-
vidual intent behavior zi is independent from other agents’
behaviors:

P (Z) =

M∏
i=1

P (zi), (15)

where P (zi) is specified for the three types of behavior
considered in this paper as follows. The probability that an
agent has “single intent” is defined as

P (zi = “single”) ∝ 1− κ, (16)

where κ ∈ [0, 1] is a constant. The probability that an agent
has n “sequential intents” is specified as

P (zi = “sequential”, n) ∝ κ(n−1)(1−κ), κ ∈ [0, 1]. (17)

In our videos, we have 2 ≤ n ≤ 3. Finally, to define the
probability of “change of intent”, we make the assumption
that an agent can change the intent only once, and that
moment may happen at any time between the start and end
of the trajectory with probability γ ∈ [0, 1]. This is justified
in our domain, as explained in Sec. 3. Also, we specify
that the new goal can be selected from the remaining N −
1 possible destinations in the scene with a uniform prior
distribution. Hence, the probability of “change of intent” is
defined as

P (zi = “change ”) =
γ

N − 1
. (18)

Trajectory Likelihood: To address uncertainty about
the layout of obstacles, agent’s goal destination(s), and
agent’s behavior, we define the likelihood of trajectory Γi

in terms of the energy that ai must spend moving along the
trajectory as

P (Γi|C, S,R, zi) ∝ e
−λ

∑
j,x∈Γij

|~Fij(x)· ~∆x|
, (19)

where λ > 0, and R specifies the source(s) sj that ai is
(sequentially) attracted to. The likelihood in (19) models
that when ai is far away from sj , the total energy needed to
cover that trajectory is bound to be large, and consequently
uncertainty about ai’s trajectory is large. Conversely, as ai
gets closer to sj , uncertainty about the trajectory reduces.
Note that applying the principle of Least Action to (19), as
in (6), gives the highest likelihood of Γi.

5 OFFLINE AND ONLINE INFERENCE

Given observations {I,Γ′}, we infer the latent variables
W by maximizing the joint posterior defined in (7). We
consider offline and online inference.

Offline inference first estimates C, S, and R over the
initial time interval (0, t0) observed in the video. These
estimates are then used to compute forces {~Fij(x)} for all
agents and their respective goal destinations, as specified in
Sec. 3. Finally, the computed forces are used to predict the
entire trajectories of agents over (t0, T ) using the Dijkstra
algorithm, and estimate the agents’ intent behaviors.

In online inference, the agent-source relationships R(t)

and trajectories Γ(t) = Γ(0, t) are sequentially predicted
frame by frame. Thus, new evidence about the agent-source
relationships, provided by previous trajectory predictions up
to frame t, is used to re-estimate R(t+1). This re-estimation,
in turn, is used to predict Γ(t+1) in the next frame (t+ 1).

Note that in offline inference we seek to infer all three
types of intent behavior for each agent. In online inference,
however, we do not consider “change of intent”, because
this would require an explicit modeling of the statistical
dependence between R and Z, and transition probabilities
between R(t) and R(t+1) which is beyond our scope.

In the following, we first describe the data-driven MCMC
process [4], [3] used for estimating C, S, and R. Then, we
present our sequential estimation of the agents’ trajectories
for online inference.

5.1 Scene Interpretation
To estimate C, S, and R over interval (0, t0) when the
scene in the video can be observed, we use a data-driven
MCMC [4], [3], as illustrated in Figures 5 and 6. MCMC
provides theoretical guarantees of convergence to the opti-
mal solution.

Each step of our MCMC proposes a new solution
Ynew={Cnew, Snew, Rnew}. The decision to discard the cur-
rent solution, Y={C, S,R}, and accept Ynew is made based
on the acceptance rate,

α = min(1,
Q(Y→Ynew)

Q(Ynew → Y )

P (Ynew|Γ′, I)

P (Y |Γ′, I)
). (20)

If α is larger than a threshold uniformly sampled from
[0, 1], the jump to Ynew is accepted. In (20), the proposal
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Fig. 5: Top view of the scene from Fig. 2 with the overlaid
illustration of the MCMC inference. The rows show the
progression of proposals of the constraint map C in raster
scan (the white regions indicate obstacles), and trajectory
estimates of agent ai with goal to reach sj (warmer colors
represent higher likelihood P (Γij |C, S, rij = 1, zi =
“single”)). In the last iteration (bottom right), MCMC
estimates that the agent’s goal is to approach sj at the top-
left of the scene, and finds two equally likely trajectories
for this goal.

Fig. 6: Top view of the scene from Fig. 2 with the overlaid
trajectory predictions of a person who starts at the top-left
of the scene, and wants to reach the dark matter in the
middle-right of the scene (the food truck). A magnitude of
difference in parameters λ = 0.2 (on the left) and λ = 1
(on the right) used to compute likelihood P (Γij |C, S,R,Z)
gives similar trajectory predictions. The predictions are
getting more certain as the person comes closer to the goal.
Warmer colors represent higher likelihood.

distribution is defined as

Q(Y→Ynew) = Q(C→Cnew)Q(S→Snew)Q(R→Rnew),
(21)

and the posterior distribution

P (Y |Γ′, I) ∝ P (C, S,R)P (Γ′, I|C, S,R,Z ′). (22)

Each term in (22) is already specified in Sec. 4. Note that in
(22) we make the assumption that the observation interval
(0, t0) is too short for agents to exhibit more complex intent
behaviors beyond “single intent”. Therefore, for all agents
we set that their initial Z ′ = {z′i = “single”} in (0, t0).
Also, note that the prior P (Z ′) gets canceled out in the
ratio in (20), and hence P (Z ′) is omitted in (22).

The initial C is proposed by setting c(x) = 1 at all
locations covered by observed trajectories Γ′, and randomly
setting c(x) = −1 or c(x) = 1 for other locations.
The initial number N of sources in S is probabilistically
sampled from the Poisson distribution of (13), while their

layout is estimated as N most frequent stopping locations
in Γ′. Given Γ′ and S, we probabilistically sample the
initial R using the multinomial distribution in (14). In the
subsequent MCMC iterations, new solutions Cnew, Snew,
and Rnew are sequentially proposed and accepted as current
solutions based on the acceptance rate α.

The Proposal of Cnew randomly chooses x ∈ Λ,
and reverses its polarity, cnew(x) = −c(x). The proposal
distribution Q(C→Cnew) = Q(cnew(x)) is data-driven.
Q(cnew(x) = 1) is defined as the normalized average
speed of people observed at x, and Q(cnew(x) = −1) =
1−Q(cnew(x) = 1).

The Proposal of Snew includes the “death” and “birth”
jumps. The birth jump randomly chooses x ∈ Λ1, and adds
a new source sN+1 = (µN+1,ΣN+1) to S, resulting in
Snew = S ∪ {sN+1}, where µN+1 = x, and ΣN+1 =
size2I, where size is the scene size (in pixels). The death
jump randomly chooses an existing source sj ∈ S, and
removes it from S, resulting in Snew = S \ {sj}. The ratio
of the proposal distributions is specified as Q(S→Snew)

Q(Snew→S) = 1,
indicating no preference to either ‘death” or “birth” jumps.
That is, the proposal of Snew is governed by the Poisson
prior of (13), and trajectory likelihoods P (Γ′|C, S,R,Z ′),
given by (19), when computing the acceptance rate α.

The Proposal of Rnew randomly chooses one person
ai ∈ A with goal sj , and performs one of the three possible
actions: (i) randomly changes ai’s goal to sk ∈ S, (ii)
randomly adds a new goal sk ∈ S to ai if

∑
j rij < n

where n is the maximum number of goals (in our domain
n = 3), and (iii) randomly removes one of current goals
of ai if

∑
j rij > 1. The changes in the corresponding

relationships rij ∈ R result in Rnew. The ratio of the
proposal distributions is Q(R→Rnew)

Q(Rnew→R) = 1. This means that
the proposal of Rnew is governed by the multinomial prior
P (R|S) and likelihoods P (Γ′|C, S,R,Z ′), given by (14)
and(19), when computing α in (20).

Importantly, the random proposals of Rnew ensure that
for every agent ai we have

∑
j rij,new ≥ 1. Since our

assumption is that in (0, t0) the agents may have only a
single intent, we consider that agent ai first wants to reach
the closest source sj for which rij,new = 1, Γ′i = Γ′ij ,
out of all other sources sk that also have rik,new = 1
and which the agent can visit later after time t0. This
closest source sj is then used to compute the likelihood
P (Γ′ij |C, S, rij = 1, z′i = “single”), as required in (20),
and thus conduct the MCMC jumps.

5.2 Offline Inference of Γ and Z

From the MCMC estimates of C, S, R, we readily estimate
forces {~Fij}, given by (5). Then we proceed to predicting
trajectories {Γi} and intent behavior {zi} in the future
interval (t0, T ).

The single-intent case. When the MCMC estimates
that ai has only a single goal destination,

∑
j rij = 1,

we readily predict zi = “single”, and estimate a globally
optimal trajectory Γi = Γij using the Dijkstra algorithm.
The Dijkstra path ends at location xj of source sj for which
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rij = 1, where ai is taken to remain still until the end of
the time horizon T .

The sequential and change of intent cases. When the
MCMC estimates that

∑
j rij > 1, we hypothesize that

the agent could have either the “sequential” or “change” of
intent behavior. In this case, we jointly estimate the optimal
(Γi, zi)

∗ pair by maximizing their joint likelihood:

(Γi, zi)
∗ = arg max

Γi,zi
P (Γi|C, S,R, zi)P (zi), (23)

for all possible configurations of (Γi, zi), where zi ∈
{“sequential′′, “change′′} and Γi is the Dijkstra path span-
ning a particular sequence of selected sources from S, as
explained in more detail below.

Let J = {j : rij = 1, j = 1, . . . , N} denote indices
of the sources from S that MCMC selected as goal des-
tinations for ai. Also, recall that for our videos of public
spaces, it is reasonable to expect that people may have a
maximum of |J | ≤ n = 3 intents in interval (0, T ). The
relatively small size of J allows us to exhaustively consider
all permutations of J , where each permutation uniquely
identifies the Dijkstra path Γi between ai’s location at time
t0, x(t0) and the sequence of locations xj , j ∈ J , that
ai visits along the trajectory. For each permutation of J ,
and each intent behavior zi ∈ {“sequential′′, “change′′},
we compute the joint likelihood given by (23), and infer
the maximum likelihood pair (Γi, zi)

∗.

5.3 Online Inference of Γ(t) and R(t)

In online inference, we first estimate C, S, and R(t0) over
the time interval (0, t0) using the data-driven MCMC as de-
scribed in Sec. 5.1. Then, we compute forces {~F (t0)

ij (x)} for
all agents and their respective goal destinations identified in
R(t0). Also, we take the observed trajectories Γ′ as initial
trajectory estimates, Γ

(t0)
i = Γi(0, t0) = Γ′i, i = 1, . . . ,M .

This initializes our online inference of Γ(t) and R(t) at
times t ∈ (t0, T ). Then, Γ(t) are taken to provide new
cues for predicting R(t+1) using the MCMC described
in Sec. 5.1. Any updates in R(t+1) are used to compute
{~F (t+1)

ij (x)}, and subsequently update Γ(t+1) as follows.
Recall that in online inference we do not consider

“change of intent” behavior. In case R(t) estimates that
agent ai has more than one goal,

∑
j r

(t)
ij ≥ 1, our online

predictions of Γ
(t)
i use the heuristic that ai visits the goal

destinations identified in R(t) in the order of how far
they are from the current location of ai. Consequently,
predictions of Γ

(t)
i become equivalent for both “single”

and “sequential” intent behavior, since ai always wants to
reach the closest goal destination first, i.e., Γ

(t)
i = Γ

(t)
ij for

r
(t)
ij = 1 and xj is the closest location to ai at time t.

From (19), it is straightforward to derive the conditional
likelihood of Γ

(t+1)
ij , given Γ

(t)
ij and R(t) as

P (Γ
(t+1)
ij |C, S, r(t)

ij = 1, zi = “single”,Γ(t)
ij )

∝ e−λ(|~F (t)
ij |·|x

(t+1)−x(t)|+minx
∑xj

x=x(t+1)
|~F (t)
ij (x)· ~∆x|)

,
(24)

where the second term in (24) represent the energy that ai
needs to spend while walking along the Dijkstra path from
x(t+1) to the goal destination xj .

Our online inference is summarized below.
• Input: Observed trajectories Γ′ = Γ′(0, t0) = Γ(t0),

the MCMC estimates of C, S, R(t0) computed as
described in Sec. 5.1, and time horizon T .

• Online trajectory prediction: For every ai identify
the closest goal destination r

(t)
ij = 1, and compute

Γ
(t+1)
ij = [Γ

(t)
ij ,x

(t+1)], where the next location x(t+1)

of the trajectory is estimated as an average of prob-
abilistic samples ξ generated from the conditional
likelihood of (24):

x(t+1) = MEAN(ξ),

ξ ∼ e−λ(|~F (t)
ij |·|ξ−x

(t)|+minx
∑xj

x=ξ |~F
(t)
ij (x)· ~∆x|),

(25)

• Stopping criterion: If Γ
(t+1)
ij exists out of the scene,

agent ai has visited all goal destinations identified in
R(t), or time reaches the horizon t = T .

6 RESULTS

For evaluation, we use toy examples and real outdoor
scenes. We present six types of results: (a) localization
of “dark matter” S, (b) estimation of human intents R,
(c) prediction of human trajectories Γ, (d) inference of
“single”, “sequential”, and “change” intent behavior, and
(e) functional object clustering. These results are computed
on unobserved video parts, given access to an initial part of
the video footage. We study how our performance varies as
a function of the length of the observed footage. For real
scenes, note that annotating ground truth of non-walkable
surfaces C in a scene is difficult, since human annotators
provide inconsistent subjective estimates (e.g., grass lawn
can be truly non-walkable in one part of the scene, but
walkable in another). Therefore, we do not quantitatively
evaluate our inference of C.

Note that our evaluations (a)–(d) significantly extend
the work of [26] which presents results on only detecting
“exits” and “vehicles” as “dark matter” in the scene, and
predicting human trajectories for “single intent” that are
bound to end at locations of “exits” and “vehicles”. A
comparison of our results for (a) with existing approaches
to object detection would be unfair, since we do not have
access to annotated training examples of the objects as most
appearance-based methods for object recognition.

Evaluation Metrics: For evaluating our trajectory pre-
diction, we compute a modified Hausdorff distance (MHD)
between the ground-truth trajectory Γ and predicted trajec-
tory Γ∗ as

MHD(Γ,Γ∗) = max(d(Γ,Γ∗), d(Γ∗,Γ)),

d(Γ,Γ∗) = 1
|Γ|

∑
x∈Γ

min
x∗∈Γ∗

|x− x∗|. (26)

For comparison with [26], we also compute the negative
log-likelihood (NLL), logP (Γij |·), of the ground-truth tra-
jectory Γij(t1, t2) = {x(t1) = xi, · · · ,x(t2) = xj}. From
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(19), NLL can be expressed as

NLLP (Γ) =
λ

t2 − t1

t2−1∑
t=t1

|~Fij(x(t)) · (x(t+ 1)− x(t))|,

(27)
where ~Fij(x(t)) is our estimate of the force field affecting
the ith person in the video.

For evaluating localization of “dark matter”, S, we use
the standard overlap criterion, i.e., the intersection-over-
union ratio IOU between our detection and ground-truth
bounding box around the functional object. True positive
detections are estimated for IOU ≥ 0.5.

For evaluating human-destination relationships, R, we
compute a normalized Hamming distance between the
ground-truth rij and predicted r∗ij binary indicators of

human-destination relationships,
∑
j 1(rij=r

∗
ij)∑

j rij
.

Finally, for evaluating intent behavior, we use the stan-
dard classification recall and precision estimated from the
confusion matrix of the three intent-behavior classes.

Baselines: For conducting an ablation study, we evaluate
the following baselines and compare them with our full
approach in the offline inference setting. The first three
baselines are evaluated only on trajectories where people
truly have a “single” intent, whereas the sixth baseline
is evaluated on all trajectories. (1) “Shortest path” (SP)
estimates the trajectory as a straight line, disregarding
obstacles in the scene, given the MCMC estimates of S
and R. SP does not infer latent C, and in this way tests the
influence of estimating C on our overall performance. (2)
“Random Walk” (RW) sequentially predicts the trajectory
frame by frame, given the MCMC estimates of C and S,
where every prediction randomly selects one destination
j from S and prohibits landing on non-walkable areas.
RW does not estimate R, and in this way tests the in-
fluence of estimating R on our overall performance. (3)
“Lagrangian Physical Move” (PM) predicts the trajectory,
given estimates of C and S, under the sum of forces from
all sources, ~Fclassic(x) =

∑
j
~Fij(x) + ~F−(x), as defined

in Section 3 for the Lagrangian Mechanics. As RW, PM
does not estimate R. (4) “Greedy move” (GM) makes the
assumption that every person wants to go to the initially
closest functional object, and thus sequentially predicts both
the trajectory Γ

(t)
i and destination r

(t)
ij frame by frame,

given the MCMC estimates of C and S, where the latter is
estimated by maximizing the following likelihood:

j∗= arg max
j
P (rij |Γ(t)

i )∝eτ(|xj−x(t)|−|xj−xi|). (28)

where x(t) is the last location of Γ
(t)
i . This baseline also

tests the merit of our MCMC estimation of R.
Comparison with Related Approaches. We are not

aware of prior work on estimating S, R, and Z in the
scene without access to manually annotated training labels
of objects. We compare only with the state of the art method
for trajectory prediction [26].

Input Parameters. In our default setting, we consider
the first 50% of trajectories as visible, and the remainder
as unbserved. We use the following model parameters: β =

Fig. 7: The ground truth of two scenes in the toy dataset.
There are three “dark-matter” objects in each scene repre-
sented by colored squares whereas the black regions are
defined as obstacles. The trajectories are created by i)
assigning an agent with a starting position and one of the
objects as destination, and ii) sampling a path between the
starting position and the function object. The colors of the
trajectories indicate the corresponding “dark matter”.

|S| S&R NLL
10 20 50 100 10 20 50 100

2 0.95 0.97 0.96 0.96 1.35 1.28 1.17 1.18
3 0.87 0.90 0.94 0.94 1.51 1.47 1.35 1.29
5 0.63 0.78 0.89 0.86 1.74 1.59 1.36 1.37
8 0.43 0.55 0.73 0.76 1.97 1.92 1.67 1.54

TABLE 3: Accuracy of S and R averaged over all agents,
and NLL on the toy dataset. S&R is a joint accuracy,
where the joint S&R is deemed correct if both S and R are
correctly inferred for every agent. The first column lists the
number of sources |S|, and the second row lists the number
of agents |A|.

.05, λ = 0.5, ρ = 0.95. From our experiments, varying
these parameters in intervals β ∈ [.01, .1], λ ∈ [0.1, 1], and
ρ ∈ [0.85, 0.98] does not change our results, suggesting
that we are relatively insensitive to the specific choices of
β, λ, ρ over large intervals. η is known. θ and ψ are fitted
from observed data.

6.1 Toy Dataset

The toy dataset allows us to methodologically test our
approach with respect to each dimension of the scene
complexity, while fixing the other parameters. The scene
complexity is defined in terms of the number of agents in
the scene and the number of sources. All agents are taken to
have only “single” intent. The scene parameters are varied
to synthesize the toy artificial scenes in a rectangle random
layout, where the ratio of obstacle pixels over all pixels
is about 15%. We vary |S| and |A|, and we generate 3
random scene layouts for each setting of parameters |S|
and |A|. Fig. 7 shows two examples from our toy dataset.
For inference, we take the initial 50% of trajectories as
observed. Tab. 3 shows that our approach can handle large
variations in each dimension of the scene complexity.

6.2 Real Scenes

6.2.1 Datasets
We use 8 different real scenes for the experiments: 1©
Courtyard dataset [6]; video sequences of two squares 2©
SQ1 and 3© SQ2 annotated by VATIC [49]; 4© VIRAT
ground dataset [5]; new scenes including CourtyardNew
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Fig. 8: Qualitative experiment results for “dark matter” localization and “single intent” prediction in 4 scenes. Each row
is one scene. The 1st column is the reconstructed 3D surfaces of each scene. The 2nd column is the estimated layout of
obstacles (the white masks) and dark matter (the Gaussians). The 3rd column shows the trajectory prediction by sampling.
We predict the future trajectory for an agent at some position (A, B, C, D) in the scene toward each potential source
in S. The warm and cold colors represent high and low probability of visiting the positions respectively. Note that we
cropped and projected the ground surface onto the top-down view which results into the irregular polygons.

Dataset |S| Source Name
1© Courtyard 19 bench/chair,food truck, bldg,

vending machine, trash can, exit
2© SQ1 15 bench/chair, trash can, bldg, exit
3© SQ2 22 bench/chair, trash can, bldg, exit
4© VIRAT 17 vehicle, exit
5© CourtyardNew 16 bench/chair, exit, bldg
6© AckermanUnion1 16 table, trash can, bldg, exit
7© AckermanUnion2 16 bench/chair, bldg, exit
8© AerialVideo 16 table, vehicle, trash can, bldg, exit

TABLE 4: Summary of “dark matter” for the datasets

5©, AckermanUnion1 6© and AckermanUnion2 7©; Aeri-
alVideo 8© from UCLA Aerial Event dataset [7]. SQ1 is
20min, 800× 450, 15 fps. SQ2 is 20min, 2016× 1532, 12
fps. We use the same scene A of VIRAT as in [26]. New
videos 5© 6© 7© last 2min, 30min and 30min respectively.
We select video 59 from [7]. The last four videos all have
15 fps and 1920 × 1080 resolution. For “single intent”
prediction, we allow the initial observation of 50% of
the video footage, which for example gives about 300
trajectories in 1©.

While the ground-truth annotation of “single” and “se-
quential” intent behaviors is straightforward, in real scenes,
we have encountered a few ambiguous cases of “change
of intent” where different annotators have disagreed about
“single” or “change of intent” behavior for the same tra-
jectory. In such ambiguous cases we used a majority vote

Dataset S R NLL MHD
Our Initial Our GM Our [26] RW Our RW SP PM

1© 0.89 0.23 0.52 0.31 1.635 - 2.197 14.8 243.1 43.2 207.5
2© 0.87 0.37 0.65 0.53 1.459 - 2.197 11.6 262.1 39.4 237.9
3© 0.93 0.26 0.49 0.42 1.621 - 2.197 21.5 193.8 27.9 154.2
4© 0.95 0.25 0.57 0.46 1.476 1.594 2.197 16.7 165.4 21.6 122.3
5© 0.81 0.19 0.75 0.50 0.243 - 2.197 20.1 71.32 27.5 181.7
6© 0.81 0.38 0.63 0.42 0.776 - 2.197 13.7 183.0 17.5 128.6
7© 0.88 0.32 0.56 0.39 1.456 - 2.197 19.3 150.1 26.9 119.2
8© 0.63 0.25 0.67 0.33 1.710 - 2.197 15.9 289.3 26.5 137.0

TABLE 5: Qualitative results of “single intent”

Obs. % S R NLL MHD
45% 0.85 0.47 1.682 15.7
40% 0.79 0.41 1.753 16.2

TABLE 6: Results on 1© with different observed ratios

as ground truth for intent behavior.

6.2.2 Experiment 1: Functional Object Localization
and Single Intent Prediction
In this experiment, we use only “single intent” trajectories
of real-world datasets. Our qualitative results are shown in
Figure 8, and quantitative evaluation is presented in Tab. 5.
As can be seen: (1) We are relatively insensitive to the spe-
cific choice of model parameters. (2) We handle challenging
scenes with arbitrary layouts of dark matter, both in the
middle of the scene and at its boundaries. From Tab. 5, the
comparison with the baselines demonstrates that the initial
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Fig. 9: Qualitative result of “sequential intents” and “change of intent”. Left: online
prediction where the red bounding boxes represent the possible intents at a certain
moment and a larger bounding box indicates an intent with higher probability; histograms
represent the probabilities of each functional object being the intent of the agent at a given
moment. Right: offline intent types and intents inference based on the full observation
of trajectories, where the square is the first intent and the triangle is the second intent.
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Fig. 10: PR curves of
“sequential intents” and
“change of intent”.
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Fig. 11: Functional object clustering results. Each ellipse map is an inferred functional object and the four different
colors (i.e., magenta, red, blue, and yellow) represent four latent functional classes.

guess of sources based on partial observations gives very
noisy results. These noisy results are significantly improved
in our DD-MCMC inference. Also, our method is a slightly
better than the baseline GM if there are a few obstacles in
the middle of the scene. But we get a huge performance
improvement over GM if there are complicated obstacles
in the scene. This shows that our global plan based relation
prediction is better than GM.

Based on S and C, we model human motion probabilis-
tically given their goals and understanding of scenes so
that we can predict their future trajectories with probability.
The prediction accuracy on the four scenes are summarized
in Table 5. It appears that our results are also superior
to the random walk. The baselines RW and PM produce
bad trajectory prediction. While SP yields good results for
scenes with a few obstacles, it is brittle for more complex
scenes which we successfully handle. When the size of S
is large (e.g., many exists from the scene), our estimation
of human goals may not be exactly correct. However, in all
these error cases, the goal that we estimate is not spatially
far away from the true goal. Also, in these cases, the
predicted trajectories are also not far away from the true
trajectories measured by MHD and NLL. Our performance
downgrades gracefully with the reduced observation time
as Table 6 indicates. We outperform the state of the art
[26]. Note that the MHD absolute values produced by

our approach and [26] are not comparable, because this
metric is pixel based and depends on the resolution of
reconstructed 3D surface.

Our results show that our method successfully addresses
surveillance scenes of various complexities.

6.2.3 Experiment 2: “Sequential Intents” and
“Change of Intent” Inference
For the evaluation, we randomly select 500 trajectories from
all scenes and manually annotate the types of intent for each
of them. In all these trajectories, there are 13 “sequential
intents” instances, 5 “change of intent” instances, and the
remaining trajectories all have “single intent”.

The qualitative results of both online prediction and
offline inference are visualized in Fig. 9. Note that we
automatically infer the vehicles as “dark matter” in 8©.
For the “change of intent” case, the agent switched the
intent from a building to a vehicle at around 46s; for the
“sequential intents” case, the agent first went a trash can
near the bench (latent behind the bush) to throw trash (52s),
and then left for one of the exits (68s). It appears that i)
our online predictions can reflect the intent changes of the
observed agents and ii) with the full trajectory observation,
the offline inference correctly recognizes the intent types
and the corresponding temporal passing of the intents.

The online intent prediction accuracy is shown in
Fig. 10a, which indicates that ours consistently outperform
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Fig. 12: Mean feature maps of the three clusters of “dark
matter” and the associated trajectories of an example func-
tional object within each cluster. All objects of the same
cluster are aligned to a reference direction.

the baseline. In Fig. 10b, we plot the precision-recall curves
for the offline intent type inference. The baseline method
uses a motion-based measurement of the trajectory, i.e., the
longest stationary time before arriving the intent for the
“sequential intents”, and the largest turning angle for the
“change of intent”. Ours yields very high mAPs for both
“sequential intents” and “change of intent” (0.93 and 0.80
respectively) than the baseline (0.66 and 0.43 respectively).

6.2.4 Experiment 3: Functional Objects Clustering
The estimated trajectories of people can be viewed as
a summary of their behavior under the attraction and
repulsion forces of “dark matter” in the scene. We show
that it is possible to cluster objects (of different semantic
classes) by the properties of human behavior, and in this
way discover different types of “dark matter”.

For such clustering we use the following features charac-
terizing the nearby region of each identified “dark matter”:
a) the density of the associated agents around “dark mat-
ter”, i.e., a density map; b) the spatial distribution of the
average velocity magnitude of the associated agents, i..e, an
activeness map; c) the spatial distribution of the entropy of
moving directions of the associated agents, i.e., an entropy
map. We assume that all agents have a single intent and
associate their trajectories with their intents for computing
the features. Similar to the shape context features [50], we
convert the three maps into three histograms and concate-
nate them into a feature vector. Based on the feature vectors,
we then perform K-means clustering to group the inferred
“dark matter”. Note that feature maps are aligned within
the same cluster by rotation and mirroring.

We cluster all objects in the real scenes into 3 types
of “dark matter”. Fig. 11 shows the clustering result in 4
scenes and Fig. 12 visualizes the mean feature maps of each
cluster and the associated trajectories around a example
functional object in each cluster. The visualized results con-
firm that without the appearance and geometry information
of the “dark matter”, we are able to discover meaningful
functional classes by analyzing human behaviors, which
show clear semantic meanings: i) magenta regions: queuing

areas; ii) red regions: areas where people stand or sit for a
long time (e.g., benches, chairs, tables, vending machines);
iii) blue regions: exits or buildings. Note that sometimes
there are a few small objects in the scenes, e.g., trash cans
in Fig. 11c, that are not identified as “dark matter” by
our approach, simply because they were never used by the
agents in the videos. Interestingly, we occasionally obtain
one to two red regions around the lawn (e.g. Fig. 11b) or
on the square (e.g. Fig. 11d) since multiple agents were
standing there for a long time.

7 CONCLUSION
We have addressed the problem of predicting human trajec-
tories in unobserved parts of videos of public spaces, given
access only to an initial excerpt of the videos in which
most of the human trajectories have not yet reached their
respective destinations. We have formulated this problem
as that of reasoning about latent human intents to approach
“dark matter” in the scene, and, consequently, identifying
a functional map of the scene. Our work extends the
classical Lagrangian mechanics to model the scene as a
physical system wherein: i) “dark matter” exerts attraction
forces on people’s motions, and ii) people are viewed
as agents who can have intents to approach particular
“dark matter”. For evaluation we have used the benchmark
VIRAT, UCLA Courtyard and UCLA Aerial Event datasets,
as well as our five videos of public spaces. We have shown
that it is possible to cluster objects of different semantic
classes by the properties of human motion behavior in their
surrounding, and in this way discover different types of
“dark matter”. One limitation of our method is that it does
not account for social interactions between agents, which
seems a promising direction for future work.
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