
FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Learning Near-Optimal Cost-Sensitive
Decision Policy for Object Detection

Tianfu Wu and Song-Chun Zhu

Abstract—Many popular object detectors, such as AdaBoost, SVM and deformable part-based models (DPM), compute additive
scoring functions at a large number of windows in an image pyramid, thus computational efficiency is an important consideration
in real time applications besides accuracy. In this paper, a decision policy refers to a sequence of two-sided thresholds to
execute early reject and early accept based on the cumulative scores at each step. We formulate an empirical risk function as
the weighted sum of the cost of computation and the loss of false alarm and missing detection. Then a policy is said to be cost-
sensitive and optimal if it minimizes the risk function. While the risk function is complex due to high-order correlations among the
two-sided thresholds, we find that its upper bound can be optimized by dynamic programming efficiently. We show that the upper
bound is very tight empirically and thus the resulting policy is said to be near-optimal. In experiments, we show that the decision
policy outperforms state-of-the-art cascade methods significantly, in several popular detection tasks and benchmarks, in terms
of computational efficiency with similar accuracy of detection.

Index Terms—Decision Policy, Cost-Sensitive Computing, Risk Minimization, Dynamic Programming, Object Detection

F

1 INTRODUCTION

1.1 Motivation and Objective

T HE most popular object detectors in recent years, such
as the AdaBoost classifier [1] for faces, the SVM

[2], [3] for pedestrians, the deformable part-based models
(DPM) [4]–[6] for PASCAL VOC, all compute additive
scoring functions, i.e., the prediction/matching score is the
sum of a set of basic terms, such as, the weak classifiers
in AdaBoost, the feature blocks in linear SVM, and the
root/part filters in DPM. As these detectors are evalu-
ated at a vast number of windows in an image pyramid,
computational efficiency becomes important in real time
applications besides accuracy. This problem has been ex-
tensively studied in vision, machine learning, and statistics
using a range of methods, including cascades [1], [7], [8],
marginal space learning [9], branch-and-bound [10], [11],
cost-sensitive learning [12], [13] and inference [14], and
sequential probabilistic ratio test [15].

In this paper, we present a new framework for computing
cost-sensitive decision policies for rapid object detection.
Our decision policy consists of a sequence of two-sided
thresholds to execute three possible choices: early reject,
early accept, or continue to the next stage – based on the
current cumulative scores at each stage. Fig. 1 shows two
examples of decision policies for the human face AdaBoost
classifier which are optimized for different parameter set-
tings: the left one is more cautious about early decisions
and thus has higher computing costs on average, while the
right one is more aggressive in early reject/accept.

• T.F. Wu is with the Department of Statistics, University of California,
Los Angeles. E-mail: tfwu@stat.ucla.edu

• S.C. Zhu is with the Department of Statistics and Computer Science,
University of California, Los Angeles. E-mail: sczhu@stat.ucla.edu

The policy is said to be “cost-sensitive” because it
optimizes an empirical global risk function which is the
weighted sum of two aspects:
• The loss of misclassification, weighted by the loss CFN

for each false negative and loss CFP for each false
positive respectively.

• The cost of computation, i.e., the expected run-time for
computing the scoring function sequentially, which is
weighted by a parameter λ.

Therefore, the parameters Θ = (CFN, CFP, λ) decide the
trade-off between accuracy and computing cost.

We assume that the number of features and the scoring
functions are all decided by the offline training stage
by Adaboost, SVM, and DPM learning, and our policy
does not change these settings. Then given parameters
Θ = (CFN, CFP, λ), our algorithm produces a policy that
optimizes the tight upper-bound of the risk function by a
dynamic programming (DP) algorithm.

Under the same framework, a decision policy can also
be computed by specifying the desired false positive rate
(FPR denoted by α) and false negative rate (FNR denoted
by β), or by specifying a total computing budget.

Furthermore, since the DP algorithm is very fast, our
method can update the policy on-the-fly when Θ changes
due to contextual information. Our motivation is to consider
object detectors as modules in bigger vision tasks, such as
fine-grained hierarchical object recognition, image parsing
and scene understanding. In such tasks, the following two
aspects will change on-the-fly, which are considered fixed
in existing methods for training the cascades or other rapid
detectors.

i) The expected positive and negative populations will
change during inference. For example, suppose in a bottom-
up/top-down parsing task [16], the upper level algorithm
has located a person with high probability and calls a face

FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

C
um

ul
at

iv
e

S
co

re

11
46

10
0790
9

81
6

72
8

64
5

56
7

49
4

42
6

36
3

30
5

25
2

20
4

16
1

12
3906239218#Feature:

Stage

The decision policy (C
FP

=0.035714, C
FN

=0.500000, λ=1.00) on training data

C
um

ul
at

iv
e

S
co

re

11
46

10
0790
9

81
6

72
8

64
5

56
7

49
4

42
6

36
3

30
5

25
2

20
4

16
1

12
3906239218#Feature:

Stage

The decision policy (C
FP

=0.000008, C
FN

=0.000047, λ=1.00) on training data

Histogram of positives(#Pos=11020)
Histogram of negatives(#Neg=117493)
Histogram of positives after early decisions
Histogram of negatives after early decisions
Rejection line of decision policy
Acceptance line of decision policy

Fig. 1. Illustration of two decision policies learned for a human face AdaBoost classifier (The legend is only
shown in the right plot for clarity). The horizontal axis is the 1, 146 boosted weak classifiers divided in 20 stages,
and the vertical axis is the cumulative scores. At each stage the solid histograms show the original positive (red)
and negative (green) populations in training dataset, and the dotted histograms show the changed populations
after early decisions by the policy.

detector to slide the windows within the bounding box
of the person. The detector should expect a much higher
probability of positives than in the offline training and thus
adopt a more aggressive early accept.

ii) The parameters Θ will change in goal-guided
searches. When a vision system is deployed for goal-guided
search based on user’s interest or queries, the loss of a
false negative or false positive changes over time when
attention shifts. So the decision policy should also reflect
the priorities: allocating more computing steps for high loss
objects, such as the policy on the left of Fig. 1, and less
computing steps for low priority objects, such as the policy
on the right of Fig. 1.

In both cases, a fast algorithm is entailed for automat-
ically adapting the policy to different contexts and goals.
This distinguishes our work from many existing methods
in the literature [7], [8], [12], [15], [17]–[21].

1.2 Method Overview
Given an object detector (AdaBoost, SVM or DPM) with
T basic additive terms trained offline from a dataset, and
the parameters Θ = (CFN, CFP, λ) or alternatively Θ =
(α, β, λ), our decision policy is computed in two phases.

Phase 1: Offline statistics recording. We divide the T
basic terms into N stages. Unlike the traditional cascade
methods that design each stage to reach the given FPR
and FNR, the configuration of our stages are designed
based on the statistical power/computing cost ratio [22] in
a flexible way. We quantize the cumulative scores into K
bins, and thus obtain a K×N matrix shown in Fig. 1. For
each training example, positive or negative, we record its
cumulative scores of the N stages, and these N scores can
be visualized as a trajectory. Fig. 3 plots some examples.
These trajectories represent the empirical joint statistics for
all samples, from which we can project to the following
empirical marginal probabilities.

i) For each entry in the K×N matrix, we record the three
sub-populations (i.e. the empirical probabilities) that reach
this entry, above the entry (with higher cumulative scores),
and below the entry (with lower cumulative scores). Based
on these statistics, we can plot the histograms of positive
and negative populations over the N stages in Fig. 1.

ii) For every two entries a and b in consecutive stages,
we record the various transition probabilities from a to b,
from above a to above b, from below a to below b and so
on. We will elaborate on these statistics in Sec.4.

We observe that the trajectories of the samples (see
Fig. 3) are relatively smooth, and their cumulative scores
transit only among adjacent bins. From these empirical
statistics (i.e. populations of samples), we can calculate
the false positive and false negative rates for different
thresholds at each stage.

Phase 2: On-line policy computation. Given parameters
in Θ, we compute the two-sided thresholds for all stages
jointly (i.e., a whole policy) by minimizing the empirical
global risk. To evaluate each possible policy, we calculate
the expected losses of early reject/accept and the computing
costs based on the recorded statistics.

One complication is the double counting of risk that
a training example in the data has exited early and is
counted again for the loss and cost in a later stage, which
means that the assignments of thresholds in all previous
stages affect the current stage. From the recorded transition
probabilities, we can eliminate the double counting in any
two consecutive stages. But eliminating the double counting
effects in higher order terms (i.e., over multiple stages) will
require the recording of high order transition probabilities.
We choose to ignore these high-order terms, and thus
minimize a simplified risk function. It is an upper bound
of the original risk function, because it may count the loss
and cost of some examples more than once. Thanks to the
smoothness of trajectories, we find that such high-order
terms are negligible and thus the upper bound is very tight
in all of our experiments. The simplified risk function is the
summation of the single terms and pairwise terms, and thus
can be solved efficiently by dynamic programming (DP).

With the DP tables pre-computed in phase 1, in phase
2 we can compute a family of decision policies easily
for different parameter settings Θ and for different ratios
of positive and negative populations, and thus different
policies can be used for adaptation during fine-grained
hierarchical recognition and image parsing tasks mentioned
in the previous subsection.

FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

1.3 Related Work and Comparisons

In the vision literature, there are three main streams of
methods for rapid object detection.

i) The cascade methods [1], [7], [8], [20], [23]–[27]
utilize early reject but no early accept, except for the
WaldBoost [15] and active classification based on value
of classifier [19], and [18]. In boosting cascade [1], the
rejection thresholds of each stage are learned independently,
and the training process needs time-consuming trial-and-
error tuning to decide the number of stages, the target
detection rate and false positive rates at each stage. Re-
cently, more principled approaches are proposed on better
or optimal design of AdaBoost cascade [7], [8], [20],
[26]. WaldBoost [15] assumes strong independence on
the output of the weak learners to guarantee optimality,
and this assumption is often violated in practice. Active
classification based on value of classifier [19] needs to
maintain the values of all the remaining classifiers at each
step, which incurs a large computing cost and is addressed
by adopting some heuristics and tuning. Soft cascade [7]
needs a sufficiently large validation set to calibrate the
rejection thresholds. In [27], the cascade is learned after
a DPM is trained. The rejection threshold of each stage
(adding a part) is selected so that the probability of a
misclassification is bounded from above by a predefined
small positive value. In [28], the speed of DPM cascade is
further boosted by exploiting some faster implementations
for different components in inference. Unlike our decision
policy, the cascade thresholds are fixed after the offline
training stage, and not optimized for different cost-sensitive
parameters Θ.

ii) The coarse-to-fine methods [22], [29]–[31] require a
coarse-to-fine partition of the pose space of an object class
in modeling (i.e., learning a sequence of tests in the space
of relative positions, scales and orientations). The pose
space is often partitioned manually and then all the tests
are organized in a hierarchy, like a decision tree. The tests
are selected in decreasing order based on their ratios of the
statistical power over the computing cost. In contrast, our
proposed method is generic and can be directly applied to
speed up any object detector with additive scoring function.

iii) The branch-and-bound and A∗ methods. The branch
and bound methods [10], [11] bound the scoring functions
from the upper and lower for any given sub-window and
rank these sub-windows. So far, they only adapt well for
detectors trained using bag-of-word features in [10] or is
used to search the state space of a DPM after all filter
responses are computed in [11] (thus the overall speed-up
on DPM is not significant). The A∗ methods [32], [33]
compute the lower bound for the to-go score which is
usually calculated based on coarse model derived from the
full model (if possible).

Besides in computer vision, there are three other streams
of related work.

iv) Cost-sensitive learning in machine learning [12], [13],
[34]. The key idea is to extend the original loss function,
i.e. the exponential loss in AdaBoost and the hinge loss

in SVM, to incorporate the losses of false negative and
false positive (CFN, CFP) explicitly, and then derive the
optimal Adaboost and SVM algorithms as the minimizer of
the associated empirical loss. The algorithms are optimized
in the offline setting. Since it is more natural to specify
the target FNR and FPR, rather than the loss (CFN, CFP),
the offline learning methods need to use cross-validation to
search the (CFN, CFP) to match the target FNR and FPR.
This is very time-consuming since they have to re-learn all
the basic additive terms at each round. Joint learning of
the scoring function and the decision policy is out of the
scope of this paper. We fix the scoring function computed
offline and then compute/update the near-optimal decision
policy on-the-fly because we are ultimately interested in the
situations where the parameters in Θ change and the posi-
tive and negative populations change. In [14], cost sensitive
inference is addressed in multiscale activity recognition.

v) Marginal space learning [9] combines a set of clas-
sifiers learned in different marginal spaces of object pa-
rameters and the full classifier learned in the joint space.
The former aims to prune uninteresting locations of the
object parameter space, and the latter is used to detect
the objects in the pruned space. The efficiency depends
on whether it can learn good classifiers in marginal spaces
which are discriminative enough to prune the space and
computationally cheap to save the computing cost.

vi) Sequential probability ratio tests (SPRT) in statistics.
SPRT can be dated back to Wald in the 1940s [35], and is
often used for point hypotheses with different variations,
such as the truncated SPRT in [36]. Most recently, the
SPRT procedure has been adopted in vision by Pele and
Werman [37] for fast pattern matching. The task was to
crop an image patch in one frame and find it in sequential
frames in a video using Hamming distance. They proposed
a Bayesian sequential hypothesis testing method which
makes early decision (accept or reject) by exploiting a
generic prior distribution of the Hamming distance between
general patches in natural images. Our method is related to
this method [37], but with two main differences: (i) the
scoring functions studied in this paper are more general
than the Hamming distance function (which is a step-wise
increasing function of the number of samples tested); and
(ii) instead of introducing a generic prior distribution which
is not straight forward to compute for the scoring functions,
we use the histograms of cumulative scores on positive and
negative training datasets to learn the decision policies. In
[38], a method of learning the optimal policy offline for
DPMs is proposed. There are also some recent work on
so-called anytime algorithms [39].

Our preliminary work has been published in [40], and
is extended here by: (i) elaborating details substantially in
deriving the formulation and algorithm; (ii) adding more
analyses on different aspects on our method; (iii) evaluating
our method on PASCAL VOC2007 20-category object de-
tection benchmark [41] with better computational efficiency
and similar accuracy compared to the DPM cascade method
[27].

FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

1.4 Contributions and Paper Organization
This paper makes three main contributions to fast object
detection.

i) It presents a new framework for computing decision
policies by minimizing a global risk function that explicitly
accounts for the loss of misclassification and the computa-
tional cost. This framework is generally applicable to object
detectors with additive scoring functions without disturbing
or iterating with the offline training.

ii) It derives an upper bound of this risk function and
shows that the upper bound is tight empirically. Then
it presents a DP algorithm to minimize the upper-bound
efficiently. This allows us to produce the decision policy to
adapt to different parameters Θ and varying ratios of the
positive and negative populations. This is a desired property
for adapting the object detection modules in the context
of bigger tasks, such as parsing and image understanding.
None of the existing cascade methods can provide such
flexibility and efficiency for adaptation on-the-fly.

iii) In extensive experiments on public datasets, such as
the CMU+MIT face detection benchmark [42], the INRIA
person detection dataset [3], and the PASCAL VOC 2007
20-class object dataset [41], it shows that the learned
decision policies for AdaBoost, SVM and DPM outperform
the state-of-the-art cascade methods significantly in speed
with similar accuracy.
Paper Organization. The remainder of this paper is orga-
nized as follows. Sec. 2 introduces the cost-sensitive object
detection. Sec. 3 defines the decision policy and presents
the formulation of learning a cost-sensitive decision policy.
Sec. 4 presents details to compute the empirical risk. Sec. 5
derives an upper bound for the original risk function, and
then proposes a DP algorithm. Sec. 6 evaluates our method
in a series of experiments and compares with the state-
of-the-art cascade methods. Finally, Sec. 7 concludes this
paper with discussions of future directions.

2 BACKGROUND
In this section, we introduce cost-sensitive object detection
to set up the background.

2.1 Object Detection
We assume a sliding-window method for object detection.
Thus a detector is treated as a binary classifier which is
a function h : X → {−1, 1}, mapping a d-dimensional
feature vector extracted from each window, x ∈ X ⊂ Rd,
into a class label, y ∈ {−1, 1}. This mapping is often
implemented as

h(x) = sign[f(x)], (1)

where f : X → R is a real-valued scoring function.
The pairs (x, y)’s are samples from a underlying fixed,
but unknown, probability distribution PX,Y (x, y). In prac-
tice, to learn f(x), a set of training examples is given,
D = D+∪D−, which consists of a set of positive examples
D+ and a set of negative examples D−. Let S = |D| be the
size of training dataset and S+ = |D+| and S− = |D−|. To
define the optimality of a scoring function f(x), we need
to introduce the concepts of loss, cost and risk as follows.

2.2 The Loss, Cost and Risk
The Loss of Misclassification. The scoring function with
optimal training accuracy is learned by minimizing the
empirical loss,

L(f) = EX,Y [L(y, f(x))] ≈ 1

S

∑
(x,y)∈D

L(y, f(x)), (2)

where L(y, f(x)) is a loss function which measures both
the loss of a false positive CFP and the loss of a false
negative CFN,

L(y, f(x)) =

 0, if h(x) = y
CFP, if y = −1 and h(x) = 1
CFN, if y = 1 and h(x) = −1.

(3)

When CFP = CFN (i.e., the widely used 0/1 loss func-
tion), the scoring function obtained by minimizing L(f)
is (CFP, CFN)-insensitive; otherwise, it is (CFP, CFN)-
sensitive [43].

Two equivalent specifications in (CFP, CFN)-sensitive
learning. (CFP, CFN) are usually specified from domain
knowledge. In some cases, such as the fraud detection
problem, they are given in terms of prior experience. In
object detection, it is often more natural to specify FPR, α
and FNR, β, rather than the two penalties directly. But, the
two ways of specifications are equivalent in the sense that:

i) Given (CFP, CFN), the optimal scoring function, in
terms of accuracy, is given by the Bayesian decision rule,

f∗(x) = arg min
f
L(f) = log

PY |X(1|x)CFN
PY |X(−1|x)CFP

(4)

ii) For the alternative specification, the goal is to min-
imize FPR, α, subject to a FNR, β. According to the
Neyman-Pearson Lemma [44], for any β, the optimal
accuracy scoring function is still Eqn. (4) with the rejection
region being:

H = {x;
PY |X(1|x)

PY |X(−1|x)
≤ CFP
CFN

}. (5)

So, the two penalties (CFP, CFN) need to be searched such
that a given β is met, i.e., β =

∫
H PX|Y (x|y = 1)dx. The

search is often done by cross-validation.
As mentioned before, in this paper, we consider more

general situations in object detection where (α, β) can be
dynamically changed. So it will not be practical to re-train
the scoring function accordingly (especially with expensive
cross-validation required) or to train the scoring functions
for all possible specifications offline.

The Cost of Computation. The expected and empirical
computing cost of a scoring function is defined as,

C(f) = EX,Y [C(y, f(x))] ≈ 1

S

∑
(x,y)∈D

C(y, f(x)), (6)

where C(y, f(x)) is the computing cost for evaluating a
random sample (x, y).

The Global Risk. The global risk is the sum of the
expected loss plus the expected cost,

R(f) = L(f) + λ · C(f), (7)

FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

where λ is the regularization parameter. The default value
is λ = 1. Eqn. (7) can be also interpreted as a constrained
optimization problem, i.e., either minimizing the empirical
loss subject to computational constraints or minimizing the
computational cost subject to reachable bounds of accuracy.
We will adopt this interpretation when formulating the
learning of policy.

2.3 The Additive Scoring Functions
Popular object detectors, such as AdaBoost, SVM and
DPM, all use an offline trained additive scoring function
with T basic terms,

f(x) =

T∑
t=1

gt(x), (8)

where gt(x) can be a weighted weak classifier in AdaBoost
[1], a divided block (a weighted support vector) in linear
(non-linear) SVM [3], [31], or a root/part filter in DPM [4].

The order of basic additive terms. We assume that
the computing order of gt(x)’s is sorted in offline training,
which is based on the ratio between statistical power and
computing cost, similar to [17], [22]. The computing cost is
fixed for gt(·) after offline training. The statistical power of
gt(·) is defined by 1-FPR subject to FNR = 0 which can be
calculated on the training dataset. For notational simplicity,
we will denote by gt(·) the sorted basic additive terms.

3 FORMULATION

3.1 The Definition of a Decision Policy
For a given scoring function in Eqn.(8), we divide the T
basic additive terms into N stages, and denote the summed
scoring function at each stage by Gi(x), 1 ≤ i ≤ N . For
an input sample x, the cumulative score at the i-th stage is
defined by,

f i(x) =

i∑
j=1

Gj(x). (9)

The number of stages N and the number of basic additive
terms in each stage are quite flexible in our experiments.
For example, for the AdaBoost face detection task, we set
N = 20 stages for comparing with the cascade methods
using the same number of stages, and put more basic
additive terms in later stages. In DPM, each root or part
filter corresponds to a stage, similar to [27].

Definition 1 (The decision policy): An N -stage decision
policy is denoted by,

ΠN = (τ1, · · · , τi, · · · , τN), (10)

where each τi is a pair of thresholds (two-sided),

τi = (τ−i , τ
+
i), i = 1, · · · , N. (11)

τ−i < τ+
i for i = 1, · · · , n − 1 and τ−i = τ+

i for i =
n, · · · , N , and n is the number of stages actually used by
a decision policy (see the two examples in Fig.1, n = 20
and n = 9 respectively). n is computed automatically.

ΠN makes three possible actions at stage i in terms of
cumulative score f i(x),

• Reject x, if f i(x) < τ−i ,
• Accept x, if f i(x) ≥ τ+

i , and
• Continue to compute Gi+1(x), otherwise.
We call (τ−1 , · · · , τ−n) the rejection line (green) and

(τ+
1 , · · · , τ+

n) the acceptance line (yellow) which are
shown in Fig. 1. At each stage, τ−i can take the special
value τ−i = −∞ meaning that no rejections should be
decided, and similarly τ+

i = +∞ indicating that no
acceptances could be made. We will write a decision policy
ΠN in the recursive form, Πi = (Πi−1, τi).

3.2 The risk function of a decision policy
Different decision policies incur different risks. Following
Enq. (7), we denote by R(ΠN ; Θ) the risk function of ΠN ,

R(ΠN ; Θ) = L(ΠN ;CFP, CFN) + λ · C(ΠN), (12)

where L(·) is the expected loss and C(·) the expected
computational cost. We will compute the empirical risk
and still use R(·), L(·) and C(·) to denote the empirical
counterparts for simplicity. Note that Enq. (7) can be
viewed as a special case of Enq. (12) as it corresponds
to a policy which has no early accept and early reject.

Recall that D = D+ ∪D− denotes the training dataset
with positives in D+ and negatives in D−, and S+ =
|D+|, S− = |D−| and S = |D| = S+ + S− their sizes.

The expected loss L(ΠN ;CFP, CFN) is defined by,

L(ΠN ;CFP, CFN) = EX,Y [1(y=1) · p(FN; ΠN) · CFN
+ 1(y=−1) · p(FP; ΠN) · CFP]

≈ S+

S
· p̂(FN; ΠN) · CFN +

S−

S
· p̂(FP; ΠN) · CFP,

(13)

where 1(·) is the indicator function, p(FN; ΠN) and
p(FP; ΠN) are the probabilities of a FN and a FP occurring
according to ΠN respectively, and the second expression in
Eqn. (13) is the empirical loss on the training dataset D.
p̂(·; ΠN) are the corresponding empirical probabilities,

p̂(FN; ΠN) = p̂(ΠN rejects x|x ∈ D+) =
#FN by ΠN

S+
,

p̂(FP; ΠN) = p̂(ΠN accepts x|x ∈ D−) =
#FP by ΠN

S−
.

These two empirical probabilities are calculated by ex-
ploiting the statistics of cumulative scores using the training
or validation dataset in Sec. 4.

The expected computational cost C(ΠN). Following
Eqn. (9), we denote by c(Gi) the computational cost of an
individual stage i (which is fixed after f(x) is trained of-
fline). We denote the normalized cumulative computational
cost of the first i stages by,

Ci =
1

c(f)

i∑
j=1

c(Gj). (14)

where c(f) is the total cost of the whole scoring function,
and we have:

0 < Ci < 1, for i < N, and CN = 1. (15)

FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

For a given sample x, let n(x) be the number of stages
tested before a decision is made by ΠN (i.e., its label is
assigned), and its computational cost is Cn(x). So,

C(ΠN) = EX [Cn(x)] ≈
1

S

∑
x∈D

Cn(x)

=

N∑
i=1

p̂(i; ΠN) ·Ci, (16)

where p̂(i; ΠN) is the empirical probability of making an
early decision at stage i (to be calculated in Sec. 4),

p̂(i; ΠN) = p̂(ΠN classifies x at stage i|x ∈ D) =
#Si
S

,

where #Si is the number of examples in D which are
classified at stage i by ΠN .

By substituting the three empirical probabilities into the
risk function in Eqn. (12), we obtain the empirical risk,

R(ΠN ; Θ) =
1

S
[#FN · CFN + #FP · CFP + λ

N∑
i=1

Ci ·#Si]

=
1

S

N∑
i=1

[#FNi · CFN + #FPi · CFP + λCi ·#Si], (17)

where #FNi and #FPi are the number of FNs and FPs at
stage i made by τ−i and τ+

i in ΠN respectively.
The optimal decision policy. Given parameters Θ =

(CFP, CFN, λ), the optimal decision policy Π∗N (Θ) is found
by minimizing the empirical risk in Eqn. (17),

Π∗N (Θ) = arg min
ΠN

R(ΠN ; Θ). (18)

As mentioned above, in object detection, it is often more
convenient or intuitive to specify reachable bounds on the
false positive error rate (FPR) α and false negative error
rate (FNR) β based on the ROC curve of the detector f(x),
rather than defining (CFP, CFN). In fact, solving Eqn. (18)
is equivalent to minimizing C(ΠN) subject to some given
reachable accuracy bounds (α, β). Then, the problem can
be reformulated as a constrained optimization problem,

Π∗N = arg min
ΠN

C(ΠN),

subject to p̂(FP; ΠN) ≤ α and p̂(FN; ΠN) ≤ β. (19)

The two types of formulations are equivalent as the
following lemma states.

Lemma 1. The solution Π∗N of Eqn. (18) is also the so-
lution to the constrained optimization problem in Eqn. (19)
with α = p̂(FP; Π∗N) and β = p̂(FN; Π∗N).

Proof: See the proof in the supplementary material.
This equivalence enables the transfer from (α, β) to

(CFP, CFN), as is stated by the following proposition.
Algorithm. 1 will list the steps of the search in Sec.5.3.

Proposition 1. Given (α, β), the corresponding
(CFP, CFN) are sought by binary search in the range
[0, CmaxFP] and [0, CmaxFN] where,

CmaxFP =
λ · S
α · S−

and CmaxFN =
λ · S
β · S+

. (20)

       

Sequential chain High-order

   

 

   

= + + +

Fig. 2. Graph interpretation of minimizing the empirical
risk. The two-sided thresholds at a stage i generate the
three numbers (#FNi, #FPi, #Si). All the thresholds
are fully dependent in the sense that the positive and
negative sub-populations observed at a stage i are
affected by the thresholds at all previous stages.

Proof: See the proof in the supplementary material.
Based on proposition 1 and Eqn. (17), we can give some

intuitive interpretations for what roles the three numbers in
Θ play and what the optimization algorithm tries to solve.
At a stage i, if the algorithm attempts to increase the lower
threshold τ−i , it needs to consider two factors:

i) the remaining computational costs are saved for the
increased number of both true negatives (TN) and
FNs (i.e., the “good” side whose actual effect is
dependent on λ).

ii) the number of FN might also increase (i.e., the “bad”
side which will be penalized according to CFN)

In addition, the positive and negative sub-populations
observed by stage i are affected by all previous stages,
which makes the decision “harder”. Similar factors exist
when the algorithm tries to decrease τ+

i .
The optimization procedure resolves all the factors

jointly to make the loss of misclassification and the cost
of computation “balanced” (i.e., minimizing the empirical
global risk). For example, at an early stage i, especially the
first few ones, if a relatively large number of TNs can be
rejected (i.e., their remaining computing costs are saved)
with only very few FNs incurred when τ−i is increased,
the algorithm might take advantage of this depending on
the parameters (CFP, CFN, λ) (i.e., when the increased FN
penalty is less than the decreased computing cost).

3.3 High-order connections between τi’s in ΠN

Before presenting the method of minimizing the risk in
Eqn. (18), we show that all two-sided thresholds τi’s in
ΠN are fully dependent.

In Fig.2, we consider τi at stage i, based on Eqn. (17), we
need to calculate the three quantities (#FNi,#FPi,#Si).
To do that, we first need to know the positive and negative
sub-populations (illustrated by the two histograms in the
center-bottom of Fig.2), which are affected by all the
previous stages j (j < i) as early thresholds τj’s change the
populations through their decisions. So, τi is affected by all
previous τj’s. By transition, τi affects the assignments of
all the subsequent stages τj (j > i), and then we can see
that all {τi}’s are fully dependent.

FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

This underlying fully-dependent graph structure makes
the problem of minimizing the risk in Eqn. (18) very hard
in general. To address the optimization issue, we proceed
in two steps.

i) Offline statistics recording. We derive a recursive
formula for counting (#FNi, #FPi, #Si) in each stage.

ii) Online policy computation. By removing all the high-
order connections in Fig. 2 we derive an upper bound
for the empirical risk which is then minimized by a
DP algorithm efficiently.

4 OFFLINE RECORDING OF STATISTICS

To compute the empirical risk function in Eqn.(17), we
record a number of statistics in the training data D.

We first compute two histograms of the cumulative scores
f i(x) at each stage i on D+ and D− respectively. At stage
i, the set of cumulative scores is denoted by

A(i) = {f i(x); ∀x ∈ D}. (21)

We discretize A(i) into K bins (e.g., K = 102 used in
all of our experiments) and let bin(x, i) be the bin index
of example x at stage i. Then, we create the K × N
matrix to record the trajectories of all training examples.
The trajectory of a sample x in the matrix is denoted by,

Trajectory(x) : {bin(x, 1), · · · , bin(x,N)}.

Fig.3 shows the K × N matrix and 10 trajectories of
positive examples and 10 trajectories of negative examples.
From the K ×N matrix, we have the following statistical
observation.

Statistical observation. The trajectories of examples
over the sequence of cumulative scores remain relatively
steady. Similar to Fig. 3, we can plot the histograms of
bin index changes between two successive stages bins,
and observe that most of the changes are within 2-4 bins
for both positive and negative examples. This is true for
different additive scoring functions studied in this paper.
This observation has the following indications.

i) If τi−1 classifies (accepts or rejects) x based on
f i−1(x), it is unlikely that its scores f i(x) will move
inside the thresholds [τ−j , τ

+
j) of later stages j ≥ i,

thus the policy will unlikely regret its decisions.
Intuitively, the steadiness of the trajectories is the
essential reason for the decision policy to work well.

ii) Similarly, an example x decided by stage i − 1 will
have a much lower probability at stages j > i, and
thus the double counting of loss estimation will be
very rare. This makes our upper bound very tight
later.

iii) As a guideline for selecting the number of stages
N in experiments, the number N fundamentally
depends on how smooth these trajectories are. This is
much like the sampling theorem in Signal Process-
ing. Higher fluctuation (or frequency) needs denser
sampling.

Notational Usages. We compute four types of statistics
from the matrix, and illustrate them in Fig.4. These statistics

C
um

ul
at

iv
e

S
co

re

11
46

10
0790
9

81
6

72
8

64
5

56
7

49
4

42
6

36
3

30
5

25
2

20
4

16
1

12
3906239218#Feature: Stage

The Trajectories of Training Examples in the K × N Data Matrix

10 trajectories of randomly selected positive examples
10 trajectories of randomly selected negative examples

Fig. 3. 20 trajectories of positive (red dashed lines) and
negative (blue) training examples in the K ×N matrix.
The examples are from the human face AdaBoost
classifier. between successive steps in the trajectories.

are used for computing #FNi, #FPi, #Si in Eqn.(17). In all
the following definitions, if the only difference is whether
x ∈ D+, D− or D, we then only write definitions for D+

explicitly for clarity. And, we use “S” in notations denoting
the cardinality of a corresponding set. Furthermore, we use
the notation of a threshold itself (such as τ+

i or τ−i) in the
decision policy to denote its bin index in the K×N matrix
without confusion.

i) Single-entry based statistics. Denote by ki an en-
try (row k, column i) in the K × N matrix. At each
stage/column i, the training dataset (D = D+ ∪ D−)
is distributed into different rows. We denote the sub-
population of positive examples falling into bin k at stage
i by,

D+(ki) = {x : bin(x, i) = k, x ∈ D+} (22)

and its cardinality by S+(ki) = |D+(ki)| (e.g., D+(51) in
Fig.4 (a)).

ii) Column-based statistics. Denote by ki all the entries
below row k (exclusive) at column i, and correspondingly
by ki all the entries above row k (inclusive),

D+(ki) = ∪k−1
r=1D

+(ri) (23)

and
D+(ki) = ∪Kr=kD+(ri) (24)

For examples, see D+(75) and D+(65) in Fig.4 (b) and (c)
(note that (c) is not D+(55) due to the exclusion used in
definitions).

iii) Rejection line and acceptance line based statistics.
We rewrite ΠN = (Πi, τi+1, · · · , τN), and denote the
entries below the rejection line of Πi (front part in ΠN)
by,

Πi = (τ−1 , · · · , τ
−
i), (25)

and the entries above the acceptance line by,

Πi = (τ+
1 , · · · , τ

+
i). (26)

For examples, D+(Π3) and D+(Π3) in Fig.4 (d) and (e)
are the sub-populations of positives accepted and rejected
by Π3 respectively.

In the next step, we count the numbers of false positives
and false negatives generated by the policy up to stage i,
Πi.

FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

1 2 3 4 5 6 7

1
2

3
4

5
6

7
8

9
10

 

 

 

 

=

=

Stage

Cumulative Score

Fig. 4. Illustrating the notations of the four types of
statistics projected from trajectories of all training ex-
amples (onlyD+ is used for clarity). Note that notations
like 65 and 75 are used for this specific illustration.

Definition 2: False negatives generated by Πi is defined
by,

D+(Πi) = {x; Πi rejects x, x ∈ D+}. (27)

Similarly, true positives (TP) by Πi is defined by
D+(Πi), and the sub-population of positives classified
by Πi is then defined by,

D+(Πi) = D+(Πi) ∪D+(Πi). (28)

Definition 3: False positives generated by Πi is defined
by,

D−(Πi) = {x; Πi accepts x, x ∈ D−}. (29)

When computing the number of FNs (i.e., S+(Πi)) and
FPs (i.e., S−(Πi)) by different Πi’s, instead of counting
them in a brute-force way, we want to compute them
efficiently in a recursive manner. So we need to compute
the sample transitions between different sub-populations,
for example, D+(Πi−1) and D+(τi), to count the number
of double-countings.

iv) Transition based statistics. By considering sample
transition from one sub-population (e.g., those defined
based on an entry ki, the bottom part ki of a column i, or
a partial rejection line Πi, as stated above) to the other, we
can count the double-counting of examples between them.
Specifically, we define the two as follows.

Definition 4: False negatives double-counted at τi
w.r.t. Πi−1 is the sub-population of examples in D+ that
has been classified by Πi−1 in the first i− 1 stages, and is
rejected again by τ−i . This set of examples will be counted
more than once if we compute the empirical risk as the
sum of risks caused by individual stages. We have,

D+(τ−i ; Πi−1) = D+(τ−i) ∩D+(Πi−1).

Definition 5: False positives double-counted at τi w.r.t.
Πi−1 is the sub-population of examples in D− that has been
classified by Πi−1 in the first i− 1 stages, and is accepted
again by τ+

i . We have,

D−(τ+
i ; Πi−1) = D−(τ+

i) ∩D−(Πi−1).

Recursions. By Πi = (Πi−1, τi), we can re-write D+(Πi)
and D−(Πi) in a recursive manner as,

D+(Πi) = D+(Πi−1) ∪ (D+(τ−i) \D+(τ−i ; Πi−1)),

D−(Πi) = D−(Πi−1) ∪ (D−(τ+
i) \D−(τ+

i ; Πi−1)),

where ‘· \ ·’ represents the set minus operator.
So, the number of FNs by Πi is recursively defined by,

S+(Πi) = S+(Πi−1) + [S+(τ−i)− S+(τ−i ; Πi−1)]

=

i∑
j=1

[S+(τ−j)− S+(τ−j ; Πj−1)] (30)

,
i∑

j=1

#FNj ,

and the number of FPs by Πi is calculated by,

S−(Πi) = S−(Πi−1) + [S−(τ+
i)− S−(τ+

i ; Πi−1)]

=

i∑
j=1

[S−(τ+
j)− S−(τ+

j ; Πj−1)] (31)

,
i∑

j=1

#FPj .

The number of examples in D which are classified at
stage i by Πi is defined by,

S(τi) = |D(τ−i) ∪D(τ+
i)| (32)

= [S(τ−i)− S(τ−i ; Πi−1)] + [S(τ+
i)− S(τ+

i ; Πi−1)]

, #Si.

Now, we are ready to compute the three probabilities in
the empirical global risk function in Eqn.(13).

p̂(FN; ΠN) = S+(ΠN)/S+, (33)

p̂(FP; ΠN) = S−(ΠN)/S−, (34)
p̂(i; ΠN) = S(τi)/S. (35)

In summary, all these statistics are computed only once
at the offline stage, and can be used to compute the decision
policy on-the-fly for any given Θ = (CFP, CFN, λ).

5 ONLINE COMPUTING OF POLICY
In this section, we derive an upper bound for the empirical
risk function and propose a DP algorithm to minimize the
upper bound.

By substituting Eqn. (30), Eqn. (31) and Eqn. (32) into
Eqn. (17), the empirical risk is divided into two parts: the
sum of risks caused by the assignment of an individual τi,

R(τi; Θ) =
1

S
·[λ ·Ci · (S(τ−i) + S(τ+

i))

+ S+(τ−i) · CFN + S−(τ+
i) · CFP], (36)

and the sum of risks caused by examples which are double-
counted at stage i w.r.t the first i− 1 stages in Πi−1,

R(τi,Πi−1; Θ) =
1

S
[λ ·Ci · (S(τ−i ; Πi−1) + S(τ+

i ; Πi−1))

+ S+(τ−i ; Πi−1) · CFN + S−(τ+
i ; Πi−1) · CFP]. (37)

FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

So, the empirical risk in Eqn. (17) is re-produced as,

R(ΠN ; Θ) =

N∑
i=1

[R(τi; Θ)− R(τi,Πi−1; Θ)]. (38)

5.1 The upper bound of the risk
To obtain an upper bound of the risk in Eqn. (38), we
need a lower bound of R(τi,Πi−1; Θ). We remove those
high-order connections (gray arrows in Fig. 2), and only
consider the sequential chain connections (black arrows)
to obtain the lower bound of R(τi,Πi−1; Θ), denoted by
R(τi, τi−1; Θ).

Proposition 2 (The upper bound of risk): By substi-
tuting R(τi,Πi−1; Θ) with its lower bound R(τi, τi−1; Θ),
we obtain an upper bound of R(ΠN ; Θ),

R̂(ΠN ; Θ) =

N∑
i=1

R(τi; Θ)−
N∑
i=2

R(τi, τi−1; Θ), (39)

where R(τi, τi−1; Θ) is the lower bound of R(τi,Πi−1; Θ),

R(τi,τi−1; Θ) =
1

S
· {λ ·Ci · [(S(τ−i ; τ−i−1) + S(τ−i ; τ+

i−1)

+ S(τ+
i ; τ−i−1) + S(τ+

i ; τ+
i−1))]

+ [S−(τ+
i ; τ−i−1) + S−(τ+

i ; τ+
i−1)] · CFP

+ [S+(τ−i ; τ−i−1) + S+(τ−i ; τ+
i−1)] · CFN }. (40)

Proof: The intuitive idea is that R(τi, τi−1; Θ) con-
siders the risk caused by examples double-counted at τi
w.r.t. the previous stage i− 1 only, while R(τi,Πi−1; Θ) is
calculated by taking into account all the first i−1 previous
stages. See the proof in the supplementary material.

5.2 The DP algorithm
The upper bound in Eqn. (39) is in the same form as the
energy functions widely used in the literature of discrete
optimization, which includes a singleton energy term (i.e.,
the sum of R(·)’s) and a pairwise energy term (i.e., the sum
of R(·)’s), and can be optimized by DP efficiently (within
several seconds to minutes) as follows.

Let Bi[τi] be the risk of the best assignment to the i first
stages with the constraint that the i-th one is τi. We have,

B1[τ1] = R(τ1; Θ),

Bi[τi] = R(τi; Θ)

+ min
τi−1

(Bi−1[τi−1]− R(τi, τi−1; Θ)). (41)

Then, the DP algorithm consists of two steps:
i) The forward step for computing all Bi[τi]’s, and

caching the optimal solution for τi−1 as a function of τi
for later back-tracing starting at i = 2,

Ti[τi] = arg min
τi−1

(Bi−1[τi−1]− R(τi−1, τi; Θ)).

ii) The backward step for finding the near-optimal deci-
sion policy Π∗N = (τ∗1 , · · · , τ∗N), where we first take,

τ∗N = arg min
τN

BN [τN], (42)

Input: The given FPR and FNR, i.e., (α, β), and the
precomputed DP tables.

Output: The learned decision policy.
Initialization: Let CminFP = CminFN = 0. CmaxFP and
CmaxFN are set using Eqn. (20);
· Repeated.

i) CFP =
Cmin

FP +Cmax

FP
2 and CFN =

Cmin

FN +Cmax

FN
2

ii) Solve Π∗N (CFP, CFN) = arg minΠR(ΠN ; Θ) by
the DP algorithm.

iii) Compute p̂(FP; Π∗N) and p(FN; Π∗N). Set
CminFP = CFP if p(FP; Π∗N) ≥ α, CmaxFP = CFP
otherwise. Set CminFN = CFN if p(FN; Π∗N) ≥ β,
CmaxFN = CFN otherwise.

· Stop and return Π∗N if

|p(FP; Π∗N)− α|+ |p(FN; Π∗N)− β| < δ,

where δ is some predefined error tolerance.
Algorithm 1: Learning Π for given FNR and FPR.

and then in the order of i = N − 1, · · · , 1 trace back,

τ∗i = Ti+1[τ∗i+1]. (43)

To run the DP algorithm for different Θ = (CFP, CFN, λ)
which are either specified or needed to be searched for a
given pair of accuracy measure (α, β), we create three DP
tables for fast computation of R(τi; Θ) and R(τi, τi−1; Θ)
respectively (see details in the supplementary material).

Refinement of the DP Solution. Given the near-optimal
decision policy from the DP algorithm, we can compute its
groundtruth risk value based on the original risk function
since the number of FNs and FPs, and the number of
samples exited at each stage can be counted exactly. Then,
we adopt Gibbs-sampling like adjustments to the thresholds
τ−i ’s and τ+

i ’s one by one, and we accept an adjustment if
it could further reduce the original risk.

5.3 Decision Policy for Given FNR and FPR

Using the same DP algorithm for Θ = (CFP, CFN, λ),
we can compute the near-optimal decision policy for the
second setting where the reachable FPR and FNR, i.e.,
Θ = (α, β, λ) are given. We use the Algorithm. 1 to search
for the corresponding CFP, CFN through binary search.
Without loss of generality, we set λ = 1 here.

5.4 Decision Policy for Given Computing Budget

We can also use the DP algorithm to compute the decision
policy for a given total computing budget – the third way
of specifying a decision policy.

Suppose that the total computing budget is C, and then
our objective is,

min
ΠN

L(ΠN ;CFP, CFN)

subject to C(ΠN) ≤ C, (44)

where the loss L(·) is defined in Eqn. (13) and the cost
C(·) in Eqn. (16).

FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Classification Detection
Method #Feat #Stages CFP CFN FPR FNR CostPerEx AP CostPerWindow
AdaBoost 1146 1 / / 0.0017972 0.3030 1146 0.815 1146
AdaBoost Cascade [1] 2497 20 / / 0.0046214 0.3284 297.84 0.807 37.279
AdaBoost SoftCascade [7] 2135 20 / / 0.0029214 0.3369 227.84 0.805 36.109
AdaBoost Policy Π 1146 20 0.0357 0.5000 0.0018094 0.3078 162.72 0.809 27.459

TABLE 1
Comparison between the cascade and our decision policy (Π) on human face AdaBoost classifier. Our decision
policy outperforms the cascade methods in speed sigificantly on both the classification testing dataset and the

CMU+MIT detection benchmark with similar accuracy. See text for details.

For all feasible solutions ΠN ’s to Eqn. (44), we can adopt
the same upper bound relaxation presented in Sec. 5.1 with
Θ = (CFP, CFN, 1). Then, we modify Bi[τi] in Eqn. (41)
of the DP algorithm to set

Bi[τi] = +∞, if Ĉ(ΠN) > C, (45)

where Ĉ(ΠN) is the upper bound of the computing cost
which can be calculated based on the first parts in Eqn. (36)
and Eqn. (40) respectively.

6 EXPERIMENTS

In the experiments, we learn decision policies for the three
popular detectors: AdaBoost, SVM and DPM, and compare
with their corresponding cascade methods [1], [7], [27].

Settings: In all the comparison experiments, we learn
the decision policies based on the training FPR and FNR
(α, β), and the corresponding (CFP, CFN) are searched us-
ing the algorithm stated in Sec.5.3. According to Eqn. (20),
we observe in our experiments that for the final comparison
results of decision policies only the ratios

CFP
λ and

CFN
λ

matter, so we set λ = 1.0 for simplicity. Furthermore, we
show the normalized values of searched CFP and CFN by
S in all the figures and tables. Note that unlike our method,
the popular cascade methods [1], [7], [27] are not adjusted
(or optimized) to given parameters Θ.

6.1 Decision Policy for AdaBoost Classifier
In this experiment, we learn the decision policy for the
AdaBoost classifier trained for human face detection. We
compare with the original “hard” cascade method [1] and
the soft cascade method [7] which are the two of the most
popular cascade methods for face detection.

The training and testing data. The training dataset
consists of 11020 positive human face images (with the size
being 20×20 pixels) and 15366 background images which
do not contain human faces. The background images are
not cropped image patches but the whole images having
different sizes (such as 100 × 80 pixels and 1024 × 768
pixels). The testing set for classification includes 7092
human face images and 81794 negative image patches
randomly collected from the background images consisting
of animal faces, building, wall, grass and tree clutter. We
use the CMU+MIT human face detection benchmark [42]
for evaluating the detection performance, which consists of
130 testing images where 511 human faces appear.

Features, weak classifiers and the computational
costs. We use the same 4 types of Haar features used in

(a) Detection results (b) Cost(Policy)

10

32

100

316

1000

3162

(c) Cost(HardCsc)

32

100

316

1000

3162

10000

(d) Cost(SoftCsc)

10

32

100

316

1000

3162

10000

(e) Cost(HardCsc)−Cost(Policy)

−100

−10

1

10

100

1000

10000

(f) Cost(SoftCsc)−Cost(Policy)

1

3

10

32

100

316

1000

3162

10000

Fig. 5. Illustration of the pixel-based computational
costs compared between our policy (b), the hard cas-
cade (c), and the soft cascade (d) on a testing image in
MIT+CMU face detection dataset. All the three meth-
ods can detect all faces in the testing image (a). (e)
and (f) show the computing cost difference between
our policy and the hard cascade and the soft cascade
respectively. To record the work load at each image
pixel location, starting from a zero image, every sliding
window tested by the detector contributes an amount of
intensity proportional the number of Haar features (as
indicated by the color bar on the right of sub-figures
from (b) to (f)) applied to that window. For the smallest
detection windows (i.e., the windows in the bottom of
the testing image pyramid, i.e., the original image), this
intensity is concentrated in a single pixel at the center
of the window; for larger windows (i.e., windows in the
higher levels of the testing pyramid), it is spread out
over a proportionally larger area.

[1], and adopt the decision stump as the weak classifier. In
the experiments, we use the integral image to compute the
Haar features as done in [1]. So, the computational cost
for each weak classifier is the same and the computational
cost for each stage is proportional to the number of weak
classifiers included in that stage.

Training the cascade of AdaBoost classifiers. We train
the cascade consisting of 20 stages for both the “hard” and
soft cascade using the publicly available OpenCV package
(http://opencv.org). At each stage, we use the same number
of negatives as that of positives, set the minimal hit rate to
0.999 and the maximal FPR to 0.5, and use the equal data

FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

−16

−14

−12

−10

−8

−6

−4

−2

0

2

4
x 10

5

Stage Cost of + (#Pos=7092)
Stage Cost of −(#Neg=81794)

−12

−10

−8

−6

−4

−2

0

2

4

6
x 10

6 test: Accu. Computing Cost (usedTotal=1.446364e+07, usedPerEx.=162.72)

Accu. Cost of + (#Pos=7092)
Accu. Cost of −(#Neg=81794)

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

6

Stage Cost of + (#Pos=7092)
Stage Cost of −(#Neg=81794)

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

7 test: Accu. Computing Cost (usedTotal=2.647333e+07, usedPerEx.=297.83)

Accu. Cost of + (#Pos=7092)
Accu. Cost of −(#Neg=81794)

Fig. 6. Comparisons of the stage computing costs
between our policy (top) and the hard cascade (bot-
tom) on human face classification testing dataset (red
bars for positives and blue ones for negatives where
for illustration we use the minus computing costs of
negatives in the plots). The stage computing cost of the
i-th stage is computed as the product of the number
of examples exited (i.e., #Si in Eqn.(17)) and the
cumulative computational cost of the current stage (i.e.,∑i
j=1 c(Gj) in Eqn.(14)).

weight at the beginning. For the first stage, the negatives
are randomly cropped from the background images. At step
n = 2, · · · , 20, the negative dataset of step n − 1 is first
shrunk by removing those which are correctly classified
by the already trained cascade, and then the false positives
(i.e., hard negatives) are mined from the background images
to fill the gap. The trained “hard” cascade consists of
2497 boosted weak classifiers in total and the soft cascade
consists of 2135 boosted weak classifiers. Note that the soft
cascade needs an additional validation dataset to tune the
thresholds, and we use 5000 positives and 40,000 negative
examples, and the stages are independent of each other in
the “hard” cascade, instead of using the cumulative scores.

Training the AdaBoost classifier and learning the
decision policy. To train the single Adaboost classifier, we
adopt the iterative training procedure and set the minimal
hit rate to 0.999 and the maximal FPR to 0.0001 at each
iteration. In the first step, it is actually the same as training
the first stage of the cascade. After that, we keep all
the negatives and use the current classifier to mine the
same number of false positives as that of positives from
the background images. Then, we use all the negatives
to start over to train a new AdaBoost classifier. The
iteration stops when no more false positives can be found
in the background images, resulting in 117, 493 negatives
in total. The final AdaBoost classifier consists of 1, 146
boosted weak classifiers and FNR βtrain = 0 and FPR
αtrain = 1.1916e−004 on the training dataset. By doing this,
we are first maximizing the detection accuracy and then let

the learned decision policy to advance its computational
efficiency to account for different parameter settings.

The learned decision policy. To learn the decision
policy, we first divide the 1, 146 boosted weak classifiers
into 20 subsets which consist of 8, 13, 18, 23, 28, 33,
38, 43, 48, 53, 58, 63, 68, 73, 78, 83, 88, 93, 98, 139
ones respectively. Here, the number of weak classifiers in
each step increases linearly (e.g., 5 for the first 19 steps).
Note that the configuration of the decision policy, i.e. the
cardinality of each subset, is not particularly chosen, but
can be very flexible for different situations (which can not
be easily specified in training the cascade).

We summarize the results in Table. 1. Overall, the
decision policy outperforms the two cascade methods in
speed with similar detection accuracy. The computational
efficiency is measured by average #Feat tested per example
for classification, and average #Feat tested per sliding
window for detection. The accuracy is measured by FPR
and FNR for classification and Average Precision (AP)
for detection. For example, in detection, the two cascade
methods and our decision policy obtain similar APs, but our
decision policy saves about 10 Haar feature evaluations per
sliding window on average. Fig. 5 shows the comparisons of
the pixel-based computational costs between our policy and
the two cascade methods on a testing image in MIT+CMU
face dataset. Fig. 6 shows the stage-wise computing costs
for our decision policy and the hard cascade. Since the
cascade does not accept examples in early stages, its stage
computing costs of positives are consistently larger than the
decision policy. So, our policy will obtain more speed-up
when the positive and negative population ratio increased
as we show in Sec. 6.4 later.

6.2 Decision Policies for SVM classifier

In this experiment, we learn the decision policy for linear
SVM classifier trained on INRIA person dataset [3]. We
compare with the probably approximate admissible (PAA)
threshold [27], which selects the rejection thresholds using,

τ−i = min
{x;f(x)≥t1,x∈D+}

f i(x), (46)

where t1 is predefined to focus on high-scoring positive
examples.

The training and testing data. In INRIA person dataset,
there are 1208 persons in the training dataset and 566
persons in the testing dataset. We use 1119 out of the
1208 person images for training, and 552 out of 566
person images for classification testing by excluding those
labeled as difficult ones or being smaller than the trained
model size (120× 40 pixels). For evaluating classification,
we randomly crop 49869 negative image patches from a
set of collected street scene and indoor scene images in
which no persons appear. For evaluating detection, we use
all the images containing persons together with the 453
background images in which no persons appear.

SVM classifier. We train the linear SVM classifier using
the modified 32-dimensional HOG features [4] with the
template size being 15 × 5 cells (each cell is of 8 × 8

FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

Classification Detection
Method #Cell #Stages CFP CFN FPR FNR CostPerEx AP Avg.Cost
SVM 150 1 / / 0.0185 0.0052 150 0.80 150
SVM PAA 150 20 / / 0.0134 0.019 100.7 0.79 75.8
SVM policy Π 150 20 0.00031 0.01852 0.0180 0.0069 29.9 0.788 31.3

TABLE 2
Comparison between PAA [27] and our policy Π of the SVM classifier on the INRIA person dataset [3].

aero bike boat bttle bus car mbik train bird cat cow dog hrse sheep pers plant chair tble sofa tv
PAA 32.3 57.58 15.51 25.1 51.2 54.15 47.4 44 10.5 17.9 24 11.5 55.35 22.5 43.35 14.3 21 25.3 34 41.2
Policy Π 32.1 57.4 15.3 25.1 51.1 54 47.22 43.8 10 17.6 23.7 11.2 55.1 22.5 43.1 14.3 20.8 25.1 34 41.1
Speedup 1.62 1.78 1.68 1.32 1.51 1.31 1.63 1.57 1.31 1.51 1.69 1.56 1.73 1.44 1.82 1.36 1.69 1.53 1.97 1.4

TABLE 3
Comparison between PAA [27], and our policy Π of the DPMs trained and tested on PASCAL VOC2007 dataset

[41]. The first two rows show the average precision (APs) in detection. In the third row, we use the speed-up
ratio based on total running time on the testing dataset as efficiency evaluation for comparing with [45].

pixels) using the publicly available code [45], and we
have 15 × 5 × 32 weight parameters and 1 bias term
in the SVM classifier. During training, we use the hard
negative mining strategy as done in [3], [4] and obtain
114635 negatives in total. Similar to [27], we also specify a
simplified classifier by projecting the trained SVM classifier
into the top 5 principal components pooled from the whole
training dataset, resulting in 15× 5× 5 weight parameters.
So, we have 150 cells in total which are reordered based
on the criteria stated in Sec. 2.3, and then organized into
20 subsets with the size of the first 19 stages being 7
cells and the last stage being 17 cells. Computational cost
setting. For simplicity, we treat the computing cost of a
cell in the simplified classifier and that of the trained one
as being equal (due to the projection overhead needed in
the simplified classifier). So, the computational cost of a
stage is proportional to the number of cells.

The results are summarized in Table. 2. Our decision
policy outperforms the PAA method in speed in both
classification and detection with similar detection accuracy.
Our policy can outperform the PAA method in speed mainly
due to (i) we reorder the cells in terms of the ratio between
the statistical power and the computational cost (as stated in
Sec. 2.3), while the PAA method only takes into account
the variance of the positive scores (as done in the latest
release code [45]); By the reordering, we obtain more stable
trajectories of the training examples in learning the policy,
which is better for solving the policy by minimizing the
upper bound; and (ii) our DP algorithm chooses all the
thresholds jointly to minimize the empirical global risk with
computational cost taken into account explicitly, while the
PAA selects the rejection thresholds based on the high-
scored positive sub-population (see Eqn. 46).

6.3 Decision Policies for DPM
In this experiment, we learn decision policies for the pre-
trained DPMs in [45] on the 20 object classes in PASCAL
VOC2007 [41], and compare them with the PAA cascade
method [27] as stated in Sec.6.2.

The models, the order of parts, and the computational
cost settings. The pretrained model for each object class
is a mixture of DPMs consisting of 6 components. Each

component has one root filter and 8 part filters (which are
the same size, i.e., 6 × 6 HOG cells). In PAA [27], for
each component, the order of a part i (out of the 8 parts)
is determined based on the variance of scores on positives
without considering part i itself. In learning decision policy,
we reorder the parts based on the method stated in Sec.2.3.
As done in [27], we also use the PCA projected model
(using top 5 PCs). The computational costs for a part in
the projected model and in the original model are 6×6×5
and 6×6×32 (32 is the length of HOG feature vector). The
computational costs for the roots are computed in similar
way with respect to their own filter sizes.

Training and testing dataset. To collect the positive
training data, we reuse the same code in [45] that collect
scores of each part and the root. For the negative training
data, we run the detection of the pretrained model on
the negative images and randomly choose 100 samples (at
random scales and locations) from each negative images
(typically, we have about 200,000 negative examples).
Then, we use them to learn the decision policy. We test
the learned decision policy on detection only using the
PASCAL VOC protocol, and use the speed-up of the total
running time of detection (which does not take into account
the HOG pyramid computation and the PCA projection of
the pyramid) as efficiency evaluation for the comparison
with the PAA method [27]. We reused the DPM cascade
code in [45] and implemented the detection module based
on our policy using similar coding scheme for fair compar-
isons (e.g., we also did not parallelize the detection among
different mixture components).

The results are summarized in Table. 3. Our policy
speeds up the PAA cascade on all the 20 categories con-
sistently with similar performance.

6.4 Efficiency of Decision Policies over the Popu-
lation Ratios
In the three experiments above, the positive and negative
population ratio is based on a training or testing dataset
which is fixed and largely asymmetric (i.e., the number of
negatives is more than the number of positives). As is stated
in the introduction, the learning framework proposed in this
paper is able to address the issues of adaptation of object

FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

0 5 10 15 20 25 30 35 40 45 50
0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

#Noise

Testing FNR

FNR of baseline DP

FNR of learned DP 1

FNR of learned DP 2

0 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7

8

9

10
x 10

7

#Noise

Testing Computing Cost

Cost of baseline DP

Cost of learned DP 1

Cost of learned DP 2

0 5 10 15 20 25 30 35 40 45 50
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

-3

#Noise

Testing FPR

FPR of baseline DP

FPR of learned DP 1

FPR of learned DP 2

Testing FPR Testing FNR Cost

#Outlier #Outlier#Outlier

Fig. 8. Comparison of robustness to outliers between the naive decision policy and the learned decision policy of
human face AdaBoost classifier on the classification testing data. Blue curves are for the baseline decision policy
and red and magenta curves are for two of our learned decision policies (which prefer relatively smaller FPR and
FNR respectively). The naive policy is more sensitive to the outliers in terms of the computational efficiency.

0.1 0.5 1 5 10
0

200

400

600

800

1000

1200

1400

1600

1800

Populaton ratio (#neg / #pos)

C
om

pu
tin

g
co

st
 p

er
 e

xa
m

pl
e

0.1 0.5 1 5 10
-2

0

2

4

6

8

10
x 10

-3

Populaton ratio (#neg / #pos)

F
P

R

Cascade

Policy

Fig. 7. Efficiency of the policy (red curves) over
the population ratios compared with cascade (blue
curves). Left: The computing costs per example over
different population ratios. Right: The comparisons on
FPR by mean(horizontal curve)-std (vertical bar) plots.

detectors when the population ratio changes dynamically.
Our policy can obtain larger speed-up when the positive and
negative population ratio increases. Here, we show this by
manipulating the ratios in human face classification dataset.

We test 19 different positive and negative population
ratios: {0.1, 0.2, · · · , 1, 2, 3, · · · , 10}. The positive set does
not change (i.e., the same as in Sec. 6.1). For each ratio,
we randomly sample the negatives from the whole negative
testing dataset. Then, we learn the decision policy and
evaluate it. For each ratio, we run 10 times. Fig. 7, we
compare the computational efficiency (the left sub-figure)
and the detection accuracy (the right sub-figure) of our
decision policy and the cascade. Our policy obtains more
speed-ups when the positive and negative population ratio
is large, and better and more stable accuracy.

6.5 Robustness of Decision Policies to Outliers
To show the robustness of our policy, we compare with
the naive decision policy which select τ−i using the PAA
method [27] (see Sec. 6.2) and similarly choose τ+

i =
max{x;f(x)<t0,x∈D−} f

i(x) + ε (where ε is a very small
positive value such as 0.00001 in our experiments). we
demonstrate this by adding outliers in human face clas-
sification dataset. To add outliers to the positive dataset,
we randomly select patches from the negative images. To
add outliers to the negative dataset, we randomly select
face images. Fig. 8 compares the robustness to outliers
in both positive and negative testing datasets between the

naive decision policy and the learned decision policy, which
shows that the learned decision policy is consistently more
robust with different number of outliers being used.

7 DISCUSSION

This paper presents a framework for computing a decision
policy (a sequence of two-sided thresholds) in terms of
optimizing an upper bound of the risk function. The latter
is a weighted sum of the loss (missing detection and false
alarm) and computational cost, with the weights being
specified ahead or updated on-the-fly. The decision policy is
part of a bigger computational problem in computer vision
— goal-guided cost-sensitive computing, and thus it should
be integrated with other computing and learning modules.
In the following, we discuss two possible directions to
extend the work.

Firstly, the ordering of features in object detection, e.g.
Adaboost, is mostly done in greedy ways and thus is not
optimal, and the decision policy is computed after this order
is decided. One may consider combining the two computing
processes in an iterative way to achieve more effective
detectors. One possible algorithm is Markov Chain Monet
Carlo (MCMC) which consists of various reversible jumps
for switching orders of features and replacing features in
term of minimizing the loss function. The decision policy
can be one step of this iterative process.

Secondly, the study of decision policies is closely related
to a long-standing computing vision problem [46], [47], i.e.,
schedule bottom-up/top-down computing processes in a big
hierarchical model for scene understanding and image pars-
ing. In our previous work [16], we presented a numerical
study on ordering the bottom-up/top-down processes (i.e.
the α, β, γ-processes) for object parsing. These processes
were scheduled in a greedy way like best-first-search in
And-Or graphs [48]. In the current work, the decision
policy is optimized in a linear chain structure, we plan
to extend the policy to the And-or graph so that we can
optimally schedule the α, β, γ-processes together with the
early reject or accept of each node in the And-Or graph. In
this bigger framework, contextual information will become
available to update the population ratios of the positives and
the negatives, and will be used for updating the decision
policies as we argued in the beginning of the paper.

FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

ACKNOWLEDGMENTS
This work is supported by DARPA MSEE grant FA
8650-11-1-7149, NSF IIS1018751 and MURI grant ONR
N00014-10-1-0933. We thank Dr. Ying Nian Wu for helpful
discussions.

REFERENCES
[1] P. Viola and M. Jones, “Robust real-time face detection,” IJCV,

vol. 57, no. 2, pp. 137–154, 2004.
[2] V. Vapnik, Statistical learning theory. Wiley, 1998.
[3] N. Dalal and B. Triggs, “Histograms of oriented gradients for human

detection,” in CVPR, 2005.
[4] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan,

“Object detection with discriminatively trained part based models,”
PAMI, vol. 32, no. 9, pp. 1627 – 1645, 2010.

[5] H. Pirsiavash and D. Ramanan, “Steerable part models,” in CVPR,
2012, pp. 3226–3233.

[6] X. Song, T. Wu, Y. Jia, and S.-C. Zhu, “Discriminatively trained
and-or tree models for object detection,” in CVPR, 2013.

[7] L. D. Bourdev and J. Brandt, “Robust object detection via soft
cascade,” in CVPR, 2005.

[8] M. J. Saberian and N. Vasconcelos, “Learning optimal embedded
cascades,” PAMI, vol. 34, no. 10, pp. 2005–2018, 2012.

[9] A. Barbu, “Multi-path marginal space learning for object detection,”
Theodoridis, S and Chelappa, R (Eds.), E-Reference Signal Process-
ing. Elsevier, 2013.

[10] C. H. Lampert, M. B. Blaschko, and T. Hofmann, “Efficient subwin-
dow search: A branch and bound framework for object localization,”
PAMI, vol. 31, no. 12, pp. 2129–2142, 2009.

[11] I. Kokkinos, “Rapid deformable object detection using dual-tree
branch-and-bound,” in NIPS, 2011.

[12] H. Masnadi-Shirazi and N. Vasconcelos, “Cost-sensitive boosting,”
PAMI, vol. 33, no. 2, pp. 294–309, 2011.

[13] ——, “Risk minimization, probability elicitation, and cost-sensitive
svms,” in ICML, 2010.

[14] M. R. Amer, D. Xie, M. Zhao, S. Todorovic, and S. C. Zhu,
“Cost-sensitive top-down/bottom-up inference for multiscale activity
recognition,” in ECCV, 2012.

[15] J. Sochman and J. Matas, “Waldboost - learning for time constrained
sequential detection,” in CVPR, 2005.

[16] T. F. Wu and S.-C. Zhu, “A numerical study of the bottom-up and
top-down inference processes in and-or graphs,” IJCV, vol. 93, no. 2,
pp. 226–252, 2011.

[17] A. Grubb and J. A. D. Bagnell, “Speedboost: Anytime prediction
with uniform near-optimality,” in AISTATS, 2012.

[18] B. Póczos, Y. Abbasi-Yadkori, C. Szepesvári, R. Greiner, and N. R.
Sturtevant, “Learning when to stop thinking and do something!” in
ICML, 2009.

[19] T. Gao and D. Koller, “Active classification based on value of
classifier,” in NIPS, 2011.

[20] S. C. Brubaker, J. Wu, J. Sun, M. D. Mullin, and J. M. Rehg, “On the
design of cascades of boosted ensembles for face detection,” IJCV,
vol. 77, no. 1-3, pp. 65–86, 2008.

[21] M. Chen, Z. E. Xu, K. Q. Weinberger, O. Chapelle, and D. Kedem,
“Classifier cascade for minimizing feature evaluation cost,” JMLR -
Proceedings Track, vol. 22, pp. 218–226, 2012.

[22] G. Blanchard and D. Geman, “Hierarchical testing designs for pattern
recognition,” Ann. Statist., vol. 33, no. 3, pp. 1155–1202, 2005.

[23] H. Schneiderman, “Feature-centric evaluation for efficient cascaded
object detection,” in CVPR, 2004.

[24] R. Xiao, H. Zhu, H. Sun, and X. Tang, “Dynamic cascades for face
detection,” in ICCV, 2007.

[25] J. Wu, S. C. Brubaker, M. D. Mullin, and J. M. Rehg, “Fast
asymmetric learning for cascade face detection,” PAMI, vol. 30,
no. 3, pp. 369–382, 2008.

[26] L. Lefakis and F. Fleuret, “Joint cascade optimization using a product
of boosted classifiers,” in NIPS, 2010.

[27] P. Felzenszwalb, R. Girshick, and D. McAllester, “Cascade object
detection with deformable part models,” in CVPR, 2010.

[28] J. Yan, Z. Lei, L. Wen, and S. Z. Li, “The fastest deformable part
model for object detection,” in CVPR, 2014.

[29] Y. Amit, D. Geman, and X. D. Fan, “A coarse-to-fine strategy for
multiclass shape detection,” PAMI, vol. 26, no. 12, pp. 1606–1621,
2004.

[30] S. Gangaputra and D. Geman, “A design principle for coarse-to-fine
classification,” in CVPR, 2006.

[31] H. Sahbi and D. Geman, “A hierarchy of support vector machines
for pattern detection,” JMLR, vol. 7, pp. 2087–2123, 2006.

[32] P. F. Felzenszwalb and D. A. McAllester, “The generalized a*
architecture,” J. Artif. Intell. Res. (JAIR), vol. 29, pp. 153–190, 2007.

[33] I. Kokkinos and A. Yuille, “Inference and learning with hierarchical
shape models,” IJCV, vol. 93, no. 2, pp. 201–225, 2011.

[34] K. M. Ting, “A comparative study of cost-sensitive boosting algo-
rithms,” in ICML, 2000.

[35] A. Wald, Sequential Analysis. Wiley, New York, 1947.
[36] D. Seigmund, Sequential Analysis, Test and Confidence Intervals.

Springer-Verlag, 1985.
[37] O. Pele and M. Werman, “Robust real-time pattern matching using

bayesian sequential hypothesis testing,” PAMI, vol. 30, no. 8, pp.
1427–1443, 2008.

[38] M. Zhu, N. Atanasov, G. Pappas, and K. Daniilidis, “Active De-
formable Part Models Inference,” in ECCV, 2014.

[39] S. Karayev, M. Fritz, and T. Darrell, “Anytime recognition of objects
and scenes,” in CVPR, 2014.

[40] T. Wu and S.-C. Zhu, “Learning near-optimal cost-sensitive decision
policy for object detection,” in ICCV, 2013.

[41] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zis-
serman, “The PASCAL Visual Object Classes Challenge 2007
(VOC2007) Results.”

[42] H. Rowley, S. Baluja, and T. Kanade, “Neural network-based face
detection,” PAMI, vol. 20, no. 1, pp. 23–38, 1998.

[43] C. Elkan, “The foundations of cost-sensitive learning,” in IJCAI,
2001, pp. 973–978.

[44] J. Neyman and E. S. Pearson, “On the problem of the most
efficient tests of statistical hypotheses,” Philosophical Transactions
of the Royal Society of London. Series A, Containing Papers of a
Mathematical or Physical Character, vol. 231, pp. 289–337, 1933.

[45] R. B. Girshick, P. F. Felzenszwalb, and D. McAllester, “Discrimina-
tively trained deformable part models, release 5,” 2012.

[46] S. Ullman, “Visual routines,” Cognition, vol. 18, pp. 97–159, 1984.
[47] S. Thorpe, D. Fize, and C. Marlot, “Speed of processing in the human

visual system,” Nature, vol. 381, pp. 520–522, 1996.
[48] S.-C. Zhu and D. Mumford, “A stochastic grammar of images,”

Found. Trends. CGV, vol. 2, no. 4, pp. 259–362, 2006.

Tianfu Wu received a Ph.D. degree in Statis-
tics from University of California, Los Angeles
(UCLA) in 2011. He is currently a researcher
assistant professor in the center for vision,
cognition, learning and art (VCLA) at UCLA.
His research interests focus on: (i) Learning
hierarchical and compositional models from
weakly-labeled big data and (ii) Scheduling
bottom-up/top-down computing processes in
big hierarchical models.

Song-Chun Zhu received a Ph.D. degree
from Harvard University in 1996. He is cur-
rently a professor of Statistics and Com-
puter Science at UCLA, and the director of
the Center for Vision, Cognition, Learning
and Art. He has published over 160 papers
in computer vision, statistical modeling and
learning, cognition, and visual arts. He re-
ceived a number of honors, including the J.K.
Aggarwal prize from the Int’l Association of
Pattern Recognition in 2008, the David Marr

Prize in 2003 with Z. Tu et al.,twice Marr Prize honorary nominations
in 1999 and 2007, He received the Sloan Fellowship in 2001, a US
NSF Career Award in 2001, and an US ONR Young Investigator
Award in 2001. He received the Helmholtz Test-of-time award in
ICCV 2013, and he is a Fellow of IEEE since 2011.

FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Supplementary Material
Tianfu Wu and Song-Chun Zhu

F

1 THE ADDITIVE SCORING FUNCTIONS
In this section, we overview three popular object detec-
tors, AdaBoost, SVM and DPM to set up the background
complementary to Sec.2.3 in the manuscript. All the three
detectors use an offline trained additive scoring function
with T basic terms.

AdaBoost. It learns a scoring function (strong classifier),

f(x) =

T∑
t=1

gt(x),

which is the sum of T boosted weak classifiers gt(x)’s.
In discrete AdaBoost (DAB), each boosted weak classifier
represents a weighted binary rule, gt(x) = wtht(x), and
ht(x) is often implemented with a decision stump ht(x) =
sign[φt(x) − τt] where φt(x) represents a scalar feature
response (e.g., the Haar feature response [1]) and τt is the
corresponding threshold.

SVM. Linear SVM learns a max-margin scoring function
f(x) =< ω, φ(x) > +b where ω is the weight parameter
vector, φ(·) is a feature vector representation, < ·, · > is the
inner product, and b is a bias term. By dividing the feature
vector into a set of T blocks, we have,

f(x) =

T∑
t=1

< ωt, φt(x) > +b.

The blocks can be decided based on the types of features
in a heterogeneous long feature vector φ(·) or the partition
of the spatial domain of a sliding window if φ(·) is
homogeneous, such as the blocks used in the HOG feature
representation [2], [3]. We have gt(x) =< ωt, φt(x) >. For
nonlinear kernel SVM, we can use the support vectors as
basic additive terms [4], and then similar steps follow.

Deformable Part-based Model (DPM) [3]. The scoring
function of a DPM with one root and T − 1 parts is,

f(x) = < ω1, φ1(x) >

+

T∑
t=2

max
δt

(< ωt, φt(x; δt) > −dt(δt)) + b

where ωt’s (t = 1, · · · , T) are the weight parameter vectors,
φt(·)’s are appearance feature vectors (such as the HOG

• T.F. Wu is with the Department of Statistics, University of California,
Los Angeles. E-mail: tfwu@stat.ucla.edu

• S.C. Zhu is with the Department of Statistics and Computer Science,
University of California, Los Angeles. E-mail: sczhu@stat.ucla.edu

feature) and the feature of parts φt(·) (t = 2, · · · , T) are
often extracted at twice the spatial resolution relative to that
of root node (φ1(·)). δt is the displacement of the t-th part
relative its anchor location, dt(δt) is the deformation cost,
and b is the bias term.

2 THE DP TABLES USED IN ONLINE COM-
PUTING OF POLICY

To run the DP algorithm (Sec.5.2 in the manuscript) for
different Θ = (CFP, CFN, λ) which are either specified
or needed to be searched for a given pair of accuracy
measure (α, β), we further create three DP tables for fast
computation of R(τi; Θ).

Given the K × N matrix defined in Sec.4 in the
manuscript, the number of states which all τi’s can take
is K · (K + 1)/2 because we have τ−i = 1, · · · ,K and
τ+i = τ−i , · · · ,K (i.e. τ+i ≥ τ−i). Then, we can pre-
compute three 2-dimensional DP tables,

T1[i, τi] = Ci · [S(τ−i) + S(τ+i)]/S

T2[i, τi] = S−(τ+i)/S

T3[i, τi] = S+(τ−i)/S

Where we use τi as the index of the states. Then, the
computational complexity for evaluating the risk R(τi; Θ)’s
given any (CFP, CFN) is the same and very fast (three
matrix multiplications and one matrix addition).

In the same way, we utilize three DP tables in computing
the risk R(τi, τi−1; Θ),

T4[i, τi−1, τi] =
Ci

S
· [S(τ−i ; τ−i−1) + S(τ+i ; τ−i−1)

+ S(τ−i ; τ+i−1) + S(τ+i ; τ+i−1)]

T5[i, τi−1, τi] =
1

S
[S−(τ+i ; τ−i−1) + S−(τ+i ; τ+i−1)]

T6[i, τi−1, τi] =
1

S
[S+(τ−i ; τ−i−1) + S+(τ−i ; τ+i−1)]

The six DP tables are often very sparse which can be
implemented by the sparse matrix data structure to save
the memory.

In Fig.1, we show tightness of the upper bound em-
pirically on the human face AdaBoost classifier which is
consistent across different settings of the loss of misclassi-
fication (we set CFP ∈ [0.1, S/S−] and CFN ∈ [0.1, S/S+]
and equally sample 100 points for both). We observe the
similar tightness for other types of scoring functions. The

FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

CFN CFP

Loss Loss UpperBound Cost Cost UpperBound

Fig. 1. This figure shows the tightness of the upper bound (Eqn. (39) in the manuscript) for loss and computing
cost empirically.

Fig. 2. Illustration of the DP algorithm minimizing the
upper bound of our empirical global risk for the decision
policy shown in Fig.1 in the manuscript. The surface is
plotted based on Bi(τi) in Eqn.(41) in the manuscript.

tightness is due to the statistical observation in Fig.3 in the
manuscript.

Fig. 2 illustrates the minimization of the risk upper bound
by the DP algorithm for the decision policy shown in Fig.1
in the manuscript.

3 PROOFS

We present the proofs in the Appendix A, B and C for the
Lemma 1 and Proposition 1 in Sec.3.2 in the manuscript,
and Proposition 2 in Sec.5.1 in the manuscript respectively.

APPENDIX A
PROOF OF LEMMA 1

Proof: Suppose there was a decision policy Π
′

N solv-
ing Eqn. (12) with smaller computational cost,

λ · C(Π
′

N) < λ · C(Π∗N)

and better or equal detection accuracy,

p(FP; Π
′

N) ≤ p(FP; Π∗N) and p(FN; Π
′

N) ≤ p(FN; Π∗N)

So, for the loss, based on Eqn. (13), we have,

L(Π′N ;CFP, CFN)

=
S−

S
p(FP; Π′N) · CFP +

S+

S
p(FN; Π′N) · CFN

≤ S−

S
p(FP; Π∗N) · CFP +

S+

S
p(FN; Π∗N) · CFN

= L(Π∗N ;CFP, CFN)

And, since Π∗N is the optimal solution, we have,

R(Π∗N ; Θ) ≤ R(Π
′

N ; Θ)

That is,

λ · C(Π∗N) + L(Π∗N ;CFP, CFN)

≤λ · C(Π′N) + L(Π′N ;CFP, CFN)

≤λ · C(Π′N) + L(Π∗N ;CFP, CFN)

Now, we arrive at λ · C(Π∗N) ≤ λ · C(Π′N) which is
conflicted with the original assumption above. Then, by
using backward induction, it proves that Π∗N is the solution
to the original optimization problem (Eqn. (12)) with α =
p(FP; Π∗N) and β = p(FN; Π∗N).

APPENDIX B
PROPOSITION 1: COMPUTING Cmax

FP AND
Cmax

FN
Given reachable bounds on FPR and FNR (α, β), the
corresponding near-optimal decision policy, denoted by
Π∗N (α, β), is sought by searching Π∗N (CFP, CFN) (which
is solved by DP) with,

CFP ∈ [0, CmaxFP] and CFN ∈ [0, CmaxFN]

until p(FP; Π∗N) and p(FN; Π∗N) are as close with the
specified bounds α and β as possible.
CmaxFP and CmaxFN are derived as follows.
Denote by ΠN

N the decision policy where a decision is
made only after the full score f(x) is obtained and using
the offline estimated threshold τ = τ−N = τ+N (i.e., no early
decisions are made). So, the corresponding risk is,

R(ΠN
N ; Θ) = λ+

S−(τ)

S
· CFP +

S+(τ)

S
· CFN

where S−(τ) = S+(τ) = 0 if f(x) perfectly separates
the positive and negative examples with the threshold τ
being used, or both S−(τ) and S+(τ) take small values
with respect to S. Then, the risk R(ΠN

N ; Θ) ≈ λ, i.e.,
the full computational cost (recall that we normalize the
computational cost CN = 1, Eqn. (14) and Eqn. (15)).

By definition, R(ΠN
N ; Θ) is greater or equal to the risk

R(Π∗N ; Θ), we have,

λ ≥ R(Π∗N ; Θ) > p(FP; Π∗N) · S
−

S
· CFP

FOR REVIEW: IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Then, if let

CFP =
λ · S
α · S−

, CmaxFP

we can guarantee that p(FP; Π∗N) < α. Similarly, we obtain
CmaxFN = λ·S

β·S+ . In practice, to avoid the problem of dividing
by zero, we let α ≥ 0.1

S− and β ≥ 0.1
S+ .

APPENDIX C
PROPOSITION 2: PROOF OF THE UPPER
BOUND

Proof: The intuitive idea is that R(τi, τi−1; Θ) consider
the risk caused by examples double-counted at τi w.r.t. the
previous stage i−1 only, while R(τi,Πi−1; Θ) is calculated
by taking into account all the first i− 1 previous stages.

We need to prove R(τi−1, τi; Θ) ≤ R(τi,Πi−1; Θ).
R(τi−1, τi; Θ) is obtained by substituting the
four double-counting terms in R(τi,Πi−1; Θ),
i.e., S(·; Πi−1), S+(·; Πi−1) and S−(·; Πi−1)
with their corresponding lower bounds (e.g.,
S+(τ−i ; τi−1) ≤ S+(τ−i ; Πi−1)), and since λ, Ci,
CFP and CFN take non-negative values, we obtain the
lower bound.

It is straightforward to show S+(τ−i ; τi−1) ≤
S+(τ−i ; Πi−1). Consider FNs by τi individually,
S+(τ−i ; τi−1) is the number of FNs double-counted
w.r.t. one single previous stage τi−1, while S+(τ−i ; Πi−1)
is counted w.r.t. all the previous stages in Πi−1. By
definition, we have D+(τ−i ; τi−1) ⊆ D+(τ−i ; Πi−1) and
then,

S+(τ−i ; τi−1) ≤ S+(τ−i ; Πi−1).

Furthermore, we have,

D+(τ−i ; τi−1) = D+(τ−i ; τ−i−1) ∪D+(τ−i ; τ+i−1),

∅ = D+(τ−i ; τ−i−1) ∩D+(τ−i ; τ+i−1).

So, S+(τ−i ; τi−1) = S+(τ−i ; τ−i−1) + S+(τ−i ; τ+i−1).
The same relaxations are taken for other double-counting

terms in R(τi,Πi−1; Θ). We then obtain the lower bound
R(τ1, τi−1; Θ), and prove the upper bound R̂(ΠN ; Θ).

REFERENCES
[1] P. Viola and M. Jones, “Robust real-time face detection,” IJCV,

vol. 57, no. 2, pp. 137–154, 2004.
[2] N. Dalal and B. Triggs, “Histograms of oriented gradients for human

detection,” in CVPR, 2005.
[3] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan,

“Object detection with discriminatively trained part based models,”
PAMI, vol. 32, no. 9, pp. 1627 – 1645, 2010.

[4] H. Sahbi and D. Geman, “A hierarchy of support vector machines for
pattern detection,” JMLR, vol. 7, pp. 2087–2123, 2006.

	policy_final
	Decision_policy_supplementary

