
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Extraction of an Explanatory Graph to
Interpret a CNN

Quanshi Zhang, Xin Wang, Ruiming Cao, Ying Nian Wu, Feng Shi, and Song-Chun Zhu

Abstract—This paper introduces an explanatory graph representation to reveal object parts encoded inside convolutional layers
of a CNN. Given a pre-trained CNN, each filter[1] in a conv-layer usually represents a mixture of object parts. We develop
a simple yet effective method to learn an explanatory graph, which automatically disentangles object parts from each filter
without any part annotations. Specifically, given the feature map of a filter, we mine neural activations from the feature map,
which correspond to different object parts. The explanatory graph is constructed to organize each mined part as a graph node.
Each edge connects two nodes, whose corresponding object parts usually co-activate and keep a stable spatial relationship.
Experiments show that each graph node consistently represented the same object part through different images, which boosted
the transferability of CNN features. The explanatory graph transferred features of object parts to the task of part localization, and
our method significantly outperformed other approaches.

Index Terms—Convolutional Neural Networks, Graphical Model, Interpretable Deep Learning

F

1 INTRODUCTION

In this paper, we investigate the disentanglement of
intermediate-layer feature representations of a CNN
pre-trained for object classification. We notice that
each filter in a CNN usually encodes mixed features
of object parts and textural patterns. Therefore, in
this paper, given a CNN, we propose to learn an
explanatory graph without any part annotations. The
explanatory graph automatically reveals how object-
part features are organized in the CNN. The explana-
tory graph
1. disentangles features of object parts from mixed
features in intermediate-layers of a CNN;
2. encodes which object parts are usually co-activated
and keep the stable spatial relationship.

As Fig. 1 shows, the explanatory graph encodes the
compositional hierarchy of object parts encoded inside
conv-layers of the CNN, as follows.
• The explanatory graph consists of multiple layers.

Each layer of the graph corresponds to a conv-
layer of the CNN and contains thousands of
nodes.

• Each node represents an object part that is en-
coded in a filter of a conv-layer. A filter in a
conv-layer is usually activated by multiple parts
and textural patterns. As Fig. 1 shows, a filter’s
feature map1 may be activated by both the head
and the neck of a horse.

• Quanshi Zhang and Xin Wang are with the John Hopcroft Center
and MoE Key Lab of Artificial Intelligence AI Institute, Shanghai Jiao
Tong University, Shanghai, China. Ruiming Cao, Feng Shi, Ying Nian
Wu, and Song-Chun Zhu are with the University of California, Los
Angeles, USA.

1. The output of a conv-layer is called the feature map of a conv-
layer. Each channel of this feature map is produced by a filter, so
we call a channel the feature map of a filter.

Given the feature map of a filter, a graph n-
ode can identify neural activations in the feature
map, which correspond to a specific object part.
Theoretically, a CNN with ReLU layers can be
considered to encode high-order piecewise linear
representations. An object part corresponding to
a node is encoded inside a specific feature space
divided by the piecewise partitions. Multiple n-
odes are learned for each filter, i.e. neural activa-
tions in its feature map are divided and explained
as different multiple parts.

• A graph edge connects two nodes in adjacent
layers. The two connected nodes represent two
object parts, which usually appear simultaneous-
ly in an image and keep a stable spatial relation-
ship among different images. For example, the
ear part and the face part of a horse usually co-
appear on different images with similar spatial
relationships.

Constructing the explanatory graph is a process of
mining object parts from intermediate conv-layers.
Nodes in the explanatory graph represent all can-
didate parts learned from the entire set of training
images by the CNN. Consequently, in the inference
process, given an input image, the explanatory graph
automatically selects a small ratio of nodes. These cho-
sen nodes identify neural activations in intermediate-
layer feature maps, which correspond to specific ob-
ject parts. Given different images, the explanatory
graph selects different sets of nodes for explanation.
Moreover, since the same part may appear at various
locations, given different images, the same node may
identify neural activations at different positions as the
target part.

The explanatory graph mainly takes two advan-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

Image patches corresponding to different nodes

Node 1

Node 2

Node 3

Red nodes activated by the
input image

Node 4

Node 5

Node 6

Gray nodes NOT activated
by the input image

Input
image

Feature maps
of conv-layers

Explanatory graph

…

Neck
pattern

Head
pattern

Fig. 1. An explanatory graph represents the compositional hierarchy of object parts encoded in conv-layers of a
CNN. Each filter in a pre-trained CNN may be activated by different object parts. Our method disentangles object
parts from each filter in an unsupervised manner.

tages, i.e. the disentanglement and the transferability,
as follows.

Disentangling object parts from a single filter is
the core technique of building an explanatory graph.
In this study, we develop a simple yet effective
method to automatically disentangle different object
parts from a single filter without using any anno-
tations of object parts, which presents considerable
challenges for state-of-the-art algorithms. In this way,
the explanatory graph exclusively localizes neural
activations of object parts in the feature map, and
ignores noisy activations and activations of textural
patterns.

More specifically, for each input image, the ex-
planatory graph (i) infers which parts (nodes) are
responsible for the feature map of a filter and (ii)
localizes these parts.

Graph nodes with high transferability: The ex-
planatory graph contains off-the-shelf features of ob-
ject parts in a compositional hierarchy, like a dictio-
nary. Thus, the explanatory graph enables us to accu-
rately transfer such object-part features to other tasks.
Since all filters in the CNN are learned to encode com-
mon features shared by numerous training images,
each graph node can be regarded as a transferable
detector for common parts among different images.

To demonstrate the above advantages, we learn
different explanatory graphs for various CNNs (e.g.
the VGG-16, residual networks, and the encoder of a
VAE-GAN) and analyze the explanatory graphs from
various perspectives as follows.
Visualization & reconstruction: We visualize object parts
encoded by graph nodes using the following two ap-
proaches. First, for each graph node, we draw image
regions corresponding to the node’s part localizations
on different input images. Second, we learn another
neural network, which uses activation states of graph
nodes to reconstruct the input image.
Evaluation of part interpretability of graph nodes: Given
an explanatory graph, we propose a new metric to
quantitatively evaluate whether a node consistently
represents the same part in different images.

Examination of location instability of graph nodes: Besides
the part interpretability, we also use a new metric,
namely location instability, to measure the semantic
clarity of each graph node. It is assumed that if a
graph node consistently represents the same object
part, then the distances between the inferred part and
some ground-truth landmarks of the object should
not change a lot through different images. Thus, the
evaluation metric uses the deviation of such relative
distances over images to measure the instability of the
part representation.
Testing transferability: The transferability of graph n-
odes is tested in the scenario of few-shot part local-
ization. We associate certain graph nodes with explicit
part names based on feature maps of very few images,
in order to localize the target part. The superior local-
ization performance proves the good transferability of
graph nodes.

Contributions of this paper are summarized as
follows.

• In this paper, we, for the first time, propose a
simple yet effective method to extract and sum-
marize object parts encoded inside intermediate
conv-layers of a CNN and organize them using
an explanatory graph. Experiments show that
each graph node consistently represents the same
object part in different input images.

• The proposed method can be used to learn ex-
planatory graphs for various CNNs, e.g. VGGs,
residual networks, and the encoder of a VAE-
GAN.

• Graph nodes have good transferability, especially
in the task of few-shot part localization. Although
our graph nodes were learned without part an-
notations, our transfer-learning-based part local-
ization still outperformed approaches using part
annotations to learn part representations.

A preliminary version of this paper appeared in [43].

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

2 RELATED WORK

2.1 Semantics in the CNN

The interpretability of neural networks receives in-
creasing attention in recent years [51]. Different meth-
ods have been developed to explore visual concepts
encoded inside a CNN.

Visualization & interpretability of CNN filter-
s: Visualization of filters in a CNN is the most
direct way of diagnosing representations of a CNN.
Dosovitskiy et al. [6] proposed up-convolutional nets
to invert feature maps of conv-layers to input im-
ages. Gradient-based visualization [19], [21], [22], [31]
showed the appearance that maximized a network
output, the activation score of a specific filter, or cer-
tain neural activations in a feature map. Furthermore,
Bau et al. [3] defined and analyzed the interpretability
of each filter. In recent years, [23] provided a reliable
tool to visualize filters in different conv-layers of a
CNN.

[3] selectively analyzed the semantics among the
highest 0.5% activations of each filter. In contrast,
our method provides a solution to explaining both
strong and relatively weak activations from each filter,
instead of exclusively extracting significant neural
activations.

Active network diagnosis: Going beyond “pas-
sive” visualization, some methods “actively” diagnose
a pre-trained CNN to obtain insight understanding
of CNN representations. Many statistical methods [1],
[35] have been proposed to analyze CNN features. [35]
explored semantic meanings of convolutional filters.
[1], [17] computed feature distributions of different
categories.

The model bias and dataset bias are typical prob-
lems in deep learning, which has been illustrated in
recent studies of [14], [20], [24]. Zhang et al. [47] has
proposed a method to discover biased representations
due to dataset bias. The CNN usually uses unreliable
contexts for classification. For example, a CNN may
extract features from hairs as a context to identify the
smiling attribute.

Therefore, in order to ensure the correctness of
feature representations, network-attack methods [12],
[34], [35] diagnosed network representations by com-
puting adversarial samples for a CNN. In particular,
influence functions [12] were proposed to compute
adversarial samples, create training samples to attack
the learning of CNNs, fix the training set, and fur-
ther debug a CNN. [13] discovered blind spots of
CNN representations in a weakly-supervised manner.
In comparison, our method disentangles features of
object parts from a pre-trained CNN and builds an ex-
planatory graph to reveal object parts encoded inside
the CNN. It is because just like And-Or graphs [39],
[40], [41], our explanatory graph naturally represents
the local, bottom-up, and top-down information to
construct a hierarchical object representation.

Diagnosis of network predictions: Some previous
studies aimed to explain the reason for each network
prediction. Methods of [7], [27] propagated gradients
of feature maps w.r.t. the CNN loss back to the image,
in order to estimate the image regions that directly
contribute the network output. The LIME [24], the
SHAP [18], and [4], [42] extracted input units that
were closely related to a specific prediction.

Pattern retrieval: Some studies retrieve specif-
ic activation units with specific meanings from
intermediate-layer feature maps. Like middle-level
feature extraction [33], pattern retrieval mainly learns
mid-level representations of CNN features. Zhou et
al. [52], [53] selected activation units from feature
maps to describe scenes. In particular, [52] accurate-
ly computed the image-resolution receptive field of
neural activations in a feature map. Theoretically, the
actual receptive field of a neural activation is smaller
than that computed using the filter size. Simon et al.
discovered objects from feature maps of unlabeled
images [29], and selected a filter to describe each part
in a supervised fashion [30]. However, most methods
simply assumed that each filter mainly encoded a
single visual concept, and ignored the case that a
filter in high conv-layers encoded a mixture of object
parts and textural patterns. [44], [45], [46] extracted
certain neural activation units from a filter’s feature
map to describe an object part in a weakly-supervised
manner (i.e. learning from active question answering
and human interactions).

In this study, the explanatory graph disentangles
features of different object parts from the CNN with-
out part annotations. Compared to raw feature maps,
graph nodes are well disentangled and more inter-
pretable.

CNN semanticization: Compared to the diagnosis
of CNN representations and the pattern retrieval,
semanticization of CNN representations is closer to
the spirit of building interpretable representations.

Hu et al. [11] designed logic rules for network
outputs, and used these rules to regularize neural net-
works and learn meaningful representations. [3], [52]
extracted visual semantics from intermediate layers
of a CNN. [37] distilled representations of a neural
network into an additive model to explain the net-
work. [53] also used additive structures, i.e. the global
average pooling layer to explain neural networks. [50]
used a tree structure to approximate the rationale of
the CNN prediction on each specific sample. Capsule
nets [26] and interpretable CNNs [49] used specific
network structures and loss functions, respectively, to
make the network automatically encode interpretable
features in intermediate layers.

In comparison, we aim to explore the compositional
hierarchy of object parts encoded inside conv-layers
of a CNN. The explanatory graph boosts the transfer-
ability of CNN features to other part-based tasks.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Feature map of a
channel in the (L+1)-

th conv-layer
V’

VFeature map of a
channel in the L-

th conv-layer

Part A Part B

Part C

Subpart of C

Subpart of B
and C

Smallest shape
elements within A

Noisy activations
(without stable

relationships with
other patterns)

The (L+2)-th
conv-layer

The (L+1)-th
conv-layer

The L-th
conv-layer

Fig. 2. Schematic illustration of the explanatory graph. The explanatory graph encodes spatial and co-activation
relationships between object parts in the explanatory graph. Nodes in high layers help localize nodes in low
layers. From another perspective, we can regard low-layer nodes represent compositional parts of high-layer
nodes.

2.2 Weakly-supervised knowledge transferring

Knowledge transferring has been widely used in deep
learning. Typical research includes end-to-end fine-
tuning and transferring CNN representations between
different datasets [8]. In contrast, a transparent rep-
resentation of the explanatory graph will create a
new possibility of transferring object-part features to
other applications. Experiments have demonstrated
the superior transferability of graph nodes in few-shot
part localization.

3 ALGORITHM

A single filter is usually activated by different parts
of the object (see Fig. 2). Let us assume that given
an input image, a filter is activated at N positions,
i.e. there are N activation peaks on the filter’s fea-
ture map. Some peaks represent common parts of
the object. Other activation peaks may correspond to
background noises or textural patterns.

Our goal is to disentangle activation peaks corre-
sponding to object parts from a filter’s feature map.
I.e. we select certain neural activations, which repre-
sent specific object parts. We propose an explanatory
graph for the disentanglement. Each activation peak
of a filter corresponding to an object part is represent-
ed as a graph node. Let an activation peak represent a
specific object part. Then, it is assumed that the CNN
usually contains other filters to represent neighboring
parts of the target part. I.e. some activation peaks
of other filters must keep stable spatial relationships
with the target part. Such spatial relationships are
encoded in edges of the explanatory graph, which
connect each node in a layer to some nodes in the
neighboring upper layer.

Object parts are mined layer by layer. Given object
parts mined from the upper layer, we extract activa-
tion peaks that keep stable spatial relationships with
specific upper-layer parts through different images, as
parts in the current layer.

Nodes in high layers usually represent large-scale
object parts, while nodes in low layers mainly de-
scribe small and relatively simple shapes, which are
usually compositions of high-layer parts. Nodes in
high layers are usually discriminative, and the ex-
planatory graph uses high-layer nodes to filter out
noisy activations. Nodes in low layers are disentan-
gled based on their spatial relationship with high-
layer nodes.

3.1 Explanatory graph

Before the introduction of technical details of the
algorithm, we first give a brief overview of the ex-
planatory graph.

We are given a CNN, which is learned using a set
of training samples I. We construct an explanatory
graph G based on this CNN and all training samples
in I. As Fig. 4 illustrates, G contains several layers,
each corresponding to a single conv-layer in the CNN.
Each layer of the explanatory graph is composed
of hundreds/thousands of nodes, which represent
object parts encoded in this conv-layer. Each node is
linked with some graph nodes in the upper layer.
The linkage/edge indicates that object parts of the
two linked nodes usually co-appear in the image with
stable spatial relationship. In this way, an explanatory
graph can be considered as a dictionary of object
parts, which are extracted from various images.

In the training phase, each node in G is supposed to
disentangle a part from a conv-layer’s feature maps.
In inference phase, given feature maps of an input
image I , the explanatory graph G uses its nodes to
localize neural activations corresponding to different
parts.

3.2 Top-down iterative learning of the explanatory
graph

Given all training images I, we expect that (i) all
nodes in the explanatory graph can be well fitted to

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

TABLE 1
Notation

V A node in the explanatory graph
NL,d (or Nd) The node number extracted from the d-th

channel of the L-th conv-layer
ΩL,d (or Ωd) The node set extracted from the d-th chan-

nel of the L-th conv-layer
ΩL (or Ω) The node set extracted from the L-th conv-

layer
θ Parameters of nodes in the L-th layer
XI The feature maps of the L-th conv-layer

given input image I
x ∈ XI A neural activation unit in the feature map

XI

RI Position inference results of nodes in the
L+ 1-th layer, which are represented using
spatial coordinates.

px The center of the receptive field in the image
plane of the neural activation unit x

pV ′ The position inference result (i.e. the spatial
coordinate) in the image plane of the node
V ′ given input image I

µV The average position of the node V in the
image plane

EV The set of parent nodes of node V , which
are localized in the upper layer.

feature maps of all images, and (ii) nodes in the lower
layer always keep consistent spatial relationships with
nodes in the upper layer given each input images.
Therefore, the learning of an explanatory graph is
conducted in a top-down manner as follows.

The learning of an explanatory graph is conducted
layer by layer. We first disentangle parts from the top
conv-layer of the CNN and construct the top layer
of the explanatory graph. Then, we conduct position
inferences for all nodes in the top layer (the inference
process will be introduced in Section 3.3). We use
inference results to help disentangle parts from the
neighboring lower conv-layer. In this way, the lower
layer of the explanatory graph is constructed using
inference results of the neighboring upper layer.

Construction of the L-th2 layer: In the following
paragraphs, we will introduce how to recursively
learn the L-th layer of the explanatory graph given
the (L+ 1)-th layer.

Our method disentangles the d-th filter of the L-th
conv-layer into NL,d parts. These parts are modeled
as a set of NL,d nodes in the L-th layer of G, denoted
by ΩL,d. ΩL = ∪dΩL,d denotes the entire node set for
the L-th layer. In following paragraphs, we can simply
omit the subscript L without ambiguity. θ represents
parameters of nodes in the L-th layer, which mainly
encode spatial relationships between these nodes and
nodes in the (L+ 1)-th layer. Table 1 summarizes the
notation used in this paper.

Given an input image I ∈ I, the L-th conv-layer of
the CNN generates a feature map1, denoted by XI .

2. Note that our method is not limited to using consecutive conv-
layers to learn the explanatory graph. People can select inconsecu-
tive conv-layers. Without loss of generality, the L-th ranked layer
among all conv-layers, which are selected from the CNN, is termed
as the L-th conv-layer for simplicity.

Then, for each node V ∈ Ωd, the explanatory graph
infers whether or not the part indicated by V appears
in the d-th channel1 of XI , as well as its part location
(if the part appears).

For each node V in the L-th layer, our method
learns the following two terms: (i) the parameter
µV ∈ θ and (ii) a set of nodes EV ∈ θ in the upper
layer that are connected to V . µV ∈ θ denotes the
prior location of V . Thus, for each node V ′ ∈ EV ,
µV −µV ′ corresponds the prior displacement between
V and node V ′ in the upper layer. The explanatory
graph uses the displacement µV − µV ′ to model the
spatial relationships between nodes.

Just like an EM algorithm, we use the current ex-
planatory graph to fit feature maps of training images.
Then, we use matching results as feedback to modify
the prior location µV and edges EV of each node V in
the L-th layer, in order to make the explanatory graph
better fit the feature maps. We repeat this process
iteratively to obtain the optimal prior location and
edges for V .

In other words, our method automatically extracts
pairs of related nodes and learns the optimal spatial
relationships between them during the iterative learn-
ing process, which best fit feature maps of training
images.

Therefore, the objective function of learning the L-
th layer is formulated as

argmaxθ

∏
I∈I

P (XI |RI ,θ) (1)

Let us focus on the feature map XI of image I . With-
out ambiguity, we ignore the superscript I to simplify
notations in following paragraphs. We can regard X
as a distribution of “neural activation entities.” The
neural response of each unit x ∈ X can be considered
as the number of “activation entities.” In other words,
each neural activation unit x in the feature map X is
identified by its spatial position px

3 and its channel
number dx (i.e. an activation unit of the dx-th filter).
We use F (x) = β ·max{fx, 0} to measure the number
of activation entities at the location px, where fx is
the normalized activation value of x; β is a constant.
We use RI to represent position inference results of
all nodes in the upper conv-layer (i.e. the L + 1-th
conv-layer).

Just like a Gaussian mixture model, all nodes in
Ωd comprise a mixture model, which explains the
distribution of activation entities on the d-th channel
of X.

P (X|R,θ)=
∏
x∈XP (px|R,θ)F (x) (2)

=
∏
x∈X

{ ∑
V ∈Ωd∪{Vnone}

P (V)P (px|V,R,θ)
}F (x)

d=dx

where each node V ∈ Ωd is treated as a hidden
variable or an alternative component in the mixture

3. To make unit positions in different conv-layers comparable
with each other (e.g. µV ′→V in Eq. 4), we project the position of
unit x to the image plane. We define the coordinate px on the image
plane, instead of on the feature-map plane.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Position of a node in the upper layer

Activations in different neural units

Feature map of a
channel in the

(L+1)-th conv-layer

V’

VFeature map of a
channel in the L-th

conv-layer

V

Extracting patterns
from Image 1

Extracting patterns
from Image 2

V’

Input image

Network output
Parent nodes of V

Fig. 3. Schematic illustration of related nodes V and V ′. The related nodes keep similar spatial relationships
among different images. Circle centers represent the prior part positions, e.g. µV and µV ′ . Red arrows denote
relative displacements between the inferred positions and prior positions, e.g. pV − µV . In particular, the middle
sub-figure illustrates different variables in a one-dimensional space for simplicity.

model to describe activation entities. P (V) = 1
Nd+1 is

a constant prior probability. P (px|V,R,θ) measures
the compatibility of using node V to describe an
activation entity at px. In particular, we add a dummy
node Vnone to the mixture model for noisy activations,
in order to explain neural activations unrelated to
object parts, e.g. those of noises and textural patterns.
The compatibility between V and px is based on spa-
tial relationship between V and its connected nodes
in G, which is approximated as

P (px|V,R,θ)=

{
γ
∏

V ′∈EV

P (px|pV ′ ,θ)λ,V ∈Ωdx

γτ, V =Vnone

(3)

P (px|pV ′ ,θ)=N (px|µV ′→V , σ
2
V ′) (4)

In the above equations, V has M related nodes in the
upper layer. The set of nodes EV ∈ θ connected to V
would be determined during the learning process. The
overall compatibility P (px|V,R,θ) is divided into the
spatial compatibility between node V and each related
node V ′, P (px|pV ′ ,θ). ∀V ′ ∈ EV , pV ′ ∈R denotes the
position inference result of V ′, which have been given.
λ = 1

M is a constant for normalization. γ is a constant,
which roughly ensures

∫
P (px|V,R,θ)dpx = 1 and

can be eliminated during the learning process.
As Fig. 3 shows, an intuitive idea is that the relative

displacement between V and V ′ should not change
a lot among different images. Then, px − pV ′ will
approximate to the prior displacement µV − µV ′ , if
node V can well fit the activation at px. Given EV ,
we assume the spatial relationship between V and V ′

follows a Gaussian distribution in Eqn. 4, where we
define µV ′→V = µV −µV ′+pV ′ as the prior localization
of V given V ′. The variation σ2

V ′ can be estimated
from data4.

The explanatory graph is learned in a top-down
manner, and the learning process is summarized in
Algorithm 1. Our method first learns nodes in the
top-layer of G, and then learns for the neighboring

4. We can prove that for each V ∈ Ωd, P (px|V,R,θ) ∝
N (px|µV +∆I,V , σ̃

2
V), where ∆I,V =

∑
V ′∈EV

pV ′−µV ′
σ2
V ′

/
∑
V ′∈EV

1
σ2
V ′

; σ̃2
V = 1/EV ′∈EV

1
σ2
V ′

. Therefore, we can either

directly use σ̃2
V as σ2

V , or compute the variation of px−µV −∆I,V

w.r.t. different images to obtain σ2
V .

Algorithm 1 Learning sub-graph in the L-th layer
Inputs: feature map X of the L-th conv-layer, infer-
ence results R in the upper conv-layer.
Outputs: µV , EV for ∀V ∈ Ω.
Initialization: ∀V , EV ={Vdummy}, a random value
for µ(0)

V

for iter = 1 to T do
∀V ∈ Ω, compute P (px, V |R,θ).
for V ∈ Ω do

Update µV via an EM algorithm,
µ

(iter)
V = µ

(iter−1)
V + η

∑
I∈I,x∈X

EP (V |px,R,θ)

[
F (x) ·

∂logP (px,V |R,θ)
∂µV

]
.

Select M nodes from the upper layer V ′ ∈ ΩL+1

to construct EV based on a greedy strategy,
which maximize

∏
I∈IP (X|R,θ).

end for
end for

lower layer. For the sub-graph in the L-th layer, our
method recursively estimates µV and EV for nodes in
the sub-graph.

The special case is the node in the top conv-layer.
For each node V in the top conv-layer, we simply
define EV = {Vdummy}, µVdummy = pVdummy = 0, where
Vdummy is a node in the dummy layer above the top
conv-layer. Based on Eqns. (3) and (4), we obtain
P (px|V,R,θ) = N (px|µV , σ

2
V).

3.3 Part localization

Given feature maps of an input image, we can as-
sign nodes with different activations peaks on fea-
ture maps, in order to infer object parts represented
by these neural activations. The explanatory graph
simply assigns node V ∈ Ωd with the unit x̂ =
argmaxx∈X:dx=dS

I
V→x on the feature map as the in-

ference of V . SI
V→x = F (x)P (px|V,R,θ) denotes the

score of assigning V to x. Accordingly, pV ′ = px̂

represents the inferred location of V . In particular, in
Eqn. (1), we define R = {pV ′}V ′∈ΩL+1

.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Fig. 4. A four-layer explanatory graph. For clarity, we
put all nodes of different filters in the same conv-layer
on the same plan and only show 1% of the nodes with
10% of their edges from two perspectives.

4 EXPERIMENTS

In this section, we conducted several experiments to
demonstrate the effectiveness, board applicability, and
the high accuracy of our method. We learned ex-
planatory graphs to interpret four types of CNNs, i.e.
the VGG-16 [32], the 50-layer and 152-layer Residual
Networks [10], and the encoder of the VAE-GAN [15].
These CNNs learned using a total of 37 animal cat-
egories in three datasets, which included the ILSVR-
C 2013 DET Animal-Part dataset [44], the CUB200-
2011 dataset [38], and the VOC Part dataset [5]. As
discussed in [5], [44], animals usually contain non-
rigid parts, which presents a key challenge for part
localization. Thus, we selected animal categories in
the three datasets for testing.

We designed three experiments to evaluate the ex-
planatory graph from different perspectives. In the
first experiment, we visualized object parts corre-
sponding to nodes in the explanatory graph. The
second experiment was designed to evaluate the in-
terpretability of nodes, i.e. checking whether or not
a node consistently represents the same object part
among different images. We compared our nodes
with three types of middle-level features and network
features. In the third experiment, we used our graph
nodes for the task of few-shot part localization, in
order to test the transferability of nodes. We learned
an And-Or graph (AOG) with very few part annota-
tions, which associated the well learned nodes with
explicit part names. We used the AOG to conduct
part localization and compared its performance with
fourteen baselines.

4.1 Implementation details

We first trained/fine-tuned a CNN using object im-
ages of a category, which were cropped using object
bounding boxes. Then, we set parameters τ = 0.1,
M=15(except for results in Table 9), T =20, and β=1
to learn an explanatory graph for the CNN.

We learned explanatory graphs for the VGG-16,
residual networks, and the VAE-GAN. We mainly
extracted object parts from high conv-layers of these

neural networks, because as discussed in [3], high
conv-layers contain large-scale parts.
•VGG-16: The VGG-16 was first pre-trained using

the 1.3M images in the ImageNet dataset [25]. We then
fine-tuned all conv-layers of the VGG-16 using object
images in a category. The loss for fine-tuning was for
binary classification between the target category and
background images. The VGG-16 has thirteen conv-
layers and three fully connected layers. We selected
the ninth, tenth, twelfth, and thirteenth conv-layers
of the VGG-16 as four valid conv-layers, and accord-
ingly, we built a four-layer graph. We extracted Nd

nodes from the d-th filter of the L-th layer, where we
set Nd = 40 for all channels of the first and second
conv-layers (L = 1, or 2) and set Nd = 20 for all
channels of the third and fourth conv-layer (L = 3,
or 4).
•Residual Networks: Two residual networks, i.e. the

50-layer and 152-layer ones, were used in experi-
ments. The fine-tuning process for each network was
exactly the same as that for VGG-16. We built a
three-layer graph based on each residual network by
selecting the last conv-layer with a 28×28×128 feature
output, the last conv-layer with a 14×14×256 feature
map, and the last conv-layer with a 7×7×512 feature
map as valid conv-layers. We set Nd as 40, 20, and 10
for all channels in the first, second, and third conv-
layers, respectively.
•VAE-GAN: For each category, we used the cropped

object images to train a VAE-GAN. We learned a
three-layer graph based on all three conv-layers of
the encoder of the VAE-GAN. We set Nd as 52, 26,
and 13 for all channels for the first, second, and third
conv-layers, respectively.

4.2 Experiment 1: part visualization

The global structure of an explanatory graph for a
VGG-16 network is visualized in Fig. 4. Fig. 12 shows
the histogram of P (px|pV ′ ,θ) values among all edges
in an explanatory graph. In general, the distribution of
P (px|pV ′ ,θ) satisfied the assumption of the Gaussian
distribution. Fig. 13 demonstrates the convergence of
our method.

We visualized object parts of graph nodes from the
following three perspectives.

Top-ranked patches: For each image I , we per-
formed the part localization on its feature maps.
For a node V , we extracted a patch at the location
of px̂V

5 with a fixed scale of 70 pixels × 70 pixels
to represent V . Fig. 5 shows a part’s image patch-
es that had highest inference scores. In this figure,
we used two different methods to infer the objec-
t part for each node. The first method was x̂ =
argmaxx∈X:dx=dS

I
V→x as mentioned before. The sec-

ond method incorporated gradients to localize parts,

5. We projected the unit to the image to compute its position.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

The CNN is learned to classify a single category from random images.

The CNN is learned to classify multiple categories from random images.

Dog Dog &
Cat

Dog &
Bird

Cat &
Dog

Bird &
Dog

Dog &
Sheep

Bird Cat &
Bird

Cat &
Bird

Bird &
Sheep

Cat &
Dog

Dog &
Cat

Fig. 5. Image patches corresponding to different nodes in explanatory graphs. We visualized nodes in
explanatory graphs that were learned for two types of CNNs, i.e. CNNs learned for a single category and
CNNs for multiple categories. (1) The top nine layers visualized nodes corresponding to CNNs, each learned
for a single category. We used two methods to infer the image patch for each node. In top nine rows,
part location was inferred as x̂ = argmaxx∈X:dx=dS

I
V→x. In following three rows, parts were localized via

x̂ = argmaxx∈X:dx=d

∣∣∣fx · ∂y
∂fx

∣∣∣. (2) The bottom four layers visualized image patches of graph nodes, when the
CNN was learned to classify multiple categories. In this case, each node usually encoded parts shared by
different categories. Texts before each group of image patches indicate their corresponding categories. Part
location was inferred as x̂ = argmaxx∈X:dx=dS

I
V→x. Please read texts for detailed explanations.

i.e. x̂ = argmaxx∈X:dx=d

∣∣∣fx · ∂y
∂fx

∣∣∣, where y and fx
denote the classification output of the target class
and the activation value of the neural activation unit
x, respectively.

∣∣∣fx · ∂y
∂fx

∣∣∣ is a classical evaluation of
the numerical attribution of the neural activation unit
x [47].

Note that in this study, we assumed that the CNN
was learned to classify a single category from random
images. However, it would be quite interesting if
we visualized graph nodes corresponding to a CNN
encoding parts of multiple categories. To this end,
we learned a VGG-16 network to classify six animal

categories (bird, cat, cow, dog, horse, sheep) from other
fourteen categories in the VOC Part dataset [5] and
built an explanatory graph for the CNN. Fig. 5 also
visualizes nodes in this explanatory graph. Each node
usually represented parts that were shared by multi-
ple categories

Heatmaps of the distribution of object parts:
Given part localization results w.r.t. a cropped object
image I , we drew heatmaps to show the spatial
distribution of the inferred parts. We drew a heatmap
for each layer L of the graph. Each part V ∈ Ω
was visualized as a weighted Gaussian distribution

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

L=1 L=2 L=3 L=4 L=1 L=2 L=3 L=4
Node
Distrib.

Node
Distrib.

Node
Distrib.

Grad‐
CAM

Node
Distrib.

Node
Distrib.

Node
Distrib.

Node
Distrib.

Grad‐
CAM

Node
Distrib.

L=1 L=2 L=3 L=4
Node
Distrib.

Node
Distrib.

Node
Distrib.

Grad‐
CAM

Node
Distrib.

Fig. 6. Heatmaps of the distribution of object parts. We use a heatmap to visualize the spatial distribution of
the top-50% object parts in the L-th layer of the explanatory graph with the highest inference scores. We also
compare heatmaps with the grad-CAM [27] of the feature map. Unlike the grad-CAM, our heatmaps mainly
focus on the foreground of an object and uniformly pay attention to all parts, rather than only focus on most
discriminative parts.

α · N (µ = pV , σ
2
V)5 on the heatmap, where α =

SI
V→x̂. Fig. 6 shows heatmaps of the top-50% parts

with the highest scores of SI
V→x̂. Due to the lack

of the ground truth for explanations, it is difficult
to evaluate the attribution/attention/saliency map of
a neural network. In general, two terms have to be
considered in the evaluation, i.e. (1) whether or not
the attribution map fits the human cognition and
(2) whether or not the attribution map objectively
reflects true reasons for the network prediction. From
this perspective, in Fig. 6, results of the Grad-CAM
better fit human cognition than our method. On the
other hand, Fig. 6 visualizes the distribution of graph
nodes, whose semantic meanings were verified in
experiments. Therefore, the explanatory graph can
better show object parts encoded in the CNN than
the Grad-CAM method.

Node-based image synthesis: We used the up-
convolutional network [6] to visualize parts of graph
nodes. Given an object image I , we used the ex-
planatory graph for part localization, i.e. assigning
each node V with a certain neural activation unit
x̂V as its position inference5. We considered the top-
10% nodes with highest scores of SI

V→x̂ as valid
ones. We filtered out all neural responses of units,
which were not assigned to valid nodes, from feature
maps (setting these responses to zero). We selected
the filtered feature map corresponding to the second
graph layer and used the up-convolutional network to
synthesize the filtered feature map to the input image.
Fig. 7 shows image-synthesis results, which can be
regarded as the visualization of the inferred nodes.

4.3 Experiment 2: semantic interpretability of n-
odes
In this experiment, we evaluated whether or not each
node consistently represented the same object part

through different images. Four explanatory graphs
were built for a VGG-16 network, two residual net-
works, and a VAE-GAN. These networks were learned
using the CUB200-2011 dataset [38]. We used the
following two metrics to measure the interpretability
of nodes.

Part interpretability of nodes: The evaluation met-
ric was inspired by Zhou et al. [52]. For each given
node V , we used V to localize object parts among
all images. We regarded inference results with the
top-K inference scores SIi

V among all images as valid
representations of V . We required the K highest infer-
ence scores SIi

V on images {I1, . . . , Ik} to take about
30% of the inference energy, i.e. we use

∑K
i=1 S

Ii
V =

0.3
∑

i∈I S
I
V to compute K. We asked human rater-

s to count the number of inference results, which
described the same object part, among the top K,
in order to compute the purity of part semantics of
node V . In addition, as mentioned before,

∣∣∣fx · ∂y
∂fx

∣∣∣
is a classical evaluation of the numerical attribution
of the neural activation unit x [47]. Thus, we de-
signed a baseline method, namely Ours with top-ranked∣∣∣fx · ∂y

∂fx

∣∣∣, to select inference results with top-ranked∣∣∣fx · ∂y
∂fx

∣∣∣ values that took 30% of the total
∣∣∣fx · ∂y

∂fx

∣∣∣
score of all images.

The table in Fig. 8(top-left) shows the semantic pu-
rity of the nodes in the second layer of the graph. Let
the second graph layer correspond to the L-th conv-
layer with D filters. The raw filter maps baseline used
all neural activation in the feature map of a filter to
describe a part. The raw filter peaks baseline considered
the highest peak on a filer’s feature map as the part
detection. Like our method, the two baselines also
visualized top-K ′ part inferences (the K ′ feature map-
s’ neural activations took 30% of activation energies
over all images). We back-propagated the center of the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

lion

fox

tiger

hamster

bird

antelope

red
panda
giant

panda

original
reconst-
ructed

original
reconst-
ructed

original
reconst-
ructed

reconstructed images

Fig. 7. Image synthesis result based on the activation of nodes on an image. The explanatory graph only
encodes major parts encoded in conv-layers with considerable information loss. Synthesis results demonstrate
that the nodes are automatically learned to represent foreground appearance, and ignore background noises
and trivial details of objects.

Map of
Filter 1

Map of
Filter 2

Map of
Filter 3

Map of
Filter 4

Map of
Filter 5

Peak of
Filter 6

Peak of
Filter 7

Peak of
Filter 8

Peak of
Filter 9

Peak of
Filter 10 Node 1 Node 2 Node 3 Node 4 Node 5VGG-

16
ResNet-
50

ResNet
-152

Raw filter map 19.8 % 22.1 % 19.6 %

Raw filter peak 43.8 % 36.7 % 39.2 %

Ours with top-
ranked

54.4% — —

Ours 95.4 % 80.6 % 76.2 %

Fig. 8. Purity of part semantics (top-left). We compared object parts corresponding to nodes in the explanatory
graph with features of raw filters. We draw raw feature maps of filters (left), the highest activation peaks on feature
maps of filters (middle), and image regions corresponding to each node in the explanatory graph (right). Based
on such visualization results, we use human users to annotate the semantic purity of each node/filter.

receptive field of each neural activation to the image
plane and draw the image region corresponding to
each neural activation. Fig. 8 compares the image
region corresponding to each graph node and image
regions corresponding to feature maps of each filter.
Our graph nodes represented explicit object parts, but
raw filters encoded mixed semantics.

Because the baselines simply averaged the semantic
purity among the D filters, we also computed average
semantic purities using the top-D nodes with the
highest scores of

∑
i∈I S

I
V to enable a fair comparison.

Location instability of inference positions: We de-
fined the location instability for each node as another
evaluation metric of interpretability. Note that we
used the localization of object parts, rather than the
localization of entire objects, to evaluate the clarity

Inferred
position

Annotated
landmark

Fig. 9. Notation for the computation of location insta-
bility.

of semantic meanings of each node. We assumed
that if a node was always activated by the same
object part through different images, then the distance
between the node’s inference position and a ground-
truth landmark of the object part should not change
a lot among various images.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

TABLE 4
Normalized distance of part localization on the VOC Part dataset [5]. The second column indicates whether the

baseline used all object-box annotations in the category to fine-tune a CNN.

obj.-box fine-tune bird cat cow dog horse sheep Avg.

not learn
parts

SS-DPM-Part [2] N 0.356 0.270 0.264 0.242 0.262 0.286 0.280
PL-DPM-Part [16] N 0.294 0.328 0.282 0.312 0.321 0.840 0.396
Part-Graph [5] N 0.360 0.208 0.263 0.205 0.386 0.500 0.320

unsuper-learn6

parts

CNN-PDD [30] N 0.301 0.246 0.220 0.248 0.292 0.254 0.260
CNN-PDD-ft [30] Y 0.358 0.268 0.220 0.200 0.302 0.269 0.269
Ours Y 0.152 0.121 0.303 0.135 0.231 0.246 0.198

super-learn
parts

fc7+linearSVM Y 0.247 0.174 0.251 0.217 0.261 0.317 0.244
fc7+sp+linearSVM Y 0.247 0.174 0.249 0.217 0.261 0.317 0.244
Fast-RCNN (1 ft) [9] N 0.324 0.324 0.325 0.272 0.347 0.314 0.318
Fast-RCNN (2 fts) [9] Y 0.350 0.295 0.255 0.293 0.367 0.260 0.303

TABLE 5
Accuracy of part localization evaluated by “IoU ≥ 0.5” on the Pascal VOC Part dataset [5]. The second column

indicates whether the baseline used all object annotations in the category to pre-finetune a CNN before
learning the part.

obj.-box fine-tune bird cat cow dog horse sheep Avg.

not learn
parts

SS-DPM-Part [2] N 0.0 1.3 1.6 1.9 1.1 3.3 1.5
PL-DPM-Part [16] N 0.5 1.1 4.4 0.4 0.0 0.0 1.1
Part-Graph [5] N 2.9 22.6 12.1 11.0 3.2 0.0 8.6

unsuper-learn6

parts
Ours Y 20.2 34.9 8.2 33.8 10.0 14.5 20.3

super-learn
parts

fc7+linearSVM Y 8.0 27.6 7.1 10.4 16.1 6.2 12.6
fc7+sp+linearSVM Y 8.0 27.6 7.1 10.4 16.1 6.2 12.6
fc7+RBF-SVM Y 5.3 26.0 7.7 8.9 14.7 8.3 11.8
fc7+sp+RBF-SVM Y 5.0 26.3 7.1 8.8 15.1 8.7 11.8
fc7+NN Y 1.9 21.0 3.8 4.7 3.6 5.0 6.7
fc7+sp+NN Y 1.9 21.0 3.8 4.7 3.6 5.0 6.7
Fast-RCNN (1 ft) [9] N 2.1 2.2 2.2 1.9 1.4 7.0 2.8
Fast-RCNN (2 fts) [9] Y 7.7 24.0 18.7 18.0 5.0 19.4 15.5

TABLE 2
Location instability of nodes.

ResNet-50 ResNet-152 VGG-16 VAE-GAN
Raw filter [52] 0.1328 0.1346 0.1398 0.1944
Ours 0.0848 0.0858 0.0638 0.1066
[33] 0.1341
[30] 0.2291

As Fig. 9 shows, given a testing image I , dhead
I , dback

I ,
and dtail

I denote the distances between the inferred
position of V and ground-truth landmark positions of
head, back, and tail parts, respectively. These distances
were normalized by the diagonal length of input
images. Then, the node’s location instability was given

as (
√
var(dhead

I) +
√
var(dback

I) +
√
var(dtail

I))/3, where
var(dhead

I) denotes the variation of dhead
I over different

images.
We compared its location instability of an explana-

tory graph with three baselines. The first baseline
treated each filter in a CNN as a detector of a cer-
tain part. Thus, given the feature map of a filter
(after the ReLu operation), we used the method of
[52] to localize the unit with the highest response
value as the part position. The other two baselines

TABLE 3
Normalized distance of part localization on the

CUB200-2011 dataset [38]. The second column
indicates whether the baseline used all object-box

annotations in the category to fine-tune a CNN.

Method obj.-box fine-tune

not learn
parts

SS-DPM-Part [2] N 0.3469
PL-DPM-Part [16] N 0.3412
Part-Graph [5] N 0.4889

unsuper-learn6

parts

CNN-PDD [30] N 0.2333
CNN-PDD-ft [30] Y 0.3269
Ours Y 0.0862

super-learn
parts

fc7+linearSVM Y 0.3120
fc7+sp+linearSVM Y 0.3120
Fast-RCNN (1 ft) [9] N 0.4517
Fast-RCNN (2 fts) [9] Y 0.4131

were typical methods to extract middle-level features
from images [33] and extract parts from CNNs [30],
respectively. For each baseline, we chose the top-500
parts, i.e. 500 nodes with top scores in the explanatory
graph, 500 filters with strongest activations in the
CNN, and the top-500 middle-level features. For each
node, we selected position inferences on the top-20
images with highest scores to compute the location

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

TABLE 6
Normalized distance of part localization on the ILSVRC 2013 DET Animal-Part dataset [44]. The second

column indicates whether the baseline used all object-box annotations in the category to fine-tune a CNN.

obj.-box fine-tune gold. bird frog turt. liza. koala lobs. dog fox cat lion

not learn
parts

SS-DPM-Part N 0.297 0.280 0.257 0.255 0.317 0.222 0.207 0.239 0.305 0.308 0.238
PL-DPM-Part N 0.273 0.256 0.271 0.321 0.327 0.242 0.194 0.238 0.619 0.215 0.239
Part-Graph N 0.363 0.316 0.241 0.322 0.419 0.205 0.218 0.218 0.343 0.242 0.162

unsuper-learn6

parts

CNN-PDD N 0.316 0.289 0.229 0.260 0.335 0.163 0.190 0.220 0.212 0.196 0.174
CNN-PDD-ft Y 0.302 0.236 0.261 0.231 0.350 0.168 0.170 0.177 0.264 0.270 0.206
Ours Y 0.090 0.091 0.095 0.167 0.124 0.084 0.155 0.147 0.081 0.129 0.074

super-learn
parts

fc7+linearSVM Y 0.150 0.318 0.186 0.150 0.257 0.156 0.196 0.136 0.101 0.138 0.132
fc7+sp+linearSVM Y 0.150 0.318 0.186 0.150 0.254 0.156 0.196 0.136 0.101 0.138 0.132
Fast-RCNN (1 ft) N 0.261 0.365 0.265 0.310 0.353 0.365 0.289 0.363 0.255 0.319 0.251
Fast-RCNN (2 fts) Y 0.340 0.351 0.388 0.327 0.411 0.119 0.330 0.368 0.206 0.170 0.144

tiger bear rabb. hams. squi. horse zebra swine hippo catt. sheep

not learn
parts

SS-DPM-Part N 0.144 0.260 0.272 0.178 0.261 0.246 0.206 0.240 0.234 0.246 0.205
PL-DPM-Part N 0.136 0.323 0.228 0.186 0.281 0.322 0.267 0.297 0.273 0.271 0.413
Part-Graph N 0.127 0.224 0.188 0.131 0.208 0.296 0.315 0.306 0.378 0.333 0.230

unsuper-learn6

parts

CNN-PDD N 0.160 0.223 0.266 0.156 0.291 0.261 0.266 0.189 0.192 0.201 0.244
CNN-PDD-ft Y 0.256 0.178 0.167 0.286 0.237 0.310 0.321 0.216 0.257 0.220 0.179
Ours Y 0.102 0.121 0.087 0.097 0.095 0.189 0.212 0.212 0.151 0.185 0.124

super-learn
parts

fc7+linearSVM Y 0.163 0.122 0.139 0.110 0.262 0.205 0.258 0.201 0.140 0.256 0.236
fc7+sp+linearSVM Y 0.163 0.122 0.139 0.110 0.262 0.205 0.258 0.201 0.140 0.256 0.236
Fast-RCNN (1 ft) N 0.260 0.317 0.255 0.255 0.169 0.374 0.322 0.285 0.265 0.320 0.277
Fast-RCNN (2 fts) Y 0.160 0.230 0.230 0.178 0.205 0.346 0.303 0.212 0.223 0.228 0.195

ante. camel otter arma. monk. elep. red pa. gia.pa. Avg.

not learn
parts

SS-DPM-Part N 0.224 0.277 0.253 0.283 0.206 0.219 0.256 0.129 0.242
PL-DPM-Part N 0.337 0.261 0.286 0.295 0.187 0.264 0.204 0.505 0.284
Part-Graph N 0.216 0.317 0.227 0.341 0.159 0.294 0.276 0.094 0.257

unsuper-learn6

parts

CNN-PDD N 0.208 0.193 0.174 0.299 0.236 0.214 0.222 0.179 0.225
CNN-PDD-ft Y 0.229 0.253 0.198 0.308 0.273 0.189 0.208 0.275 0.240
Ours Y 0.093 0.120 0.102 0.188 0.086 0.174 0.104 0.073 0.125

super-learn
parts

fc7+linearSVM Y 0.164 0.190 0.140 0.252 0.256 0.176 0.215 0.116 0.184
fc7+sp+linearSVM Y 0.164 0.190 0.140 0.250 0.256 0.176 0.215 0.116 0.184
Fast-RCNN (1 ft) N 0.255 0.351 0.340 0.324 0.334 0.256 0.336 0.274 0.299
Fast-RCNN (2 fts) Y 0.175 0.247 0.280 0.319 0.193 0.125 0.213 0.160 0.246

instability. Table 2 compares the location instability of
different baselines. Nodes in the explanatory graph
had significantly lower location instability than base-
lines.

4.4 Experiment 3: few-shot part localization
4.4.1 Hybrid And-Or graph for semantic parts
The explanatory graph makes it plausible to transfer
intermediate-layer features of a CNN to semantic
object parts. In this section, we further designed a
hybrid And-Or graph (AOG) to connect the explana-
tory graph, and the AOG associated nodes in the
explanatory graph with explicit part names.

We used the AOG to test the transferability of
nodes in the explanatory graph. It is because the
AOG has been demonstrated as a classical model,
which is suitable for representing the compositional
hierarchy of objects [28], [54]. Adapting nodes in the
explanatory graph enabled us to evaluate the clarify
of compositional hierarchy that was encoded in a pre-
trained CNN.

The structure of the AOG is inspired by [48], and
the learning of the AOG was originally proposed in
[44]. As Fig. 10 shows, the AOG encodes a four-layer
hierarchy for each semantic part, i.e. the semantic part
(OR node), part templates (AND node), latent parts
(OR nodes, i.e. nodes in the explanatory graph), and
neural activation units (terminal nodes).

Layer Name Node type Notation
1 semantic part OR node V sem

2 part template AND node V tmp∈Ωtmp

3 latent part OR node V lat∈Ωlat

4 neural unit Terminal node x∈Ωunt

where latent parts correspond to nodes from the
explanatory graph.

In the AOG, each OR node (e.g. a semantic part or a
latent part) contains a list of alternative appearance (or
deformation) candidates. Each AND node (e.g. a part
template) uses a number of latent parts to describe its
compositional regions.
• The OR node of a semantic part contains a to-

tal of m part templates to represent alternative
appearance or pose candidates of the part.

• Each part template (AND node) retrieve K latent
parts from the explanatory graph as children.
These latent parts describe compositional regions
of the part.

• Each latent part (OR node) has all units in its
corresponding filter’s feature map as children,
which represent its deformation candidates on
image I .

Technical details: Based on the AOG, we use the
extracted latent parts to infer semantic parts in a
bottom-up manner. We first compute inference scores
of different units at the bottom layer w.r.t. different

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

TABLE 7
Accuracy of part localization evaluated by “IoU ≥ 0.5” on the ILSVRC 2013 DET Animal-Part dataset [44]. The

second column indicates whether the baseline used all object annotations in the category to pre-finetune a
CNN before learning the part.

obj.-box finetune gold. bird frog turt. liza. koala lobs. dog fox cat lion tiger bear rabb. hams. squi.
SS-DPM-Part [2] N 1.5 0.0 1.2 2.6 0.7 8.8 1.4 5.2 0.0 10.9 13.4 20.4 7.0 0.5 6.5 0.5
PL-DPM-Part [16] N 0.0 1.0 0.0 0.6 0.0 3.3 0.0 3.3 0.0 23.8 8.8 3.6 0.0 1.6 22.3 0.0
Part-Graph [5] N 2.0 5.5 5.9 6.5 7.4 12.1 3.5 9.0 1.9 18.7 40.7 56.1 15.0 27.3 37.7 21.4
fc7+linearSVM Y 20.0 2.0 13.5 20.8 7.4 30.2 1.4 27.5 55.9 39.4 43.3 27.0 46.5 44.3 60.5 8.8
fc7+RBF-SVM Y 4.5 0.0 2.4 24.7 5.9 34.0 0.7 15.6 29.9 42.5 53.1 39.3 19.0 44.8 41.4 0.9
fc7+NN Y 1.0 0.0 1.2 7.1 2.2 28.4 1.4 5.2 19.4 20.2 52.1 39.8 5.0 17.5 32.6 0.5
fc7+sp+linearSVM Y 20.0 2.0 13.5 20.8 7.4 30.2 1.4 27.5 55.9 39.4 43.3 27.0 46.5 44.3 60.5 8.8
fc7+sp+RBF-SVM Y 4.5 0.0 1.8 24.7 4.4 34.4 0.7 14.7 29.9 41.5 53.1 38.8 19.0 44.3 41.9 0.9
fc7+sp+NN Y 1.0 0.0 1.2 7.1 2.2 28.4 1.4 5.2 19.4 20.2 52.1 39.8 5.0 17.5 32.6 0.5
Fast-RCNN (1 ft) [9] N 5.0 0.5 1.8 2.6 3.7 3.3 0 0.5 28.9 11.4 22.2 11.7 2.5 20.2 27.9 36.3
Fast-RCNN (2 fts) [9] Y 4.5 5.0 2.4 4.5 2.2 68.8 1.4 9.0 46.0 50.8 61.3 65.8 29.0 30.1 56.3 40.9
Ours Y 33.0 40.3 48.8 18.2 21.4 61.9 3.5 30.3 62.1 26.4 61.9 49.5 36.0 65.6 64.7 25.6

horse zebra swine hippo catt. sheep ante. camel otter arma. monk. elep. red pa. gia.pa. Avg.
SS-DPM-Part [2] N 9.5 1.1 0.6 1.1 7.0 14.7 12.4 0.9 0.5 4.5 12.4 11.8 2.2 49.1 7.0
PL-DPM-Part [16] N 5.8 0.0 0.6 0.5 0.5 0.0 0.0 0.0 0.0 0.0 9.1 2.6 28.1 0.0 3.9
Part-Graph [5] N 10.0 13.0 4.9 4.3 7.0 19.0 23.0 5.6 18.2 6.6 18.3 2.6 16.2 58.6 15.9
fc7+linearSVM Y 16.3 10.7 22.0 31.9 4.9 20.2 26.3 23.7 35.3 11.6 12.4 36.8 22.8 48.6 25.7
fc7+RBF-SVM Y 7.9 27.1 7.3 14.4 2.7 14.1 25.3 16.3 37.4 13.6 10.8 22.4 26.8 54.5 21.3
fc7+NN Y 2.1 22.6 1.2 1.1 2.2 6.1 2.3 8.8 40.6 10.6 7.0 5.3 21.1 55.9 14.0
fc7+sp+linearSVM Y 16.3 10.7 22.0 31.9 4.9 20.2 26.3 23.7 35.3 12.1 12.4 36.8 22.4 48.6 25.7
fc7+sp+RBF-SVM Y 7.9 27.1 7.3 14.4 2.7 14.1 19.4 16.3 37.4 13.6 9.1 22.4 27.6 55.0 21.0
fc7+sp+NN Y 2.1 22.6 1.2 1.1 2.2 6.1 2.3 8.8 40.6 10.6 7.0 5.3 21.1 55.9 14.0
Fast-RCNN (1 ft) [9] N 3.2 6.8 11.0 11.2 1.6 7.4 23.0 1.9 2.1 2.5 3.8 11.8 14.5 19.5 10.0
Fast-RCNN (2 fts) [9] Y 6.3 15.3 39.0 34.6 36.2 43.6 46.5 20.5 26.7 13.1 36.6 56.6 47.8 57.3 31.9
Ours Y 37.9 35.6 15.2 41.0 27.6 39.9 53.5 15.8 20.9 28.3 55.4 32.9 51.8 67.3 39.1

Horse
Head

Torso Legs Tail

Horse
Head

Torso Legs Tail

Object

Semantic Parts

Part templates

Patterns in an
explanatory graph

 Neural units

AND node

OR node

AND node

OR node

Explanatory graph

Fig. 10. Schematic illustration of an And-Or graph for
semantic object parts. The AOG encodes a four-layer
hierarchy for each semantic part, i.e. the semantic part
(OR node), part templates (AND node), latent parts
(OR nodes, those from the explanatory graph), and
neural activation units (terminal nodes). In the AOG,
the OR node of semantic part contains a number of
alternative appearance candidates as children. Each
OR node of a latent part encodes a list of neural
activation units as alternative deformation candidates.
Each AND node (e.g. a part template) uses a number
of latent parts to describe its compositional regions.

latent parts, and then we propagate inference scores
up to the layers of part templates and the semantic
part for part localization.

The top OR node of the semantic part V sem contains
a total of m part templates to represent alternative
appearance or pose candidates of the part. We manu-

ally define the composition of the M part templates.
During part-inference process, given an image I , V sem

selects its best child as the true part template:

SV sem = max
V tmp∈Child(V sem)

SV tmp

pV sem = pV̂ tmp

(5)

where SV X , X ∈ {sem,tmp,lat,unit} denotes the infer-
ence score of V X .

Then, each part template V tmp uses a number of
latent parts to describe sub-regions of the part. In the
scenario of one-shot learning, we only annotate one
part sample belonging to the part template. Then, we
retrieve latent parts (nodes) that are related to the
annotated part from all nodes in the disentangling
graph. Given the inference score SV lat and inferred
position pV lat of each latent part V lat on I , we re-
trieve the top K latent parts with the highest scores
of SV latN (pV lat |µ = p∗V tmp , σ2) as children of V tmp.
p∗V tmp denotes the annotated position of the part V tmp;
σ2 = (0.3×imagewidth)2 is a constant variation.

When we have extracted a set of latent parts for
a part template, given a new image, we can use
inference results of the latent parts to localize the part
template:

SV tmp =
∑

V lat∈Child(V tmp)

SV lat

pV tmp = mean
V lat∈Child(V tmp)

{
pV lat + ∆pV lat,V tmp

} (6)

where ∆pV lat,V tmp denotes a constant displacement
from V lat to V tmp.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

Each latent part V lat has a channel of units as
children, which represent its deformation candidates
on image I . The score of each unit x is given as
SV lat→x = F (x)P (px|V lat,R,θ). The OR node of V lat

selects the unit with the maximum score as its defor-
mation configuration:

SV lat = maxx:V lat∈Ωdx
SV lat→x

pV lat = px̂

(7)

Please see [44] for details of the AOG.

4.4.2 Experimental settings of three-shot learning
Given a fine-tuned VGG-16 network, we learned an
explanatory graph and built the AOG upon the ex-
planatory graph following the scenario of few-shot
learning in [44]. For each category, we set three tem-
plates for the head part (m = 3) and used three part-
box annotations for the three templates. Note that
we used object images without part annotations to
learn the explanatory graph, and we used three part
annotations provided by [44] for each part to build
the AOG. All these object-box annotations and part
annotations were equally provided to all baselines to
enable fair comparisons (besides part annotations, all
baselines also used object annotations contained in
the datasets for learning). We set K = 0.1

∑
L,dNL,d

to learn AOGs for categories in the ILSVRC Animal-
Part and CUB200 datasets and set K = 0.4

∑
L,dNL,d

for VOC Part categories. Then, we used the AOGs to
localize semantic parts on objects.

Baselines: We compared AOGs with a total of
fourteen baselines for part localization. The baselines
included (i) approaches for object detection (i.e. di-
rectly detecting target parts from objects), (ii) graph-
ical/part models for part localization, and (iii) the
methods selecting CNN features to describe object
parts.

The first baseline was the standard fast-RCNN [9],
namely Fast-RCNN (1 ft), which directly fine-tuned a
VGG-16 network based on part annotations. Then, the
second baseline, namely Fast-RCNN (2 fts), first used
massive object-box annotations in the target category
to fine-tune the VGG-16 network with the loss of
object detection. Then, given part annotations, Fast-
RCNN (2 fts) further fine-tuned the VGG-16 to detect
object parts. We used [30] as the third baseline, namely
CNN-PDD. CNN-PDD selected certain filters of a CN-
N to localize the target part. In CNN-PDD, the CNN
was pre-trained using the ImageNet dataset [25]. Just
like Fast-RCNN (2 ft), we extended [30] as the fourth
baseline CNN-PDD-ft, which fine-tuned a VGG-16
network using object-box annotations before applying
the technique of [30]. The fifth and sixth baselines
were DPM-related methods, i.e. the strongly super-
vised DPM (SS-DPM-Part) [2] and the technique in
[16] (PL-DPM-Part), respectively. Then, the seventh
baseline, namely Part-Graph, used a graphical mod-
el for part localization [5]. For weakly supervised

TABLE 8
Normalized distance of part localization. We

compared supervised and unsupervised mining of
parts.

Dataset ILSVRC DET VOC CUB200
Animal Part -2011

Supervised-AOG 0.1344 0.1767 0.0915
Ours (unsupervised) 0.1250 0.1765 0.0862

TABLE 9
Effects of the edge number M .

Normalized distance
bird cow cat dog horse sheep Avg.

M=10 0.148 0.118 0.309 0.132 0.229 0.240 0.196
M=15 0.152 0.121 0.303 0.135 0.231 0.246 0.198
M=20 0.145 0.119 0.288 0.132 0.220 0.227 0.189
M=25 0.152 0.121 0.283 0.133 0.220 0.218 0.188

Accuracy of part localization
bird cow cat dog horse sheep Avg.

M=10 20.7 33.2 8.2 33.5 11.1 13.2 20.0
M=15 20.2 34.9 8.2 33.8 10.0 14.5 20.3
M=20 19.9 33.5 8.2 32.8 9.7 13.6 19.6
M=25 18.6 34.2 8.2 33.1 9.7 13.6 19.6

learning, “simple” methods are usually insensitive to
model over-fitting. Thus, we designed six baselines
as follows. First, we used object-box annotations in
a category to fine-tune the VGG-16 network. Then,
given a few well-cropped object images, we used the
selective search [36] to collect image patches, and used
the VGG-16 network to extract fc7 features from these
patches. The baselines fc7+linearSVM, fc7+RBF-SVM,
fc7+NN used a linear SVM, an RBF-SVM, and the
nearest-neighbor method (selecting the patch closest
to the annotated part), respectively, to detect the tar-
get part. The other three baseline fc7+sp+linearSVM,
fc7+sp+RBF-SVM, fc7+sp+NN combined both the fc7
feature and the spatial position (x, y) (−1 ≤ x, y ≤ 1) of
each image patch as features for part detection. The
last competing method is weakly supervised mining
of parts from the CNN [44], namely supervised-AOG.
Unlike our method (unsupervised), supervised-AOG
used part annotations to extract parts.

Comparisons: We divided all baselines into three
groups. The first group, namely not-learn parts, in-
cluded traditional methods without using deep fea-
tures, such as SS-DPM-Part, PL-DPM-Part, and Part-
Graph. These methods did not learn deep features6.
The second group, termed super-learn parts, contained
Fast-RCNN (1 ft), Fast-RCNN (2 ft), CNN-PDD,
CNN-PDD-ft, supervised-AOG, fc7+linearSVM, and
fc7+sp+linearSVM. These methods learned deep fea-
tures using part annotations, e.g. fast-RCNN methods
used part annotations to learn features; supervised-
AOG used part annotations to select filters from the
CNN to localize parts. The third group (unsuper-learn

6. Representation learning in these methods only used object-box
annotations, which is independent to part annotations. A few part
annotations were used to select off-the-shelf pre-trained features.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

Edges between the
1st and 2nd layers

Edges between the
2nd and 3rd layers

Edges between the
3rd and 4th layers

Fig. 12. Histogram of P (px|pV ′ ,θ) values among all
edges in an explanatory graph for the cat category.

Iteration Iteration

IterationIteration

𝐸 ூ
∈
𝐈
lo
g
𝑃
ሺ𝐗
|𝐑
,𝜃
ሻ

𝐸 ூ
∈
𝐈
lo
g
𝑃
ሺ𝐗
|𝐑
,𝜃
ሻ

𝐸 ூ
∈
𝐈
lo
g
𝑃
ሺ𝐗
|𝐑
,𝜃
ሻ

𝐸 ூ
∈
𝐈
lo
g
𝑃
ሺ𝐗
|𝐑
,𝜃
ሻ

Layer 4 Layer 3

Layer 1Layer 2

Fig. 13. Convergence of the learning process. We
showed the average value of logP (XI |RI ,θ) after
different iterations during the learning process.

parts) included CNN-PDD, CNN-PDD-ft, and our
method. These methods learned deep features using
object-level annotations, rather than part annotations.

Fig. 11 visualizes localization results based on
AOGs, which were learned using three annotations
of the head part of each category. We used the nor-
malized distance (used in [30], [44]) and the tradi-
tional intersection-over-union (IoU) criterion to eval-
uate the localization performance. Tables 3, 4, 5, 6,
and 7 show part-localization results on the CUB200-
2011 dataset [38], the VOC Part dataset [5], and the
ILSVRC 2013 DET Animal-Part dataset [44]. AOGs
based on our graph nodes exhibited outperformed all
baselines in few-shot learning. Note that our AOGs
simply localized the center of an object part without
sophisticatedly modeling the scale of the part. Thus,
detection-based methods, which also estimated the
part scale, performed better in very few cases. Table 8
compares the unsupervised and supervised learning
of parts. In the experiment, our method outperformed
all baselines, even including approaches that learned
part features using part annotations. Finally, Table 9
compares the part-localization performance when we
set different edge numbers M for each node. It shows
that explanatory graphs with each node containing

15 edges usually performed better in the perspec-
tive of the intersection-over-union (IoU) criterion, and
explanatory graphs with each node containing 25
edges exhibited lower normalized distances of part
localization.

Note that we tested the explanatory graph and
its corresponding AOG from the perspective of part
localization, instead of evaluating their performance
of object recognition. It is because the explanatory
graph was proposed to explain object-part semantics
in intermediate layers of the CNN, and the AOG was
designed for part localization (i.e. estimating the part
location under the condition that the image contains
the target part), instead of object recognition (i.e.
identifying whether or not the target object appears).
Moreover, theoretically, it was difficult for nodes in
the explanatory graph to outperform the original
CNN, because the explanatory graph selectively re-
trieved part-alike neural activations from high conv-
layers, and ignored other activations, whereas fully-
connected layers in the CNN used all information
(including both object parts and textures) to recog-
nize objects. I.e. the original CNN used much richer
information than the explanatory graph.

5 CONCLUSION AND DISCUSSIONS

In this paper, we have developed a simple yet ef-
fective method to learn an explanatory graph that
reveals the compositional hierarchy of object parts
encoded inside conv-layers of a pre-trained CNN.
The explanatory graph filters out noisy activations,
disentangles object parts from each filter, and models
co-activation relationships and spatial relationships
between parts. Experiments showed that our graph
nodes had significantly higher stability than baselines.
More crucially, our method can be applied to different
types of networks, including the VGG-16, residual
networks, and the VAE-GAN, to explain their conv-
layers.

The transparent representation of the explanatory
graph boosts the transferability of CNN features. Part-
localization experiments well demonstrated the good
transferability of graph nodes. Our method even out-
performed the supervised learning of part represen-
tations. Nevertheless, the explanatory graph is just a
rough representation of the CNN. It is still difficult to
well disentangle textural patterns from filters of the
CNN.

ACKNOWLEDGMENTS

This work is supported by National Natural Sci-
ence Foundation of China (U19B2043 and 61906120),
DARPA XAI Award N66001-17-2-4029, NSF IIS
1423305, and ARO project W911NF1810296.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 16

Fig. 11. Localization results based on AOGs that are learned using three annotations of the head part.

REFERENCES

[1] M. Aubry and B. C. Russell. Understanding deep features with
computer-generated imagery. In ICCV, 2015.

[2] H. Azizpour and I. Laptev. Object detection using strongly-
supervised deformable part models. In ECCV, 2012.

[3] D. Bau, B. Zhou, A. Khosla, A. Oliva, and A. Torralba. Net-
work dissection: Quantifying interpretability of deep visual
representations. In CVPR, 2017.

[4] A. Binder, G. Montavon, S. Bach, K.-R. Müller, and W. Samek.
Layer-wise relevance propagation for neural networks with
local renormalization layers. In ICANN, pages 63–71, 2016.

[5] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and
A. Yuille. Detect what you can: Detecting and representing
objects using holistic models and body parts. In CVPR, 2014.

[6] A. Dosovitskiy and T. Brox. Inverting visual representations
with convolutional networks. In CVPR, 2016.

[7] R. C. Fong and A. Vedaldi. Interpretable explanations of black
boxes by meaningful perturbation. In ICCV, 2017.

[8] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation
in backpropagation. In ICML, 2015.

[9] R. Girshick. Fast r-cnn. In ICCV, 2015.
[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016.
[11] Z. Hu, X. Ma, Z. Liu, E. Hovy, and E. P. Xing. Harnessing

deep neural networks with logic rules. In ACL, 2016.
[12] P. Koh and P. Liang. Understanding black-box predictions via

influence functions. In ICML, 2017.
[13] H. Lakkaraju, E. Kamar, R. Caruana, and E. Horvitz. Identify-

ing unknown unknowns in the open world: Representations
and policies for guided exploration. In AAAI, 2017.

[14] S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon,
W. Samek, and K.-R. Müller. Unmasking clever hans pre-
dictors and assessing what machines really learn. In Nature
Communications, 2019.

[15] A. B. L. Larsen, S. K. Sønderby, and O. Winther. Autoencoding
beyond pixels using a learned similarity metric. In ICML, 2016.

[16] B. Li, W. Hu, T. Wu, and S.-C. Zhu. Modeling occlusion by
discriminative and-or structures. In ICCV, 2013.

[17] Y. Lu. Unsupervised learning on neural network outputs with
application in zero-shot learning. In IJCAI, 2016.

[18] S. M. Lundberg and S.-I. Lee. A unified approach to interpret-
ing model predictions. In NIPS, 2017.

[19] A. Mahendran and A. Vedaldi. Understanding deep image
representations by inverting them. In CVPR, 2015.

[20] A. Mordvintsev, C. Olah, and M. Tyka. Inceptionism: Going
deeper into neural networks. In Google Research Blog, pages
1–8, 2015. http://googleresearch.blogspot.it/2015/06/inceptionism-
going-deeper-into-neural.html.

[21] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune.
Synthesizing the preferred inputs for neurons in neural net-
works via deep generator networks. In NIPS, 2016.

[22] A. Nguyen, J. Yosinski, and J. Clune. Multifaceted feature vi-
sualization: Uncovering the different types of features learned
by each neuron in deep neural networks. In ICML Visualization
for Deep Learning Workshop, 2016.

[23] C. Olah, A. Mordvintsev, and L. Schubert. Feature visu-
alization. Distill, 2017. https://distill.pub/2017/feature-
visualization.

[24] M. T. Ribeiro, S. Singh, and C. Guestrin. “why should i trust
you?” explaining the predictions of any classifier. In KDD,
2016.

[25] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei. Imagenet large scale visual recognition chal-
lenge. In IJCV, 115(3):211–252, 2015.

[26] S. Sabour, N. Frosst, and G. E. Hinton. Dynamic routing
between capsules. In NIPS, 2017.

[27] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,
and D. Batra. Grad-cam: Visual explanations from deep
networks via gradient-based localization. In ICCV, 2017.

[28] Z. Si and S.-C. Zhu. Learning and-or templates for object
recognition and detection. In PAMI, 2013.

[29] M. Simon and E. Rodner. Neural activation constellations:
Unsupervised part model discovery with convolutional net-
works. In ICCV, 2015.

[30] M. Simon, E. Rodner, and J. Denzler. Part detector discovery
in deep convolutional neural networks. In ACCV, 2014.

[31] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside con-
volutional networks: Visualising image classification models
and saliency maps. In arXiv:1312.6034, 2013.

[32] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. In ICLR, 2015.

[33] S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery
of mid-level discriminative patches. In ECCV, 2012.

[34] J. Su, D. V. Vargas, and S. Kouichi. One pixel attack for fooling
deep neural networks. In arXiv:1710.08864, 2017.

[35] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus. Intriguing properties of neural
networks. In ICLR, 2014.

[36] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M.
Smeulders. Selective search for object recognition. In IJCV,
104(2):154–171, 2013.

[37] J. Vaughan, A. Sudjianto, E. Brahimi, J. Chen, and V. N. Nair.
Explainable neural networks based on additive index models.
in arXiv:1806.01933, 2018.

[38] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The
caltech-ucsd birds-200-2011 dataset. Technical Report CNS-TR-
2011-001, In California Institute of Technology, 2011.

[39] T. Wu and S.-C. Zhu. A numerical study of the bottom-up and
top-down inference processes in and-or graphs. International
journal of computer vision, 93(2):226–252, 2011.

[40] T.-F. Wu, G.-S. Xia, and S.-C. Zhu. Compositional boosting for
computing hierarchical image structures. In CVPR, 2007.

[41] X. Yang, T. Wu, and S.-C. Zhu. Evaluating information
contributions of bottom-up and top-down processes. ICCV,
2009.

[42] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. In ECCV, 2014.

[43] Q. Zhang, R. Cao, F. Shi, Y. Wu, and S.-C. Zhu. Interpreting
cnn knowledge via an explanatory graph. In AAAI, 2018.

[44] Q. Zhang, R. Cao, Y. N. Wu, and S.-C. Zhu. Growing
interpretable graphs on convnets via multi-shot learning. In
AAAI, 2017.

[45] Q. Zhang, R. Cao, Y. N. Wu, and S.-C. Zhu. Mining object parts
from cnns via active question-answering. In CVPR, 2017.

[46] Q. Zhang, R. Cao, S. Zhang, M. Edmonds, Y. N. Wu, and
S.-C. Zhu. Interactively transferring cnn patterns for part
localization. In arXiv:1708.01783, 2017.

[47] Q. Zhang, W. Wang, and S.-C. Zhu. Examining cnn represen-
tations with respect to dataset bias. In AAAI, 2018.

[48] Q. Zhang, Y. N. Wu, and S.-C. Zhu. A cost-sensitive visual
question-answer framework for mining a deep and-or object
semantics from web images. In arXiv:1708.03911, 2017.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 17

[49] Q. Zhang, Y. N. Wu, and S.-C. Zhu. Interpretable convolutional
neural networks. In CVPR, 2018.

[50] Q. Zhang, Y. Yang, H. Ma, and Y. N. Wu. Interpreting cnns
via decision trees. In CVPR, 2019.

[51] Q. Zhang and S.-C. Zhu. Visual interpretability for deep
learning: a survey. in Frontiers of Information Technology &
Electronic Engineering, 19(1):27–39, 2018.

[52] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba.
Object detectors emerge in deep scene cnns. In ICLR, 2015.

[53] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba.
Learning deep features for discriminative localization. In
CVPR, 2016.

[54] S. Zhu and D. Mumford. A stochastic grammar of images.
In Foundations and Trends in Computer Graphics and Vision,
2(4):259–362, 2006.

Quanshi Zhang received the B.S. degree in
machine intelligence from Peking University,
China, in 2009 and M.S. and Ph.D. degrees
in center for spatial information science from
the University of Tokyo, Japan, in 2011 and
2014, respectively. In 2014, he went to the
University of California, Los Angeles, as a
post-doctoral associate. Now, he is an asso-
ciate professor at the Shanghai Jiao Tong U-
niversity. His research interests include com-
puter vision, machine learning, and robotics.

Xin Wang is a Ph.D. student an internship
student at the Shanghai Jiao Tong Universi-
ty. His research mainly focuses on machine
learning and computer vision.

Ruiming Cao received the B.S. degree in
computer science from the University of Cal-
ifornia, Los Angeles, in 2017. Now, he is a
master student at the University of California,
Los Angeles. His research mainly focuses on
computer vision.

Feng Shi is a Ph.D. student at the Univer-
sity of California, Los Angeles. His research
mainly focuses on computer vision and elec-
tric engineering.

Ying Nian Wu received a Ph.D. degree from
the Harvard University in 1996. He was an
Assistant Professor at the University of Michi-
gan between 1997 and 1999 and an Assis-
tant Professor at the University of California,
Los Angeles between 1999 and 2001. He
became an Associate Professor at the Uni-
versity of California, Los Angeles in 2001.
From 2006 to now, he is a professor at the
University of California, Los Angeles. His re-
search interests include statistics, machine

learning, and computer vision.

Song-Chun Zhu received a Ph.D. degree
from Harvard University in 1996, and is a pro-
fessor with the Departments of Statistics and
Computer Science at UCLA. He has pub-
lished over 300 papers in computer vision,
statistical modeling and learning, cognition,
Language, robotics, and AI. He received a
number of honors, including the Marr Prize
in 2003, the Aggarwal prize from the Intl
Association of Pattern Recognition in 2008,
the Holmholtz Test-of-Time prize in 2013,

twice Marr Prize honorary nominations in 1999 and 2007 . a Sloan
Fellowship, the US NSF Career Award, and ONR Young Investigator
Award in 2001. He is a Fellow of IEEE since 2011.

