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A Compositional and Dynamic Model for Face Aging

Jinli Suo , Song-Chun Zhu , Shiguang Shan and Xilin Chen

Abstract—In this paper we present a compositional and dynamic model for face aging. The compositional model represents faces
in each age group by a hierarchical And-Or graph, in which And nodes decompose a face into parts to describe details (e.g. hair,
wrinkles, etc.) crucial for age perception and Or nodes represent large diversity of faces by alternative selections. Then a face instance
is a transverse of the And-Or graph—parse graph. Face aging is modeled as a Markov process on the parse graph representation.
We learn the parameters of the dynamic model from a large annotated face dataset and the stochasticity of face aging is modeled
in the dynamics explicitly. Based on this model, we propose a face aging simulation and prediction algorithm. Inversely an automatic
age estimation algorithm is also developed under this representation. We study two criteria to evaluate the aging results using human
perception experiments: (i) The accuracy of simulation: whether the aged faces are perceived of the intended age group, and (ii)
preservation of identity: whether the aged faces are perceived as the same person. Quantitative statistical analysis validates the

performance of our aging model and age estimation algorithm.

Index Terms—Face Aging Modeling, Face Age Estimation, Generative Model, And-Or Graph, ANOVA.

1 INTRODUCTION

HE objective of this paper is to study a statistical

model for human face aging, which is then used for
face aging simulation and age estimation. Face aging
simulation and prediction is an interesting task with
many applications in digital entertainment. In such ap-
plications, the objective is to synthesize aging effects
that are visually plausible while preserving identity. This
is distinguished from the task of face recognition in
biometrics where two key considerations are to extract
features stable over a long time span and learn the
potential tendency of facial appearance in aging process.
Building face recognition systems robust to age related
variations[27][34][38] is a potential applications, but it is
beyond the scope of this paper.

We adopt a hierarchical And-Or graph representation
to account for the rich information crucial for age percep-
tion and large diversity among faces in each age group.
A specific face in this age group is a transverse of the
And-Or graph, and is called parse graph. Aging process
is modeled as a Markov chain to describe the evolution
of parse graphs across age groups and to account for the
intrinsic stochasticity of the face aging process. The accu-
racy of simulation (i.e. whether the synthetic images are
perceived of the intended age group) and preservation
of face identity (i.e. whether aged faces are perceived as
the same person) are two criteria used to evaluate our
modeling results in human experiments.

Compared with other face modeling tasks, modeling
face aging encounters some unique challenges. (i) There
are large shape and texture variations over long period,
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say 20-50 years: hair whitens, muscles drop, the wrinkles
appear, and so on. Traditional AAM model[10] is hard
to describe all those variations. (ii) The perceived face
age often depends on global non-facial factors, such as
the hair color and style, the boldness of the forehead, et
al., while these non-facial features are usually excluded
in face modeling. (iii) It is very difficult to collect face
images of the same person over a long time period, and
the age related variations are often mixed with other
variations (i.e. illumination, expression, et al.). (iv) There
exist large variations of perceived age within each bio-
logic face group due to external factors, such as health,
life style, et al. (v) There lack quantitative measurements
for evaluating the aging results in the literature. All these
characteristics demand a sophisticated face aging model
to account for rich face details related to age perception,
intrinsic uncertainty in aging process and a criteria for
evaluating the age simulation results.

1.1 Previous Work

Face aging modeling and face aging simulation have
attracted growing research interest from psychology,
graphics, and lately computer vision. Previous work on
face aging can be divided into two categories: child
growth and adult aging.

For child growth modeling, shape change of face profile
is the most prominent factor. Most researchers adopted
specific transformation on a set of landmarks[11][15][33]
or statistical parameters [21][26][29] to model age related
shape changes. Ramanathan and Challeppa[33] defined
growth parameters over the landmarks to build a crania
facial growth model, and anthropometric evidences are
included to make the model consistent with the actual
data. Lanitis et al.[21] built three aging functions to de-
scribe the relationships between facial age and the AAM
parameters, by which they could estimate the age from
a child image and predict face growth inversely. Some
others[17][37] included texture parameters in their facial
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growth model. All these methods showed the validness
of modeling shape changes in growth prediction.

For adult aging, both appearance and shape were stud-
ied. In computer graphics, people built physical models
to simulate aging mechanisms of cranium, muscles and
skin. For example, Boissieux et al.[6] and Wu et al.[44]
built layered skin models to simulate the skin defor-
mation as age increases. Berg and Justo[4] simulated
the aging process of obituaries muscles. Other similar
work include Bando et al.’s[2], Lee et al.’s[25] and Ra-
manathan’s work[35].

In computer vision, most aging approaches are ex-
ample based and can be divided into three types. (i)
Prototype method[7][41] computes average face image of
each age group as prototype and defines the differences
between prototypes as aging transformation. Wang et
al.[43] applied this prototype approach in PCA space
instead of on image directly and Park et al.[30] applied
it to 3D face data. Prototype method is able to extract av-
erage pattern but many details (e.g. wrinkles, pigments,
et al.) crucial for age perception are ignored. There
are also work studying texture transfer from a specific
senior face to young ones, such as [13][28]. (ii) Function
based method describes relationships between a face
image and its age label with an explicit function, such
as quadratic function[31], support vector regression[42],
kernel smoothing method[18] or an implicit function[5].
Jiang and Wang[19] directly built a mapping function
between young faces and their appearances at later
ages. All those functions need considerable real aging
sequences to learn the function parameters. (iii) Distance
based methods[22] formulate aging simulation as an
optimization problem. They synthesize a face close to
the images of intended age in age space and close to
the input individual in the identity space simultaneously.
The algorithm in [22] adopted global AAM model and
simple similarity metrics, simulation results are not re-
alistic enough.

Other related work is age estimation, which se-
lects discriminative features to estimate face age.
Primary studies on age estimation[20] coarsely di-
vided human faces into groups based on facial land-
marks and wrinkles. Most recent approaches consid-
ered the continuous and temporal property of face age
and formulated age estimation as a regression prob-
lem. Researchers explored different features, includ-
ing AAM coefficients[23], image intensities[12][14][46],
features designed heuristically[40] and adopted vari-
ous regression methods, such as quadratic function[23],
piece-wise linear regression[23][40], multi-perceptron
projection[12][23][40], et al. Different to aforementioned
methods, Geng et al.[16] defined an aging sequence as
an aging pattern and estimated age by projecting a face
instance onto appropriate position of a pattern.

Despite of the progress, there are some problems in
the existing work. Firstly, example based models need
large number of image sequences of the same person
across age groups to learn aging patterns, and existing

dataset is far from being sufficient. Secondly, most of
the existing models do not account for high resolution
features, therefore they are insufficient for describing the
large facial variations across age groups and the aging
results lack crucial details (e.g. wrinkles, pigments, et al.)
for age perception. Thirdly, hair features are usually not
considered, despite its influence on the perception of face
age. Fourthly, the ground truth for aging modeling is
difficult to collect and appropriate performance measure-
ment is not standardized, and a quantitative evaluation
of face aging results is also needed.

1.2 Overview of Our Approach
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Fig. 1. Stochasticity of face aging. (a) The node I° is a face
observed at time ¢, while the other nodes are the plausible faces
before and after time ¢. Each dashed curve represents a space
of possible face images at certain time. (b) The shadowed area
means that two people may become unidentifiable after certain
period, which reflects that the difficulty of preserving face identity
increases as time evolves.
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Motivated by the aforementioned problems, we pro-
pose a compositional and dynamic model to represent
the face aging process. Our model represents faces in
each age group by a three-level And-Or graph[8] (see
Fig. 3), which consists of And-nodes, Or-nodes and Leaf
nodes. The And nodes represent the decomposition,
which divides a face into parts and primitives at three
levels from coarse to fine. The first level describes face
and hair appearance, the facial components are refined
at the second level, and wrinkles and skin marks are
further refined at the third level. Or nodes represent the
alternatives to represent the diversity of face appearance
at each age group, and leaf nodes are basic primitives.
Spatial relations and constraints are imposed between
the nodes at the same level to ensure the validness of the
configurations (symmetry of eyes, spatial relationships
among facial parts, et al.). By selecting alternatives at
the Or-nodes, one obtains a hierarchic parse graph for
a face instance, and the face image can be synthesized
from this parse graph in a generative manner. Based
on the And-Or graph representation, we represent the
dynamics of face aging process as a first-order Markov
chain on parse graphs (see Fig. 5), and learn the aging
patterns from annotated faces of adjacent age groups
at each level. To overcome the difficulty of collecting
face images of the same person at different ages, our
compositional model decomposes face into facial com-
ponents and skin zones. The part-based strategy allows
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Fig. 2. The uncertainty of aging increases with time. Given an
input face image (leftmost), the algorithm simulates a series of
plausible aging results reflecting the stochasticity. The vertical
column shows the plausible faces at certain age group. For
each arrow, we show the transition probability computed by the
dynamic model.

the aging pattern of each part across age groups to be
learned from similar patches. Our dataset includes about
50,000 face images with large diversity in the age range
of 20-80. The patterns learned from similar patches might
be different from those learned from the aging data of
the same person, thus we need to evaluate the results
guantitatively as an important extension of work in the
published short version[39].

A central issue in face aging modeling is to study
the stochasticity of the aging process, as Fig. 1 illus-
trates. For an observed young face 7°°, the appearance
changes over time is intrinsically a stochastic process.
Like Brownian motion, the uncertainty increases along
both directions of the time axis and confusion between
two subjects increases as well, as Fig. 1(b) shows. As
an example, Fig. 2 shows some plausible aging results
of a young individual to illustrate the uncertainty of
face aging. The value of each arrow is the transition
probability computed by our dynamic model.

Since there is intrinsic uncertainty for face aging, we
propose two criteria to evaluate the face aging results.

(i) The accuracy of simulation. For each age group we
select 80 real images from our dataset and 80 simulated
images synthesized using our algorithm. Then these im-
ages are given to 20 volunteers for age estimation. By an-
alyzing the results with ANalysis of VAriance(ANOVA),
we find no significant difference in age estimation per-
formance between real images and synthetic images.

(ii) Preservation of the identity. We collect real aging
sequences of 20 individuals from relatives and friends,
for each individual we synthesize one aging sequence
from the photo at the initial age group, then 20 volun-
teers are asked to identify the individuals in the two sets.
The ANOVA analysis of recognition results shows that
our face aging model preserves face identity effectively.

2 REPRESENTATION AND FORMULATION

We study adult faces in the age range of 20-80, and
divide them into 5 groups: [20, 30), [30, 40), [40, 50), [50,
60) and [60, 80]. In this section we present the And-Or
graph model for face representation, the dynamic model
for aging, and the procedure of model learning.

2.1 Compositional And-Or graph for Face Modeling

We extend a multi-resolution face representation pro-
posed by Xu et al.[45] with hair features and build age
group specific face models. As Fig. 3 illustrates on the
left column, a face image I; at age group ¢ is represented
at three levels, from coarse to fine,

It = ((Ihair,h Iface.,t)a Icmp.,ta Iwkl,t)- (1)

(Inair,t> Trace,c) 1s the whole face image, where I,
represents hair and I, accounts for general face
appearance. Icmp,: refines the facial components (eyes,
eyebrows, nose, mouth et al.). Iy further refines the
wrinkles, skin marks, and pigments in 6 facial skin
zones. All faces of age t are collectively represented
by an And-Or graph GA© (see the middle column of
Fig. 3), where an And-node (in solid ellipse) represents
the decomposition and an Or-node (in dashed ellipse)
represents the alternatives to account for large diversity
of faces, for example, different eye shapes. A dictionary
A, for each age group ¢ is shown on the right side for
various components over the three levels.

At = ((Ahair,ta Aface,t)a Acmpﬂta Akat) (2)

The dictionary A, is learned from a large number of
faces at age group t. Fig. 4 shows the diversity of the
examples in the dictionary at different age groups.

By choosing the alternatives at the Or-nodes, the And-
Or graph GA° is converted to an And-graph G; as a
specific face instance at age group ¢, called parse graph.

Generative model accounts for a large variety of faces,
we denote the set of faces generated by GA© as

M = {Gt}a (3)

which is evidently much larger than the training set. A
face instance is represented by

Gt = (w14, Wat, W3 t), (4)

where w; +,7 = 1,2, 3 are the hidden variables controlling
the generation of I, at three resolutions and 7 indexes the
three resolutions. They can be further decomposed as

Wit = (liﬂfv Ti)ioj sz?t) ®)

In the above notation, l;; = {l;:(m) : m = 1,2,...,n2}
includes a vector representing all the ”switch” variables
for the alternatives in each Or-node m at resolution ¢ and
age group t, Tp; = {T; (m) : m = 1,2,..,n/} and
TP = (TP (m) : m = 1,2,..., 9} are variables for the
geometric and photometric attributes in each And-node
m at resolution ¢ and age group ¢ respectively.
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Fig. 3. Left: A high resolution face image I, at age group t is represented at three resolutions — Ifaceyt,lcmp,t and Iy, Middle:
All face images at age group ¢ are represented collectively by a hierarchic And-Or graph G £°. The And nodes (in solid ellipses) in
the graph G° represent coarse-to-fine decomposition of a face image into its parts and components. The Or-nodes (in dashed
ellipses) represent alternative configurations. By choosing the Or-nodes, we obtain a parse graph G ; for a specific face instance.
Right: Dictionary A; includes Anair,¢, Atace,t» Acmp,: and Ay ; at three levels from coarse to fine.
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wrinkles Opoc = (01,406, 02406, O3.406) includes the parame-
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The likelihood model specifies how w;; generates
image I;, as in [45] and AAM[10].
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60-80 &@ where J; is the reconstruction function of human face at
= resolution i using the dictionary A, ;. I[% is a residual
B image of the reconstruction at resolution 4, which follows
Fig. 4. Examples of the facial components and hairs from the  a Gaussian distribution. The likelihood model of the

dictionaries of different age groups. whole face can be written as
We impose a prior probability for the hierarchical 3
parse graph G, PG Ar) = [ [ oL alwivs A ). (10)
=1
p(Gt; ©a0c) (6)

The parse graph is computed from an observed image by
= P(wslwa,i; O3,a06)p(Wz,e|w1i: ©2,006)P(wii; O1,406): Bayesian inference from coarse to fine in a way similar

which accounts for the constraints of upper level to to [45]. By denoting wg,, =0, for i = 1,2,3 we have

current level as well as the_constralnts among nodes , « _ arg max_wp(Ti ¢lw; e A0 )p(wid|wi_1 43 ©s.a06). (1)
at the same level, e.g. enforcing the same type of eyes.

7,
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Fig. 5. Modeling the aging process as a Markov chain on parse graphs. Top row is a face image sequence at different ages, with
the leftmost one being the input image and the other four being synthetic aged images. The second row is the parse graphs of the
image sequence. The third row shows the Markov chain and © 4y, includes the parameters for Markov chain dynamics.

2.2 Modeling Aging Procedure as A Markov Chain
on Parse Graphs

Based on the above graph representation, the face aging
process is modeled as a Markov chain on the parse
graphs. We denote by I[1,7] and G]1, 7] the sequence of
images and parse graphs respectively for a period [1, 7].
Therefore, our probabilistic model is a joint probability,

p(I[1,7],G[1,7];©) (12)
H (1t|Gr; Ar) - p(Ga) - [ [ p(Gel G113 Oayn, Onoc)
t=1 t=2

Here © = {A,Ogyn,On0c} denotes the parameters.

p(I:|Gy; Ay) is the image model in Eqg. 10 generating an
image I, from a parse graph G;. p(G¢|G;—1;©dyn, ©a0c)
is the dynamic model for the evolution from one parse
graph G;_; to the next G; with Ogy, being the aging
parameters.

Fig. 5 is an illustration of our dynamic model for face
aging. I; is an input young face image and G, is its parse
graph representation. By sampling from the dynamic
model p(G¢|Gi—1;Ogyn, Oaoc) We can simulate a series
of parse graphs G,, Gs, G4 and G5. Then new face
images I, I3, 14, I are synthesized in four consecutive
age groups with dictionaries A, to As.

In the dynamic model, we factorize the transition
probabilities of /; ;, T;;" and Tf?t separately over time
t and resolution i. Each component w; ; depends on its
upper level w;_;+ and previous age group w; .

G¢|Gi-1,Odyn, Onoc) (13)

;:103“

zt|lzt 17 i— lt) (Tlt‘?fo|T3§o_1aﬂgf?,t)
i=1

pht, -pht pht
T |th 17T 1t>

Here Og4y, is learned from a large training data. In the
following, we discuss the two types of variations in the
dynamic model above: (i) abrupt changes for the emer-
gence of new age related features; and (ii) continuous
changes of the geometric and photometric attributes.

(1) Abrupt changes. The aging process may change the
topology of the graph. For example, inserting new nodes
(e.g. wrinkles emerge, et al.) or switching the alternatives
in the Or-nodes (e.g. change of hair style, the type of
eyes, et al.). We use the transition probabilities of [, ; to
represent this type of variation.

plitllit—1,li—1¢) (14)

o H Ait(Lie(m), lig—1(m)) -

m=1

P(liglli=1e), 1=1,2,3.

In the above model, m indexes the corresponding Or-
nodes between two adjacent graphs G; and G, ; at
resolution 4, and \; () is a stochastic transition matrix
for how likely a node of type I; ;1 (m) ages to a node of
type l; :(m). p(l;+|li—1,+) is the hierarchy model from the
And-Or graph and accounts for the frequency of I; ;(m)
and constraints for symmetry between nodes.
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(2) Continuous changes. Some variations in aging only
change the attributes of leaf-nodes, such as skin color,
facial part shape, wrinkle length et al.. We represent
them by the transition probabilities of 7%° and T"". The
continuous variation transitions are represented in the
following model at three resolutions, : = 1,2, 3:

geo | ~geo geo
(T |T7,t l’T lt)

And

x  exp{— Z¢ T (m), TR (m)} - p(TECITES ),

pht pht pht
(T |T7,t l’T lt)

And

x exp{— Zprht

m=1

(15)

(16)

ht ht
p(T7 T )

sz?tl(m))} i—1,t

In the above formula, m indexes the And-node at
resolution 7 between two adjacent groups ¢ and t — 1.
T9°(m) and TP;"(m) denote the geometric and photo-
metric attributes of an And-node m respectively. () is
a potential which favors the transitions between similar
parts, and penalizes large variations of the same part
between adjacent groups. For geometric distance, we
adopt the thin-plate spline (TPS) model after aligning the
landmark points on the parts. Although large variations
may occur in real data (e.g. the scars caused by injury,
the change of hair styles, the variations introduced by ex-
pression, illumination, et al.), we try to penalize these ef-
fects of external unpredictable factors and learn only the
natural aging patterns. The probabilities p(T7;° |77 ,)

and (Tpht|Tph1 ,) are parts of the original prior model
of the parse graph in Eq. 8.

2.3 Automatic Learning of Face Aging Model

The image model and dynamic model can both be
learned automatically from a large labeled dataset, we
summarized the procedure in Alg. 1. For clarity of
presentation, we shall discuss the implementation details
in Sec. 4.

Algorithm 1. Learning of face aging model

input : Dataset of face images at 5 age groups
output: Hierarchical face model and dynamic face aging
model

fort=1to 5 do
1. Label facial landmarks and wrinkle lines for:
1.1 Learn the parameters of hierarchical face model
@i,AOG
1.2 Build the dictionary A; ;
2. Compute parse graphs of faces in the dataset from
Eq. 11;
3. Learn the probabilistic image model by MLE;

fort=2to 5 do
1. Define similarity metrics between images of the same
part from adjacent age groups;
2. Learn the dynamics of aging model—transition
probabilities;

3 FACE AGING: ANALYSIS AND SYNTHESIS
Following the compositional face representation and the
dynamic model, we propose a multi-level face aging
algorithm, which is implemented in three steps: (i) Com-
puting the parse graph representation from an input
young face by Bayesian inference in Eq. 11; (ii) Sampling
the parse graphs of other age groups from the dynamic
model in Eq. 13; (iii) Generating the aging image se-
guence by the generative model in Eqg. 10.

3.1 The Overall Algorithm

Given a young face image I; at age group 1, our ob-
jective is to infer the parse graph G; by maximizing a
Bayesian posterior probability, and then synthesize the
parse graphs Gz, Gs,G4, G5 by sampling the dynamic
model. These parse graphs then generate the face images
I, I3, 14, I5 at consecutive age groups. We summarize the
flow of our face aging algorithm as below:

Algorithm 2. Inferring the face aging sequences

input : A young face image I;
output: A sequence of aged faces I to I5

1. Compute G, as parse graph of I;;
G1 = argmaxp(G1 | [1; A1)
2. Sample the graphs at consecutive age groups from Eq. 13;
Gt NP(Gt|Gt71§ edym @AOG)7t = 27 37 47 5.
3. Synthesize the aged image I; from the generative model;
= J(Gt, At)

3.2 Details of the Algorithm

In this subsection, we present the details for the three
steps in the algorithm above.

3.2.1 Computing G1 from Iy

The process of computing the parse graph representation
of the input face image is to infer the hidden variables
generating the image, as in Eq. 9 and Eq. 11. This part of
work is the integration and extension of the grammatical
face model[45] and generative hair model[9] in our
group, for self-containment, we briefly discuss step 1 in
the following three subsections:

(1.a) Computing the hair representation

Following Chen’s generative hair model[9], the ge-
ometric attributes 7y of hair can be represented by
its sketch, which includes a set of curves C; and cor-
responding directions dj. After extracting hair image
as Fig. 6(a) illustrates, the sketch can be computed by
a sketch pursuit algorithm. The photometric attributes
Trf’;: describe the hair texture and include three variables:
Inow Iuv and Igng. Ifow IS the vector flow in the hair
region, which controls the generation of high frequency
hair texture. It can be computed using the hair sketches
with prior knowledge of hair direction by a diffusion
method. Iyy accounts for the hair color, and g =
{zi,yi,0i,02,:,0,,} 1S a set of Gaussian basis simulating
the lighting and shading of hair image. Based on 75>

hair
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Fig. 6. Computing hair parameters. (a) illustrates the procedure of extracting hair image from complex background. (b) explains
the parameters for a hairimage Ioq. The geometric attributes are described by the directed curves in sketch image I sx. Photometric
attributes are described by three components: I, is the vector flow accounting for hair directions, Ishq represents the lighting and
shading in the hair, and Iyy is the color channel of hair image. (c) lists the hair styles in our hair dictionary, the one with boundary

is the hair type of Iorg in (b).

and T,f;:ﬁ, we classify hair into a number of styles, which

are listed in Fig. 6(c) and indexed by Iir-

(1.b) Computing parameters of face and facial components
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Fig. 7. AAM models of face and facial components. (a) The
90 landmarks defined for the global AAM model. (b) We cluster

various images of each facial component into sub classes and
build a local AAM model for detailed representation.

We represent the face and facial components with
AAM [10] models. First we train a traditional AAM
model for the first level face image with 90 landmarks as
shown in Fig. 7(a). Because there exist large variations for
each facial component (e.g. single-lid eyes and double-
lid eyes, etc. in Fig. 7(b)) and a global AAM model is
not sufficient for presenting all these details, we build
local AAM models to refine these component regions
at second level. After clustering facial components into
prototypes indexed by lcmp, We train a local AAM model
for each prototype For face and facial components, 7%
and Tp are coefficients of shape eigenvectors and tex-
ture elgenvectors respectively, which are both computed
by minimizing the reconstruction error.

(1.c) Computing parameters of wrinkles and pigments

In the third level representation, we divide the face
skin into 6 wrinkle zones as Fig. 8(a) shows. The wrin-
kles (curves or sketches) in each zone are located with
matching pursuit algorithm using two types of filters:

Isk Ipatch

(a) (®)
Fig. 8. Parameters for wrinkles and skin marks at the third level.
(a) The skin is divided in 6 wrinkle zones, our algorithm adds
wrinkles in each zone separately. (b) oy is the inputimage. The
curves and marks in I and image patches Ipaen account for the
geometric and photometric attributes of wrinkles respectively.

Gabor wavelets and blobs. The geometric variables 7.5
describe the position, length, orientation of the traced
curves, and the position and scale of the marks. The
photometric variable TV?,E} is represented directly by the
straighten wrinkle intensity profiles perpendicular to the
wrinkle curves and the skin mark patches in Fig. 8(b).
Mostly there is no wrinkle for faces of age under 30, so

the initial parse graph G, usually has only two levels.

3.2.2 Simulating the Evolution of Parse Graphs

(2.a) Learning the dynamic parameters

To overcome the difficulty of collecting photos of the
same person across all age groups, our model decom-
poses face into parts, and learns the aging transition
probabilities for each part separately, which can be
cropped from faces of different persons. Fig. 9(a) gives a
subset of the training data in three groups for learning
dynamics of eye aging and illustrates the aging process
of eye, where the thickness of the arrows reflects the
transition probability.

The transition of a face component across age groups
is allowed only between images of the same prototype,
i.e. the same number of landmarks. The similarity mea-



JOURNAL OF IBTEX CLASS FILES, VOL. *, NO. *, JANUARY 2009

Fig. 9. Learning aging pattern for each part. (a) Eye examples
in three age groups. The thickness of the arrows between two
eye images indicates the transition probability between the two
images in consecutive age groups. (b) The labeled landmarks
describing the contours of one pair of selected eyes from two
adjacent age groups. (c) An aging result of an eye.

surement over the geometric and photometric attributes,
i.e. ¥() in egns 16 and 17 follows the TPS model and
AAM model respectively.

(2.b) Probabilistic sampling to simulate evolution of parse
graphs from the dynamic model

For aging simulation, we use probabilistic sam-
pling instead of maximizing the conditional probability
p(G¢|Gi—1) to preserve the intrinsic stochasticity. In our
algorithm we adopt widely applicable Gibbs sampling
technology as in Alg. 3. For each parse graph G;_1, we
can sample a variety of G; from the probability with
different attributes, which in turn generates different
aged images. This process is similar to the Brownian
motion. The longer the time period, the larger variance
can be observed in the sampled results. Fig. 2 illustrates
some simulation results over four age groups and we
often need to sample more examples for longer time
period to account for the large diversity.

Algorithm 3. Gibbs sampling algorithm
for evolution of Markov chain

input : 1,1, 7%, TP
output: I;,, T¥°, TP™ t = 2,3.4,5

ot YTt

fort=2to 5 do
fori=1to 3 do
for loop=11to T do
for m =1 to n?} do
li,t(m) ~
Pt (m)|lie—1 (1), oes lig—1 (9] _1), li1,6(m))
for m =1 to n/')* do
T3 (m) ~

geo geo geo
p(Ti,t (m) Ti,tq(l)a ---vafl(”And

i,t—l)szgf?7t(m))
for m =1 to n/')* do
ht
Ti’?t (hm) N h h h
pht pht pht pht
p(Ti,t (m)|Ti,t71(1)7 "'7Ti7t71(nﬁ?gl)7Tith(m))

3.2.3 Synthesizing Image I; from G;.

By the generative model, we synthesize face image I;
from its parse graph G; = (w1, wat,ws). The image
generation process proceeds in three steps from coarse
to fine[45]. Firstly, it generates the face and hair image
I+ from wy; based on the AAM model for face and
the hair model in [9]. Secondly, it refines the five face
components based on w,; and I, ;. Each component is
again an AAM model with landmarks and appearance.
This step leads to higher resolution details and diverse
appearance for these components. Thirdly, it generates
wrinkles and marks in the 6 skin zones based on ws ;.

4 |IMPLEMENTATION DETAILS

In this section, we discuss some implementation details
for the representation and aging of each part—nhair, face,
components, wrinkles in the dynamic model.

4.1 Level 1: Global Appearance Aging
4.1.1 Hair Aging

We annotated 10, 000 face images across the 5 age groups
in the Lotus Hill dataset[47], thus a large set of hair
images are collected for each age group. For an observed
hair image 7% in group ¢ — 1, we select a similar hair
image 72" at group ¢ according to two metrics: geometric
similarity and texture similarity. The geometric similar-
ity between hair contours is computed using a Thin
Plate Spline(TPS) warping energy between two contours,
while the texture similarity is computed by KL distance
between vector flow histograms of two hair textures.
Then the selected hair of group ¢ is warped to fit the face
shape of 1°°S under constraints from the skull structure.
Finally we get the final result I;”". Fig. 10(b) shows an
example of hair aging.

4.1.2 Face Aging

At level one, the face aging effects reflect the change
of global face shape, skin color darkening and drop of
muscles. We select aging patterns based on geometric
and photometric similarities. For each face, we have 90
facial points describing the facial geometry 7pc ,. TPS
warping energy measuring the cost for aligning two
face geometries is used as a natural shape distance. The
appearance distance is computed as the KL distance
between histograms of corresponding filter responses
(mean, variance, et al.) of two aligned faces. As are
studied in [1][3][48], there occur certain noticeable bony
and soft tissue changes in shape, size and configuration
during adult aging, and the shape changes in muscular
regions is larger than in bony regions. We compute the
differences between mean face shapes of different age
groups as is illustrated in Fig. 10(c) and adopt the mean
shape changes as soft constraints during warping of face
shape as age increases. Fig. 10(d)(e) show the process of
first level face aging.
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Fig. 10. Steps of hair aging and global face aging. (a) illustrates the aging process of a hair image in age group ¢ — 1, denoted
as I I is a similar hair image in age group ¢ selected based on similarity metrics. After applying geometric transformation to
meet the shape of 1%, we get the intermediate result 7/"®®. The final aging result is I;”". (b) shows a resulted hair aging sequence.
(c) illustrates the mean shape changes of face shape in adult aging. Here the length of line-segments denotes change magnitude
and orientation describes the moving direction. (d) shows the face aging process of I 2, which is a young face in age group ¢ — 1.
Here I is the selected similar face image in age group ¢. 1" and I"%¢ are the |ntermed|ate results after applying geometric
transformations under Anthropometric constraints. With a mask image excluding the facial components, we can synthesize an
aged image as I;”". (e) shows an aging sequence synthesized for 7" in (d).

.

4.2 Level 2: Facial Component Aging
Different variations occur to different facial components
during face aging. In general, variations include changes
in both geometry and photometry. The aging pattern
of eyes is the most complex and most important for
the final results, therefore, we take the eye aging as an
example to explain the component aging approach.
The evolution parameters for eye aging are learned
from the dataset of eye patches across age groups, as
is shown in Fig. 9(a). By applying AAM searching with
the local eye model, we can locate the landmarks of the
components accurately as shown in Fig. 9(b). Then the
transition probability (thickness of arrows) is computed
following Eq. 16,17. The geometric distance in Eq. 16
is measured by TPS bending energy between two eye
shapes with the same topology, while the photometric
distance in Eq. 17 is computed by summing over the
squared intensity difference in the Gaussian window
around the matched points. For a given eye image I5;_1,
after selecting a similar aged image I, we perform
two transformations to Iy ;. (1) Warping it to the
target shape by applying a set of affine transformations
7T to I,; to minimize the geometric distance between
the landmarks of 7(Iy+) and Iy:—;. (2) Using Poisson
image editing[32] techniques to transfer high frequency
information in skin region of 7 (I5;) to I»;—1 and per-
form color histogram specification to the non-skin area
texture. An aging result of eye is shown in Fig. 9(c).
Symmetry of facial components, such as the left and
right eyes, eyebrows, is represented by imposing con-

-~ 4 -~ 4 - 4

8 e Fwm ]
(a) 30-40 (b) 40-50 (c) 50-60 (d) 60-80
Fig. 11. Intermediate results of facial component aging.

straints on the transformations mentioned above. The
aging pattern of facial components should also be con-
strained by the upper level face aging. Fig. 11 gives an
aging sequence for each facial component.

4.3 Level 3: Wrinkle Addition

At level three, we model the aging effects of the 6
wrinkle zones (see Fig. 8). For each age group we
labeled 200 images randomly selected from our dataset
to learn the statistics of wrinkles. Fig. 12(a) shows some
labeled forehead wrinkles collected from the dataset.
According to the generative model, the wrinkle addition
is completed in two steps: (i) Generating curves in
various wrinkle zones. The number of curves and their
positioning follow some prior probability densities, as
is shown in Fig. 12(b)(c). (ii) Rendering the curves with
wrinkle intensity profiles in the dictionary. Given a wrin-
kle curve and intensity profile, the wrinkle image can be
synthesized according to Eq. 8. Fig. 12(d) shows a series
of generated wrinkle curves over four age groups and
Fig. 12(e) shows an example of generating the wrinkle
image from the wrinkle curves.
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Fig. 12. Prior learning and wrinkle synthesis in different skin zones. (a) Some examples of wrinkle curves in the forehead zone.
A large number of wrinkle curves are collected from the annotated dataset. (b) The statistics of wrinkle numbers in three wrinkle
zones over different age groups. (c) The prior distribution of wrinkle curve orientation in the 6 wrinkle zones, where the length of the
arrow reflects the strength and the orientation describes the directions. (d) A sequence of synthetic wrinkle curves. (e) The process

of rendering photo-realistic wrinkle images.

4.3.1 Learning Prior of the Wrinkles from Labeled Data

For wrinkle zone m, we model the number of wrinkles

with a Poisson distribution:

exp(=Ae(m))(Ae(m))"*
k!

Here n;(m) is the number of wrinkles in zone m at age

group t and X;(m) is the parameter learned from the
training data.

p(ni(m) = k;t) =

(17)

(18)

in which A, is the number of training images at age
group ¢ and N}(m) is the wrinkle number in zone m of
the Ith sample at age group ¢. A\;(m) equals to the mean
value in Fig. 12(b).

Similarly, we compute priors of curve length, distance
between two adjacent curves. Prior distributions of curve
position and the orientation are also learned from the
labeled data, as Fig. 12(c) shows.

4.3.2 Generating Wrinkle Curves

In our algorithm, the transition probability of n:(m)
between two consecutive age groups is modeled by a
bi-gram model.

. ' 0 k<]
p(nt(m) = /|nt—1(m) = j) - %p(nt(m) _ k;t) k> j
(19)

Here we force p(n.(m) < n¢—1(m)) = 0 to ensure that
the wrinkle number increases as time goes and z is a
normalization factor.

From the statistics of the wrinkle curves, we compute
the geometric parameters of the wrinkle curves. Wrinkle
number is computed from bi-gram model in Eq. 19. The

other variables (length, position and orientation) can be
sampled from the corresponding prior distribution. With
these geometric parameters we can generate a sequence
of curve groups as are shown in Fig. 12(d).

4.3.3 Generating Realistic Wrinkle Images

For the initial wrinkles, we select the wrinkle intensity
profile randomly from the dictionary. After warping the
profiles to the shape of wrinkle curves, we use Poisson
image editing techniques to render realistic wrinkle im-
ages (shown in Fig. 12(e)). Because the wrinkle texture
across age groups will not change much, we select
similar wrinkle profile in the next age group based on the
photometric distance. Fig. 13 shows some intermediate
results of wrinkle addition in different skin zones.

EICJE T e
(a) Forehead (b) Eye corner

) | 3
(c) Laugh line (d) Glabella (e) Pigment

Fig. 13. Intermediate results of wrinkles and marks emerge at
consecutive age groups.

After the aging process at all the three levels, we
integrate them together to generate the final results. Our
face model is an additive model and Poisson image
editing[32] techniques are adopted to obtain seamless
fusion results.

5 EXPERIMENTS: AGING SIMULATION, AGE
ESTIMATION, AND HUMAN EVALUATION
5.1 Dataset Collection and Organizations

One of the widely used datasets for face aging is the
FG-Net aging database [49]. It includes 1,002 photos
of 82 subjects, whose ages are between 0 and 69. As
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Fig. 14. Experiments for selecting the number of age groups. (a) Plot of the appearance age against the biologic age averaged over
500 faces in human experiment. The two solid lines illustrate the standard deviation of subjective age estimation results and dashed
line is the ground truth. (b) Vertical axis is the rate of images with age group being incorrectly estimated, and the horizontal axis is
the age group number. (c) The within-group appearance variations for different group numbers. Here the appearance variations is
described by the standard deviation of certain age related feature number.

many images in the FG-Net dataset are not of very high
resolution and about 60% are children, we did not use it
for aging simulation, instead it is used for a comparative
study on age estimation. We collected a database with
about 50,000 ID photos of Asian adults in the age range
of [20, 80], and the statistics of the database is shown in
Table 1. All these face images have high resolutions with
the between-eye distance being about 100 pixels. We
train our algorithm and perform face aging simulation
on this dataset, some results are shown in Fig. 15.
Another publicly available aging dataset is the MORPH
database[36], an extended version of which includes
16,894 face images of 4,664 adults, among whom 13,201
images from African-Americans, 3,634 from Caucasian
descents and 59 are of other groups. There are 2,505
females and 14,389 males in this dataset. The average
age is 40.28 years and maximum age is 99 years. we
reorganize the MORPH database for face aging (see
Table 1) and synthesize several aging sequences on
this dataset to validate the generality of our algorithm.
We also collected real aging sequences from 20 people
(friends and relatives) for the evaluation experiments.
As life experiences affect face appearance, we must
distinguish the appearance age from biologic age. Bi-
ologic age is the actual age of the subject while the
appearance age is the perceived age. Often appearance
age needs to be estimated through human experiments,
the biologic age is not completely a sure thing either. In
our dataset, we know the birth dates of the people in the
ID photos and the time when the photo was taken. The
latter is recorded at the time when the file was created.
In our first human experiment, we use 500 face im-
ages of different ages and asked 20 volunteers(college
students) to estimate the appearance age. Fig. 14(a) plots
the results. The two solid lines illustrate the standard
deviation of difference between appearance age and bi-
ologic age. In general, the estimated age can be different
from the biologic age by 3-5 years older or younger.
Due to the intrinsic ambiguities, we divide the age
range into 5 age groups: [20,30), [30,40), [40,50), [50,60)
and [60,80] based on the following reasons. (i) The
difference between biologic age and appearance age
is about 3-5 years. Thus the appearance ages between
two individuals in a certain age have an uncertainty

TABLE 1
Data Distribution
Database & Gender Age group
ethnic group group |1 2 3 4
LHI DB Male 8599| 5731| 3639 2846| 2216
Asian Female | 7725 6324| 3747 2893 1989
MORPH DB Male 465 | 4578| 4570 1373 128
Caucasian Female | 116 | 768 | 777 | 180 | 11
MORPH DB Male 180 | 1135| 1182] 358 | 69
African American | Female | 32 269 | 257 | 41 4

interval of 6-10 years. (ii) As we increase the number of
age groups, the perceptual errors among these groups
increase (see Fig. 14(b)), thus it is hard to evaluate the
synthesis results. On the other hand, when the number
of age groups increases, the feature variance within each
group decreases, and make the model more accurate
(see Fig. 14(c)). As a tradeoff, we select 5 groups. (iii)
The number of images within group [60, 80] is relatively
small, because less senior people took ID photos.

5.2 Experiment |: Face Aging Simulation

We take 10,000 images from the Asian dataset and an-
notate these images by decomposing them into 3 levels
to build the compositional and dynamic model. For each
face image, we label 90 landmarks on the face and about
50 landmarks for hair contour. Based on the annotation,
our algorithm parses the face into parts and primitives,
and then builds the hierarchic dictionaries for each age
group automatically. We learn the dynamic model as dis-
cussed in Section 4. Based on the learned model, we test
our inference and simulation algorithms using a number
of young faces in the [20, 30) age range, and generate
images for the other 4 age groups. Fig. 15 shows some
of the aging results synthesized by our algorithms. Fig.
2 shows an example of simulating multiple plausible
aging sequences for a person following the Markov chain
model, as Fig. 1 specifies. Note that people shown in
Fig. 15 and Fig. 2 are not in the training set, as we cannot
show the ID photos for privacy reasons.

We also synthesize a series of aging results from
MORPH database to test the generality of our algorithm.
Since aging pattern has large variations for subjects
from different ethnic groups, we label 1,000 images
of African-Americans and 1,000 of Caucasians from
MORPH database, and learn two aging models for two
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Fig. 15. Some aging simulation results. The leftmost column is the original images of the individuals in group 1. The 2nd to 5th
columns are synthetic aged images at 4 consecutive age groups.
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Fig. 16. Some aging simulation results on MORPH database. First three rows are Caucasian faces and next three are African-
American faces. The leftmost column is the original input images of the individuals in group 1. The 2nd to 5th columns are synthetic

aged images at 4 consecutive age groups.

ethnic groups separately. Female aging sequences are
not synthesized because the number of females in age
group 4 and 5 is too small for learning the dynamics.
The simulation results are shown in Fig. 16, in which
top three rows and bottom three rows are separately for
Caucasian and African-American faces.

5.3 Experiment Il: Contributions of Facial Parts to
Subjective Age Estimation
Our aging algorithm uses part based strategy and we
notice that some features influence the age perception
significantly more than others. This observation inspires
us to study the relative contribution of each aging feature
to age perception quantitatively. The features considered
in our experiment include both the internal factors (e.g.
brow, eyes, nose, mouth, skin zones) and the external
factor (mainly the hair).

We select 100 mid-resolution images from our
database with 20 images for each of the five age groups.

hair face

nose

‘A

laughline

-

brow eye mouth

=

forehead

Fig. 17. Eight masks are designed to extract different parts for
the experiment of relative contributions.

As Fig. 17 displays, we extract eight sub images for
face, hair, brow, eye, nose, mouth, forehead, and laugh-
line. Volunteers are presented the masked images and
asked to estimate the age of each part. Then we apply
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TABLE 2
Relative Contribution of Each Facial Part to Subjective Age Perception
Subjective | Facial part face eye hair forehead | laughline | mouth | nose | brow
estimation I} 0.357 0.205 0.179 0.09 0.083 0.058 | 0.041 | 0.013
Objective | Facial part | laughline | hair | forehead face eye mouth | brow | nose
estimation Jé} 0.480 0.408 0.373 0.257 0.181 0.017 | 0.006 | 0.002
1.0 1.0 1.0
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Fig. 18. Cumulative scores of automatic age estimation algorithms. (a) Performances of proposed regressors on our dataset(left)
and FG-NET database(right). (b) Comparison between the performances of our estimation algorithm and the-state-of-art algorithms

on FG-NET database.

Multivariate Regression Analysis(MRA) to measure the
contributions of each component to the perception age
of the whole face. The R square value is 0.907, this
indicates that our model accounts for most of the age
related changes. 3 values of different features are shown
in Table 2.

From the 3 value of each feature, we can see clearly
that there are 5 features contribute most to the age
perception. The large contribution of the hair confirms
the effectiveness of the hair feature in face age perception
which was missing in previous studies.

5.4 Experiment Ill: Automatic Age Estimation

In this experiment we use an age estimation
algorithm[40] to test the accuracy of synthetic
images. The estimation approach formulates age
estimation as a repression problem on features
extracted from the hierarchical face model and
tests performances of various regressors, including
Age specific Linear Regression(ALR), Support Vector
Regression(SVR), Multi-layer Perceptron(MLP) and
logistic regression(boosting). Among these regressors,
MLP performances best in our experiment.

Here we conduct age estimation experiments on two
datasets: First we selected a set of 8,000 face images
(4,000 males and 4,000 females) from our dataset and de-
note it as set A, four-folds cross validation is conducted
for performance measurement. Then we conduct com-
parative study on 1,002 photos from FG-net (denoted
as set B) to validate the effectiveness of our algorithm.
On set A, mean absolute error(MAE) of our algorithm
is about 4.68 years and CS<ip = 91.6% averagely.
Performance on FG-NET dataset is relative lower, with
MAE = 5.97 years and C'S<1o = 82.7% due to resolution
limitations and affects from other variations, while it
is still comparative to the state-of-art algorithms (see
Fig. 18(b)), with MAE being 5.78 years in Geng’s[16] and
6.22 years in Yan’s[46].

Similar to Experiment Il, we perform MAR to measure
relative contributions of different facial parts in our
algorithm, the R square value is 0.95 and (3 values
are shown in Table 2. From the rank of contributions,
one can see that for adult age estimation, wrinkles
in laughline, forehead and around-eye region provide
plenty of information and hair is also an important cue
for age perception. Here wrinkles in the laughline region
and hair features display larger significances than in the
experiment Il (Table 2) subjective experiment, this maybe
due to that other features (e.g. wrinkles in eyecorner
region, etc.) can be more easily affected by illumination.

5.5 Experiment IV: Evaluating Face Aging Results
Similar to [24], We use two criteria to evaluate the
goodness of the aging model. (i) The accuracy of simu-
lation, i.e. whether the synthetic faces are indeed per-
ceived to be of the intended age. (ii) Preservation of
the identity, i.e. whether the synthetic faces are still
recognized as the original person. In this subsection,
we conduct both subjective(human) experiments and
objective(algorithmic) experiments as quantitative mea-
surement for these two criteria. Twenty volunteers are
recruited to evaluate our aging results subjectively and
age estimation algorithm[40] is adopted as objective
evaluations to measure the accuracy of aging simulation.
Corresponding to the hierarchical face representation
and three-level aging algorithm, we conduct evaluation
experiments on facial images at three resolutions. The
guantitative analysis in following two subsections are
performed on face images of Asians.

1. Experiment 1V.a: evaluating the accuracy of simu-
lation. We compare set C and D in this experiment. For
set C, we select randomly 20 real face images from the ID
photo dataset for each of the age groups 2-5 respectively.
For set D, we select 20 young faces in age group 1 and
synthesize one aging sequence for each person as Fig.
15 shows. Thus, set D has 80 synthetic images with 20
images in each of the age groups 2-5. We normalize the
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Fig. 19. The accuracy of age perception and face identification. (a) The first row shows real images from set C and second
row shows synthetic images from set D. (b) and (c) are separately performance of subjective age perception and algorithmic age
estimation on set C and D. In (d), the first row is a real aging sequence from set E, and the second row is a sequence synthesized
by our algorithm for the same individual. (e) plots the performances of subjective face recognition on set E and F.

images in set C to the same resolution and intensity
level as the set D images. Fig. 19(a) gives some example
images from set C (1st row) and set D (2nd row).

In the human perception experiment, the volunteers
are asked to estimate the age of each face in the two sets.
Fig. 19(b) plots the human estimation results on the two
sets. From the plot, we can see following phenomena: (1)
The accuracy improves with resolution increasing, be-
cause details at middle and high resolutions indeed pro-
vide informations for facial age estimation. The high per-
formance at high resolution also validates the adopted
hierarchical face model. (2) The age estimation results
of the synthetic images are mostly consistent with those
of real images. (3) Estimation result with hair cropped
out is a little lower, this shows that hair is an effective
feature for age perception. (4) For subjective evaluation
hair has negative influences on estimation performance
in group 30-40 and helps estimation a lot in group 60-
80, maybe because that large intersection occurs in hair
styles in group 30-40 and 40-50, whereas in group 60-80
hair appearance is informative for age estimation.

We analyze the age estimation results on high resolu-
tion face images by ANOVA. The large main effects of
age group on age estimation (F3 156 = 216.511, p = 0.000
with hair included and Fj5i56 = 49.142,p = 0.000
without hair) indicate that our model accounts for the
aging related variations mostly and the small main
effects (F1’158 = 0.080,p = 0.295 with hair and F1’158 =
1.415,p = 3.885 without hair) of image set on age
estimation show that the estimation accuracies on two
sets do not differ significantly.

At the same time, we perform objective age estima-
tion on both sets using age estimation algorithm in
experiment Il and obtain similar results, as Fig. 19(c)
shows. The plot indicates that synthetic images include

appropriate aging related variations and consist with
real images in age perception accuracy. Performance
is improved about 15% with hair features included.
ANOVA analysis result is also similar to that of subjec-
tive experiment: Age group shows significance (F3 156 =
235.39,p = 0.000 for images with hair and Fs 156 =
167.368,p = 0.000 for images without hair) and there
is no apparent difference between estimation accuracies
of two sets (Fy 158 = 0.006,p = 0.023 with hair and
F1715g =0.225,p =0.613 without hair).

2. Experiment IV.b: evaluating the preservation of
face identity. We compare set E and F. For set E, we use
20 real aging sequences from friends and relatives (they
are all Asians and the images are different from the 1D
photo dataset) with images in group 5 missing. For each
young face at age group 1 in Set E, we synthesize one
aging sequence as Fig. 15. Thus we have 80 synthetic
images and denote them as Set F. Fig. 19(d) shows some
examples from set E (1st row) and set F (2nd row).

We then add 50 faces in age group 1 as “distracting
background”. Since the resolution of some old photos is
relatively low, we down-sample the images in F to the
same resolution with images in Set E. Thus we randomly
draw an image from set E or set F in the age groups 2-5,
and ask the volunteers to identify the image to the 70
candidates (20 real and 50 distractors) in age group 1.

Fig. 19(e) shows the recognition rates by humans on
both sets in the four age groups. From the result, we can
see that recognition rate improves as resolution increases
in each age group. In accord with our model, it has lower
recognition rate for longer aging period, and recognition
rate after three decades is only around 50%. One can
also see that the recognition performance on synthetic
images is slightly higher than on real aging sequences,
this indicates that our algorithm preserves face identity
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of the input face very well. The lower performances on
real aging sequences is partially due to the effects from
non-age related variations(i.e. illumination, pose, et al.)
In the same way as in Experiment 1, we apply ANOVA
to the recognition results on synthetic high resolution
faces, and find that recognition rate is affected signif-
icantly by age group (F:117 = 0.839,p = 0.000 with
hair and F5 117 = 6.291,p = 0.003 with hair excluded).
Different to age perception results, image set also shows
some significance for the intrinsic variations between
two image sets (Fj 115 = 0.104,p = 0.031 with hair
included and F} 115 = 2.739, p = 0.101 without hair).

6 CONCLUSIONS

We present a compositional and dynamic face aging
model, based on which we develop algorithms for aging
simulation and age estimation. Results synthesized by
our algorithm are evaluated for the accuracy of age
simulation and the preservation of identity. Our estima-
tion algorithm obtains performances comparative to the
state-of-art algorithms. Our results are attributed to two
factors: a large training set and the expressive power of
the compositional model, including external appearance
(e.g. hair color and hair style) and high resolution factors
(e.g. wrinkles, skin marks, etc.).

Although our work on modeling adult face aging
achieved promising visual results, more work remains
to be explored in the future. (i) When more image ag-
ing sequences from the same individuals become avail-
able, our model should be extended by assigning more
weights to these samples, and hopefully our model may
be also suitable for face recognition applications besides
entertainment ones. (ii) Objective evaluation on identity
preservation is not conducted for lacking of real face
aging sequences over a long period, i.e. 3-4 decades, and
effective recognition algorithms. With more and more
aging databases become available as well as the progress
of face recognition technologies, this kind of evaluation
will be conducted on time.
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