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Abstract

This paper presents a simple attribute graph grammar as a generative representation for man-

made scenes, such as buildings, hallways, kitchens, and living rooms, and studies an effective top-

down/bottom-up inference algorithm for parsing images in the process of maximizing a Bayesian

posterior probability or equivalently minimizing a description length (MDL). This simple grammar

has one class of primitives as its terminal nodes – the projection of planar rectangles in 3-space into

the image plane, and six production rules for the spatial layout of the rectangular surfaces. All the

terminal and non-terminal nodes in the grammar are described by attributes for their geometric

properties and image appearance. Each production rule is associated with some equations that

constrain the attributes of a parent node and those of its children. Given an input image, the

inference algorithm computes (or constructs) a parse graph, which includes a parse tree for the

hierarchical decomposition and a number of spatial constraints. In the inference algorithm, the

bottom-up step detects an excessive number of rectangles as weighted candidates, which are sorted

in certain order and activate top-down predictions of occluded or missing components through the

grammar rules. The whole procedure is, in spirit, similar to the data-driven Markov chain Monte

Carlo paradigm [40], [34], except that a greedy algorithm is adopted for simplicity. In the experiment,

we show that the grammar and top-down inference can largely improve the performance of bottom-

up detection.

This manuscript is submitted to IEEE Trans. on PAMI. A short version was published in ICCV05.
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I. Introduction

In real world images, especially man-made scenes, such as buildings, offices, and living

spaces, a large number of visual patterns and objects can be decomposed hierarchically into

a small number of primitives arranged by a small set of spatial relations. This is similar to

language, where a huge set of sentences can be generated from a relatively small vocabulary

through some grammar rules that group words to phrases, clauses, and sentences. In this

paper, we present a simple attribute graph grammar as a generative image representation and

study an effective top-down/bottom-up inference algorithm for parsing images in the process

of maximizing a Bayesian posterior probability or equivalently minimizing a description

length (MDL).

In the following, we shall briefly introduce the representation and algorithm, and then

discuss the literature and our contributions.

A. Overview of the generative representation

Our simple grammar has one root node for the scene, one recursive non-terminal node for

objects or surfaces, one class of primitives as its terminal nodes – planar rectangular surfaces

projected on images. All the terminal and non-terminal nodes are described by attributes

for their geometric properties and image appearance.

The grammar has six production rules for the spatial layout of the rectangular surfaces.

Of the six rules, one expands the root node (scene) into m independent objects, and one

instantiates a non-terminal node to a primitive. The other four rules arrange the objects or

surfaces recursively in four possible ways: (i) aligning m objects in a line, for example, a

row of windows in a wall, (ii) nesting one object inside the other, such as a window frame,

(iii) align three rectangular surfaces in a cube, and (iv) arranging up to m × n object in

a mesh/tile structure, such as a tile floor. Each production rule is associated with some

equations that constrain the attributes of a parent node and those of its children.
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Fig. 1. The hierarchic parse graph is a generative representation and it produces a configuration in the image

plane. This configuration generates the image in a primal sketch model. The parse graph is constructed by

an iterative top-down/bottom-up algorithm. The rectangular primitives detected in bottom-up step activate

the grammar rules to predict missing or occluded components in top-down process.

Given an input image, our objective is to compute a hierarchical parse graph where each

non-terminal node corresponds to a production rule. In this parse graph, the vertical links

show the decomposition of the scene and objects into their components, and the horizontal

(dashed) links specify the spatial relations between components through constraints on their

attributes. Fig. 1 illustrates the hierarchical representation for a kitchen scene and the

computational algorithm for constructing the parse graph in an iterative bottom-up/top-

down procedure.

Note that the parse graph is not pre-determined but constructed “on-the-fly” from the

input image. It is also a generative representation instead of a discriminative model. The
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parse graph produces a planar configuration in the image plane. The configuration consists

of rectangular line segments. These line segments are further broken into smaller image

primitives for edge elements, bars, and corners in an image primitive dictionary, which,

in turn, generate the image by the primal sketch model [10], [11]. Therefore our model

(combined with primal sketch model) is fully generative from the scene node to the pixels.

This property enables a Bayesian formulation with a prior probability on the parse graph

and a likelihood model for the primal sketch (from image primitives to pixels).

B. Overview of the top-down/bottom-up inference algorithm

This paper is focused on designing an effective inference algorithm that integrates top-

down and bottom-up inference for attribute grammars. We adopt a greedy algorithm for

maximizing the Bayesian posterior probability that proceeds in three phases.

Phase I is bottom-up detection. We compute edge segments from the input image and

estimate a number of vanishing points (usually three) in the image using the method studied

in [39]. Then the line segments converging to the same vanishing point are put in a line set.

The rectangle hypotheses are generated in a method similar to RANSAC [8]. We draw two

pairs of line segments from two out of the three line sets, and then evaluate them by the

goodness of fit (compatibility) to a rectangle. The two pairs of line segments that pass a

minimum compatibility test becomes a weighted hypothesis. We thus generate an excessive

number of rectangles as bottom-up proposals which may overlap or conflict with each other

and are sorted in decreasing order by their weights.

Phase II initializes the terminal nodes of the parse graph in a greedy way. In each step,

the algorithm picks the most promising bottom-up rectangle hypothesis with the heaviest

weight among all the candidates and accepts it if it increases the Bayesian probability or

reduces the description length. Then the weights of all the candidates that overlap or conflict

with this accepted rectangle are reduced as in the matching pursuit algorithm [21].

Phase III integrates top-down/bottom-up inference. Each rectangle in the current parse
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graph matches (often partially) to a production rule with attributes passed to the non-

terminal node. These non-terminal nodes are in turn matched to other production rules

which then generate top-down proposals for predictions, see the downward arrows in Figure 1.

The weights of the top-down proposals are calculated based on the posterior probabilities.

For example, two adjacent rectangles may activate the line rule (or a mesh rule or a cube

rule), which then generates a number of rectangles along the aligned axis. Some of these

top-down proposals may have existed in the candidate sets of bottom-up proposal. Such

proposals bear both the upward and downward arrows and their weights increase.

In phase III, each of the five grammar rules (omitting the scene rule) maintains a data

structure which stores all its weighted candidates. Each step of the algorithm picks the

most promising proposal (with the heaviest weight) among all the five candidate sets. This

proposal is accepted if it increases the Bayesian probability or reduces the description length.

Thus a new non-terminal node is added to the parse graph. This corresponds to recognizing

a new sub-configuration and activates the following actions: (i) Create potentially new “top-

down” proposals and inserting them into the lists; (ii) Re-weight some proposals in the

candidate sets; (iii) Pass attributes between a node and its parent through the constraint

equations associated with this production rule.

The top-down and bottom-up computing is illustrated in Fig. 1 for the kitchen scene. For

most images, the parse graph has about 3 layers with about 20 nodes, so the computation can

be done by AI search algorithms, such as best first search. In our experiments, we observed

that the top-down and prior information helps detecting some weak rectangles which are

missing in the bottom-up detection. Some “illusory rectangles” could also be hallucinated,

especially due to the line and mesh grammar rules. Comparison experiments show that the

top-down process improves the performance by a large margin.
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C. Related work on attribute grammar, rectangle detection, and image parsing

In the literature, the study of syntactic pattern recognition was pioneered by Fu et al

[9], [37], [38], Riseman[12], and Ohta et al [26], [25], and other image understanding sys-

tems with top-down/bottom-up inference [2], [14], [15], [7], [22], [23] in the 1970-80s. Its

applicability has been limited by two difficulties. The first is known as the “semantic gap”.

The primitive patterns (terminators) used in their grammar could not be computed reliably

from real images. The second is the lack of expressive power of the early work which was

mostly focused on string grammars and stochastic context free grammars (SCFG). In recent

years, attribute grammars [1] and context sensitive graph grammars [30] have been devel-

oped in visual diagrams parsing. In the vision literature, grammars are mostly studied in

binary shape recognition, such as the grammars for medial axis [41] and shock graphs [31].

Most recently, there is a resurgence of compositional computing for segmentation [32], [35]

and object recognition[17], [4]. However, a more general representation and computational

framework has yet been developed. A comprehensive survey of these work is referred to [43].

Detecting rectangular structures in images has been well studied in the vision literature,

especially for detecting building roofs in aerial images. One class of methods [18], [20], [33]

detects edge segments and line primitives and then groups them into rectangles. The other

types of methods [44], [39] use Hough Transforms on edge maps to detect rectangles globally.

A Markov chain Monte Carlo method was developed in rectangular scene construction in

[5], which also uses compositional structures. Putting detecting rectangle structures in the

broader topic of modelling structural variability, our work is also closely related to a variety

of representations including shape grammars with algebraic constraints[27], [28], [19].

Our work is also related to some previous work on object recognition[6], [16], and image

parsing by data-driven Markov chain Monte Carlo (DDMCMC) [40], [34]. The common goal

is to design effective algorithms by integrating bottom-up and top-down steps for inferring

single objects or hierarchical image structures. In DDMCMC, each step is made reversible for
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backtracking and observes the detailed balance equations. Each step chooses a proposal with

certain probability and accepts the proposal with a probability. This is often computationally

expensive. When the proposal is strong, especially at the early stage of computation as

the proposals are sorted in decreasing order, it is often accepted with probability 1. The

reversible moves are mostly needed at places where the image is ambiguous. Thus we adopt

a greedy algorithm in this paper and accept the proposal deterministically when it increases

the posterior probability.

In comparison to the previous work, this paper has the following novel aspects.

1. It extends the representation in image parsing [40], [34] with an attribute grammar, which

sets the ground for recognizing generic objects with structural variabilities.

2. It derives a generative model, which is tightly integrated with the primal sketch models

[11] to yield a full generative representation from scene to pixels.

3. It develops the bottom-up and top-down mechanism for grammar based image parsing.

This strategy has been used in some recent object recognition work [4], [36].

The remainder of the paper is organized as follows. We first present the attribute grammar

representation in Section II. Then we derive the probability models and pose the problem as

Bayesian inference in Section III. The top-down/bottom-up inference algorithm is presented

in Section IV. Some experimental results are shown in Section V. We then conclude the

paper with a discussion of future work in Section VI.

II. Attribute graph grammar for scene representation

In this section, we introduce the attribute graph grammar representation to set the back-

ground for the probabilistic models in the next section.

A. Attribute graph grammar

An attribute graph grammar is augmented from the stochastic context free grammar by

including attributes and constraints on the nodes.
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Definition 1: An attribute graph grammar is specified by a 5-tuple

G = (VN , VT , S,R, P ). (1)

VN and VT are the sets of non-terminal and terminal nodes respectively, S is the initial node

for the scene. R is a set of production rules for spatial relationships. P is the probability

for the grammar.

A non-terminal node is denoted by capital letters A,A1, A2 ∈ VN , and a terminal node is

denoted by lower case letters a, b, c, a1, a2 ∈ VT . Both non-terminal and terminal nodes have

a vector of attributes denoted by X(A) and x(a) respectively. R = {r1, r2, ..., rm} is a set of

production rules expanding a non-terminal node into a number of nodes in VN ∪ VT . Each

rule is associated with a number of constraint equations. For example, the following is a rule

that expands one node A into two nodes A1, A2 ∈ VN .

r : A → (A1, A2). (2)

The associated equations are constraints on the attributes.

gi(X(A)) = fi(X(A1), X(A2)), i = 1, 2, ..., n(r). (3)

gi() and fi() are usually projection functions that take some elements from the attribute

vectors. For instance, let X(A) = (X1, X2, X3) and X(A1) = (X11, X12), then an equation

could simply be an equivalence constraint (or assignment) for passing the information be-

tween nodes A and A1 in either directions, X1 = X11. In the parsing process, sometimes

we know the attributes of a child node X11 and then pass it to X1 in rule r. This is called

“bottom-up message passing”. Then X1 may be passed to another child node’s attribute X2

with X21 = X1. This is called “top-down message passing”.

A production rule may instantiate a non-terminal node to a terminal node

r : A → a, (4)
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with constraints

gi(X(A)) = fi(x(a)), i = 1, 2, ..., n(r). (5)

Definition 2: A parse graph G is a tree-structured representation expanded from a root

node S by a sequence of production rules (γ1, γ2, ..., γk) and augmented with spatial relations

and constraints.

Definition 3: A configuration C is a set of terminal nodes (rectangles in this paper),

C = {(ai, x(ai)) : ai ∈ VT , i = 1, 2, ..., K}. (6)

It is deterministically generated by a parse graph, i.e. C = C(Graph) and its attributes are

denoted by X(C).

If a configuration C has multiple parse graph, then the grammar is said to be ambiguous.

Definition 4: A language of grammar G is the set of all valid configurations that can be

derived by the production rules starting from a root node S. It is denoted by

Σ(G) = {(C, X(C)) : S
γ1,...,γk−→ C, γi ∈ R, i = 1, 2, ..., k.}, (7)

B. A class of primitives — rectangles

Our simple grammar uses only one class of primitives – the projection of planar rectangles

in 3-space into the image plane. Illustrated in Fig. 2, it has two pairs of parallel line segments

in 3D which intersect at two vanishing points v1, v2 in the image plane. Therefore, the set

of terminal nodes is denoted by

VT = {(a, x(a)) : x(a) ∈ Ωa}. (8)

There are many equivalent ways to define the attributes x(a) for a rectangle. We choose the

variables to simplify the constraint equations, and thus denote a by 8 variables: two vanishing

points v1 = (x1, y1) and v2 = (x2, y2), two orientations θ1 and θ2 for the two boundaries

converging at v1, and two orientations θ3 and θ4 for the two boundaries converging at v2.

x(a) = (x1, y1, x2, y2, θ1, θ2, θ3, θ4). (9)
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Fig. 2. A planar rectangle (shaded) is described by 8 variables. The two vanishing points v1 = (x1, y1) and

v2 = (x2, y2) and four directions θ1, θ2, θ3 and θ4 at the two vanishing points.

C. Six production rules

As a generic grammar for image interpretation, our representation has the root node S for

the scene and one non-terminal nodes A for objects and surfaces.

VN = {(S, X(S)), (A,X(A)) : X(S) = n,X(A) ∈ ΩA}. (10)

The scene node S generates n independent objects. The object node A can be instantiated

(assigned) to a rectangle (rule r5), or be used recursively by the other four production rules:

r2 – the line production rule, r3– the mesh production rule, r4– the nesting production rule,

and r6 –the cube production rule. The six production rules are summarized in Fig. 3.

This simple grammar can generate a language with a huge number of configurations for

generic objects and scenes. Figure 4 shows two typical configurations – a floor pattern and

a toolbox pattern, and their corresponding parse graphs.

The attribute X(A) = (`(A), n(A), Xo(A)) includes a label ` for the type of object (struc-

ture) represented by A, `(A) ∈ Ω` = {line, mesh, nest, rect, cube}, n(A) for the number of

children nodes in A, and Xo(A) for its geometric properties and appearance. The variables

in Xo(A) depend on object type of A, therefore we denote the attribute space of A as the

union of the five different subspaces.

ΩA = Ωline
A ∪ Ωmesh

A ∪ Ωnest
A ∪ Ωrect

A ∪ Ωcube
A (11)
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Fig. 3. Six attribute grammar rules. Attributes will be passed between a node to its children and the

horizontal lines show constraints on attributes. See text for explanation.

The geometric attributes for all the four different objects (except rectangle) are described as

follows. For clarity, we introduce the appearance attributes (intensity) in the next section

together with the primal sketch model.

1. For a line object of n = n(A) rectangles,

Xo(A) = (v1, v2, θ1, θ2, θ3, θ4, τ1, ..., τ2(n−1)). (12)

The first eight parameters define the bounding box for the n rectangles, and the other 2n−2

orientations are for the remaining directions of the n rectangles in the object.

2. For a mesh object of up to n(A) = m× n rectangles,

Xo(A) = (v1, v2, θ1, ..., θ4, τ1·1..., τ2(m−1)·(n−1)) (13)

Again, the first eight parameters define the bounding box for the mesh, and the rest includes

2(m−1)(n−1) orientations for the remaining directions specifying the individual rectangles
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Fig. 4. Two examples of rectangle object configurations (b) and (d) and their corresponding parse graphs

(a) and (c). The production rules are shown as non-terminal nodes.

in the object, some of which could be empty.

3. For a nest object with n(A) = 2 rectangles, Xo(A) = (v1, v2, θ1, ..., θ4, τ1, ..., τ4).

4. For a cube object n(A) = 3, and Xo(A) = (v1, v2, v3, θ1, θ2, θ3, θ4, θ5, θ6). It has three

vanishing points and 3 pairs of orientation angles.

Remarks. If the rectangles are arranged regularly in the line or mesh objects, for example,

equally spaced, then we can omit all the orientations τi for defining the individual rectan-

gles. The sharing of bounding boxes and orientations are intrinsic reasons for grouping and

composition, as it reduces the description length. The rectangle elements in the above could

be the bounding box (hidden) for other objects to allow recursive applications of the rules.

In addition to these hard constraints for passing attributes among nodes, we shall introduce

probabilities to impose soft constraints on the free variables (mostly the τ ’s) so that the

elements are nearly equally spaced.

In the following we briefly explain the constraint equations associated with the rules. In

most cases, the constraint equations are straightforward but tedious to enumerate. Therefore

we choose to introduce the typical examples.

The simplest rule is r5 for instantiation. It assigns a rectangle and the associated attributes

to a non-terminal node A. Therefore the constraint equation is simply an assignment for the

8 variables.

r5 : A → a; Xo(A) = x(a).
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This assignment may go in either direction in the computation.

For the line production rule r2, we choose m = 3 for simplicity.

r2 : A → (A1, A2, A3);

gi(Xo(A)) = fi(Xo(A1), Xo(A2), Xo(A3)), i = 1, 2, ..., k.

A is the bounding rectangle for A1, A2, A3 and shares with them the two vanishing points

and 4 orientations. Given Xo(A), the three rectangles A1, A2, A3 have only 4 degrees of

freedom for the two intervals, all the other 3×8−4 = 20 attributes are decided by the above

attribute equations. One can derive the constraint equations for the other rules in a similar

way.

III. Probability models and Bayesian formulation

In the generative model, an input image I is generated by a sketch Csk which includes the

planar configuration C = C(G) produced by parse graph G and some free sketches (line

segments), denoted by Cfree for other non-rectangular structures.

Csk = (C(G), Cfree). (14)

In a Bayesian framework, our objective is to maximize a posterior probability,

G∗ = arg max p(I|Csk)p(G)p(Cfree). (15)

The prior model p(G) is the fifth component in the definition of the grammar G in eqn. 1.

p(Cfree) follows the primal sketch model. We discuss p(G) and likelihood p(I|Csk) in the

following two subsections.

A. Prior model p(G) for the parse graph

Let ∆N(G) and ∆T (G) be the sets of non-terminal nodes (including the root node) and

terminal nodes respectively in the parse graph G. Then a parse graph includes the following
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three sets of variables,

G = ({(`(A), n(A), Xo(A)) : ∀A ∈ ∆N(G)}, {Xo(a) : ∀a ∈ ∆T (G)) (16)

Due to the hierarchical tree structure, we factorize the probability p(G) as

p(G) =
∏

A∈∆N (G)

[p(`(A))p(n(A)|`(A))p(Xo(A)|`(A), n(A))
∏

B∈child(A)

p(Xo(B)|Xo(A))] (17)

Firstly, `(A) is a “switch” variable for selecting one of the rules. We denote the probabilities

for the five rules as q(`), which sum to one:
∑

`∈Ω`
q(`) = 1.

Secondly, at the root S and non-terminal node A, we have a variable n(A) for the

number of their children and p(n(A)|`(A)) penalizes this number (or complexity), such as

p(n(A)|`(A)) =
β

n(A)
`(A)

e
−β`(A)

n(A)!
. p(n(A)|`(A)) is deterministic when A is the cube or the nesting

rule:

p(n(A) = 3|`(A) = “cube”) = 1 and p(n(A) 6= 3|`(A) = “cube”) = 0;

p(n(A) = 2|`(A) = “nest”) = 1 and p(n(A) 6= 2|`(A) = “nest”) = 0.

Thirdly, p(Xo(A)|`(A), n(A)) = 1
Z
e−φ`(A)(Xo(A)) (the normalization constant Z can be com-

puted empirically either by sampling or integration) is a singleton probability on the geo-

metric and appearance of A. Similarly, we have p(Xo(B)|Xo(A) = 1
π
e−ψ`(A)(Xo(A),Xo(B)) for

those of A′s children. The potential functions φ() and ψ() take quadratic forms to enforce

some regularities, such as ensuring that aligned rectangles in a group are having almost

the same shape and evenly spaced. For example, the potential functions for a line rule

A → (A1, A2, A3) (with n(A) = 3 and the aligning axis being denoted as l) are:

φline(Xo(A)) =
2∑

i=1

(d(Xo(Ai), Xo(Ai+1))− d)2 +
1

2

3∑
i=1

(w(Xo(Ai))− w)2,

d =
1

2

2∑
i=1

d(Xo(Ai), Xo(Ai+1)), w =
1

3

3∑
i=1

w(Xo(Ai)). (18)

ψline(Xo(A), Xo(Ai)) = (|θ3i − θ3|2 + |θ4i − θ4|2). (19)

In eqn. 18, d(Xo(Ai), Xo(Aj)) is a function to compute the distance between the neigh-

boring Ai and Aj, and w(Ai) is a function to compute the spanning width of Ai along l. In
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eqn. 19, θ3, θ4 are the two orientations of the two boundaries of A parallel to l, while θ3i, θ4i

are the two orientations of the two boundaries of Ai parallel to l. φline(Xo(A)) globally

constrains A1, A2, A3 to have similar shape and be evenly spreading in the line group, while

ψline(Xo(A), Xo(Ai)) enforces the individual properties of Ai to fit with respect to the whole

group.

In recent work [43], p(G) is generalized to a non-factorized form for context sensitive graph

grammar.

B. Likelihood model p(I|Csk)

For the likelihood model, we adopt the primal sketch model for p(I|Csk), and refer to two

previous papers [10], [11] for this model and algorithm. The reconstruction (synthesis) of

images using a configuration is shown in the experiment section (See Figs.10 and 11). In the

following we briefly introduce the model for the paper to be self-contained.

image primitives

Fig. 5. Partition of image lattice Λ into two parts. The shaded pixels Λsk around the rectangles and the

remaining part Λnsk. The rectangles are divided into small edge and corner segments. Therefore Λsk is

divided into many image primitives.

C(G) is a set of rectangles in the image plane. Fig.5 shows a rectangle in a lattice. A

lattice is denoted by Λ and is divided into two disjoint parts: the sketchable part for the
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shaded pixels around the rectangles and the non-sketchable part for the remaining part.

Λ = Λsk ∪ Λnsk, Λsk ∩ Λnsk = ∅.

Λ includes pixels which are 2 ∼ 5 pixels away from the rectangle boundaries. The rectangles

are divided into short segments of 5-11 pixels long for lines and corners. Therefore Λsk is

divided into N image primitives (patches) of 5× 7 pixels along these segments.

Λsk = ∪N
k=1Λsk,k. (20)

For example, Fig.5 shows two image primitives: one for line segment and one for a corner.

The primal sketch model collects all these primitives in a primitive dictionary represented

(clustered) in parametric form,

∆sk = {Bt(u, v; x, y, τ, σ, Θ) : ∀x, y, τ, σ, θ, t}.

t indexes the type of primitives, such as edges, bars, corners, crosses etc. (u, v) are the

coordinates of the patch centered at (x, y) with scale σ and orientation τ . Θ denotes the

parameters for the intensity profiles perpendicular to each line segment. A corner will have

two profiles. The intensity profiles along the line segment in a primitive are assumed to be

the same.

(a) Edge profile (b) Ridge profile

Fig. 6. The parametric representation of an edge profile (a) and a ridge profile. From Guo, Zhu and Wu,

2005.
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Therefore there are two types of profiles as Fig. 6 shows: one is a step edge at various scales

(due to blurring effects) and the other is a ridge (bar). The step edge profile is specified with

five parameters: Θ = (u1, u2, w1, w12, w2), which denotes the left intensity, the right intensity,

the width of the left intensity (from the leftmost to the left second derivative extrema),

the blurring scale, and the width of the right intensity respectively as shown in Figure 5.

The ridge profile is represented by seven parameters: Θ = (u1, u2, u3, w1, w12, w2, w23, w3).

A more detailed description is given in [11]. Using the above edge/ridge model, the 1D

intensity function of the profile for the rectangle boundaries can be fully obtained.

Therefore we obtain a generative model for the sketchable part of the image.

I(x, y) = Btk(x− xk, y − yk; τk, σk, Θk) + n(x, y), (x, y) ∈ Λsk,k, ∀k = 1, 2, ..., N. (21)

The residue is assumed to be iid Gaussian noise n(x, y) ∼ G(0, σ2
o). This model is sparser

than the traditional wavelet representation as each pixel is represented by only one primitive.

As mentioned previously, rectangles are only part of the sketchable structures in the im-

ages, though they are the most common structures in man-made scenes. The remaining struc-

tures are represented as free sketches which are object boundaries that cannot be grouped

into rectangles. These free sketches are also divided into short line segments and therefore

represented by image primitives in the same way as the rectangles.

The non-sketchable part is modeled as textures without prominent structures, which are

used to fill in the gaps in a way similar to image inpainting. Λnsk is divided into a number

of M = 3 ∼ 5 disjoint homogeneous texture regions by clustering the filter responses,

Λnsk = ∪M
m=1Λnsk,m.

Each texture region is characterized by the histograms of some Gabor filter responses

h(IΛnsk,m
) = hm, m = 1, 2, ..., M.

The probability model for the textures are the FRAME model [42] with the Lagrange pa-

rameters (vector) βm as the learned potentials. These textures use the sketchable part Λsk
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as the boundary condition in calculating the filter responses.

In summary, we have the following primal sketch model for the likelihood.

p(I|Csk) =
1

Z
exp{−

N∑

k=1

∑

(x,y)∈Λsk,k

(I(x, y)−Bk(x, y))2

2σ2
o

−
M∑

m=1

〈βm, h(IΛnsk,m
)〉} (22)

The above likelihood is based on the concept of primitives, not rectangles. Therefore the

recognition of rectangles or larger structures (cube, mesh, etc.) only affects the likelihood

locally. In other words, our parse graph is built on the primal sketch representation. This is

important in designing an effective inference algorithm in the next section.

One may argue for a region based representation by assuming homogeneous intensities

within each rectangles. We find that the primal sketch has the following advantages over a

region based representation: (1) The intensity inside a rectangle can be rather complex to

model, as it may include shading effects, textures and surface markings. (2) The rectangles

are occluding each other. One has to infer a partial order relation between the rectangles (i.e.

a layer representation) so that the region based model can be applied properly. This needs

extra computation. (3) Besides all the regions covered by the rectangles, one still needs to

model the background. Thus the detection of a rectangle must be associated with fitting the

likelihood for the rectangle region. In comparison, the primal sketch model largely reduces

the computation.

IV. Inference algorithm

Our objective is to compute a parse graph G by maximizing the posterior probability

formulated in the previous section. The algorithm should achieve two difficult goals: (i)

Constructing the parse graph, whose structure is not pre-determined but constructed “on-

the-fly” from the input image and primal sketch representation. (ii) Estimating and passing

the attributes in the parse graph.

There are several ways to infer the optimal parse graph, and Data-Drive Markov Chain

Monte Carlo (DDMCMC) has been used in [40], [34]. In this paper, our domain is limited
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to rectangle scenes, and the parse graph is not too big (usually ∼ 20 nodes). Thus, the best

first search algorithm in artificial intelligence can be directly applied to compute the parse

graph by maximizing the posterior probability in a steepest ascent way. This algorithm is,

in spirit, very similar to DDMCMC.

Our algorithm consists of three phases. In phase I, we compute a primal sketch repre-

sentation, and initialize the configuration to the free sketches. Then a number of rectangle

proposals are generated from the sketch by a bottom-up detection algorithm. In phase II,

we adopt a simplified generative model by assuming independent rectangles (only r5 and r1

are considered). Thus we recognize a number of rectangles proposed in phase I to initialize

rule r5 in the parse graph. The algorithm in phase II is very much like matching pursuit

[21]. Finally phase III constructs the parse graph with bottom-up/top-down mechanisms.

A. Phase I: primal sketch and bottom-up rectangle detection

We start with edge detection and edge tracing to get a number of long contours. Then we

compute a primal sketch representation Csk using the likelihood model in eqn. 22. We seg-

ment each long contour into a number of n straight line segments by polygon-approximation.

In man-made scenes, the majority of line segments are aligned with one of three principal

directions and each group of parallel lines intersect at a vanishing point due to perspective

projection. We define all lines ending at a vanishing point to be a parallel line group. A

rectangle has two pairs of parallel lines which belong to two separate parallel line groups. We

run the vanishing point estimation algorithm [39] to group all the line segments into three

groups corresponding to the principal directions. With these three line groups, we generate

the rectangle hypotheses as in RANSAC [8]. We exhaustively choose two lines candidates

from each set as shown in Fig.7.(a), and run some simple compatibility tests on their posi-

tions to see whether two pairs of lines delineate a valid rectangle. For example, the two pairs

of line segments should not intersect each other as shown in Fig.7.(b). This will eliminate

some obviously inadequate hypotheses.
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independent rectangles

line segments grouped in three sets by vanishing points 

(a) (b)

examples of incompatible hypotheses

Fig. 7. Bottom-up rectangle detection. The n line segments are grouped into three sets according to their

vanishing points. Each rectangle consists of 2 pairs of nearly parallel line segments (represented by a small

circle).

This yields an excessive number of bottom-up rectangle candidates denoted by

Φ = {π1, ...., πL}.

These candidates may conflict with each other. For example, two candidate rectangles may

share two or more edge segments and only one of them should appear. We mark this

conflicting relation among all the candidates. Thus if one candidate is accepted in the later

stage, those conflicting candidates will be downgraded or eliminated.

B. Phase II: pursuing independent rectangles to initialize the parse graph

The computation in phase I results in a free sketch configuration Csk = Cfree, C(G) = ∅,
and a set of rectangle candidates Φ. In phase II, we shall initialize the terminal nodes of the

parse graph.

We adopt a simplified model which uses only two rules r1 and r5. This model assumes the

scene consists of a number of independent rectangles selected from Φ which explain away

some line segments and the remaining lines are free sketches. A similar model has been used

on signal decomposition with wavelets and sparse coding, thus our method for selecting the

rectangles is similar to the matching pursuit algorithm [21].
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Rectangle Pursuit: initialize the terminal nodes of G

Input candidate set Φ = {π1, π2, ..., πM} from phase I.

1. Initialize parse graph G ← ∅, m = 0.

2. Compute weight ωi for πi ∈ Φ, i = 1, ..., |Φ|, thus obtain

{(πi, ωi) : i = 1, 2, ..., |Φ|}.
3. Select a rectangle π+ with the highest weight in Φ,

ω(π+) = max{ω(π) : π ∈ Φ}.
4. Create a non-terminal node A+ in graph G,

G ← G ∪ {A+},
Φ ← Φ \ {π+},m ← m + 1.

C(G) ← C(G) ∪ {π+}.
5. Update the weights ω(π) for π ∈ Φ if π overlaps with π+

6. Repeat 3-5 until ω(π+) ≤ δ0.

Output a set of independent rectangles G = {A1, A2, ..., Am}.

In the following, we calculate the weight ω(π) for each rectangle π ∈ Φ and the weight

change.

A rectangle π ∈ Φ is represented by a number of short line segments and corners (primi-

tives) denoted by L(π), some of which are detected in Cfree and some of which are missing.

The missing components are the missing edges or gaps between primitives in Cfree. Thus we

define two sets

L(π) = Lon(π) ∪ Loff(π), with Lon(π) = L(π) ∩ Cfree.

Suppose at step m, the current representation includes a number of rectangles in C(G) and

a free sketch Cfree.

G, Csk = (C(G), Cfree).
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Steps 3-4 in the above pursuit algorithm select π+, then the new representation will be

G′ = G ∪ {A+}, C(G′) = C(G) ∪ L(π+), C ′
free = Cfree \ Lon(π+), C ′

sk = (C(G′), C ′
free)

The weight of π+ will be the change (or equally the log-ratio) of log-posterior probabilities

in eqn. (15),

ω(b+) = log[
p(I|C ′

sk)

p(I|Csk)
· p(G′)

p(G)
· p(C ′

free)

p(Cfree)
] (23)

Choosing a rectangle π+ with the largest weight ω(π+) > 0 increases the posterior probability

in a greedy fashion. The weight can be interpreted in three terms and are computed easily.

The first term log
p(I|C′sk)

p(I|Csk)
measures the changes of the log-likelihood in a small domain covered

by the primitives in Loff(π+). Pixels in this domain belonged to Λnsk before and are in Λrmsk

after adding π+. The likelihood does not change for any other pixels. The second term

log p(G′)
p(G)

penalizes the model complexity of rectangles (see eqn 17). The third term log
p(C′free)
p(Cfree)

awards the reduction of complexity in the free sketch.

The above weights are computed independently for each π ∈ Φ. After adding π+ in step

5 we should update the weight ω(π) ∈ Ω if π overlaps with π+, i.e.

L(π) ∩ L(π+) 6= ∅.

because the update of Cfree and C(G) in step 4 changes the first and third terms in calculating

ω(π) in eqn 23. This update of weight involves only a local computation on L(π) ∩ L(π+).

When we detect the rectangles in phase I, we have computed the overlapping information.

This weight update was used in wavelet pursuit where it is interpreted as “lateral inhibition”

in neuroscience.

C. Phase III: Bottom-up and top-down construction of parse graph

The algorithm for constructing the parse graph adopts a similar greedy method as in phase

II. In phase III, we include the four other production rules r2, r3, r4, r6 and use the top-down
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mechanism for computing rectangles which may have been missed in bottom-up detection.

We start with an illustration of the algorithm for the kitchen scene.

In Fig. 1, the four rectangles (in red) are detected and accepted in the bottom-up phases

I-II. They generate a number of candidates for larger groups using the production rules, and

three of these candidates are shown as non-terminal nodes A, B, and C respectively. We

denote each candidate by

Π = (rΠ, A(1), ..., A(nΠ), B(1), ..., B(kΠ)).

In the above notation, rΠ is the production rule for the group. It represents a type of spatial

layout or relationship of its components. For example, A,B,C in Fig. 1 use the mesh r3,

cube r6, and nesting r4 rules respectively. In Π, A(i), i = 1, 2, ..., nΠ are the existing non-

terminal nodes in G which satisfy the constraint equations of rule r. A(i) can be either a

non-terminal rectangle accepted by rule r5 in phase II or the bounding box of a non-terminal

node with three rules r2, r3, r4. The cube object does not have a natural bounding box. We

call A(i), i = 1, 2, ..., nΠ the bottom-up nodes for Π and they are illustrated by the upward

arrows in Fig. 1. In contrast, B(j), j = 1, 2, ..., kΠ are the top-down non-terminal nodes

predicted by rule rΠ, and they are shown by the blue rectangles in Fig. 1 with downward

arrows. Some of the top-down rectangles may have already existed in the candidate set

Φ but have not been accepted in Phase II or simply do not participate in the bottom-up

proposal of Π. Such nodes bear both upward and downward arrows.

Fig. 8 shows the five candidate sets for the five rules. Ψi is the candidate set of rule ri

for i = 2, 3, 4, 6 respectively. Each candidate Π ∈ Ψi is shown by an ellipse containing a

number of circles A(1), i = 1, ..., nΠ (with red upward arrows) and B(j), j = 1, ..., kΠ (with

blue downward arrows). These candidates are weighted in a similar way as the rectangles in

Φ by the log-posterior probability ratio.

Ψi = {(Πj, ωj) : i = 1, 2, ...Ni}, i = 2, 3, 4, 6.
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r2

r6

r4

r3

r5

Fig. 8. Four sets of proposed candidates Ψ2,Ψ3,Ψ4,Ψ6 for production rules r2, r3, r4, r6 respectively and

the candidate set Φ for the instantiation rule r5. Each circle represents a rectangle π or a bounding box of

a non-terminal node. The size of the circle represents its weight ω(π). Each ellipse in Ψ2,Ψ3,Ψ4,Ψ6 stands

for a candidate Π which consists of a few circles. A circle may participate in more than one candidate.

Φ = {(πi, ωi) : i = 1, 2, ..., M} for rule r5 has been discussed in Phase II. Now Φ also contains

top-down candidates shown by the circles with downward arrows. They are generated by

other rules. A non-terminal node A in graph G may participate in more than one group of

candidate Π’s, just as a line segment may be part of multiple rectangle candidate π’s. This

creates overlaps between the candidates and needs to be resolved in a generative model.

At each step the parsing algorithm will choose the candidate with the largest weight from

the five candidate sets and add a new non-terminal node to the parse graph. If the candidate

is π ∈ φ, it means accepting a new rectangle. Otherwise the candidate is a larger structure

Π, and the algorithm creates a non-terminal node of type r by grouping the existing nodes

A(i), i = 1, 2, ..., nΠ and inserts the top-down rectangles B(j), j = 1, ..., kΠ into the candidate

set Φ.

The key part of the algorithm is to generate proposals for π’s and Π’s and maintain the

five weighted candidate sets Φ, Ψi, i = 2, 3, 4, 6 at each step. We summarize the algorithm

as follows:
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The algorithm for constructing the parse graph G

Input G = {A1, ..., Am} from phase II and Φ = {(πi, ωi) : i = 1, ..., M −m} from phase I.

1. For rule ri, i = 2, 3, 4, 6.

Create candidate set Ψi = Proposal(G, ri).

Compute the weight ω(Π) for Π ∈ Ψi.

2. Select a candidate with the heaviest weight, create a new node A+ with bounding box.

ω+(A+) = max{ω(A) : A ∈ Φ ∪Ψ2 ∪Ψ3 ∪Ψ4 ∪Ψ6}.
3. Insert A+ to the parse graph G G ← G ∪ {A+}.
4. Set the parent node of A+ to the non-terminal node which proposed A+ in the

top-down phase or to the root S if A+ was not proposed in top-down.

5. If A+ = π ∈ Φ is a single rectangle, then

Add the rectangle to the configuration: C(G) ← C(G) ∪ {π+}.
6. else A+ = Π = (rΠ, A(1), ..., A(nΠ), B(1), ..., B(kΠ)), then

Set A+ as the parent node of A1(Π), ..., An(Π)

Insert top-down candidates B(1), ..., B(kΠ) in Φ with parent nodes A+.

7. Augment the candidate sets Ψi, i = 2, 3, 4, 6 with the new node A+.

8. Compute weights for the new candidates and update ω(Π) if Π overlaps with A+.

9. Repeat 2-8 until ω+ is smaller than a threshold δ1.

Output a parse graph G.

Fig. 9 shows a snapshot of one iteration of the algorithm on the kitchen scene. Fig. 9.(b)

is a subset of rectangle candidates Φ detected in phase I. We show a subset for clar-

ity. At the end of phase II, we obtain a parse graph G = {A1, A2, ..., A21} whose con-

figuration C(G) is shown in (c). By calling the function Proposal(G, ri), we obtain the

candidate sets Ψi, i = 2, 3, 4, 6. The candidate sets are shown in (d-f). For each can-

didate Π = (rΠ, A(1), ..., A(nΠ), B(1), ..., B(kΠ))), A(i), i = 1, 2, ..., nΠ are shown in red and
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(a) edge map

(d) candidate sets            for rule 2 and 3

(b) bottom-up rectangle candidates (c) current configuration C(G)

(e) candidate set       for rule 6 (f) candidates      for rule 4

C(G)

6

6  

Fig. 9. A kitchen scene as running example. (a) is the edge map, (b) is a subset of Φ for rectangle candidates

detected in phase I. We show a subset for clarity. (c) is the configuration C(G) with a number of accepted

rectangles in phase II. (d-f) are candidates in Ψ2,Ψ3,Ψ4,Ψ6 respectively. They are proposed based on the

current node in G (i.e. shown in (b)).

B(j), j = 1, 2, ..., kπ are shown in blue.

The function Proposal(G, ri) for generating candidates from the current nodes G = {Ai :

i = 1, 2, ..., m} using ri is not so hard, because the set |G| is relatively small (m < 50) in

almost all examples. Each Ai has a bounding box (except the cubes) with 8 parameters

for the two vanishing points and 4 orientations. We can simply test any two nodes Ai, Aj

by the constraint equations of ri. It is worth mentioning that each A ∈ G alone creates a

candidate Π for each rule r2, r3, r4, r6 with n(Π) = 1. In such cases, the top-down proposals

B(j), j = 1, ..., kΠ are created using both the constraint equations of ri and the edge maps.

For example, based on one rectangle A8, the top of the kitchen table in Fig.9.(c), it proposes

two rectangles by the cube rule r6 in Fig.9.(f). The parameters of those two rectangles are
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decided by the constraint equations of r6 and the edges in the images.

The algorithm for constructing the hierarchical parse graph is similar to the DDMCMC

algorithm[40], [34], except that we adopt a deterministic strategy in this paper in generating

the candidates and accepting the proposal. As the acceptance is not reversible, it is likely

to get locally optimal solutions.

V. Experiments

We test our algorithm on a number of scenes with rectangle structures and show both qual-

itative results through image reconstruction (or synthesis) using the generative model and

quantitative results through an ROC curve comparing the performance of two approaches:

(i) pure bottom-up rectangle detection, and (ii) our methods.

1. Qualitative results. We show six results of the computed configurations and syn-

thesized images in Figures 10 and 11. In these two figures, the first row shows the input

images, the second row shows the edge detection results, the third row shows the detected

and grouped rectangles in the final configurations and missing rectangles compared with

the ground truth ( with true positive, false positives and missing rectangles being shown in

different line styles), and the fourth row are the reconstructed images based on the rectangle

results in the third row. We can see that the reconstructed images miss some structures.

Then we add the generic sketches (curves) in the edges, and final reconstructions are shown

in the last row.

The image reconstruction proceeds in the following way. First, for the sketchable parts,

we reconstruct the image from the image primitives after fitting some parameters for the

intensity profiles. For the remaining area Λnsk, we follow [10] and divide Λnsk into homo-

geneous texture regions by k-means clustering and then synthesize each texture region by

sampling the Julesz ensemble so that the synthesized image has histograms matching the

observed histograms of filter responses. More specifically, we compute the histograms of the

derivative filters within a local window (e.g. 7×7 pixels). For example, we use 7 filters and
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7 bins are used for each histogram, then in total we have a 49-dimensional feature vector at

each pixel. We then cluster these feature vectors into different regions.

In the computed configurations, some rectangles are missing due to the strong occlusion.

For instance, some rectangles on the floor in the kitchen scene are missing due to the occlu-

sion caused by the table on the floor. In addition, the results clearly show that high level

knowledge introduced by the graph grammar greatly improves the results. For example, in

the building scene at the third column in Fig. 10, the windows become very weak on the left

side of the image. By grouping them into a line rectangle group, the algorithm can recover

these weak windows, which will not appear using the likelihood model alone.

During our experiments, Phase I is the most time-consuming stage and takes about 2

minutes on a 640x480 image since we have to test many combinations to generate all the

rectangle proposals and build up their occlusion relations. Phase II and III are very fast and

take about 1 minute altogether.

2. Quantitative evaluation To evaluate our algorithm in a quantitative way, we collect

a dataset with 40 images. Six have been shown in Figures 10 and 11. We then manually

annotate these images to get the ground truth for all the rectangles in each image.

Then we randomly select 15 images from this dataset as training data to tune all the

parameters and thresholds in our algorithm. After that, we run the Phase II and then

Phase III of our algorithm on the rest images to generate detection results (Please note:

the detection results shown in Figures 10 and 11 are obtained when these six images are

in testing data). Due to inherent randomness in splitting the dataset into training data

and testing data, we repeat the experiment 6 times. Figure 12 shows the ROC curves

with confidence intervals [24] for Phase II (using bottom-up only) and Phase III (using

both bottom-up and top-down), which are obtained by changing the threshold in Phase II.

From these ROC curves, we can clearly see the dramatic improvement by using top-down

mechanism over the traditionally bottom-up mechanism only. Intuitively, some rectangles
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(a)

(b)

(c)

(d)

(e)

Fig. 10. Some experimental results. (a) Input image. (b) Edge map. (c) Computed rectangle configurations

and missing rectangles compared with the ground truth: true positive rectangles are shown with solid lines,

false positive rectangles are shown in dotted lines and missing rectangles are shown in dashed lines. (d)

Reconstructed image from the primal sketch model using the rectangle configurations only. (e) Reconstructed

images after adding some background sketches to the configurations.
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(a)

(b)

(c)

(d)

(e)

Fig. 11. More experimental results. (a) Input image. (b) Edge map. (c) Computed rectangle configurations

and missing rectangles compared with the ground truth: true positive rectangles are shown with solid lines,

false positive rectangles are shown in dotted lines and missing rectangles are shown in dashed lines. (d)

Reconstructed image from the primal sketch model using the rectangle configurations only. (e) Reconstructed

images after adding some background sketches to the configurations.
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are nearly impossible to detect using the bottom-up methods and can only be recovered

through the context information using the grammar rules.
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Fig. 12. ROC curves for the rectangle detection results by using bottom-up only and, using both bottom-up

and top-down.

To plot the ROC curves, we need to classify each detected rectangle as either a true

positive or false alarm in comparison to a rectangle in the ground truth. To be considered as

a correct detection, the area of overlap between the detected rectangle adet and the ground

truth rectangle agt is required to exceed 95%,

γ =
Area(adet ∩ agt)

Area(adet ∪ agt)
> 0.95

VI. Discussion

In this paper, we study an attribute grammar for image parsing in man-made scenes. The

paper makes two main contributions to the vision literature. First, it uses an attributed

grammar to incorporate prior knowledge. Such grammar representations have long been de-

sired for high level vision, especially scene understanding and parsing. Secondly, it integrates

a top-down/bottom-up procedure for computing the parse graph with grammars. It extends

the previous DDMCMC image parsing work [34] by including more flexible and hierarchical

representations. The computing algorithm is compatible with the DDMCMC scheme but we

use deterministic ordering for efficiency considerations.

For future work, we shall study the following three aspects: (i) The image parsing is only
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for generic image interpretation in the current work. In ongoing projects, we are extending

this framework to recognizing object categories [43], especially functional objects where

objects within each category exhibit a wide range of structural variabilities [4]. The extended

grammar will have many more production rules. (ii) In the current work, we manually tune

some probabilities and parameters in the energy function. These parameters should be

learned automatically when we have a large number of manually parsed training examples,

e.g. through supervised learning. We are currently collecting a large manually parsed image

dataset for learning grammars. An automatic learning algorithm is presented in a recent

work [29], [43]. In experiments, we observe that the stopping threshold ∆0 and ∆1 in phase

II and phase III have to be decided by minimizing the detection errors (missing rate and

false alarm) and cannot be decided by the posterior probability alone.
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