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Learning Hierarchical Space Tiling for Scene
Modeling, Parsing and Attribute Tagging

Shuo Wang, Yizhou Wang, and Song-Chun Zhu

Abstract—A typical scene category contains an enormous number of distinct scene configurations that are composed of objects
and regions of varying shapes in different layouts. In this paper, we first propose a representation named Hierarchical Space
Tiling (HST) to quantize the huge and continuous scene configuration space. Then, we augment the HST with attributes (nouns
and adjectives) to describe the semantics of the objects and regions inside a scene. We present a weakly supervised method for
simultaneously learning the scene configurations and attributes from a collection of natural images associated with descriptive
text. The precise locations of attributes are unknown in the input and are mapped to the HST nodes through learning. Starting with
a full HST, we iteratively estimate the HST model under a learning-by-parsing framework. Given a test image, we compute the
most probable parse tree with the associated attributes by dynamic programming. We quantitatively analyze the representative
efficiency of HST, show the learned representation is less ambiguous and has semantically meaningful inner concepts. In
applications, we apply our model to four tasks: scene classification, attribute recognition, attribute localization, and pixel-wise
scene labeling, and show the performance improvements as well as higher efficiency.

Index Terms—Scene Representation, Hierarchical Space Tiling, Scene Attributes
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1 INTRODUCTION

1.1 Motivations

A Typical natural scene category, e.g., street and
beach, contains an enormous number of distinct

scene configurations depending on different view-
points, resolutions and shape variations of the objects
(e.g., buildings, cars) and regions (e.g., sky, water). A
well-known representation that can explicitly address
such representational complexity effectively is the
family of hierarchical compositional models, which
are reconfigurable and can generate a combinatorial
number of configurations through a small dictionary
of shape elements. In the past few years, learning the
structures of such models has become a hot topic in
two communities: learning stochastic image grammar
[1] and deep learning [2]. However, this structure
learning remains a challenge in computer vision due
to two main difficulties.

(i) The searching space of the hierarchical composi-
tional model is huge or essentially continuous.

(ii) The representations are often ambiguous, e.g., a
configuration may have more than one way of
parsing. Hence, the learned model partially loses
its power in parsing as it diffuses the probability
over multiple possible interpretations.
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Fig. 1: Tiling examples. (a) A tangram consists of
seven pieces (left) and can generate complex shapes.
(b) Tessellation for decorating floor and wall.

In this paper, we propose a scene representation
namely Hierarchical Space Tiling (HST). The underlying
intuition of HST is that the complex shapes can be
composed of smaller and simpler shape elements.
Fig.1(a) shows a Chinese tiling puzzle called “tan-
gram”, which consists of seven flat shape elements.
By assembling all the seven pieces without overlap-
ping, the tangram can generate thousands of specific
shapes, e.g., fish, swan and house. People manufacture
tiles of a few shapes (triangles, squares, rectangles)
and in a few sizes (2 × 2 inches to 20 × 20 inches),
and compose any patterns according to customer
needs under an economic budget. Fig.1(b) shows the
examples of tessellated pavement and tiled wall. HST
is aimed to quantize the huge and continuous scene
configuration space so as to transfer the structure
learning problem to a manageable solution space.
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Fig. 2: Flowchart of HST learning. (a) The input images and text descriptions. (b) The HST representation
consists of two components: the HST-geo and HST-att, in an And-Or hierarchy. The thickness of the edges
under each Or-node indicates the value of branching probabilities. The branches are pruned (see the red
crosses) if their probabilities are near zero. (c) Scene part dictionary formed by the terminal nodes (blue panel
in (b)). (d) Association matrix measures the assignment probabilities between scene parts and noun attributes
(pink panel in (b)). (e) The inferred parse trees (scene configurations) augmented with attributes.

Recently, attributes become popular because they
provide rich mid-level semantics and are shared
across categories. However, most previous work
treated attributes as flat classification features. For ex-
ample, Patterson et al. [3] identify 102 scene attributes
and train 102 classifiers to recognize if an image has
certain attributes or not. In this paper, we associate the
attributes to the hierarchical scene model to harness
the synergy between the semantics and hierarchy.

1.2 Overview
Fig.2 shows the flowchart of the weakly supervised
method for learning the HST. The model contains two
components: HST-geo and HST-att, modeling the 2D
configurations and scene attributes respectively.

(i) HST-geo. As shown in the top part of Fig.2(b),
the HST-geo quantizes the huge space of scene con-
figurations in an And-Or Tree (AoT) structure [4]. The
And-nodes correspond to the decomposition rules,
e.g., a coast scene is decomposed as sky on the top and
ocean underneath. The Or-nodes correspond to the
alternative sub-structures, e.g., buildings appear on
both sides of an image when a camera faces along the
street, or only on one side in other views. The terminal
nodes are some shape elements, e.g., squares and
rectangles, corresponding to the scene parts. They are
of different sizes, locations and shapes, and compose
a scene part dictionary (Fig.2(c)). With the And-Or
structure, the HST-geo can generate a full space of
possible parsing.

(ii) HST-att. Scene attributes are given by text
descriptions (Fig.2(a)), consisting of nouns (e.g., sky,
mountain) and adjectives (e.g., cloudy, rocky). They
define the objects and regions inside a scene and
their appearance. As shown in the bottom part of
Fig.2(b), attributes are represented as a two-level AoT,

where each noun attribute is an appearance-Or node
having a mixture of adjectives, e.g., sky can be blue,
cloudy or overcast. Furthermore, each terminal node
in the HST-geo links to the noun attributes according
to an association matrix (Fig.2(d)) which measures
the co-occurrence between local regions and objects,
e.g., road always appears at image bottom. Therefore,
the scene configurations and attributes are integrated
under a unified framework.

(iii) Learning and inference. The And-Or structure
defines a set of grammar rules, and the HST embodies
a probabilistic context free grammar (PCFG). In learn-
ing, we first learn the HST-geo and HST-att separately
as an initial HST model. Then, we jointly learn the two
sub-models through an learning-by-parsing manner.
In this way, the challenging structure learning problem
is transferred into a tractable parameter learning prob-
lem. Finally, given a test image, an optimal parse tree
(scene configuration) augmented with attributes can
be inferred by dynamic programming (Fig.2(e)).

(iv) Evaluation. We quantitatively show the pro-
posed HST is clearly more effective than other pop-
ular representations, such as spatial pyramid [5] and
Quadtree [6], by analyzing the rate-distortion curve as
in coding theory. We also show the learned representa-
tion is less ambiguous in parsing and has semantically
meaningful inner concepts. We demonstrate the prac-
tical value of HST through four applications: scene
classification, attribute recognition, attribute localiza-
tion and pixel-wise scene labeling. We show the better
performance and higher efficiency of our model over
the previous methods.

1.3 Related work
Scene representations We summarize the existing
scene representations into five typical classes. (i) Bag-
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of-Words (BoW) representations [7, 8] treat a scene as a
collection of visual words and ignore the spatial lay-
out information. (ii) Grid structure representations, such
as gist-based representation [9, 10], local semantic
model [11], spatial pyramid matching (SPM) [5] and a
“reconfigurable” model [12], implicitly adopt squares
as elements in different sizes and locations, and divide
the image into grids. (iii) Region based representations
[13, 14] segment an image into semantic regions, then
model the contextual relations between adjacent re-
gions. (iv) Non-parametric representations, such as label
transfer [15], SuperParsing [16, 17] and scene collage
[18], memorize all the observed scene images and in-
terpret a new scene through its nearest neighbor. [19]
explores the image correspondences among nearest
neighbor images, and propagates annotations from
a partially annotated dataset. (v) The most related
work is the Tangram model [20], which introduces
the scene hierarchy by a pre-defined dictionary and
infers a single configuration for each scene category.
We extend the Tangram by proposing a learning-by-
parsing method to learn the dictionary and introduce
the HST for modeling scenes. Then we augment the
HST by adding scene attributes. The earlier versions
of our work appeared at [21, 22], in this paper, we
will explore the HST model in depth with more
experiments and insights.

Scene attributes Visual attributes are demon-
strated as valuable semantic cues in various prob-
lems such as scene classification [23, 11], generating
descriptions of unfamiliar objects [24, 25] and image
annotation [26, 27, 28, 29]. Li et al. [23] take objects
as attributes and propose an “Object Bank” represen-
tation containing 200 object detectors. Patterson et al.
[3] select 102 binary attributes to describe intra-class
scene variations and inter-class scene relations. Parikh
et al. [30] introduce the relative attributes to provide a
semantically richer way in describing and comparing
scenes. These attributes are learned and inferred at im-
age level, without localization. In contrast, we jointly
parse natural images into spatial configurations and
localize the attributes, which allows us to provide
high precision descriptions to the images.

Attribute localization We categorize the related
work into three types: (i) The methods which assume
the independence of image regions. Lampert et al. [31]
propose an efficient sub-window search (ESS) evalu-
ating a classifier function at different sub-windows of
an image and then predicting one with the highest
score. Berg [32] use Multiple Instance Learning (MIL)
to discover attributes. MIL views images as bags
of segments and trains a binary classifier to predict
the class of segments, under the assumption that
each positive training image contains at least one
true-positive segment. However, these methods only
detect/locate one object at a time, while we aim at
parsing an image into multiple objects and attributes
simultaneously. (ii) The methods which utilize the

geometric context of neighboring image regions. Datta
et al. [33] classify image regions by discriminative
classifiers then use the spatial links between regions to
annotate the image. Gupta and Davis [27] exploit the
object labels together with prepositions (e.g., on, be-
side) and comparative adjectives (e.g., larger, smaller).
These methods do not consider the long-range rela-
tions so that they may confuse the objects with similar
appearances (e.g. “blue ocean” and “blue sky”), while
our model will not. (iii) The methods which search
hierarchical relations between categories. Li et al. [29]
suggest a hierarchical generative model to segment
images, annotate regions and categorize scenes. These
methods have powerful representation, however, their
computations are expensive because the image re-
gions are continuous and the combinations of region-
attribute assignment are innumerable. Thus we pro-
pose to quantize the scene configuration space and
transfer the structure learning problem to parameter
learning.

The remainder of this paper is organized as follows:
Section 2 defines the HST model for scene represen-
tation; Section 3 introduces the weakly supervised
learning method of HST; Section 4 shows the exper-
iment results; and finally, in Section 5, a summary is
made and some future work is discussed.

2 HST REPRESENTATION

2.1 Definition of HST-geo
We divide the image lattice into an nw × nh grid
and treat each cell as an atomic shape element, then
organize these atomic shape elements in an And-Or
Tree (AoT) structure. In experiments, we set nw =
nh = 8. For clarity, Fig.3 shows a HST-geo example
with nw = nh = 2. There are three types of nodes in
the HST-geo:

(i) Or-nodes V OR, shown as the hollow circles in
Fig.3(a), correspond to the grammar rules like

rOR : S → s|EF |GH

which act as “switches” between the possible de-
compositions. The branching probabilities p(s|S),
p(EF |S), p(GH|S) account for the preference for each
decomposition and can be learned as in Section 3.2.

(ii) And-nodes V AND, shown as the solid circles in
Fig.3(a), correspond to the grammar rules like

rAND : E → a · b

which represent a fixed decomposition from a parent
node E to its child nodes a and b. For simplicity, we
only allow two-way decompositions in this paper.

(iii) Terminal nodes V T , shown as the hollow
squares in Fig.3(a). The nodes in HST-geo can ter-
minate at all levels to represent the visual concepts
at multiple resolutions. We see a terminal node as a
“scene part”, and the terminal nodes from all levels
form a scene part dictionary ∆ = V T in Fig.3(b).
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Fig. 3: Scene configuration representation by HST-geo. (a) The AoT structure of HST-geo on a 2 × 2 image
grid. (b) The scene part dictionary (the empty level, i.e., L=3, is not shown). (c) Parse trees and configurations
generated from the HST-geo. The parse trees highlighted in the blue panel show the ambiguity in the HST-geo.

The atomic shape elements are at the bottom of the
hierarchy (L = 1). According to the grammar rules
described above, a number of atomic shape elements
compose higher-level nodes at different scales, loca-
tions and shapes. The “level” L here means the num-
ber of atomic shape elements being used. To avoid
the combinatorial explosion, only regular shapes, i.e.,
squares and rectangles, are allowed. The HST-geo
can also allow non-regular shape elements, such as
triangles, parallelograms and trapezoids, which make
the representation more flexible but complex. We will
analyze these choices in the experiment in Section 4.2.

Formally, we define the HST-geo as a 4-tuple

HST-geo = (S, V N , V T ; Θ), (1)

where S is a start symbol at root and V N = V AND ∪
V OR is a set of non-terminal nodes. Let v index the
node and Ch(v) denote its child node set. Θ is a set
of branching probabilities at Or-nodes.

Θ = {θ(vi|v); v ∈ V OR, vi ∈ Ch(v)}

s.t.
|Ch(v)|∑
i=1

θ(vi|v) = 1;∀v ∈ V OR.
(2)

The HST-geo is recursively defined with homoge-
neous structures. Starting from a root which is an Or-
node, HST-geo generates alternating levels of And-
nodes and Or-nodes, and stops at terminal nodes.
The And-Or structure defines a full space of possi-
ble parsing with probabilistic context free grammar
(PCFG), which we call it a “full HST”. By selecting the
branches at Or-nodes, a parse tree pt can be derived.
Intuitively, when a parse tree collapses, it produces a
planar configuration. We utilize this configuration to
represent the layout/configuration of a scene.

Fig.3(c) enumerates all the parse trees and config-
urations generated from a 2 × 2 HST-geo using only
squares and rectangles. The parse trees highlighted
in the blue panel in Fig.3(c) show the ambiguity in
the HST-geo. The ambiguity arises from the shape

TABLE 1: Number of nodes, parse trees and configu-
rations generated from the HST-geo

Grid |V OR| |V AND| |V T | |pt| |cfg|
2× 2 9 6 9 9 8

4× 4 100 200 100 2.87× 105 6.85× 104

8× 8 1296 6048 1296 1.99× 1024 2.00× 1021

elements shared by more than one parent node, which
will admit two or more reasonable parse trees for one
configuration. The ambiguity can be reduced during
learning. Through depth first search, we count the
number of nodes (|V OR|, |V AND|, |V T |), parse trees
(|pt|) and configurations (|cfg|) that can be generated
from the HST-geo in different granularities. As is
shown in Table 1, the parse tree space of HST-geo
expands exponentially as the granularity of image
grid increases, which brings the potential to account
for the complexity of scene configurations.

2.2 Definition of HST-att
Terminal nodes at HST-geo may have semantic labels,
called scene attributes in this paper. Thus we extend
the HST-geo by HST-att. As is shown at the bottom of
Fig.2(b), the HST-att is modeled as a two-level AoT.
There are two types of attributes.

(i) Adjective attributes Aadj , such as “green” and
“cloudy”, describe the characteristics of a scene.

(ii) Noun attributes An, such as “field” and “sky”,
denote the objects and regions inside a scene. Each
noun attribute, acting as an appearance-Or node, has
a mixture of adjective attributes, e.g., sky can be blue,
cloudy or overcast.

We link each terminal node v ∈ ∆ in the HST-
geo to a noun attribute an ∈ An, and further to
an adjective attribute aadj ∈ Aadj according to an
association matrix Φ (Fig.2(d)).

Φ : An ×∆ 7→ [0, 1], s.t.
∑
a∈An

Φ(a, v) = 1,∀v ∈ ∆, (3)
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TABLE 2: The terminology used in the HST

Notation Meaning
V OR, V AND , V T Or-nodes, And-nodes and terminal nodes
∆ scene part dictionary in the HST-geo
v index of a node
Ch(v) child node set of v
Θ = {θ(vi|v)} branching probabilities at Or-nodes
pt parse tree
An,Aadj noun and adjective attribute sets
Φ : An ×∆ 7→ [0, 1] association matrix
φ : A× V T 7→ {0, 1} mapping from attributes to terminal nodes
pt+ = (pt, φ) parse tree with attribute assignment

where the rows in Φ are the noun attributes and the
columns are the scene parts, and we normalize the
sum of each column to 1.

Φ measures the probabilities of assigning noun
attributes to certain scene parts, e.g., “road” has high
probability appearing at the bottom of an image, and
the learning method is presented in Section 3.3.

Formally, we define the HST-att as a 3-tuple

HST-att = (An,Aadj ; Φ). (4)

In Tabel 2, we summarize the main notations used
to describe the HST model.

3 LEARNING OF HST
3.1 Weakly supervised learning
As Fig.2(a) shows, the input of learning is a set of nat-
ural images I = {Im}Mm=1 and their text descriptions
A = {Am = (Anm, A

adj
m )}Mm=1, where Anm ⊆ An and

Aadjm ⊆ Aadj denote the noun and adjective attribute
sets for the image Im, respectively.

The hidden variables of HST are

{pt+m = (ptm, φm)}Mm=1, (5)

where ptm is the inferred parse tree and φm is the
attribute assignment, as shown in Fig.2(e). Formally,
φm is a mapping from the the inferred attribute set
Âm to the terminal node set of ptm, i.e., V T (ptm).

φm : Âm × V T (ptm) 7→ {0, 1}, (6)

where φm(a, v) = 1 if an attribute a is assigned to a
terminal node v and φm(a, v) = 0 otherwise.

Because the precise locations of attributes are un-
known in the input, the learning is weakly supervised.
The objective of learning is to estimate the HST pa-
rameters, i.e., the branching probabilities Θ and the
association matrix Φ, by maximizing a log-likelihood.

(Θ∗,Φ∗) = arg max
Θ,Φ

log p(I,A; Θ,Φ)

= arg max
Θ,Φ

M∑
m=1

log
∑
pt+m

p(Im, Am, pt
+
m; Θ,Φ).

(7)

(b) segmentation pool(a) scene image

z=1600

z=2900z=2400z=2000z=1900 z=4400

z=300 z=400 z=700 z=900

Fig. 4: Multi-scale segmentation. (a) Input image Im.
(b) Segmentations in different layers. The segmented
layers in the red frames compose a multi-scale seg-
mentation set Cm = {(Ckm, zkm)}6k=1.

We first separately learn the HST-geo (Section 3.2)
and HST-att (Section 3.3) as an initial HST model.
Then we jointly learn (Θ, Φ) and infer the hidden
parse trees {pt+m}Mm=1 in Section 3.4. Starting from a
full HST, we learn the branching probabilities and as-
sociation matrix, prune the redundant branches, and
finally get a compact model. Therefore, we transfer
the structure learning of AoT to a tractable parameter
learning problem.

3.2 Learning HST-geo
This section presents the learning of HST-geo with-
out text input. Since we do not have ground-truth
scene configurations, we use multi-scale segmenta-
tions (Fig.4), corresponding to the coarse-to-fine scene
configurations, to propose candidate terminal nodes
or scene parts in the HST-geo. Given a training image
Im, we first adopt [34] to obtain a multi-scale seg-
mentation by tuning z ∈ {300, 400, · · · , 5000}, where
z controls the granularity of segmentation. Then we
select six distinct segmented layers (red frames in
Fig.4(b)) by comparing the adjacent layers in pixels,
and compose a multi-scale segmentation set Cm =
{(Ckm, zkm)}6k=1, where Ckm is one segmented layer with
the control variable zkm.

To learn the HST-geo, we estimate the branching
probabilities Θ by maximizing a log-likelihood. We
sum out the hidden variables Ckm and ptm.

Θ∗ = arg max
Θ

log p(I; Θ)

∝ arg max
Θ

M∑
m=1

log
∑
ptm,k

p(Im|Ckm)p(Ckm, ptm; Θ),
(8)

where p(I|Ck) is the likelihood given one segmented
layer and we omit the index m hereafter in the deriva-
tion for simplicity when there is no confusion.

log p(I|Ck) ∝ −
∑

c∈{R,G,B}

∑
r∈Ck

||Ic(r)− Īc(r)||2 − zk,

(9)
where c is a color channel; r is a segmented region
in Ck; I(r) is the image patch covered by r and Īc(r)
is the average intensity of r at color channel c. This
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term measures the segmentation homogeneity of pixel
intensity and penalizes the large zk.
p(Ck, pt; Θ) ∝ exp{−E(Ck, pt; Θ)}, following the

Gibbs distribution, is the joint probability with Θ
being the parameters to be learned. Since the HST-
geo embodies a PCFG, the contextual relations among
the And-nodes are not considered. Thus the energy is
defined on two potential terms corresponding to the
Or-nodes and terminal nodes of a parse tree.

E(Ck, pt; Θ) (10)

=
∑

v∈V OR(pt)

EOR(vi|v) + λ
∑

v∈V T (pt)

ET (Ck(v)|v)

where λ is the parameter balancing the two terms (in
this paper λ = 0.25 is set empirically through cross
validation). V OR(pt) and V T (pt) denote the sets of Or-
nodes and terminal nodes in pt.

The energy of an Or-node is defined on its branch-
ing probability.

EOR(vi|v) = − ln θ(vi|v) = − ln
#(v → vi)∑|Ch(v)|

i=1 #(v → vi)
,

(11)
where #(v → vi) is the number of times that v
selects the i-th node/branch vi ∈ Ch(v). We learn the
branching probabilities in the following subsection.

The energy for a terminal node is defined on the
homogeneity of the terminal node in terms of the
segmentation label, i.e., how well the configuration of
pt fits to the segmented layer Ck.

ET (Ck(v)|v) = − ln

∑
i∈Ck(v) 1

[
lki = lkv

]
|Ck(v)|

, (12)

where 1[·] is the indicator function and Ck(v) denotes
the segmented patch covered by the terminal node v.
In the k-th layer, lki is the segmentation label of pixel
i and lkv is the dominant label of terminal node v.

In addition, the terminal nodes are allowed to be
locally adjustable to fit the scene boundaries. We
introduce 12 node activities including perturbations in
location (δ(x) = [±8,±16]), scale (δ(s) = [1± 1

32 , 1±
1
16 ])

and orientation (δ(a) = [± π
48 ,±

π
24 ]).

Taking the multi-scale segmentations as input, we
solve Eq.8 by a learning-by-parsing method which
is an EM-like strategy. The E-step infers the optimal
parse trees pt∗ which approximate the scene con-
figurations with small error and low complexity by
dynamic programming. The M-step estimates the pa-
rameters Θ by maximum likelihood estimation (MLE).

(i) E-step: parse tree inference. Keeping the current
branching probabilities Θ fixed and assuming p(I) is
uniform, an optimal parse tree pt∗ can be inferred
from the HST-geo for each training sample.

pt∗ = arg max
pt

log p(pt|I; Θ) = arg max
pt

log p(I, pt; Θ)

≈ arg max
pt,k

log p(I|Ck)p(Ck, pt; Θ),

(13)

Here, we use the best segmented layer to approximate
the summation of all layers. In practice, given a
training image, we infer an optimal parse tree for
each segmented layer by minimizing Eq.10. Then
we choose the best parse tree and segmented layer
according to Eq.13.

Because of the tree-structure of HST-geo and the
independence assumption in PCFG, the optimal parse
tree can be obtained by Dynamic Programming (DP).
Specifically, we start with calculating the data term
(Eq.12) for each terminal node, then for the upper
level Or-node v, DP evaluates all its possible branches
vi ∈ Ch(v) and selects the best one such that

v∗i = arg min
vi∈Ch(v)

(EOR(vi|v) + E(Ck(vi), pt(vi); Θ)), (14)

where pt(vi) is the sub-tree with vi as the root and
the sub-tree energy E(Ck(vi), pt(vi); Θ) is defined in
Eq.10.

(ii) M-step: update branching probabilities. We
rewrite the objective function in Eq.8 as

L(Θ) =

M∑
m=1

log
∑
ptm,k

p(Im|Ckm)p(Ckm, ptm; Θ)

+

|V OR|∑
v=1

αv(1−
|Ch(v)|∑
i=1

θ(vi|v)),

(15)

where αv is the Lagrange multiplier for the branching
probabilities at each Or-node to be normalized.

We estimate Θ by MLE, which takes the derivative
of L(Θ) w.r.t. θ(vi|v) and sets it to zero. We adopt
the Viterbi algorithm [35], which is an approximated
method using the optimal parse tree instead of all
parse trees, and update the branching probabilities
(see supplementary material for detailed derivation).

θ(t+1)(vi|v) (16)

=
1

αv

M∑
m=1

1[vi ∈ pt∗m] · p(pt∗m|Ckm; Θ(t))p(Im|Ckm),

where pt∗m and Ckm are the parse tree and segmented
layer inferred in the E-step, and 1[vi ∈ pt∗m] indicates if
the branch vi is selected in pt∗m. Θ is set to be uniform
as initialization. We repeat inferring parse trees (E-
step) and updating parameters (M-step) until conver-
gence. Finally, those branches whose probabilities are
below a certain threshold (say 0.01) are pruned. We
collect the terminal nodes from all levels, and they
compose the scene part dictionary ∆.

3.3 Learning HST-att

Recall An is the noun attribute set, Aadj is the ad-
jective attribute set and Φ: An × ∆ 7→ [0, 1] is the
association matrix measuring the probabilities of as-
signing noun attributes to scene parts. For an image
Im, φm : Am × V T (ptm) 7→ {0, 1} is the attribute
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assignment from the attribute set Am = (Anm, A
adj
m )

to the terminal node set V T (ptm) .
We compute Φ by counting the co-occurrence of

nouns a ∈ An and terminal nodes v ∈ V T (pt) in the
training images.

Φ(a, v) =

∑M
m=1 1[a ∈ Anm] · 1

[
v ∈ V T (ptm)

]
· φm(a, v)∑

a∈An Φ(a, v)
,

(17)
where φm(a, v) ∈ {0, 1} indicates whether a noun
attribute a is assigned to a terminal node v.

In learning the HST-geo in Section 3.2, an optimal
parse tree pt∗ can be inferred for each training sample.
However, the correspondence between scene parts
(terminal nodes in pt∗) and attributes is still unknown
because the attributes are annotated at image level
rather than on image regions. So we initialize φm by
turning on all possible assignments, i.e., φm(a, v) =
1,∀(a, v) ∈ Anm × V T (pt∗m),m = 1, ...,M .

Then, we learn the HST-att through an iterative
procedure, including two steps.

(i) Update association matrix Φ through noun
attribute localization. Given the current Φ(t), we es-
tablish a bipartite graph G(V T (pt∗m), Anm, ξm) for each
training image, where V T (pt∗m) denotes the terminal
nodes in pt∗m and Anm denotes the noun attributes
from text. If |V T (pt∗m)| 6= |Anm|, add dummy nodes
for balance. ξm is the edge set connecting V T (pt∗m)
and Anm, whose weight is defined as:

w(a, v) = Φ(t)(a, v) · p(a|I(v)). (18)

Let F (I(v), a) be the score of classifying the im-
age patch I(v) as an attribute a, thus p(a|I(v)) =

maxc
exp{F c(I(v),a)}∑
a′ exp{F c(I(v),a′)} . As defined in Section 2.2, one

noun attribute has a mixture of adjectives, c is the
number of adjectives and F c denotes the adjective
classifier. At initialization, p(a|I(v)) is set to be uni-
form, since the appearance models are empty.

We adopt the Hungarian algorithm [36] to solve the
bipartite graph and get a one-to-one matching φ

(t+1)
m ,

i.e., for each image we localize the noun attributes
to scene parts (terminal nodes). Then we update the
association matrix Φ(t+1) by recalculating Eq.17.

(ii) Update attribute appearance models. For each
noun attribute, as shown in Fig.5(b), we crop the
image patches covered by the assigned terminal nodes
and do clustering according to the given adjectives,
such as “rocky mountain” and “snowy mountain”.
Then for each cluster (i.e., a noun and adjective pair),
we train a kernel SVM classifier with one-versus-all
mode as its appearance model. In this paper, we adopt
bag-of-words (BoW) features on color histogram and
SIFT, and utilize the histogram intersection kernel.

Repeating the above steps till the change of
{φm}Mm=1 below a threshold, finally, we get the asso-
ciation matrix Φ and the attribute appearance models.

Fig.5(a)(left) shows the association of noun at-
tributes and scene parts/terminal nodes, where the
horizontal axis indexes the scene parts and the vertical
axis indexes the association probability from Φ. For
example, “sky” has a higher probability to cover the
top of an image and “horse” has a higher probability
to cover the middle part. To qualitatively evaluate
the association, for each noun attribute, we average
the image patches assigned to it. Interestingly, as
illustrated in Fig.5(a)(right), although learning in a
weakly supervised way, our association shows the
similar spatial priors of the object categories to [15]
(see Fig.3 in [15]). Fig.5(b) shows that the image
patches assigned to each noun are split into multiple
clusters according to the given adjectives.

3.4 Joint inference and learning
Using the learned HST-geo and HST-att as an initial
HST model, we can infer

pt+m = (ptm, φm), φm : Âm × V T (ptm) 7→ {0, 1}
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directly from the image Im and text description Am,
rather than multi-scale segmentation, by maximizing
p(Im, Am, pt

+
m; Θ,Φ) ∝ exp{−E(Im, Am, pt

+
m; Θ,Φ)}.

Let â = (ân, âadj) ∈ Âm denote the inferred attribute.
The energy is rewritten from Eq.10.

E(Im, Am, pt
+
m; Θ,Φ)

=
∑

v∈V OR(ptm)

EOR(vi|v) + λ1

∑
v∈V T (ptm)

En(ân|v)

+ λ2

∑
ân∈Ân

m

Eadj(âadj |ân) + λ3

∑
v∈V T (ptm)

ET (â|I(v))

+
∑
â∈Âm

EA(â, Am),

(19)

where (λ1, λ2, λ3) are the parameters balancing the
energy terms (in this paper (λ1, λ2, λ3) = (0.7, 0.1, 2)
are set empirically through cross validation). The first
term measures the scene configuration prior which
is the same as Eq.11. The second term measures the
noun attribute association with the terminal node:

En(ân|v) = − ln Φ(ân, v). (20)

The third term is designed to model the compatibility
between a noun and an adjective

Eadj(âadj |ân) = − ln p(âadj |ân), (21)

where p(aadj |an) =
∑M

m=1 1[an∈An
m]1[aadj∈Aadj

m ]∑M
m=1 1[an∈An

m]
can be

counted from the given text phrases. The fourth term
is an attribute specific data term

ET (â|I(v)) = − ln p(â|I(v)), (22)

where I(v) is the image patch occupied by v and
p(â|I(v)) = exp{F (I(v),â)}∑

a′ exp{F (I(v),a′)} . F (I(v), a) is the score of
classifying I(v) as attribute a. The last term EA(â, Am)
assumes∞ on attributes outside Am and 0 otherwise,
making sure â ∈ Am.

Because both the HST-geo and HST-att are tree-
structured, DP algorithm can be applied to jointly
infer the parse tree ptm and attribute assignment
φm. In the joint inference, we start with calculating
ET for the terminal nodes. Then, for every terminal
node, DP evaluates all possible attributes according
to the sum of ET , En and Eadj , and assigns a best
attribute (a noun and adjective pair) to it. Next, DP
iteratively proceeds to the upper level Or-nodes and
selects best branches until finds the optimal parse tree
with associated attributes:

(pt+m)∗ = arg max
pt+m

p(Im, Am, pt
+
m; Θ,Φ). (23)

In training, we use EA to constrain the consistency
between inferred attributes and given text descrip-
tions. While it cannot be done for testing images
as their attributes are unknown. Thus in testing, we
simply abandon this energy term.

TABLE 3: The learning algorithm

Initialization
1 Learn HST-geo with parameter Θ(0) based on the

multi-scale segmentation. (Section 3.2)
2 Learn HST-att with parameter Φ(0) and train ap-

pearance models. (Section 3.3)
Iteratively learn HST (Section.3.4)

3 Jointly infer pt+ for each training sample. (Eq.19)
4 Update Θ(t+1) in HST-geo. (Eq.16)
5 Update Φ(t+1) in HST-att and retrain appearance

models. (Eq.17)
6 Repeat 3 - 5 until convergence.

Follow the learning-by-parsing framework intro-
duced in Section 3.2, we can re-estimate the HST-geo
and HST-att based on {pt+m}Mm=1. We summarize the
entire learning procedure in Table 3, which contains
two steps. (i) Separately learn HST-geo parameters
Θ and association matrix Φ based on the multi-scale
segmentations as an initialization; and (ii) Iteratively
update the HST-geo and the HST-att based on the joint
inference.

4 EXPERIMENTS

4.1 Datasets
We test our method on two datasets: the LabelMe
Outdoor (LMO) dataset [15] and an outdoor scene at-
tribute (SceneAtt) dataset [22] collected by ourselves.

The LMO includes 2,688 images of 256× 256 pixels
in size from 8 outdoor scene categories, i.e., coast,
forest, highway, inside city, mountain, open country,
street and tall building. These images are annotated
with label maps containing 33 semantic labels, such
as sky and road, plus a void label. To better use
the LMO dataset, we do the following pre-processes.
(i) Merging synonyms. Because the LMO dataset
was annotated through Amazon Mechanical Turk,
the annotations are not always consistent. As shown
in Fig.6(a), some people labeled grassland as grass,
while others labeled it as field. Thus we merge the
synonymous labels, such as grass and field, water
and rivers, to resolve the annotation ambiguities. (ii)
Filling holes. We fill the non-labeled regions in LMO,
e.g., the “void” regions in Fig.6(b). (iii) Ignore tiny
areas of small objects. The goal of this work is focus on
learning the semantic structures of outdoor scenes at
a grand scale. We observe that those tiny objects, such
as birds, poles, street lights and so on, do not affect
the semantic meaning of scenes neither the global
scene structures very much. Hence we ignore tiny
objects in this work. Specifically, we either simply
ignore them by assigning void label instead (top in
Fig.6(c)) or merge them to the surrounding regions,
e.g., merge sun or moon to sky (bottom in Fig.6(c)).
Finally, we got 12 labels: L = {bridge, building, desert,
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field, mountain, river, road, rock, sand, sea, sky, tree},
which are coarse but essential parts for a scene1.

We also created a new dataset (Fig.7), namely out-
door scene attribute (SceneAtt) dataset2, to test the
attribute recognition and localization. The previous
datasets containing images and text descriptions, such
as [3, 37, 38, 39], usually designed attributes for
foreground objects or human activities, which are
beyond our scope, as our focus is to model back-
ground scene configurations. We collected 1,225 out-
door images (256 × 256 pixels in size) from LMO
[15], SUN Attribute dataset [3] and image engines,
such as Google images and Flickr. We created the
text descriptions and got the attribute set of SceneAtt
An={sky, flower, mountain, ibis, horse, ...}, Aadj={blue,
cloudy, rocky, snowy, brown, ...} containing 17 noun
attributes and 30 noun and adjective attribute pairs
in total. For evaluating the localization accuracy, Sce-
neAtt provides the ground-truth bounding box for
each attribute (right panel in Fig.7).

4.2 Analysis of learning
Efficiency of representation We evaluate the effi-
ciency of HST-geo for representing scene configura-
tions on LMO dataset. Let C denote the label map
corresponding to a scene configuration, and Ω∗ denote
an unknown set of valid configurations for a scene
category. The HST-geo is actually a grammar, whose
language is the set of all valid configurations,

Ω(HST-geo) = {C : C = g(pt; ∆)}.

1. http://vcla.stat.ucla.edu/people/∼shuo.wang/HST att.html
2. http://vcla.stat.ucla.edu/people/∼shuo.wang/SceneAtt.html

Here pt is the parse tree for C, ∆ is the scene part
dictionary and g() is the generation function. The
representation efficiency means that given any scene
configuration C ∈ Ω∗, we can generate a configura-
tion Ĉ ∈ Ω(HST-geo) by a parse tree pt so that Ĉ
approximates C with less than ε error and pt is small.

For the images of size 256×256, we divide them to
an 8 × 8 grid at the bottom level. For each category,
we randomly select 100 samples for training and the
rest for testing to learn the HST-geo model.

We compare our model against three scene repre-
sentations. (i) Spatial Pyramid (SP) [5]: The SP model
generates a S-level representation for a scene, of which
each level divides the scene images into 2s × 2s(s =
0, ..., S−1) grid. (ii) Quadtree(Qt) [6]: Given an image,
the Qt recursively divides it into four quadrants of
equal size until reaching a threshold of homogeneity
or size. (iii) HST-TRI: As we discussed in Section 2.1,
the proposed HST-geo only allows squares and rect-
angles as valid shapes of terminal nodes. By allowing
more shapes, such as triangles, parallelograms and
trapezoids, the model will become more flexible but
complex. For distinction, in this section we use HST-
RECT to denote the HST-geo model with only squares
and rectangles, and HST-TRI to denote the model that
also allows triangles, parallelograms and trapezoids.

Given an annotated label map, we reconstruct it
by inferring a parse tree and filling each terminal
node with the dominant label. Fig.8(a) shows the
reconstructed results of SP, Qt, HST-RECT and HST-
TRI. Intuitively, SP uses the most terminal nodes
and gets the finest reconstructed label maps, while
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Fig. 8: Efficiency of representation. (a) Given the annotated label maps in the 2nd column, we reconstruct the
label maps by Spatial Pyramid (SP), Quadtree(Qt), HST-geo with squares and rectangles (HST-RECT) and HST-
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(b) The rate-distortion curve of SP, Qt, HST-RECT and HST-TRI, where the horizontal axis denotes the coding
error and the vertical axis denotes the coding length. (see more results in supplementary material)

Fig. 9: Terminal node groups which are often observed in different scenes.

HST-RECT uses much less terminal nodes and gets
coarser but still satisfying results. Quantitatively, we
evaluate the representation efficiency by the rate-
distortion curve defined by the coding error w.r.t. the
coding length. The coding error and coding length are
measurements balancing the model complexity and
representative ability. With small coding error and
low coding length, a model can effectively capture the
main configurations of scenes without overfitting.

The coding error counts the per-pixel error ratio in
the reconstructed scene label maps, defined as

CE =
1

|Λ|

M∑
m=1

||Ĉm − Cm||, (24)

where |Λ| = 256 × 256 is the image lattice, Ĉ is the
reconstructed label map and C is the ground-truth.

The coding length is defined as the total bits stored in
a reconstructed binary file which varies with different
methods. (i) For SP, CLSP =

∑M
m=1

∑S−1
s=0 22s × Bl,

where S = 3 and Bl = dlog2(|L|)e is the coding bits for
the semantic label. (ii) For Qt, CLQt =

∑M
m=1 nm×Bsq ,

where nm is the number of terminal nodes in the
reconstructed configuration and Bsq = Bl + Bp + Bs
is the coding bits for each node. Bp = dlog2(wCm

) +
log2(hCm

)e is the coding bits for the node position,
where wC and hC are the width and height of Cm, and
Bs = dlog2 Se is the coding bits for scale, here S = 3
is the maximum level allowed in Qt. (iii) For HST-
geo, considering the scene part dictionary, the coding

length is defined as

CLHST-geo = CL(∆) +

M∑
m=1

∑
v∈V T (ptm)

(Bl − log p(v)),

(25)
where p(v) is the frequency of the terminal node v
appearing in the dictionary, and CL(∆) is the coding
length of learned scene part dictionary defined as:

CL(∆) =

S∑
s=1

|∆s| · (s− 1) · 2 log2 s, (26)

where |∆s|, s = 1...S denotes the number of terminal
nodes in the s-level of the dictionary. An s-level termi-
nal node consists s atomic shape elements (Fig.3(b)).
s − 1 means we code the rest of atomic elements
w.r.t. the first one. 2 log2 s is the sum of coding bits
to localize an atomic element w.r.t. the first one in
horizontal and vertical by assuming that a terminal
node is a connected composition of atomic elements.

Fig.8(b) shows the changes of coding error (horizon-
tal axis) w.r.t. the coding length (vertical axis). We ob-
served: (i) When the coding error is high, less terminal
nodes are selected. The coding lengths of HST-RECT
and HST-TRI are always above SP and Qt due to the
coding bits for the scene part dictionary. (ii) When the
coding error decreases, the coding lengths of SP and
Qt increase exponentially because of the exponential
growth of the number of additional terminal nodes.
However, due to the over-complete dictionary and
adaptive variable-length coding strategy (Shannon en-
tropy coding), the coding lengths of HST-RECT and
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HST-TRI are much more stable and finally go below
SP and Qt when the coding error is small. (iii) Com-
pared with HST-RECT, although HST-TRI contains
richer shapes, it costs more coding bits consistently
for every category. So we adopt HST-RECT to model
the scenes, which can always get reasonable coding
accuracy with compact coding length.

Meaningful terminal groups Fig.9 shows some
learned terminal node groups which are often ob-
served in different scenes. They are composed of
several terminal nodes of same labels and form mean-
ingful sub-configurations of semantic regions in the
scenes, such as “ocean”, “mountain” and “building”.

Ambiguity reduction The compositional ambigu-
ity of HST-geo is reduced during learning. Fig.10(a)
shows four different parse trees for the same configu-
ration of a street scene . The ambiguity of parse trees
is measured by their posterior probabilities (Eq.13).
Fig.10(b)&(c) show the posterior probabilities are sim-
ilar at initialization (Round=0) but become increas-
ingly polarized after each round of learning.

4.3 Application I. Scene classification
For the task of scene classification, as it does not
involve parsing and attributes, we select 2-5 most fre-
quent configurations from the HST-geo as templates
for each scene category according to the posterior
probability. Then we use these templates for feature
extraction and discriminative training (see details in
supplementary material). Table 4 compares the aver-
age precision (AP) of scene classification, and it shows
the improvement of our model over existing methods.

4.4 Application II. Scene attribute recognition
We train a complete HST model, i.e., HST-geo and
HST-att, across scene categories. We use the SceneAtt
dataset as the test bed, whose data are outdoor scene
images with attributes in text, where the precise lo-
cations of attributes are unknown. We randomly split
the dataset into 645 images for training (50 images per
noun and adjective attribute pair on average) and the

TABLE 4: The scene classification performance

Gist BoW SPM LLC Tangram Ours
[9] [7] [5] [8] [20]

AP (%) 72.15 84.57 84.92 87.97 86.07 91.71

TABLE 5: The attribute recognition performance

cKernel SPM HST-geo HST(greedy) HST(iter)
[40] [5] [22] [22]

MAP(%) 64.48 53.11 51.67 67.58 72.17

rest for testing. We show the attribute recognition in
this section, followed by attribute localization in the
next section.

Attribute recognition evaluates the accuracy of
whether an attribute presence in an image or not. We
compare our model with four methods: (i) cKernel:
[40] shows the combined feature kernels are more
powerful than any individual feature. For compari-
son, we use a combined kernel of gist, dense SIFT,
HOG 2×2, self-similarity, etc. (see [40] for details) and
train a binary SVM classifier for each attribute. (ii)
Spatial Pyramid Matching (SPM) [5]: SPM partitions
the image into increasingly finer spatial sub-regions
and computes BoW features on SIFT from each sub-
region. (iii) HST-geo: To evaluate the contribution of
attribute association, we compare our method with
HST-geo. Specifically, given an image, we parse it
based on its multi-scale segmentation then classify
each terminal node by the classifiers trained in (i). (iv)
HST(greedy): Our previous work [22] adopts a greedy
method to learn the HST-att. While in this paper, we
extend it to an iterative algorithm based on bipartite
graph matching (Section 3.3). We compare these two
learning methods, and use HST(greedy) and HST(iter)
to denote the two methods.

Table 5 shows the mean average precision (MAP)
of attribute recognition. SPM has low performance
because of the lack of color features, which are strong
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cues in scene attribute recognition. Although HST-
geo and cKernel share classifiers, cKernel performs
better because those classifiers are trained on image
level while the testing inputs in HST-geo are image
patches. Benefiting from integrating scene layouts
with attributes, HST outperforms all others. Moreover,
the iterative learning method makes our model more
reliable and gets the best performance.

4.5 Application III. Scene Attribute localization
We evaluate our method in attribute localization
against three baseline methods. (i) A fully super-
vised sliding window method (SW-FS) [31]: SW-FS
first trains attribute classifiers based on the ground-
truth bounding boxes, then applies those classifiers
to sub-images at different locations and scales. The
sub-images are ordered by classification scores and
taken as detected attribute regions by non-maximum
suppression with 0.3 overlap threshold. (ii) HST-geo:
As mentioned in the last section, given an image, we
first parse it according to its multi-scale segmentation
then classify each terminal node by the cKernel SVM
classifiers. (iii) HST(greedy): We compare the greedy
learning method in [22] with our iterative learning
method in attribute localization.

Fig.11(b) shows the comparison of the benchmark
methods with ours. Without considering the asso-
ciation between scene parts and attributes, SW-FS
may divide a semantic region into fragments, and
HST-geo may confuse certain attributes with similar
appearances, such as “dust-hazed sky” and ”snowy
field.” Fig.11(a) shows the parse trees generated from
the HST and Fig.11(c) shows more localization results.

TABLE 6: The attribute localization performance

SW-FS HST-geo HST(greedy) HST(iter)
[31] [22] [22]

MAP (%) 33.88 32.55 50.22 51.20

We quantitatively evaluate the attribute localiza-
tion by following the procedure in [40]. An in-
ferred bounding box Bv is a correct localization if
area(Bv∩Bgdth)

area(Bv) >= T , where Bgdth is the ground-truth
bounding box. We do not care if the ground-truth
window is larger than the localization, e.g., a “blue
sky” patch is correctly localized even if the ground-
truth “blue sky” has much greater spatial occupation.
As in [40], we set T = 50% to tolerate the inaccurate
bounding box of highly non-convex objects, e.g., steep
mountain. We use 11-point interpolated average pre-
cision [41] to evaluate the localization accuracy. The
mean average precision (MAP) reported in Table 6
shows a large improvement of our method.

Some typical failure examples are shown in Fig.12.
(i) Some attributes with similar spatial prior and
appearances may confuse our model, such as “black
ibis” and “black bison” in Fig.12(a). (ii) Some at-
tributes can only be partially localized, such as “white
horse” in Fig.12(b). (iii) Some attributes are missing,
such as “tower” in Fig.12(c).

4.6 Application IV. Scene labeling

In this section, we extend the attribute localization
to pixel-wise scene labeling. We test our model on
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Fig. 12: Some typical failures. (a) “Black ibis” is con-
fused with “black bison” because their similar spatial
prior and appearance. (b) “White horse” is partially
localized. (c) “Tower” is missing.

the pre-processed LMO dataset with 800 images (100
per category) for training and the rest for testing,
and show the improved scene labeling with reduced
running time against the previous methods.

Since the LMO dataset only has object labels, such
as “sky” and “mountain”, we take them as noun
attributes and set adjective attributes to void in the
HST training. The labeling procedure is described in
Fig.13(a). Given a test image, we first infer a parse
tree pt+ = (pt, φ) = {(vi, ai), vi ∈ V T (pt), ai ∈ Â} to
associate the labels ai (noun attributes) to scene parts
vi. Then we use z = 300 to get an overly segmented
image C = {rj , j = 1...Nr} [34], where rj is a seg-
mented region and Nr is the total number of regions
depending on the images. For each rj , annotate its
inside pixels as ai, if rj is occupied most by vi, i.e.,
rj → ai, if (vi, ai) = arg maxvi∈V T (pt)

area(rj∩vi)
area(rj) .

We compare our method with two fully supervised
methods. (i) Label transfer (LT) [15]: Given an image,
the LT retrieves K=20 nearest neighbors from the
training data based on gist and HoG, then warps the
annotations of retrieved images to fit the target image
by SIFT flow. (ii) SuperParsing [16]: For a given image,
SuperParsing first retrieves K=200 images based on
the global features (SIFT, gist, etc.), then it divides
the given image into superpixels and gets the nearest
neighbor superpixel matches from the retrieval set.
With the same data split and annotations, we run the
released source codes of LT and SuperParsing, then
compare the labeling results in Fig.13(b) and report
per-class accuracy on LMO dataset in Table 7. On av-
erage, our method outperforms LT and SuperParing.

Since HST quantizes the scene configuration space
and the model becomes compact through learning,
our method is much faster than LT and SuperParsing.
On an Intel 64 bit i7-3770 CPU, 3.40GHz, 20.0GB
RAM, Window 7 system, for 1,888 testing images of
256 × 256 in size, our running time is 3.39 hours (6.45s
per image) in total, while LT takes 64.61 hours (123.20s

per image) and SuperParsing takes 14.42 hours (27.50s
per image). Our method is nearly 19 times faster than
LT and 4 times faster than SuperParsing.

5 SUMMARY

This paper presents a novel scene representation
namely Hierarchical Space Tiling (HST) and a weakly
supervised learning method. The contributions of the
paper are threefold. (i) We quantize the space of scene
configurations in an And-Or Tree (AoT) structure, and
transfer the challenging structure learning problem
to a tractable parameter learning problem. (ii) We
connect the attributes to a hierarchical scene model,
which provides rich semantics to scenes. (iii) We
propose a weakly supervised method to learn the
HST model when the precise locations of attributes
are unknown in training. We show the HST can learn
a parsimonious scene representation. In applications,
we demonstrate our method in scene classification, at-
tribute recognition, localization, and pixel-wise scene
labeling. The attributes used in this paper are related
to local objects and regions. Global attributes, such as
indoor and outdoor, will be studied in the ongoing re-
search by extending our model to attribute grammar.

This work is supported by 973-2015CB351800,
NSFC-61272027, NSFC-61231010, NSF CNS-1028381,
MURI ONR N00014-10-1-0933 and China Scholarship
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http://vcla.stat.ucla.edu/people/∼shuo.wang/HST att.html.
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