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Abstract—Many vision tasks can be formulated as graph partition problems that minimize energy functions. For such problems, the

Gibbs sampler [9] provides a general solution but is very slow, while other methods, such as Ncut [24] and graph cuts [4], [22], are

computationally effective but only work for specific energy forms [17] and are not generally applicable. In this paper, we present a new

inference algorithm that generalizes the Swendsen-Wang method [25] to arbitrary probabilities defined on graph partitions. We begin by

computing graph edge weights, based on local image features. Then, the algorithm iterates two steps. 1) Graph clustering: It forms

connected components by cutting the edges probabilistically based on their weights. 2) Graph relabeling: It selects one connected

component and flips probabilistically, the coloring of all vertices in the component simultaneously. Thus, it realizes the split, merge, and

regrouping of a “chunk” of the graph, in contrast to Gibbs sampler that flips a single vertex.We prove that this algorithm simulates ergodic

and reversibleMarkov chain jumps in the space of graph partitions and is applicable to arbitrary posterior probabilities or energy functions

defined on graphs. We demonstrate the algorithm on two typical problems in computer vision—image segmentation and stereo vision.

Experimentally, we show that it is 100-400 times faster in CPU time than the classical Gibbs sampler and 20-40 times faster then the

DDMCMC segmentation algorithm [27]. For stereo, we compare performance with graph cuts and belief propagation. We also show that

our algorithm can automatically infer generativemodels and obtain satisfactory results (better than the graphic cuts or belief propagation)

in the same amount of time.

Index Terms—Swendsen-Wang, cluster sampling, Markov chain Monte Carlo, Bayesian inference, image segmentation, stereo

matching.

�

1 INTRODUCTION

MANY computer vision tasks have a “what goes with
what” component which can be formulated as a

graph partition (or coloring) problem. For example,
segmentation and grouping in perceptual organization
and correspondence in stereo and motion. The common
objective of these tasks is to partition various image
elements, as vertices in an adjacency graph, into a number
of coherent visual structures so that a Bayesian posterior
probability or an energy function is optimized.

Under the formulation of graph partition, an increasing
number of algorithms from computer science and modern
statistical physics have been brought to computer vision and
become very influential recently. The first prominentmethod
is the graph spectral analysis [32], such as thenormalized cuts
[24] and its variants for segmentation and grouping that
minimize discriminative energy functions. The second
popular method is the minimum-cut [22] and the graph cut
[4] which maps energy minimization problems to maximum
flow problems and solve them in low order polynomial time.
The third method is the generalized belief propagation on
graphs [33], which is shown to minimize some approximate
energy functions. All three methods are computationally
efficient, but they are limited to specific forms of energy
functions and, thus, not generally applicable in visual

inference. We shall address their limitations in comparison
to our method later in this section.

For graph partition problems, classicMarkov chainMonte
Carlo methods, such as Gibbs sampler [9] or “heat bath” in
physics, provide general solutions but experience very slow
convergence, especially when adjacent vertices in the graph
are strongly coupled, i.e., the coloring of the vertices are
interlocked locally. Fig. 2 illustrates such an example where
the Gibbs sampler, which flips the color of a single vertex at
each step, has towait exponentially before changing the color
of a set of coupled vertices. The speed problem of Gibbs
sampler was addressed by the well-celebrated Swendsen-
Wang (SW)method [25], [30]. At each step, the SW algorithm
clusters the coupled vertices into connected components,
each having the same color, and then flips the color of each
connected component jointly. For classic Ising/Potts models
[19], a new bounding chain technique [14] has been
developed recently, and can diagnose the convergence of
SW to its invariant probability, i.e., exact sampling, and,
furthermore, the convergence speed (Markov chain mixing
time) is polynomial on thegraph sizen. But, the SWmethod is
only valid for Ising/Potts models since the cancellation
required in deriving the SW method is not observed in
general probabilities or energies. Even worse, SW slows
down in the presence of an “external field” (i.e., data or
likelihood). More specifically, if one integrates the Potts
model as a prior probability with likelihood in Bayesian
inference, it could be very slow, as the graph clustering step
does not make use of the data. We shall discuss the SW
method and its properties in details in Section 3.2.

In this paper, we generalize SW to arbitrary posterior
probabilities or energy functions and derive a generic
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solution for graph partition. The basic ideas are summarized
below.

1. Initialization. Given an adjacency graph, we compute
local discriminative probabilities for each edge based
on the external field and the prior. For computer
vision, local image features or statistical tests are
used to obtain these edge weights. Then, the
algorithm iterates the following two steps.

2. Graph clustering.Given a currentpartition (coloring), it
removes all edges between vertices of different colors.
Then, each of the remaining edges connecting
adjacent vertices of the same color is turned on/off
according to its weight. If the discriminative prob-
abilities are informative, then the edges at object
boundaries have a high chance to be turned off. Thus,
it obtains a number of connected components (sub-
graphs) eachhaving the same color and, usually, these
connected components correspond to strongly
coupled vertices that stand for parts of objects in the
image (see Fig. 4). We define a “Swendsen-Wang cut”
for each connected component as the set of edges
which connect this component with its neighboring
vertices of the same color. In otherwords, the edges in
a Swendsen-Wang cut are turned off probabilistically.
These connected components can be regarded as
samples fromanapproximationof theposteriorwitha
Pottsmodel, and theywill beacceptedby theposterior
probability in the next step.

3. Graph flipping. It selects one (or multiple) connected
component and flips, with a probability driven by the
posterior, the coloring of all vertices in the selected
component(s) simultaneously. Thus, it realizes the
split, merge, and regrouping of a “chunk” of the
graph, in contrast to the Gibbs sampler that flips a
single vertex. The flipping procedure can automati-
cally change the number of colors and, thus, is more
general than the original SWmethod that works for a
fixed number of colors in the Potts model.

We shall show that the new algorithm simulates ergodic
and reversible Markov chain jumps in the finite space of all
possible graphpartitions. The algorithm is valid for sampling
arbitrary posterior probability or energy functions.

Our new algorithm mainly makes three contributions.
First, we generalize the SW method from the perspective of
Metropolis-Hastings method and derive a simple and
analytic formula for the acceptance probability in a
reversible Metropolis-Hastings step. This formula (see
Theorem 2) is expressed in terms of the product of the
discriminative probabilities on the edges (often a very small
number) in the Swendsen-Wang cuts. Second, we compute
the discriminative probabilities on edges from the input
image (“external field” in a physics term). We observe that
empirically these discriminative probabilities make the
connected components more effective in comparison to a
uniform probability in the original SW method. This is in a
similar spirit to data-driven Markov chain Monte Carlo [27].
Third, we present various versions of the algorithm. One of
the variants is a direct generalization of the Gibbs sampler.
It flips the coloring of a connected component according to
a conditional probability with a rectifying factor and the flip
is accepted with probability one.

We demonstrate the algorithm on two typical problems
in computer vision—image segmentation and stereo vision.

In image segmentation, we choose a generative image
representation with three classes of image models. It works
100-400 times faster in CPU time than the classic Gibbs
sampler and obtains good results in 3-30 seconds on a PC.
In the stereo matching problem, we adopt the energy
function used in graph cut [4] and the benchmark in [23] for
comparison. It obtains good results (better than belief
propagation [26]) in 6-10 minutes on a 400� 290 image
and is slower than graph cuts. The computing speed
certainly depends on the discriminative probabilities in
the problem domain. For optimization problems, our
method still uses simulated annealing, but at a much
quicker schedule than the Gibbs sampler (15 sweeps as
opposed to 5,000 sweeps) and we do not have to start with a
high initial temperature. The algorithm can therefore start
with good initial solutions to speed-up convergence.

We now compare our method with other graph partition
algorithms in computer vision.

First, it is distinct from the graph spectral analysis [32],
such as normalized cuts [24], [32]. We argue that the
discriminative energies, used in Ncuts and many other
discriminative grouping and clustering algorithms [15],
[13], [21], [8], have difficulties in expressing global visual
patterns, such as shading effects, perspective projection
effects, contour closure, etc. Furthermore, natural images
containverydiversevisual structureswhichare“coherent” in
many different ways, there is no single discriminative
criterion that is generally applicable to correctly partition all
the visual structures in images [8]. For example, a criterion
that prefers compact regions will break elongated curve
patterns. Thus, we need a generative and Bayesian formula-
tion incorporating a number of diverse and competing image
models. Each family of models explains how a pattern is
generated and stands for a coherence criterion. For example,
seven families of models are used for texture, color, shading,
andclutter regions in imagesegmentation [27].Ouralgorithm
uses the Ncut type discriminative probabilities on edges, but
only for making proposals, which are accepted or rejected by
the Bayesian posterior probability that incorporates many
families of image models and global prior knowledge.

Second, although the graph cut and minimum-cut algo-
rithms [22], [17] are effective in minimizing some energy
functions, it is shown [17] that only very limited classes of
energy functions can be mapped into the maximum flow
problems. For example, so far these methods have not been
applicable to generative models with multiple classes of
image models.

Third, our method is an addition to the recent data-driven
Markov chain Monte Carlo (DDMCMC) algorithm for
segmentation [27] and parsing [28] which solves Bayesian
inference bymixing a number of reversible jumps. The jumps
are divided into two types. Type I solves the “what is what”
subtasks, such as model selection, switching, and fitting. The
DDMCMC algorithm computes discriminative models, such
as color and texture clustering, and expresses them in the
form of nonparametric probabilities to drive these jumps.
Type II solves the “what goes with what” subtasks such as
grouping, segmentation, and correspondence. Our Swend-
sen-Wang cut algorithm in this paper improves the Type II
jumps in both theoretical formulation and computational
speed. It can speed up the DDMCMC algorithm [27] by 20-
40 times for segmentation.

In thispaper,weshall focuson theType II reversible jumps
in the graphpartition space.Weomit discussionon themodel
spaces for Type I jumps, which are referred to [27].
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Thepaper is organizedas follows:Wepresent theBayesian
formulation for graph partition in Section 2. Then,we discuss
thedifficulties in sampling thegraphpartitionsand introduce
the original SW algorithm in Section 3. Section 4 presents the
new Swendsen-Wang cut algorithm and its variants. Then,
we show two groups of experiments in Section 5—image
segmentation and stereo matching. Finally, Section 6 con-
cludes the paper with discussions on the advanced topics on
extending and analyzing the Swendsen-Wang cuts.

2 BAYESIAN FORMULATION OF GRAPH PARTITION

2.1 Bayesian Formulation

We consider an adjacency graph Go ¼ < V ;Eo > , where
V ¼ fv1; v2; . . . ; vNg is the set of nodes that need to be
partitioned, such as atoms, pixels, edge elements, image
primitives, or atomic regions with nearly constant inten-
sities and Eo is a set of edges connecting neighboring nodes.
An n-partition of the graph is denoted by

�n ¼ ðV1; V2; . . .VnÞ; [ni¼1Vi ¼ V ; Vi \ Vj ¼ ;; 8i 6¼ j: ð1Þ

Since visual structures are coherent in many different ways,
each subset Vi; i ¼ 1; 2; . . . ; n is assigned a color ci which
represents the model, usually consisting of a type (constant,
spline, etc.) and someparameters.Ourobjective is to compute
the following world representationW from the input I,

W ¼ ðn; �n; c1; . . . ; cnÞ: ð2Þ

This becomes an optimization problem, either maximizing

the Bayesian posterior probability or minimizing an energy

in a solution space �,

W � ¼ argmax
W2�

pðIjWÞpðWÞ; or W � ¼ argmin
W2�

"ðW jIÞ: ð3Þ

We choose two typical vision problems as examples in
this paper. We denote by Iv the image attributes on vertex v,
and I ¼ IV the attributes for the set V .

The first example is image segmentation, as shown in
Fig. 1. Each vertex v is an atomic region with nearly
constant intensity, and Iv is its intensity. A partitioned
subset Vi corresponds to a coherent region Ri with model
ci ¼ ð‘i; �iÞ, where ‘i is the type of image model and �i the
model parameters. We adopt three types of simple image
models and a prior probability in Section 5.1. Usually, these
models should be color, texture, and shading, as imple-
mented in DDMCMC [27]. Thus, the likelihood for IVi

is

pðIVi
; ‘i; �iÞ, where �i may have different dimensions for

different types of models.
The second example is stereo matching. The graph Go is

the pixel lattice, Iv ¼ ðIlv; IrvÞ is the left and right image
intensity and ci is the disparity of Vi, discretized along the
epipolar line as ci 2 f0; . . . ; dmaxg. The energy function is
formulated in Section 5.3.

In our recent work [2], we have applied the same SW-cuts
algorithm tomotionwhere ci ¼ ðui; viÞ is themotion velocity,
or evenci canbe avector that includes bothmotion and image
segmentation. Our algorithm has also been used for curve
grouping.

2.2 Solution Space and Markov Chain Jumps

In this section, we consider the structure of the solution space
and the necessaryMarkov chain steps for optimization in this
space. Then, we present the place of graph partition in this
optimization.

For W in (2), we denote by ��n 3 �n the space of all
possible n-partitions �n of V , �‘ 3 ‘i the set of types of
image models, and ��i 3 �i the model parameter space
(family) for type ‘i. Thus, the solution space for W is

� ¼ [jV jn¼1 f��n � �n
‘ � ��1 � � � � � ��ng: ð4Þ

The factorization of the space corresponds to the two
types of moves necessary for exploring the entire space.1

1. Type I is “what iswhat”moves for selecting themodel
‘i 2 �‘ and fitting the model parameters �i 2 ��i for
Vi; i ¼ 1; 2; . . . ; n. Model fitting is omitted in the stereo
matching experiment. We usually can quantize the
model spaces so that they become finite.

2. Type II is “what goeswithwhat”moves for grouping,
segmentation, and correspondence in the partition
space �� ¼ [jV jn¼1��n , which is a finite space.

The two types of moves are tightly coupled and we
implement them by a number of reversible jumps which
simulate Markov chain searches in the space �. The Markov
chain startswith an initial solutionWo and isdesigned tohave
a unique invariant (stationary) probability pðW jIÞ. Suppose
we denote the state probability of the Markov chain at time t
by ptðWo;WÞ. A classic measure of convergence is the total
variation,
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1. It is interesting to note that the human brain mapping study [29]
shows that the recognition task (Type I) is handled by a dorsal stream and
the spatial vision (Type II) is processed by a ventral stream.

Fig. 1. Image segmentation as graph partition. (a) Input image. (b) Atomic regions by Canny edge detection followed by edge tracing and contour
closing, each being a vertex in the graph Go. (c) Segmentation result.



jjptðWo;WÞ � pðW jIÞjjTV ¼
1

2

X
W2�
jptðWo;W Þ � pðW jIÞj: ð5Þ

Ameasure of the speed of an algorithm A is the mixing rate,
that is the minimum time for the Markov chain to come
close to the stationary probability for any Wo,

�A ¼ max
Wo

minft : jjptðWo;WÞ � pðW jIÞjjTV � �g: ð6Þ

Usually, �A ¼ �Að�; jGojÞ is a function of 1
� and the graph size

jGoj, i.e., number of vertices and edges. The algorithm A is
said to be rapid mixing if �A is polynomial or logarithmic.

In this paper, we shall only study the Type II moves and
omit the Type I moves which have been discussed in the
DDMCMC algorithm [27].

3 GIBBS SAMPLER, SWENDSEN-WANG METHOD,
AND THEIR LIMITATIONS

In this section, we discuss the Gibbs sampler and the
original Swendsen-Wang algorithm for graph partition, to
set the background.

3.1 The Difficulty of Graph Partition by the Gibbs
Sampler

The difficulty of sampling in the partition space �� is well
reflected in a simple Ising and Potts model [19], which are
sometimesused invisionaspriormodels.Fig.2 showsastring
ofspinswhose labels (color)ccanbeþ1 (up)and�1 (down).A
Potts model may have Q � 3 colors, c 2 f1; 2; . . . ; Qg. The
Ising/Potts model is

pð�nÞ ¼
1

Z
exp �

X
<s;t>2Eo

1ðcs ¼ ctÞ
( )

; � > 0; ð7Þ

where 1ðcs ¼ ctÞ ¼ 1 if cs ¼ ct for two adjacent vertices s; t
otherwise it is zero. Obviously, the highest probability is
achieved when all vertices have the same label. In a best
visiting scheme, suppose a single site update algorithm, like
the Gibbs sampler, flips the �1 spins at the two “cracks”
in Fig. 2. The probability for flipping each spin from�1 toþ1
is po ¼ 1=2. Thus, to flip a string of k spins (k ¼ 9 in Fig. 2)
from �1 to þ1 successfully, the expected number of steps is

1

ð1=poÞk
¼2k. This is exponential waiting and is typical for general

graph partition! Intuitively, it will be desirable to flip a big set
of vertices that have the same color at each step.Of course,we
need toensure that suchmovesstill keeppð�nÞas its stationary
probability. This is what the Swendsen-Wangmethod does.

3.2 Swendsen-Wang on Potts Models and
Theoretical Results

There are many ways to interpret the SW algorithm,
including random cluster model, auxiliary variables [6]
and slice sampling and decoupling [12]. In this paper, we
interpret the SW method as a Metropolis-Hastings step and

our interpretation leads to generalizing it to arbitrary
probabilities in Section 4.

Consider a Potts model in (7) on a 2D lattice. Fig. 3 shows
two partition states �A and �B with �A ¼ ðVo [ V1; V2; � � �Þ
and �B ¼ ðV1; Vo [ V2; � � �Þ, which differ by the labels of the
vertices Vo inside the center window.

The SW algorithm realizes a reversible move between �A

and �B in a single step. From state �A, the SW algorithm
proceeds in the following way:

1. Any edge e ¼ < s; t > 2 Eo is removed if cs 6¼ ct. If
cs ¼ ct, then e ¼ < s; t > is turned “on” with a
probability qo ¼ 1� e��, otherwise, it is turned “off,”
i.e., removed. This yields a number of connected
components, each being a subset of vertices of the
same color.

2. It randomly selects a connected component Vo of the
resulting graph (see Fig. 3a). The dark edges in V0

remain on, the other edges have been turned off.
3. It chooses a label c 2 f1; ; . . . ; Qg for Vo with uniform

probability.

In the example of Fig. 3, Vo change color from black to
white and we obtain partition state �B in Fig. 3b. Reversely,
at state �B, we will have a chance to select Vo and flip it to
black color and this way return to �A.

In this paper, the Swendsen-Wang cuts at �A and �B are
the sets of edges connecting Vo to V1 and V2, respectively,
marked by the crosses in Fig. 3.

CA ¼ CðVo; V1Þ ¼ fðs; tÞ : s 2 Vo; t 2 V1g;
CB ¼ CðVo; V2Þ ¼ fðs; tÞ : s 2 Vo; t 2 V2g:

ð8Þ

In state �A, there is a combinatorial number of ways to
makeV0 a connected component, but, in all cases, the edges in
CA must have been cut probabilistically. Similarly, in state �B,
the edges in CB must be turned off in order for Vo to be a
connected component.

1242 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 8, AUGUST 2005

Fig. 3. The SW algorithm flips the color of a set of vertices Vo in one step
for the Ising/Potts models. The set of edges marked with crosses is
called the Swendsen-Wang cut.

Fig. 2. Difficulty in sampling the Ising and Potts models.



We look at the moves between states �A and �B from the
perspective of the Metropolis-Hastings method [18].
Though it is computationally difficult to compute the
proposal probabilities qð�A ! �BÞ and qð�B ! �AÞ, one
can compute their ratio easily through cancellation.

qð�A ! �BÞ
qð�B ! �AÞ

¼ ð1� qoÞjCAj

ð1� qoÞjCBj
¼ ð1� qoÞjCAj�jCBj: ð9Þ

CA is the cardinality of set CA. Remarkably the probability
ratio for pð�AÞ=pð�BÞ for the Potts model is also decided by
the Swendsen-Wang cuts

pð�AÞ
pð�BÞ

¼ e��jCBj

e��jCAj
¼ e�ðjCAj�jCBjÞ: ð10Þ

The acceptance probability for the move from �A to �B is

�ð�A ! �BÞ ¼ min 1;
qð�B ! �AÞ
qð�A ! �BÞ

� pð�BÞ
pð�AÞ

� �

¼ e��

1� qo

� �jCAj�jCBj
¼ 1

ð11Þ

ifwe take qo ¼ 1� e��, so theproposal from�A to�B is always
accepted. So, once Vo is selected, its new color is picked at
random without having to go through the Metropolis-
Hastings step due to the cancelation! As � / 1

T is the inverse
of the “temperature” in the Potts models, at lower tempera-
ture, qo ! 1 and SW flips a larger patch each time.

For Potts models in (7), Huber [14] developed a new
bounding chain technique [14] which can diagnose the
convergence of SW, i.e., exact sampling or perfect sampling
[20]. The number of steps in reaching exact sampling is in the
order of Oðlog jEojÞ for temperature far below and far above
the critical temperature. Using a path coupling technique,
Cooper and Frieze [5] have shown that themixing time � (see
(6)) is polynomial [5] if eachvertex in graphGo is connected to
Oð1Þnumber of neighbors, i.e., the connectivity of each vertex
does not grow with the size of V . This is usually observed in
vision problems, such as the lattice. Themixing time becomes
exponential at a worst case when Go is fully connected [10].
Such a case may never occur in vision problems.

However, the excitement of the SW algorithm has been
limited for the following reasons:

1. It is restricted to Ising and Potts models, while
posterior probabilities in vision tasks are of much
more complex forms.

2. It becomes very slow even for the Potts models in the
presence of external fields (data). As qo is a constant, it
does not utilize the input data in clustering the
connected components.

3. It assumes the number of labelsn is fixed. TheMarkov
chain does not create new labels in cases where n is
unknown (in vision, usually the number of models is
unknown).

In the next section, we overcome these limitations and
extend SW to arbitrary probabilities.

4 GRAPH PARTITION BY SWENDSEN-WANG CUTS

4.1 Discriminative Probabilities on Edges

Before running the reversible jumps, we augment the
adjacency graph Go ¼ < V ;Eo > with discriminative

probabilities in an initial stage. Partition samples
obtained using these probabilities will be used in the
next section as proposals for the full posterior prob-
ability. For any vertex v 2 V , we extract a number of
features F ðvÞ ¼ ðF1ðvÞ; F2ðvÞ; . . . ; FaðvÞÞ and for each edge
e ¼ < s; t > 2 Eo, we assign a binary random variable
�e 2 fon; offg. �e indicates whether the edge is turned on
or off. Then, we compute a discriminative probability
qe ¼ qð�e ¼ onjF ðsÞ; F ðtÞÞ based on local features F ðsÞ
and F ðtÞ.

Take the adjacency graph in Fig. 1 as an example. For
each atomic region (vertex in Go), we compute a 15-bin
intensity histogram h normalized to 1. For each edge
e ¼ < vi; vj > , we define

qe ¼ pð�e ¼ onjhi; hjÞ ¼ e�ðKLðhijjhjÞþKLðhjjjhiÞÞT=2; ð12Þ

where KLðÞ is the Kullback-Leibler divergence between the
two histograms and T is a temperature factor. Usually, qe
should be close to zero for e on object boundary. Suppose
we turn on the edges independently according to qe; e 2 Eo,
we obtain a sparse graph G ¼ < V ;E > with probability

qðEÞ ¼
Y
e2E

qe
Y

e2EonE
ð1� qeÞ: ð13Þ

Then, G consists of a number connected components.
Fig. 4 shows some examples of G for Go in Fig. 1. Each
region of uniform gray level is a connected component that
consists of a number of atomic regions. We show three
random partitions sampled according to qðEÞ for four
temperatures T ¼ 1; 2; 4; 8. At a reasonable temperature,
various parts of the cheetah are obtained, legs, body, and
tail, as connected components, which are then proposed as
candidates for partition in the reversible jumps.

This example shows that the discriminative models are
good heuristics for partition. However, these partitions are
limited by the local features. More complex posterior
probabilities with global generative models are needed to
accept these proposals and this is done next.

4.2 Swendsen-Wang Cuts and Its Variants

The Swendsen-Wang cut algorithm engages three types
of graphs shown in Fig. 5. It starts with an adjacency
graph Go ¼ < V ;Eo > (Fig. 5a). At each time step, we
have a partition � ¼ ðV1; . . . ; VnÞ which assigns a color
to each vertex cv ¼ ‘ for v 2 V‘; ‘ ¼ 1; 2; . . . ; n and we
obtain a graph Gð�Þ ¼ < V ;Eð�Þ > (Fig. 5b) with
Eð�Þ ¼ fe ¼ < s; t >: cs ¼ ctg. Then, each edge e 2 Eð�Þ
is turned off with probability 1�qe independently and
we obtain a sparse graph CP with a number of
connected components.

Now, we present a first version of the Swendsen-Wang
cut algorithm.

Swendsen-Wang Cut: SWC-1
Input: Go ¼ < V ;Eo > , qe; 8e 2 Eo, and posterior pðW jIÞ.
Output: Samples W � pðW jIÞ.
1. Initialize a partition � by random clustering (see Fig. 4)
2. Repeat, for current state � ¼ ðV1; V2; . . . ; VnÞ,
3. For e 2 Eð�Þ, turn �e ¼ off with probability 1� qe.
4. V‘ ¼ ðV‘1; . . . ; V‘n‘

Þ is divided into n‘ connected
components for ‘ ¼ 1; 2; . . . ; n.

5. Collect all the connected components in set
CP ¼ fV‘i : ‘ ¼ 1; . . . ; n; i ¼ 1; . . . ; n‘g.
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6. Select a connected component Vo 2 CP with prob.
qðVo jCP Þ, say Vo � V‘.
(Usually qðVo jCP Þ ¼ 1

jCP j is uniform, Fig. 6a is an
example of Vo in partition � ¼ �A).

7. Propose to assign Vo a new label cVo
¼ ‘0 with a

probability qð‘0jVo; �Þ, thus obtain �0(�0 ¼ �B is in
Fig. 6b if V0 is merged to an existing color V2,
or �0 ¼ �C is in Fig. 6c if Vo is assigned a new color).

8. Accept the proposal with probability �ð�! �0Þ
defined in Theorem 2.

The proposal probability qðl0jVo; �Þ can be uniform, or
better, dependent on the similarity of Vo with Vl0 . At each
step, model switching and fitting (Type I jumps) are
performed deterministically or sampled from some propo-
sal probabilities (see later in this section).

In the above algorithm, let Vo 	 V‘ in � and Vo 	 V‘0 in �0.
The move �! �0 can realize three types of moves
depending on the choice of the new color of Vo. Thus, the
number of colors n will be decided automatically.

1. Regrouping: Vo � V‘ is split from V‘ and merged into
an existing color V‘0 . The number of colors n is
unchanged. E.g. �A $ �B in Fig. 6. When V‘ and V‘0

are adjacent, this is, in fact, a discrete version of the
boundary evolution, like region competition [34].

2. Splitting: Vo � V‘ is split into a new color ‘0 ¼ nþ 1.
For example, �A ! �C in Fig. 6.

3. Merging: Vo ¼ V‘ and is merged into an existing
color. For example, �C ! �A in Fig. 6.

The second version of the algorithm differs only in the

way it selects the set Vo. Instead of sampling all the edges in

a current partition, it starts from a single vertex (seed) v and

grows into a connected component Vo.

Swendsen-Wang Cuts: SWC-2
1. Repeat, for current state � ¼ ðV1; V2; . . . ; VnÞ,
2. Select a seed vertex v, say v 2 V‘ in �. Set Vo  fvg,

C  ;,
3. Repeat until C \ CðVo; V‘ n VoÞ ¼ CðVo; V‘ n VoÞ,
4. For any e ¼ < s; t > 2 CðVo; V‘ n VoÞ,

s 2 Vo; t 2 V‘ n Vo.
5. Turn �e ¼ on with probability qe, else

�e ¼ off,
6. If �e ¼ on, set Vo  Vo [ ftg, else C  C [ feg.
7. Propose to assign Vo a new label ‘0 with prob.

qðcVo
¼ ‘0jVo; �Þ.

8. Accept the move with probability �ð�! �0Þ defined
in Theorem 2.

Now, we compute the acceptance probability �ð�! �0Þ
in SWC-1 and SWC-2.
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Fig. 5. Three stages of graphs in the algorithm. (a) Adjacency graph Go, (b) graph G for current partition (coloring) �, and (c) connected components
CP by turning off some edges in G.

Fig. 4. Random clustering of the adjacency graph using independent discriminative models on edges. Each uniform region is a connected component.



We start with computing the probability ratio for
selecting Vo in �! �0 and �0 ! �.

Theorem 1. Let � and �0 be a pair of reversible partition states
which differ in the coloring of Vo, with Vo 	 V‘ in � and Vo 	 V‘0

in �0, then

qðVoj�Þ
qðVoj�0Þ

¼
Q

e2CðVo;V‘nVoÞð1� qeÞQ
e2CðVo;V‘0 nVoÞð1� qeÞ

: ð14Þ

Q
e2CðVo;V‘nVoÞð1� qeÞ ¼ 1 if V‘ n Vo ¼ ;.

Proof. See Appendix A. This is the most important step in
obtaining the acceptance probability. It states the fact
that although there are a combinatorial number of ways
for selecting Vo in � and �0, their probability ratio is
simple due to cancellations. tu

Theorem 2. In the above notation, the acceptance probability for
move �! �0

�ð�! �0Þ¼

min 1;

Q
e2CðVo;V‘0 nVoÞð1� qeÞQ
e2CðVo;V‘�VoÞð1� qeÞ

� qðcVo
¼ ‘jVo; �

0Þ
qðcVo

¼ ‘0jVo; �Þ
� pð�

0jIÞ
pð�jIÞ

 !
:
ð15Þ

Proof. By Metropolis-Hastings method [18], the acceptance
probability is,

�ð�! �0Þ ¼ min 1;
qð�0 ! �Þ
qð�! �0Þ �

pð�0jIÞ
pð�jIÞ

� �
: ð16Þ

For the regrouping case (see �A $ �B in Fig. 6), there is
only one path moving between the two states � and �0,
i.e., selecting and flipping Vo. Therefore,

qð�0 ! �Þ
qð�! �0Þ ¼

qðVoj�0Þ
qðVoj�Þ

� qðcVo ¼ ‘jVo; �
0Þ

qðcVo ¼ ‘0jVo; �Þ
: ð17Þ

The conclusion follows straight from Theorem 1. For the
splitting andmerging case (see�A $ �C in Fig. 6), there are
two paths. We put the proof in Appendix B for clarity. tu
As the partition space �� 3 � is finite, the Markov chain

in SWC-1, 2 is then ergodic following the observation that
there is a nonzero probability for any node v 2 V to be
chosen as Vo and assigned a new color. Then, the Markov
chain can move from a partition to any other partition with
nonzero probability in jV j steps.

To include the Type I moves for model selection and
fitting, we augment the move from two partitions �$ �0 to
two states W $W 0. In state W , the set V‘ 
 Vo has image

model �‘ while the set V‘0 has image model �‘0 . In state W 0,
Vo is split from V‘ and merged into V‘0 . The set V‘ n Vo has a
new model �0‘, and the set V‘0 [ Vo has model �0‘0 , obtained by
sampling from proposals qð�0‘jIV‘nVo

Þ; qð�0‘0 jIV‘0 [Vo
Þ, respec-

tively. Then, the acceptance probability is

�ðW ! W 0Þ ¼

min 1;
qð�‘jIV‘

Þqð�‘0 jIV‘0 Þ
qð�0‘jIV‘nVoÞqð�0‘0 jIV‘0 [Vo

Þ �
qð�0 ! �Þ
qð�! �0Þ �

pðW 0jIÞ
pðW jIÞ

� �
:

The dimensions of the model parameters are matched in the
ratio. The proposal probabilities qð�jIV‘

Þ for any set V‘ 2 V are
again a product of discriminative probabilities on the
vertices. They are computed in a bottom-up step through
data clustering, see [27].

4.3 SWC-3: Generalized Gibbs Sampler

Now, we design the probability qðcVo
¼ ‘0jVo; �Þ to achieve

acceptance probability 1. The third version of our algorithm,
named SWC-3, becomes a generalized Gibbs sampler.

Let� ¼ ðV1; V2; . . . ; VnÞbe thecurrentpartition, andVo 	 V‘

be a connected component whose color cVo
has nþ 1 choices.

That is, Vo can bemerged with one of the following sets,

S1 ¼ V1; S2 ¼ V2; . . . ; Sl ¼ V‘ n V0; . . . ; Sn ¼ Vn; Snþ1 ¼ ;:
ð18Þ

By assigning cVo
¼ ‘0 2 f1; 2; . . . ; nþ 1g, we have nþ 1

possible partitions for �0 (n if VlnVo ¼ ;), andwe denote them
by �1; �2; . . . ; �nþ1, respectively. Vo is merged with Si in �i for
i ¼ 1; 2; . . . ; n and �‘ ¼ �. These partitions may have m 2
fn� 1; n; nþ 1g colors. We usem for clarity of notation.

We denote the Swendsen-Wang cuts between Vo and
Sj; j ¼ 1; 2; . . . ; nþ 1 by

Ci ¼ CðVo; SiÞ; i ¼ 1; 2; . . . ; nþ 1;

with CðVo; ;Þ ¼ ;; [ni¼1Ci ¼ CðVo; V n VoÞ:
ð19Þ

The number of edges in these SW-cuts is fixed regardless
the number of colors m. We denote the weight for the
nþ 1 partitions by

!i ¼
Y
e2Cj
ð1� qeÞ; i ¼ 1; 2; . . . ; m: ð20Þ

Theorem 3. Given the partition of V n Vo, and let pð�ijIÞ be the
posterior probability of partition �i for i ¼ 1; 2; . . . ;m, if we
choose the new color of Vo by
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Fig. 6. A reversible move between three partition states �A; �B; �C which differ only in the color of V0. The vertices connected by thick edges form a
connected component. The thin lines marked with crosses are edges in the SW-cuts. (a) A CP of state �A, (b) A CP of state �B. (c) A CP of state �C .



qðcVo
¼ ijVp; �Þ ¼

!ipð�ijIÞPm
j¼1 !jpð�jjIÞ

; ð21Þ

then the proposed move is accepted with probability one.

Proof. For any two partitions �‘ and �‘0 , we have the
following acceptance probability, from Theorem 2,

�ð�‘ ! �‘0 Þ ¼ min 1;
!‘0

!‘
� !‘pð�‘jIÞ
!‘0pð�‘0 jIÞ

� pð�‘0 jIÞ
pð�‘jIÞ

� �
¼ 1: ð22Þ

because the denominator in (21) is the same for �l and �l0 .

Intuitively, once we pick up Vo, we merge Vo with Si

according to the posterior probability pð�ijIÞ; i ¼ 1; 2; . . . ;m
modifiedbytheSW-cut factor!i ¼

Q
e2Cið1� qeÞ toensure the

Markovchain followstheposterior. IfVo isalwaysasinglesite,
then Ci ¼ ; and !i ¼ 1 for i ¼ 1; 2; . . . ;m, and this reduces to
the Gibbs sampler. Now, we get the third version of the SWC
algorithm.

Swendsen-Wang Cuts: SWC-3
1. Repeat, for a current partition � ¼ ðV1; . . . ; VnÞ.
2. Select a candidate set Vo as in SWC-1 or SWC-2
3. Draw a random sample ‘0 with probability

qð‘0 ¼ ijVo; �Þ from (21)
4. Merge V0 to Si

In comparison, SWC-3 is computationally more costly as
it has to evaluate m posteriors at each step. Sometimes we
can limit the number of color m to only the sets which are
adjacent to Vo. SWC-2 has a smaller computational cost than
SWC-1 as it only tests a small number of edges in the graph
clustering step. In SWC-2, one can choose the initial seed
vertex v 2 V according to the goodness of fit, to avoid
picking large components every time.

5 EXPERIMENTS—SEGMENTATION AND STEREO

In this section, we apply the SW-cut algorithms to two
classical vision problems—image segmentation and stereo
matching.

For optimizing the posterior probability, one needs a
simulated annealing procedure [16] that raises the posterior
probability to a certain power called temperature. This
temperature is slowly decreased according to a cooling
schedule. The initial temperature Tmax is big, in order to
avoid being stuck in local minima and then it is reduced it to
Tmin in a given number of sweeps (1 sweep ¼ jV j steps). The
initial temperature Tmax depends on the efficiency of the
algorithm. As Fig. 8 shows empirically, the Gibbs sampler
needs very high initial temperature Tmax ¼ 200 and a slow
temperaturedecrease (in5; 000 sweeps) inorder to reachgood
solutions. Any good initial solution Wo will be destroyed
(randomized) at the high temperature. In comparison, the
Swendsen-Wang cuts can walk fast at low temperature and
we start with Tmax small, usually Tmax < 20, and decrease fast
(in 15 sweeps), and it can utilize good initial solutions. The
ending temperature Tmin is usually in the range of ½0:1; 1�.

5.1 Experiment I: Image Segmentation

To reduce the size of the adjacency graph, we use a Canny
edge detector and edge tracing to divide the image into
“atomic regions”withalmost constant intensities.Depending
on image size and texture, there are N 2 ½500; 1500� atomic
regions, each being a vertex in Go. The use of atomic regions

helps reduce the computational time, butwe should be aware
of the risk thatwe arenot able to break them if they arewrong,
sometimes some kind of “leakage” occurs. In more recent
work [2], we overcome this problem by hierarchic SW-cut
method which works on multiple levels of adjacency graphs
where the vertices are of various granularities.

We adopt three simple image models and more sophisti-
cated models can be easily added as in [27]. Let x; y be the
coordinates of a pixel.

The first model C1 assumes constant intensity with
additive noise modeled by a nonparametric histogram H.

J1ðx; y; �Þ ¼ �þ �; � � H; �1 ¼ ð�;HÞ: ð23Þ

The second model C2 assumes a linear function with
additive noise H. A linear model:

J2ðx; y; �Þ ¼ �þ axþ byþ �; � � H; �2 ¼ ð�; a; b;HÞ: ð24Þ

The third model C3 assumes a quadratic function with
additive noise H,

J3ðx; y; �Þ¼�þ axþ byþ cx2þdxyþ ey2 þ �; � � H;
�3¼ð�; a; b; c; d; e;HÞ:

ð25Þ

The selection ofmodelwas studied inpreviousDDMCMC
work [27]. Such models are found to be useful for fitting
smoothness regionswithglobal shadingeffects. The texture is
modeled by the nonparametric histogram H which, in
practice, is represented by a vector of B-bins ðH1; . . . ;HBÞ
normalized to sum to 1. Let R be a region which has a
model ð‘; �Þ. Then, the likelihood is

P ðIR; ‘; �Þ /
Y
v2R
HðIvÞ ¼

YB
j¼1
Hnj

j ¼ expð�jRjentropyðHÞÞ;

ð26Þ

wherenj is thenumberofpixels ofR that fall into the jthbinof
the histogram.

Like [27], we use the prior pðWÞ to encourage large and
connected regions. Let n be the number of regions, each
region may consist of one or many subregions. We denote
these connected components by r1; r2; . . . ; rm, m � n. The
prior is

pðWÞ / e�	ne�	
0m
Yn
i¼1

e��j�ij
Ym
i¼1

e�
AreaðriÞ
0:9

: ð27Þ

We fix 	 ¼ 35; 	0 ¼ 15; � ¼ 2 in our experiments.
The model parameters for the regions are computed

deterministically at each step as the best least-square fit. This
could be replaced by separate steps of model fitting and
switching, but this is beyond the purpose of our experiments.
The segmentation results obtained from SWC-1 are shown in
Figs. 1 and 7.

5.2 Computational Speed and Comparison

We compare the speed of our algorithm and Gibbs sampler
in Figs. 8 and 9. We run the SWC-1 algorithm five times on
the cheetah image in Fig. 1, with two types of initializations.
One is random initialization which assigns a random color
to each atomic region independently with n ¼ 5 colors in
total. The other is a uniform initialization which sets all
atomic regions to the same color n ¼ 1. It happens that the
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uniform initialization has lower energy (� log pðW jIÞ) than
the random initializations.

To achieve the same low energy level, the Gibbs sampler
(upper two curves) in Fig. 8 has to start with a high
temperature T ¼ 200 and use a logarithmic annealing
schedule to T ¼ 0:1 in 5; 000 sweeps; otherwise, it remains
stuck at a higher energy level. In contrast, the SWC-1 starts at
temperature T ¼ 20 and decreases to T ¼ 0:1 in 15 sweeps.
Fig. 8 plots the energy for each run as a function of the CPU
time in seconds.

The two upper curves are the Gibbs sampler with random
anduniform initialization, respectively. As SWC-1 converges
much faster, we plot a zoom-in view of the first 20 seconds.
We show five SWC-1 runs, for both the random and uniform

initializations. The uniform initialization has much lower

energy to start with and the SWC-1 algorithm also converges

faster (in 3 seconds). In contrast, the Gibbs sampler cannot

utilize the good initialization because it has to raise the

temperature high.
To study the effects of the discriminative probabilities qe

on convergence speed, we compare the performance of our

algorithm with and without discriminative probabilities in

Fig. 9. We run the SWC-1 algorithm three times with all

edges having the constant probability, qe ¼ 0:2; 0:4; 0:6,

respectively, (Note that the Gibbs sampler is equivalent to

SWC with qe ¼ 0). The annealing schedules for these runs

have to be slower, starting at higher temperature, to obtain
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Fig. 7. Image segmentation: input image, atomic regions, and segmentation result.



the same final energy. Sometimes the algorithm cannot
reach the same low energy as with discriminative models.

Fig. 9 displays the energy versus CPU time (in seconds) of
the three runs and the SWC-1 on the airplane image shown in
Fig. 7. The energies of the three SWC runswith constant edge
probability qe ¼ 0:2; 0:4; 0:6 are shown in dotted lines, all
three runs start from a uniform initialization. They are
significantly slower than SWC-1. It is worth mentioning that
these SWC runs without discriminative probabilities are not
equivalent with the original SW algorithm because we work
on a more general energy function, in which the original SW
cannot be applied.

Fig. 9b compares SWC-1 and SWC-3. SWC-1 is more
effective than SWC-3 because of the computational over-
head of each SWC-3 move and that there is more data-
driven information used in the SWC-1 than in SWC-3,
existent in the design of the qðl0jVo; �Þ.

Compared with the DDMCMC algorithm from [27], our
algorithm can speed it up by 20-40 times in CPU time. Our
model fitting and switching steps are quite simple, but we

observed that the full-featured model fitting and switching

steps take much less time than the split-merge steps which

are the focus of our algorithm. By incorporating full-

featured model fitting and switching steps in our algorithm,

it will remain 20-40 times faster than the DDMCMC [27].

5.3 Experiment II: Comparison with Graph Cuts and
Belief Propagation for Stereo

In this section, we compare the performance of the SW Cuts

with Graph Cuts [4] and Loopy Belief Propagation [33] on

stereo matching using the benchmark in [23], [26].
Given a pair of stereo images I ¼ ðIl; IrÞ, we assign an

integer disparity value (as color) cv ¼ dv for every pixel v in

the left image. The adjacency graph Go is simply the lattice

with 4-nearest neighbor connections. The energy used in the

benchmark [23], [26] is a Potts model with external field,

" ¼
X
v

Dðdv; vÞ þ
X
<s;t>

�s;t1ðds 6¼ dtÞ: ð28Þ
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Fig. 8. Convergence comparison between SWC-1 and Gibbs sampler (upper curves) in CPU time (seconds). (a) The first 1,200 seconds.
(b) Zoomed-in view of the first 20 seconds. The SWC-1 runs five times for both the random and uniform initializations.

Fig. 9. (a) Convergence comparison between SWC-1 (solid) and SWC-1 using constant edge probabilities qe ¼ 0:2; 0:4; 0:6 (dotted). (b) Comparison of
SWC-1 and SWC-3 for the second image in Fig. 7. Both plots are in CPU time. SWC-3 has more overhead at each step and is slower in this example.



The external field (data) term measures the goodness of

intensity match between the left and right images for a

disparity dv,

Dðdv; vÞ ¼ min

�
min

dv�1=2�x�dvþ1=2
jIlðvÞ � Irðv� xÞj; 50

�
: ð29Þ

The coefficient in the prior term is made to be dependent

on < s; t > (inhomogeneous Potts model) �s;t ¼ 20 if

jIlðsÞ � IlðtÞj > 8, otherwise �s;t ¼ 40. This energy has some

shortcomings. 1). It is a low-level Markov random field

without generative model fitting. For example, the slanted

planes in Fig. 10 (second row) are broken into many pieces.

2) It doesnot treathalf-occludedpixels explicitly and,because

of this, the ground truth has much higher energy than what

the algorithms output (see Fig. 11). We are forced to use this

energy in order to comparewith the graph cut (andBP) as this

is the type of energy that they canminimize.We compare the

SWC-2with theGraphCuts implementations provided in the

Scharstein and Szelisky’s package [23] and Tappen’s exten-

sion to Belief Propagation [26] available online.

For the stereo problem, we define discriminative prob-

abilities on both vertices and edges to get better empirical

results.

On each vertex (pixel) v 2 V we compute the vertex

probability qðdv; vÞ / e�Dðdv;vÞ normalized to 1 for

dv2f0; . . . ; dmaxg. It measures how likely pixel v has

disparity dv based on local information. We compute a

marginal probability qðdÞ ¼ 1
jV j
P

v qðd; vÞ for each dispar-

ity level d.

For each edge e ¼ < s; t > , we define an edge prob-

ability for any d 2 f0; . . . ; dmaxg,

qde ¼ 1� e
� 20�s;t

3ðDðs;dsÞþDðt;dtÞÞþ10: ð30Þ

Thus, we have dmax þ 1 probabilities on each edge e, one for

each disparity level. At each SWC-2 step, we first choose a

disparity leveldwithprobability qðdÞandthenweuse qde as the

edge probability for clustering the connected component Vo.

We found that most of the energy costs are contributed by

the boundary pixels (due to the lack of half-occlusion

treatment). Therefore, in SWC-2, a seed vertex v is chosen

with equal probability either from the boundary pixels or by

sampling from a goodness of fit probability qðdv; vÞDðdv; vÞ
with dv being the current assigned disparity at v. That is, we

wish to choose more often those pixels v whose assigned

disparity level dv have a lower probability. Then,we grow the

componentVo as in SWC-2 from the seed v andpropose to flip

its label. The new disparity level d (or color) for Vo is chosen

according to a probability

qðdjVo; �Þ / e
�
P

v2Vo
Dðd;vÞ�0:7K

P
<s;t>;s2Vo

�s;t1ðd6¼dtÞ: ð31Þ
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Fig. 10. Stereo matching for the Tsukuba sequence (first row) and the Sawtooth sequence (second row). (a) Image. (b) SWC-2 result. (c) Graph cuts
result. (d) Manual (truth).

Fig. 11. Performance comparison of SWC with Graph Cuts and Belief
Propagation for the Tsukuba sequence. The curves plot the energy over
CPU time in seconds.



Fig. 11 compares the energy curves against CPU time in

seconds for the SWC (two runs with different annealing

schedules), graph cuts [4], and belief propagation (two

versions) [23], [26]. We initialized the system with an

SWC-1 version working on atomic regions which decreased

the energy fromabout 5; 000; 000 to about 650; 000 in less than

30 seconds. Then, the SWC-2 version working on the pixel

lattice provided the final result. The final energy obtained

with SWC-2 was within 1 percent of the final energy of the

Graph Cuts algorithm for the Tsukuba sequence and within

less then 2 percent for the other sequences. All parameters

were kept the same in all experiments.

The energy level is not a good indicator of the quality of

results as the ground truth results have higher energy than all

algorithms. The experiments show that the SWC reaches

lower energy than belief propagation but it is slower than

Graph cuts.

If we release ourselves from the simple energy model in

(28), and adopt generative models with piecewise planar

surfaces, we obtain a Bayesian posterior probability similar

to the segmentation problem using in Experiment I. Our

algorithm runs in 5 minutes and obtains the much better

results shown in Fig. 12 which are closer to the ground

truth. We run the SWC-2 algorithm on the atomic regions

and then run the boundary diffusion [34] for a few steps to

smooth the object boundary.

6 DISCUSSION

In this paper, we present a generic inference algorithm for

sampling arbitrary probabilities or energy functions on

general graphs by extending the SW method from physics

and the Gibbs sampler (SWC-3). Our method extends the

SWmethod from the Metropolis-Hastings perspective and it

is thusdifferent fromother interpretations in the literature [6],

[12]. In fact, there were some early attempts for applying SW

to image analysis [12], [3] using a partial decoupling concept.

The speed of the SW-cut method depends on the

discriminative probabilities on the edges and vertices. Such

probabilities also make a theoretical analysis of convergence

difficult. In ongoing projects, we are studying ways for

bounding the SW-cut convergence with “external field”

(data) and for diagnosing exact sampling using recent

advanced techniques.We are also incorporating the SW-Cuts

into the DDMCMC framework for image parsing.

APPENDIX A

Proof of Theorem 1. Although there is combinatorial

number of ways for selecting Vo in the two partitions �

and�0, the proposal probabilities ratio qðVoj�Þ
qðVoj�0Þ is very simple

due to cancellation. Inwhat follows,we compute this ratio

for SWC-1. The same ratio can be derived for SWC-2 and

SWC-3 following the same steps.

First,we calculate theprobability qðVoj�Þ for selectingVo

in a partition � ¼ ðV1; V2; . . . ; VnÞ. Without loss of general-

ity, we assume Vo 	 V‘. At state �, the edges between

different colors are removed and the set of remaining

edges is denoted by

Eonð�Þ ¼ Eo n Eoffð�Þ; Eoffð�Þ ¼ [i6¼jCðVi; VjÞ: ð32Þ

Each edge e 2 Eonð�Þ is turned off (�e ¼ off) with

probability 1� qe independently and we denote the edge

variables by

Uð�Þ ¼ Uonð�Þ [ Uoffð�Þ; with

Uonð�Þ ¼ f�e ¼ on; e 2 Eonð�Þg;
Uoffð�Þ ¼ f�e ¼ off; e 2 Eonð�Þg:

ð33Þ
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Fig. 12. Using a Bayesian formulation with generative models fitting piecewise planar surfaces, our algorithm obtains much better results for the

same set of stereo images. The running time is about 5 minutes on a PC. (a) Image. (b) SWC result. (c) Graph cuts. (d) Manual (truth).



We denote the sets of edges that are turned on and off by

U given � by, respectively,

Eonð�; UÞ ¼ fe : e 2 Eonð�Þ; �e ¼ ong; and
Eoffð�; UÞ ¼ fe : e 2 Eonð�Þ; �e ¼ offg:

ð34Þ

The probability of an event Uð�Þ is simply

pðUð�ÞÞ ¼
Y

e2Eonð�;UÞ
qe �

Y
e2Eoff ð�;UÞ

ð1� qeÞ: ð35Þ

In the clustering step, each color Vi is broken into a

number ni of connected components. LetCP ð�Þ be a set of
connected components at state �. There are many ways to

arrive at CP ð�Þ depending on the edge probability Uð�Þ.
For event U ¼ Uð�Þ, we denote the set of connected

components by CP ð�; UÞ. Each set of connected compo-

nents can be obtained by a combinatorial number of edge

probabilities U , so the probability of CP ð�Þ is,

pðCP ð�ÞÞ ¼
X

U:CP ð�;UÞ¼CP ð�Þ
pðUð�ÞÞ: ð36Þ

We are interested in the set of CP ð�Þs which includes Vo

as a connected component,

�ðVo; �Þ ¼ fCP ð�Þ : Vo 2 CP ð�Þg: ð37Þ

Therefore, the probability for choosing Vo at � is

qðVoj�Þ ¼
X

CP ð�;UÞ2�ðVo;�Þ
pðUð�ÞÞpðVojCP ð�; UÞÞ: ð38Þ

where pðVojCP ð�; UÞÞ could be arbitrary, say pðVojCP

ð�;UÞÞ ¼ 1
jCP ð�;UÞj .

To summarize, all CPs in �ðVo; �Þ must observe one

common property—the edges in the SW-cut CðVo; V‘ n VoÞ
must be turned off; otherwise, Vo is connected to other

vertices in V‘ and, thus, violates the premise that Vo is a

connected component. So, we have

CðVo; V‘ n VoÞ � Eoffð�; UÞ; 8CP ð�; UÞ 2 �ðVo; �Þ: ð39Þ

Let

E�offð�; UÞ ¼
Eoffð�; UÞnCðVo; V‘ n VoÞ; 8CP ð�; UÞ 2 �ðVo; �Þ:

ð40Þ

Therefore, we can take the common factor out the
summation,

qðVoj�Þ ¼
Y

e2CðVo;V‘nVoÞ
ð1� qeÞ �

X
CP ð�;UÞ2�ðVo;�Þ

1

jCP ð�; UÞj

Y
e2Eonð�;UÞ

qe �
Y

e2E�
off
ð�;UÞ
ð1� qeÞ

2
4

3
5:

ð41Þ

Second, we calculate the probability qðVoj�0Þ for select-
ing Vo in a partition �0. Without loss of generality, we
assumeVo 	 V‘0 . Following the same steps above,wehave,

qðVoj�0Þ ¼
Y

e2CðVo;V‘0 nVoÞ
ð1� qeÞ �

X
CP ð�0;U 0Þ2�ðVo;�0Þ

1

jCP ð�0; U 0Þj

Y
e2Eonð�0;U 0Þ

qe �
Y

e2E�
off
ð�0;U 0Þ

ð1� qeÞ

2
4

3
5:

ð42Þ
Since � and �0 are partitions at consecutive SWC-steps

and they differ only in the coloring of Vo, we have the
following observations.

For each CP ð�; UÞ 2 �ðVo; �Þ, there is a corresponding
CP ð�0; U 0Þ 2 �ðVo; �

0Þ, such that CP ð�0; U 0Þ ¼ CP ð�; UÞ.
Furthermore, we have

Eonð�;UÞ ¼ Eonð�0; U 0Þ; and E�offð�; UÞ ¼ E�offð�0; U 0Þ: ð43Þ

That is, U and U 0 differs only in the SW-cuts. As the
correspondence is one-to-one, we have

�ðVo; �Þ ¼ �ðVo; �
0Þ: ð44Þ

Therefore, we obtain the ratio by canceling the common
probability in (41) and (42).

qðVoj�Þ
qðVoj�0Þ

¼
Q

e2CðVo;V‘nVoÞð1� qeÞQ
e2CðVo;V‘0 nVoÞð1� qeÞ

: ð45Þ

In a special case, when qe ¼ qo; 8e 2 Eo, we obtain the
proposal ratio in (9) for the original SW method. tu

APPENDIX B

Proof of Theorem 2: The Splitting and Merging Cases. For
the regrouping case where Vo � V‘ in � and Vo � V‘0 in �0,
the only way for moving between � and �0 is to select Vo.
But, for themerging and splitting cases theremight be two
paths illustrated in Fig. 13. Without loss of generality, we
write � ¼ ðV1; V2; V3; . . . ; VnÞ and �0 ¼ ðV1þ2; V3; V4; . . . ; VnÞ
with V1þ2 ¼ V1 [ V2. The two paths for moving between �
and �0 are, respectively.
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Fig. 13. State �A has two subgraphs V1 and V2 which are merged in state �B. There are two paths between �A and �B. One is to choose V0 ¼ V1 and
the other is to choose V0 ¼ V2.



Path 1. Choose Vo ¼ V1. In state � ¼ �A, choose ‘0 ¼ 2,
i.e., merge Vo to V2 and, reversely, in state �0 ¼ �B, choose
‘0 ¼ 1, i.e., split Vo from V2.

Path 2. Choose Vo ¼ V2. In state � ¼ �A, choose ‘0 ¼ 1,
i.e., merge Vo to V1 and, reversely, in state �0 ¼ �B, choose
‘0 ¼ 2, i.e., split Vo from V1.

The proposal probability ratio is,

qð�0 ! �Þ
qð�! �0Þ ¼

qðVo ¼ V1j�0ÞqðcVo
¼ 2jVo; �

0Þ þ qðVo ¼ V2j�0ÞqðcVo ¼ 1jVo; �
0Þ

qðVo ¼ V1j�ÞqðcVo
¼ 1jVo; �ÞÞ þ qðVo ¼ V2j�ÞqðcVo

¼ 2jVo; �Þ
:

ð46Þ

In state � ¼ �A, the SW-cut CðVo; V‘ n VoÞ ¼ ; for both
paths and, in state �0 ¼ �B, the cut is CðV‘; V‘0 Þ ¼ CðV1; V2Þ
for both paths. Following Theorem 1, the probability
ratios for choosing Vo ¼ V1 and Vo ¼ V2 are equal,

qðVo ¼ V1j�Þ
qðVo ¼ V1j�0Þ

¼ 1Q
e2CðV1;V2Þð1� qðeÞÞ ¼

qðVo ¼ V2j�Þ
qðVo ¼ V2j�0Þ

: ð47Þ

Once Vo is selected, either Vo ¼ V1 or Vo ¼ V2, then the
remaining partition for both � and �0 is the same, and is
denoted by �ðV n VoÞ ¼ �0ðV n VoÞ. In proposing the new
label of Vo, we easily observe that

qðcVo
¼ 2jVo ¼ V1; �

0Þ
qðcVo

¼ 1jVo ¼ V2; �Þ
¼ qðcVo

¼ 1jVo ¼ V2; �
0Þ

qðcVo
¼ 2jVo ¼ V1; �Þ

: ð48Þ

Then, the acceptance rate in Theorem 2 follows from
(47) and (48). tu
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