
Bottom-Up/Top-Down Image Parsing
with Attribute Grammar

Feng Han and Song-Chun Zhu

Abstract—This paper presents a simple attribute graph grammar as a generative representation for man-made scenes such as

buildings, hallways, kitchens, and living rooms and studies an effective top-down/bottom-up inference algorithm for parsing images in

the process of maximizing a Bayesian posterior probability or equivalently minimizing a description length (MDL). This simple grammar

has one class of primitives as its terminal nodes, i.e., the projection of planar rectangles in 3-space into the image plane, and six

production rules for the spatial layout of the rectangular surfaces. All of the terminal and nonterminal nodes in the grammar are

described by attributes for their geometric properties and image appearance. Each production rule is associated with some equations

that constrain the attributes of a parent node and those of its children. Given an input image, the inference algorithm computes (or

constructs) a parse graph, which includes a parse tree for the hierarchical decomposition and a number of spatial constraints. In the

inference algorithm, the bottom-up step detects an excessive number of rectangles as weighted candidates, which are sorted in a

certain order and activate top-down predictions of occluded or missing components through the grammar rules. The whole procedure

is, in spirit, similar to the data-driven Markov chain Monte Carlo paradigm [39], [33], except that a greedy algorithm is adopted for

simplicity. In the experiment, we show that the grammar and top-down inference can largely improve the performance of bottom-up

detection.

Index Terms—Attribute graph grammar, bottom-up/top-down, image parsing, primal sketch, generative model.

Ç

1 INTRODUCTION

IN real-world images, especially man-made scenes such as
buildings, offices, and living spaces, a large number of

visual patterns and objects can be decomposed hierarchically
into a small number of primitives arranged by a small set of
spatial relations. This is similar to language, where a huge set
of sentences can be generated from a relatively small
vocabulary through some grammar rules that group words
into phrases, clauses, and sentences. In this paper,we present
a simple attribute graph grammar as a generative image
representation and study an effective top-down/bottom-up
inference algorithm for parsing images in the process of
maximizing a Bayesian posterior probability or equivalently
minimizing a description length (MDL).

In the following, we shall briefly introduce the repre-
sentation and algorithm and then discuss the literature and
our contributions.

1.1 Overview of the Generative Representation

Our simple grammar has one root node for the scene, one
recursive nonterminal node for objects or surfaces, one class
of primitives as its terminal nodes, i.e., planar rectangular
surfaces projected on images. All of the terminal and
nonterminal nodes are described by attributes for their
geometric properties and image appearance.

The grammar has six production rules for the spatial
layout of the rectangular surfaces. Of the six rules, one
expands the root node (scene) into m independent objects
and one instantiates a nonterminal node to a primitive. The
other four rules arrange the objects or surfaces recursively
in four possible ways:

1. aligning m objects in a line, for example, a row of
windows in a wall,

2. nesting one object inside the other, such as a window
frame,

3. aligning three rectangular surfaces in a cube, and
4. arranging up to an m� n object in a mesh/tile

structure such as a tile floor.

Each production rule is associated with some equations that
constrain the attributes of a parent node and those of its
children.

Given an input image, our objective is to compute a
hierarchical parse graph where each nonterminal node
corresponds to a production rule. In this parse graph, the
vertical links show the decomposition of the scene and
objects into their components and the horizontal (dashed)
links specify the spatial relations between components
through constraints on their attributes. Fig. 1 illustrates the
hierarchical representation for a kitchen scene and the
computational algorithm for constructing the parse graph in
an iterative bottom-up/top-down procedure.

Note that the parse graph is not predetermined but is
constructed “on the fly” from the input image. It is also a
generative representation instead of a discriminative model.
The parse graph produces a planar configuration in the
image plane. The configuration consists of rectangular line
segments. These line segments are further broken into
smaller image primitives for edge elements, bars, and

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 1, JANUARY 2009 59

. F. Han is with Sarnoff Corporation, 201 Washington Road, Princeton, NJ
08543. E-mail: hanf@cs.ucla.edu.

. S.-C. Zhu is with the Departments of Computer Science and Statistics,
8125 Math Science Building, Box 951554, University of California, Los
Angeles, Los Angeles, CA 90095. E-mail: sczhu@stat.ucla.edu.

Manuscript received 15 Apr. 2006; revised 23 Apr. 2007; accepted 2 Jan. 2008;
published online 7 Mar. 2008.
Recommended for acceptance by M. Hebert.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number TPAMI-0296-0406.
Digital Object Identifier no. 10.1109/TPAMI.2008.55.

0162-8828/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 28, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

corners in an image primitive dictionary, which, in turn,
generate the image by the primal sketch model [9], [10].
Therefore, our model (combined with a primal sketch
model) is fully generative from the scene node to the pixels.
This property enables a Bayesian formulation with a prior
probability on the parse graph and a likelihood model for
the primal sketch (from image primitives to pixels).

1.2 Overview of the Top-Down/Bottom-Up Inference
Algorithm

This paper is focused on designing an effective inference
algorithm that integrates top-down and bottom-up infer-
ence for attribute grammars. We adopt a greedy algorithm
for maximizing the Bayesian posterior probability that
proceeds in three phases.

Phase 1 is bottom-up detection. We compute edge
segments from the input image and estimate a number of
vanishing points (usually three) in the image by using the
method studied in [38]. Then, the line segments converging
to the same vanishing point are put in a line set. The
rectangle hypotheses are generated in a method similar to
RANSAC [7]. We draw two pairs of line segments from two
out of the three line sets and then evaluate them by the
goodness of fit (compatibility) to a rectangle. The two pairs
of line segments that pass a minimum compatibility test
become a weighted hypothesis. We thus generate an
excessive number of rectangles as bottom-up proposals, which
may overlap or conflict with each other and are sorted in
decreasing order by their weights.

Phase 2 initializes the terminal nodes of the parse graph
in a greedy way. In each step, the algorithm picks the most
promising bottom-up rectangle hypothesis with the heavi-
est weight among all of the candidates and accepts it if it
increases the Bayesian probability or reduces the descrip-
tion length. Then, the weights of all of the candidates that
overlap or conflict with this accepted rectangle are reduced
as in the matching pursuit algorithm [20].

Phase 3 integrates top-down/bottom-up inference. Each
rectangle in the current parse graph matches (often
partially) to a production rule with attributes passed to
the nonterminal node. These nonterminal nodes are, in turn,
matched to other production rules, which then generate top-
down proposals for predictions (see the downward arrows in
Fig. 1). The weights of the top-down proposals are
calculated based on the posterior probabilities. For example,
two adjacent rectangles may activate the line rule (or a mesh
rule or a cube rule), which then generates a number of
rectangles along the aligned axis. Some of these top-down
proposals may have existed in the candidate sets of the
bottom-up proposal. Such proposals bear both the upward
and downward arrows and their weights increase.

In phase 3, each of the five grammar rules (omitting the
scene rule) maintains a data structure that stores all of its
weighted candidates. Each step of the algorithm picks the
most promising proposal (with the heaviest weight) among
all five candidate sets. This proposal is accepted if it
increases the Bayesian probability or reduces the descrip-
tion length. Thus, a new nonterminal node is added to the
parse graph. This corresponds to recognizing a new
subconfiguration and activates the following actions:
1) creating potentially new “top-down” proposals and
inserting them into the lists, 2) reweighting some proposals
in the candidate sets, and 3) passing attributes between a
node and its parent through the constraint equations
associated with this production rule.

The top-down and bottom-up computing is illustrated in
Fig. 1 for the kitchen scene. For most images, the parse
graph has about three layers with about 20 nodes, so the
computation can be done by AI search algorithms such as
best first search. In our experiments, we observed that the
top-down and prior information helps in detecting some
weak rectangles that are missing in the bottom-up detec-
tion. Some “illusory rectangles” could also be hallucinated,
especially due to the line and mesh grammar rules.
Comparison experiments show that the top-down process
improves the performance by a large margin.

1.3 Related Work on Attribute Grammar, Rectangle
Detection, and Image Parsing

In the literature, the study of syntactic pattern recognition
was pioneered by Fu and You [8], [36], [37], Hanson and
Riseman [11], and Ohta et al. [25], [24] and other image
understanding systems with top-down/bottom-up infer-
ence [2], [13], [14], [6], [21], [22] in the 1970-1980s. Its
applicability has been limited by two difficulties. The first is
known as the “semantic gap.” The primitive patterns
(terminators) used in their grammar could not be computed
reliably from real images. The second is the lack of
expressive power of the early work, which was mostly
focused on string grammars and stochastic context-free

60 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 1, JANUARY 2009

Fig. 1. The hierarchic parse graph is a generative representation, and it
produces a configuration in the image plane. This configuration
generates the image in a primal sketch model. The parse graph is
constructed by an iterative top-down/bottom-up algorithm. The rectan-
gular primitives detected in the bottom-up step activate the grammar
rules for predicting missing or occluded components in the top-down
process.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 28, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

grammars (SCFGs). In recent years, attribute grammars [1]
and context sensitive graph grammars [29] have been
developed in visual diagrams parsing. In the vision
literature, grammars are mostly studied in binary shape
recognition, such as the grammars for medial axis [40] and
shock graphs [30]. Most recently, there has been a
resurgence of compositional computing for segmentation
[31], [34] and object recognition [16], [3]. However, a more
general representation and computational framework has
yet been developed. A comprehensive survey of these work
is referred to in [42].

Detecting rectangular structures in images has been well
studied in the vision literature, especially for detecting
building roofs in aerial images. One class of methods [17],
[19], [32] detects edge segments and line primitives and
then groups them into rectangles. The other types of
methods [43], [38] use Hough Transforms on edge maps
to detect rectangles globally. A Markov chain Monte Carlo
method was developed in rectangular scene construction in
[4], which also uses compositional structures. Putting
detecting rectangle structures in the broader topic of
modeling structural variability, our work is also closely
related to a variety of representations, including shape
grammars with algebraic constraints [26], [27], [18].

Our work is also related to some previous work on object
recognition [5], [15] and image parsing by data-driven
Markov chain Monte Carlo (DDMCMC) [39], [33]. The
common goal is to design effective algorithms by integrat-
ing bottom-up and top-down steps for inferring single
objects or hierarchical image structures. In DDMCMC, each
step is made reversible for backtracking and observes the
detailed balance equations. Each step chooses a proposal
with a certain probability and accepts the proposal with a
probability. This is often computationally expensive. When
the proposal is strong, especially at the early stage of
computation as the proposals are sorted in decreasing
order, it is often accepted with probability 1. The reversible
moves are mostly needed at places where the image is
ambiguous. Thus, we adopt a greedy algorithm in this
paper and accept the proposal deterministically when it
increases the posterior probability.

In comparison to the previous work, this paper has the
following novel aspects:

1. It extends the representation in image parsing [39],
[33] with an attribute grammar, which sets the
ground for recognizing generic objects with struc-
tural variabilities.

2. It derives a generative model, which is tightly
integrated with the primal sketch models [10] to
yield a full generative representation from a scene to
pixels.

3. It develops the bottom-up and top-down mechanism
for grammar-based image parsing. This strategy has
been used in some recent object recognition work
[3], [35].

The remainder of this paper is organized as follows: We
first present the attribute grammar representation in
Section 2. Then, we derive the probability models and pose
the problem as Bayesian inference in Section 3. The top-
down/bottom-up inference algorithm is presented in

Section 4. Some experimental results are shown in Section 5.
We then conclude this paper with a discussion of future
work in Section 6.

2 ATTRIBUTE GRAPH GRAMMAR FOR SCENE

REPRESENTATION

In this section, we introduce the attribute graph grammar
representation to set the background for the probabilistic
models in the next section.

2.1 Attribute Graph Grammar

An attribute graph grammar is augmented from the SCFG
by including attributes and constraints on the nodes.

Definition 1. An attribute graph grammar is specified by a
5-tuple:

G ¼ ðVN; VT ; S;R; P Þ; ð1Þ
where VN and VT are the sets of nonterminal and terminal
nodes, respectively, and S is the initial node for the scene. R is
a set of production rules for spatial relationships. P is the
probability for the grammar.

A nonterminal node is denoted by capital letters,
A;A1; A2 2 VN , and a terminal node is denoted by lowercase
letters, a; b; c; a1; a2 2 VT . Both nonterminal and terminal
nodes have a vector of attributes denoted by XðAÞ and xðaÞ,
respectively. R ¼ fr1; r2; . . . ; rmg is a set of production rules
expanding a nonterminal node into a number of nodes in
VN [VT . Each rule is associated with a number of constraint
equations. For example, the following is a rule that expands
one node A into two nodes A1; A2 2 VN :

r : A! ðA1; A2Þ: ð2Þ
The associated equations are constraints on the attributes:

gi XðAÞð Þ ¼ fi XðA1Þ; XðA2Þð Þ; i ¼ 1; 2; . . . ; nðrÞ: ð3Þ
giðÞ and fiðÞ are usually projection functions that take some
elements from the attribute vectors. For instance, letXðAÞ ¼
ðX1; X2; X3Þ and let XðA1Þ ¼ ðX11; X12Þ. Then, an equation
could simply be an equivalence constraint (or assignment)
for passing the information between nodes A and A1 in
either direction, X1 ¼ X11. In the parsing process, some-
times we know the attributes of a child node X11 and then
pass it to X1 in rule r. This is called “bottom-up message
passing.” Then, X1 may be passed to another child node’s
attribute X2, with X21 ¼ X1. This is called “top-down
message passing.”

A production rule may instantiate a nonterminal node to
a terminal node:

r : A! a ð4Þ
with constraints

gi XðAÞð Þ ¼ fi xðaÞð Þ; i ¼ 1; 2; . . . ; nðrÞ: ð5Þ

Definition 2. A parse graph G is a tree-structured representa-
tion expanded from a root node S by a sequence of production
rules ð�1; �2; . . . ; �kÞ and augmented with spatial relations and
constraints.

HAN AND ZHU: BOTTOM-UP/TOP-DOWN IMAGE PARSING WITH ATTRIBUTE GRAMMAR 61

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 28, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

Definition 3. A configuration C is a set of terminal nodes

(rectangles in this paper):

C ¼ ðai; x aiÞð Þ : ai 2 VT ; i ¼ 1; 2; . . . ; Kf g: ð6Þ
It is deterministically generated by a parse graph, i.e.,

C ¼ CðGraphÞ, and its attributes are denoted by XðCÞ.

If a configuration C has multiple parse graph, then the
grammar is said to be ambiguous.

Definition 4. A language of grammar G is the set of all valid

configurations that can be derived by the production rules

starting from a root node S. It is denoted by

�ðGÞ ¼ C;XðCÞð Þ : S �!�1;...;�k
C; �i 2 R; i ¼ 1; 2; . . . ; k

n o
: ð7Þ

2.2 A Class of Primitives: Rectangles

Our simple grammar uses only one class of primitives, i.e.,
the projection of planar rectangles in 3-space into the image
plane. As illustrated in Fig. 2, it has two pairs of parallel line
segments in 3D, which intersect at two vanishing points
v1; v2 in the image plane. Therefore, the set of terminal
nodes is denoted by

VT ¼ a; xðaÞð Þ : xðaÞ 2 �af g: ð8Þ
There are many equivalent ways of defining the attributes
xðaÞ for a rectangle. We choose the variables to simplify the
constraint equations and thus denote a by eight variables:
two vanishing points v1 ¼ ðx1; y1Þ and v2 ¼ ðx2; y2Þ, two
orientations �1 and �2 for the two boundaries converging at
v1, and two orientations �3 and �4 for the two boundaries
converging at v2:

xðaÞ ¼ ðx1; y1; x2; y2; �1; �2; �3; �4Þ: ð9Þ
2.3 Six Production Rules

As a generic grammar for image interpretation, our
representation has the root node S for the scene and one
nonterminal node A for objects and surfaces:

VN ¼ S;XðSÞð Þ; A;XðAÞð Þ : XðSÞ ¼ n;XðAÞ 2 �Af g: ð10Þ
The scene node S generates n independent objects. The
object node A can be instantiated (assigned) to a rectangle
(rule r5) or can be used recursively by the other four
production rules: r2—the line production rule, r3—the mesh
production rule, r4—the nesting production rule, and
r6—the cube production rule. The six production rules are
summarized in Fig. 3.

62 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 1, JANUARY 2009

Fig. 2. A planar rectangle (shaded) is described by eight variables: the

two vanishing points v1 ¼ ðx1; y1Þ and v2 ¼ ðx2; y2Þ and the four

directions �1, �2, �3, and �4 at the two vanishing points.

Fig. 3. Six attribute grammar rules. Attributes will be passed between a node to its children, and the horizontal lines show constraints on attributes.

See text for explanation.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 28, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

This simple grammar can generate a language with a
huge number of configurations for generic objects and
scenes. Fig. 4 shows two typical configurations, namely, a
floor pattern and a toolbox pattern, and their corresponding
parse graphs.

The attribute XðAÞ ¼ ð‘ðAÞ; nðAÞ; XoðAÞÞ includes a
label ‘ for the type of object (structure) represented by A,
‘ðAÞ 2 �‘ ¼ fline; mesh; nest; rect; cubeg, nðAÞ for the
number of children nodes in A, and XoðAÞ for its geometric
properties and appearance. The variables in XoðAÞ depend
on the object type of A; therefore, we denote the attribute
space of A as the union of the five different subspaces:

�A ¼ �line
A [�mesh

A [�nest
A [�rect

A [�cube
A : ð11Þ

The geometric attributes for all four different objects (except
rectangle) are described as follows and, for clarity, we
introduce the appearance attributes (intensity) in the next
section, together with the primal sketch model:

1. For a line object of n ¼ nðAÞ rectangles,
XoðAÞ ¼ v1; v2; �1; �2; �3; �4; �1; . . . ; �2ðn�1Þ

� �
: ð12Þ

The first eight parameters define the bounding box
for the n rectangles and the other 2n� 2 orientations
are for the remaining directions of the n rectangles in
the object.

2. For a mesh object of up to nðAÞ ¼ m� n rectangles,

XoðAÞ ¼ v1; v2; �1; . . . ; �4; �1�1; . . . ; �2ðm�1Þ�ðn�1Þ
� �

:

ð13Þ
Again, the first eight parameters define the bound-
ing box for the mesh and the rest includes 2ðm�
1Þðn� 1Þ orientations for the remaining directions
specifying the individual rectangles in the object,
some of which could be empty.

3. For a nest object with nðAÞ ¼ 2 rectangles, XoðAÞ ¼
ðv1; v2; �1; . . . ; �4; �1; . . . ; �4Þ.

4. For a cube object, nðAÞ ¼ 3 and XoðAÞ ¼
ðv1; v2; v3; �1; �2; �3; �4; �5; �6Þ. It has three vanishing
points and three pairs of orientation angles.

Remarks. If the rectangles are arranged regularly in the line
or mesh objects, for example, equally spaced, then we
can omit all of the orientations �i for defining the

individual rectangles. The sharing of bounding boxes
and orientations are intrinsic reasons for grouping and
composition as they reduce the description length. The
rectangle elements in the above could be the bounding
box (hidden) for other objects to allow recursive
applications of the rules. In addition to these hard
constraints for passing attributes among nodes, we shall
introduce probabilities to impose soft constraints on the
free variables (mostly the �s) so that the elements are
nearly equally spaced.

In the following, we briefly explain the constraint
equations associated with the rules. In most cases, the
constraint equations are straightforward but are tedious to
enumerate. Therefore, we choose to introduce the typical
examples.

The simplest rule is r5 for instantiation. It assigns a
rectangle and the associated attributes to a nonterminal
node A. Therefore, the constraint equation is simply an
assignment for the eight variables:

r5 : A! a; XoðAÞ ¼ xðaÞ:
This assignment may go in either direction in the
computation.

For the line production rule r2, we choose m ¼ 3 for
simplicity:

r2 : A! ðA1; A2; A3Þ;
gi XoðAÞð Þ ¼ fi XoðA1Þ; XoðA2Þ; XoðA3Þð Þ; i ¼ 1; 2; . . . ; k:

A is the bounding rectangle for A1, A2, and A3 and shares
with them the two vanishing points and four orientations.
Given XoðAÞ, the three rectangles A1, A2, and A3 have only
4 degrees of freedom for the two intervals and all of the
other 3� 8� 4 ¼ 20 attributes are decided by the above
attribute equations. One can derive the constraint equations
for the other rules in a similar way.

3 PROBABILITY MODELS AND BAYESIAN

FORMULATION

In the generative model, an input image I is generated by a
sketch Csk, which includes the planar configuration C ¼
CðGÞ produced by parse graph G and some free sketches
(line segments), denoted by Cfree, for other nonrectangular
structures:

HAN AND ZHU: BOTTOM-UP/TOP-DOWN IMAGE PARSING WITH ATTRIBUTE GRAMMAR 63

Fig. 4. (b) and (d) Two examples of rectangle object configurations and (a) and (c) their corresponding parse graphs. The production rules are shown

as nonterminal nodes.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 28, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

Csk ¼ CðGÞ; Cfreeð Þ: ð14Þ
In a Bayesian framework, our objective is to maximize a

posterior probability:

G� ¼ argmax pðIjCskÞpðGÞpðCfreeÞ: ð15Þ
The prior model pðGÞ is the fifth component in the

definition of the grammar G in (1). pðCfreeÞ follows the

primal sketch model. We discuss pðGÞ and likelihood

pðIjCskÞ in the following two sections.

3.1 Prior Model pðGÞ for the Parse Graph

Let �NðGÞ and �T ðGÞ be the sets of nonterminal nodes

(including the root node) and terminal nodes, respectively,

in the parse graph G. Then, a parse graph includes the

following three sets of variables:

G ¼ �
‘ðAÞ; nðAÞ; XoðAÞð Þ : 8A 2 �NðGÞf g;

fXoðaÞ : 8a 2 �T ðGÞ�: ð16Þ

Due to the hierarchical tree structure, we factorize the

probability pðGÞ as

pðGÞ ¼
Y

A2�N ðGÞ

�
p ‘ðAÞð Þp nðAÞj‘ðAÞð Þp XoðAÞj‘ðAÞ; nðAÞð Þ

Y
B2childðAÞ

p XoðBÞjXoðAÞð Þ
�
:

ð17Þ
First, ‘ðAÞ is a “switch” variable for selecting one of the

rules. We denote the probabilities for the five rules as qð‘Þ,
which sum to one:

P
‘2�‘

qð‘Þ ¼ 1.

Second, at the root S and nonterminal node A, we have a

variable nðAÞ for the number of their children and

pðnðAÞj‘ðAÞÞ penalizes this number (or complexity) such

as pðnðAÞj‘ðAÞÞ ¼ �‘ðAÞnðAÞe
��‘ðAÞ

nðAÞ! . pðnðAÞj‘ðAÞÞ is deterministic

when A is the cube or the nesting rule:

p
�
nðAÞ ¼ 3j‘ðAÞ ¼ ‘‘cube’’

� ¼ 1 and

p
�
nðAÞ 6¼3j‘ðAÞ ¼ ‘‘cube’’

� ¼ 0;

p
�
nðAÞ ¼ 2j‘ðAÞ ¼ ‘‘nest’’

� ¼ 1 and

p
�
nðAÞ 6¼2j‘ðAÞ ¼ ‘‘nest’’

� ¼ 0:

Third, pðXoðAÞj‘ðAÞ; nðAÞÞ ¼ 1
Z e

��‘ðAÞðXoðAÞÞ (the normal-

ization constant Z can be computed empirically either by

sampling or integration) is a singleton probability on the

geometric and the appearance of A. Similarly, we have

pðXoðBÞjXoðAÞ ¼ 1
� e

� ‘ðAÞðXoðAÞ;XoðBÞÞ for those of A’s chil-

dren. The potential functions �ðÞ and ðÞ take quadratic

forms to enforce some regularities, such as ensuring that

aligned rectangles in a group have almost the same shape

and are evenly spaced. For example, the potential functions

for a line rule A! ðA1; A2; A3Þ (with nðAÞ ¼ 3 and the

aligning axis being denoted as l) are

�line XoðAÞð Þ ¼
X2
i¼1

d XoðAiÞ; XoðAiþ1Þð Þ � d
� �2

þ 1

2

X3
i¼1

w XoðAiÞð Þ � wð Þ2;

d ¼ 1

2

X2
i¼1

d XoðAiÞ; XoðAiþ1Þð Þ;

w ¼ 1

3

X3
i¼1

w XoðAiÞð Þ;

ð18Þ

 line XoðAÞ; XoðAiÞð Þ ¼ j�3i � �3j2 þ j�4i � �4j2
� �

: ð19Þ

In (18), dðXoðAiÞ; XoðAjÞÞ is a function for computing the
distance between the neighboring Ai and Aj, which is
defined as the minimum distance between the four
boundary lines perpendicular to l from Ai and Aj, and
wðAiÞ is a function for computing the distance between the
two boundary lines perpendicular to l from Ai. In (19), �3
and �4 are the two orientations of the two boundaries of A
parallel to l , while �3i and �4i are the two orientations of the
two boundaries of Ai parallel to l . �lineðXoðAÞÞ globally
constrains A1, A2, and A3 to have similar shape and be
evenly spread in the line group, while lineðXoðAÞ; XoðAiÞÞ
enforces the individual properties of Ai to fit with respect to
the whole group.

In our recent work [42], pðGÞ is generalized to a
nonfactorized form for context sensitive graph grammar.

3.2 Likelihood Model pðIjCskÞ
For the likelihood model, we adopt the primal sketch model
for pðIjCskÞ and refer to two previous papers [9], [10] for this
model and algorithm. The reconstruction (synthesis) of
images using a configuration is shown in the experiment
section (see Figs. 10 and 11). In the following, we briefly
introduce the model for this paper to be self contained.
CðGÞ is a set of rectangles in the image plane. Fig. 5

shows a rectangle in a lattice. A lattice is denoted by � and
is divided into two disjoint parts: the sketchable part for the
shaded pixels around the rectangles and the nonsketchable
part for the remaining part:

� ¼ �sk [�nsk; �sk \ �nsk ¼ ;:

64 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 1, JANUARY 2009

Fig. 5. Partition of image lattice � into two parts: the shaded pixels �sk

around the rectangles and the remaining part �nsk. The rectangles are

divided into small edge and corner segments. Therefore, �sk is divided

into many image primitives.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 28, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

� includespixels that are2� 5pixels away fromthe rectangle
boundaries. The rectangles aredivided into short segments of
5-11pixels long for lines andcorners. Therefore,�sk isdivided
intoN image primitives (patches) of 5� 7 pixels along these
segments:

�sk ¼ [Nk¼1�sk;k: ð20Þ
For example, Fig. 5 shows two image primitives: one for

line segment and one for a corner. The primal sketch model
collects all of these primitives in a primitive dictionary
represented (clustered) in parametric form:

�sk ¼ Btðu; v;x; y; �; �;�Þ : 8x; y; �; �; �; tf g:
t indexes the type of primitives, such as edges, bars,
corners, and crosses, and ðu; vÞ are the coordinates of the
patch centered at ðx; yÞ with scale � and orientation � . �
denotes the parameters for the intensity profiles perpendi-
cular to each line segment. A corner will have two profiles.
The intensity profiles along the line segment in a primitive
are assumed to be the same.

Therefore, there are two types of profiles, as Fig. 6 shows:
One is a step edge at various scales (due to blurring effects)
and the other is a ridge (bar). The step edge profile is
specified with five parameters—� ¼ ðu1; u2; w1; w12; w2Þ—
which denote the left intensity, the right intensity, the
width of the left intensity (from the leftmost to the left
second derivative extrema), the blurring scale, and the
width of the right intensity, respectively, as shown in Fig. 5.
The ridge profile is represented by seven parameters: � ¼
ðu1; u2; u3; w1; w12; w2; w23; w3Þ: A more detailed description
is given in [10]. Using the above edge/ridge model, the one-
dimensional intensity function of the profile for the
rectangle boundaries can be fully obtained.

Therefore, we obtain a generative model for the sketch-
able part of the image:

Iðx; yÞ ¼Btkðx� xk; y� yk; �k; �k;�kÞ þ nðx; yÞ;
ðx; yÞ 2 �sk;k; 8k ¼ 1; 2; . . . ; N:

ð21Þ

The residue is assumed to be i.i.d. Gaussian noise
nðx; yÞ � Gð0; �2oÞ. This model is sparser than the traditional
wavelet representation as each pixel is represented by only
one primitive.

As mentioned previously, rectangles are only part of the
sketchable structures in the images, though they are themost
common structures in man-made scenes. The remaining

structures are represented as free sketches, which are

object boundaries that cannot be grouped into rectangles.

These free sketches are also divided into short line

segments and are therefore represented by image primi-

tives in the same way as the rectangles.
The nonsketchable part is modeled as textures without

prominent structures, which are used to fill in the gaps in a

way similar to image inpainting. �nsk is divided into a

number ofM ¼ 3 � 5 disjoint homogeneous texture regions

by clustering the filter responses:

�nsk ¼ [Mm¼1�nsk;m:

Each texture region is characterized by the histograms of

some Gabor filter responses:

hðI�nsk;m
Þ ¼ hm; m ¼ 1; 2; . . . ;M:

The probability model for the textures is the FRAME model

[41], with the Lagrange parameters (vector) �m being the

learned potentials. These textures use the sketchable part �sk

as the boundary condition in calculating the filter responses.
In summary, we have the following primal sketch model

for the likelihood:

pðIjCskÞ ¼ 1

Z
exp

�
�
XN
k¼1

X
ðx;yÞ2�sk;k

Iðx; yÞ �Bkðx; yÞð Þ2
2�2o

�
XM
m¼1

�m; hðI�nsk;m
Þ� 	

:

ð22Þ

The above likelihood is based on the concept of primitives,

not rectangles. Therefore, the recognition of rectangles or

larger structures (cube, mesh, etc.) only affects the like-

lihood locally. In other words, our parse graph is built on

the primal sketch representation. This is important in

designing an effective inference algorithm in the next

section.
One may argue for a region-based representation by

assuming homogeneous intensities within each rectangles.

We find that the primal sketch has the following advantages

over a region-based representation: 1) The intensity inside a

rectangle can be rather complex to model as it may include

shading effects, textures, and surface markings, 2) the

rectangles are occluding each other (one has to infer a

partial-order relation between the rectangles, i.e., a layer

representation, so that the region-based model can be

applied properly, and this needs extra computation), and

3) besides all of the regions covered by the rectangles, one

still needs to model the background. Thus, the detection of a

rectangle must be associated with fitting the likelihood for

the rectangle region. In comparison, the primal sketch

model largely reduces the computation.

4 INFERENCE ALGORITHM

Our objective is to compute a parse graph G by maximizing

the posterior probability formulated in the previous section.

The algorithm should achieve two difficult goals: 1) con-

structing the parse graph, whose structure is not prede-

termined but is constructed “on the fly” from the input

HAN AND ZHU: BOTTOM-UP/TOP-DOWN IMAGE PARSING WITH ATTRIBUTE GRAMMAR 65

Fig. 6. The parametric representation of an edge profile and a ridge

profile (from Guo et al., 2005). (a) Edge profile. (b) Ridge profile.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 28, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

image and primal sketch representation and 2) estimating

and passing the attributes in the parse graph.
There are several ways to infer the optimal parse graph

and DDMCMC has been used in [39], [33]. In this paper, our

domain is limited to rectangle scenes and the parse graph is

not too big (usually � 20 nodes). Thus, the best first search

algorithm in AI can be directly applied to compute the

parse graph by maximizing the posterior probability in the

steepest ascent way. This algorithm is, in spirit, very similar

to DDMCMC.
Our algorithm consists of three phases. In phase 1, we

compute a primal sketch representation and initialize the

configuration to the free sketches. Then, a number of

rectangle proposals are generated from the sketch by a

bottom-up detection algorithm. In phase 2, we adopt a

simplified generative model by assuming independent

rectangles (only r5 and r1 are considered). Thus, we

recognize a number of rectangles proposed in phase 1 to

initialize rule r5 in the parse graph. The algorithm in

phase 2 is very much like matching pursuit [20]. Finally,

phase 3 constructs the parse graph with bottom-up/top-

down mechanisms.

4.1 Phase 1: Primal Sketch and Bottom-Up
Rectangle Detection

We start with edge detection and edge tracing to get a

number of long contours. Then, we compute a primal

sketch representation Csk by using the likelihood model in

(22). We segment each long contour into a number of

n straight line segments by polygon approximation. In man-

made scenes, the majority of line segments are aligned with

one of the three principal directions and each group of

parallel lines intersects at a vanishing point due to

perspective projection. We define all lines ending at a

vanishing point to be a parallel line group. A rectangle has

two pairs of parallel lines, which belong to two separate

parallel line groups. We run the vanishing point estimation

algorithm [38] to group all of the line segments into three

groups corresponding to the principal directions. With

these three line groups, we generate the rectangle hypoth-

eses as in RANSAC [7]. We exhaustively choose two line

candidates from each set, as shown in Fig. 7a, and run some

simple compatibility tests on their positions to see whether

two pairs of lines delineate a valid rectangle. For example,

the two pairs of line segments should not intersect each

other, as shown in Fig. 7b. This will eliminate some

obviously inadequate hypotheses.
This yields an excessive number of bottom-up rectangle

candidates, denoted by

� ¼ f�1; . . . ; �Lg:
These candidates may conflict with each other. For

example, two candidate rectangles may share two or more

edge segments and only one of them should appear. We

mark this conflicting relation among all of the candidates.

Thus, if one candidate is accepted in the later stage, those

conflicting candidates will be downgraded or eliminated.

4.2 Phase 2: Pursuing Independent Rectangles to
Initialize the Parse Graph

The computation in phase 1 results in a free sketch

configuration Csk ¼ Cfree, CðGÞ ¼ ;, and a set of rectangle

candidates �. In phase 2, we shall initialize the terminal

nodes of the parse graph.
We adopt a simplified model that uses only two rules: r1

and r5. This model assumes that the scene consists of a

number of independent rectangles selected from �, which

explains away some line segments, and the remaining lines

are free sketches. A similar model has been used on signal

decomposition with wavelets and sparse coding; thus, our

method for selecting the rectangles is similar to the

matching pursuit algorithm [20].

In the following, we calculate the weight !ð�Þ for each

rectangle � 2 � and the weight change.
A rectangle � 2 � is represented by a number of short

line segments and corners (primitives) denoted by Lð�Þ,
some of which are detected in Cfree and some of which are

missing. The missing components are the missing edges or

gaps between primitives in Cfree. Thus, we define two sets:

Lð�Þ ¼ Lonð�Þ [Loffð�Þ; with Lonð�Þ ¼ Lð�Þ \ Cfree:

Suppose that, at step m, the current representation includes

a number of rectangles in CðGÞ and a free sketch Cfree:

G; Csk ¼ ðCðGÞ; CfreeÞ:
Steps 3 and 4 in the above pursuit algorithm select �þ. Then,
the new representation will be

G0 ¼G [fAþg; CðG0Þ ¼ CðGÞ [Lð�þÞ;
C0

free ¼Cfree n Lonð�þÞ; C0
sk ¼ ðCðG0Þ; C0

freeÞ:
ð23Þ

66 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 1, JANUARY 2009

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 28, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

The weight of �þ will be the change (or equally the log-
ratio) of log-posterior probabilities in (15):

!ðbþÞ ¼ log
pðIjC0

skÞ
pðIjCskÞ �

pðG0Þ
pðGÞ �

pðC0
freeÞ

pðCfreeÞ
� �

: ð24Þ

Choosing a rectangle �þ with the largest weight !ð�þÞ > 0

increases the posterior probability in a greedy fashion. The

weight can be interpreted in three terms which are

computed easily. The first term, log
pðIjC0

sk
Þ

pðIjCskÞ , measures the

changes of the log-likelihood in a small domain covered by

the primitives in Loffð�þÞ. Pixels in this domain belonged to

�nsk before and are in �rmsk after adding �þ. The likelihood

does not change for any other pixels. The second term,

log pðG
0Þ

pðGÞ , penalizes the model complexity of rectangles (see

(17)). The third term, log
pðC0

free
Þ

pðCfreeÞ , awards the reduction of

complexity in the free sketch.
The above weights are computed independently for each

� 2 �. After adding �þ in step 5, we should update the
weight !ð�Þ 2 � if � overlaps with �þ, i.e.,

Lð�Þ \ Lð�þÞ 6¼ ;;
because theupdateofCfree andCðGÞ in step4changes the first
and third terms in calculating !ð�Þ in (24). This update of
weight involves only a local computation on Lð�Þ \ Lð�þÞ.
When we detect the rectangles in phase 1, we have
computed the overlapping information. This weight update
was used in wavelet pursuit, where it is interpreted as
“lateral inhibition” in neuroscience.

4.3 Phase 3: Bottom-Up and Top-Down
Construction of a Parse Graph

The algorithm for constructing the parse graph adopts a
similar greedy method as in phase 2. In phase 3, we include
the four other production rules, r2, r3, r4, and r6, and use the
top-down mechanism for computing rectangles that may
have been missed in the bottom-up detection. We start with
an illustration of the algorithm for the kitchen scene.

In Fig. 1, the four rectangles (in red) are detected and
accepted in the bottom-up phases 1 and 2. They generate a
number of candidates for larger groups by using the
production rules and three of these candidates are shown

as nonterminal nodes A, B, and C, respectively. We denote
each candidate by

� ¼ r�; Að1Þ; . . . ; Aðn�Þ; Bð1Þ; . . . ; Bðk�Þ
� �

:

In the above notation, r� is the production rule for the
group. It represents a type of spatial layout or relationship
of its components. For example, A, B, and C in Fig. 1 use the
mesh r3, cube r6, and nesting r4 rules, respectively. In �,
AðiÞ, i ¼ 1; 2; . . . ; n�, are the existing nonterminal nodes inG

which satisfy the constraint equations of rule r. AðiÞ can be
either a nonterminal rectangle accepted by rule r5 in phase 2
or the bounding box of a nonterminal node with three rules
r2, r3, and r4. The cube object does not have a natural
bounding box. We call AðiÞ, i ¼ 1; 2; . . . ; n�, the bottom-up
nodes for � and they are illustrated by the upward arrows
in Fig. 1. In contrast, BðjÞ, j ¼ 1; 2; . . . ; k�, are the top-down
nonterminal nodes predicted by rule r� and they are shown
by the blue rectangles in Fig. 1, with downward arrows.
Some of the top-down rectangles may have already existed
in the candidate set � but have not been accepted in phase 2
or simply do not participate in the bottom-up proposal of �.
Such nodes bear both upward and downward arrows.

Fig. 8 shows the five candidate sets for the five rules. �i

is the candidate set of rule ri for i ¼ 2; 3; 4; 6, respectively.
Each candidate � 2 �i is shown by an ellipse containing a
number of circles Að1Þ, i ¼ 1; . . . ; n� (with upward arrows)
and BðjÞ, j ¼ 1; . . . ; k� (with downward arrows). These
candidates are weighted in a similar way as in the
rectangles in � by the log-posterior probability ratio.

�i ¼ ð�j; !jÞ : i ¼ 1; 2; . . .Ni

� �
; i ¼ 2; 3; 4; 6:

� ¼ fð�i; !iÞ : i ¼ 1; 2; . . . ;Mg for rule r5 has been discussed
in phase 2. Now, � also contains top-down candidates
shown by the circles with downward arrows. They are
generated by other rules. A nonterminal node A in graph G

may participate in more than one group of candidate �s,
just as a line segment may be part of multiple rectangle
candidates �s. This creates overlaps between the candidates
and needs to be resolved in a generative model.

At each step, the parsing algorithm will choose the
candidate with the largest weight from the five candidate

HAN AND ZHU: BOTTOM-UP/TOP-DOWN IMAGE PARSING WITH ATTRIBUTE GRAMMAR 67

Fig. 7. Bottom-up rectangle detection. The n line segments are grouped into three sets according to their vanishing points. Each rectangle consists of

two pairs of nearly parallel line segments (represented by a small circle). (a) Line segments grouped in three sets by vanishing points. (b) Examples

of incompatible hypotheses.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 28, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

sets and add a new nonterminal node to the parse graph. If
the candidate is � 2 �, it means accepting a new rectangle.
Otherwise, the candidate is a larger structure � and the
algorithm creates a nonterminal node of type r by grouping
the existing nodes AðiÞ, i ¼ 1; 2; . . . ; n�, and inserts the top-
down rectangles BðjÞ, j ¼ 1; . . . ; k�, into the candidate set �.

The key part of the algorithm is to generate proposals for
�s and �s and maintain the five weighted candidate sets �,
�i, i ¼ 2, 3, 4, 6, at each step. We summarize the algorithm
as follows:

Fig. 9 shows a snapshot of one iteration of the algorithm
on the kitchen scene. Fig. 9b is a subset of rectangle
candidates � detected in phase 1. We show a subset for
clarity. At the end of phase 2, we obtain a parse graph
G ¼ fA1; A2; . . . ; A21g whose configuration CðGÞ is shown
in Fig. 9c. By calling the function ProposalðG; riÞ, we obtain
the candidate sets �i, i ¼ 2, 3, 4, 6. The candidate sets are
shown in Figs. 9d, 9e , and 9f. For each candidate, � ¼
ðr�; Að1Þ; . . . ; Aðn�Þ; Bð1Þ; . . . ; Bðk�ÞÞÞ, AðiÞ, i ¼ 1; 2; . . . ; n�, are

shown in solid lines and BðjÞ, j ¼ 1; 2; . . . ; k�, are shown in
dotted lines.

The function ProposalðG; riÞ for generating candidates
from the current nodes G ¼ fAi : i ¼ 1; 2; . . . ;mg by using
ri is not so hard because the set jGj is relatively small ðm <

50Þ in almost all examples. Each Ai has a bounding box
(except the cubes), with eight parameters for the two
vanishing points and four orientations. We can simply test
any two nodes Ai and Aj by the constraint equations of ri. It
is worth mentioning that each A 2 G alone creates a
candidate � for each of rules r2, r3, r4, and r6, with
nð�Þ ¼ 1. In such cases, the top-down proposals BðjÞ,
j ¼ 1; . . . ; k�, are created using both the constraint equa-
tions of ri and the edge maps. For example, based on one
rectangle A8, the top of the kitchen table in Fig. 9c, it
proposes two rectangles by the cube rule r6 in Fig. 9f. The
parameters of those two rectangles are decided by the
constraint equations of r6 and the edges in the images.

The algorithm for constructing the hierarchical parse
graph is similar to the DDMCMC algorithm [39], [33] except
that we adopt a deterministic strategy in this paper in
generating the candidates and accepting the proposal. As
the acceptance is not reversible, it is likely to get locally
optimal solutions.

5 EXPERIMENTS

We test our algorithm on a number of scenes with rectangle
structures and show both qualitative results through image
reconstruction (or synthesis) by using the generative model
and quantitative results through an ROC curve by compar-
ing the performance of two approaches: 1) pure bottom-up
rectangle detection and 2) our methods:

Qualitative results. We show six results of the computed
configurations and synthesized images in Figs. 10 and 11. In
these two figures, the first row shows the input images, the
second row shows the edge detection results, the third row
shows the detected and grouped rectangles in the final
configurations and missing rectangles compared with the
ground truth (with true positives, false positives, and
missing rectangles being shown in different line styles),
and the fourth row shows the reconstructed images based
on the rectangle results in the third row. We can see that the
reconstructed images miss some structures. Then, we add
the generic sketches (curves) in the edges and final
reconstructions are shown in the last row.

The image reconstruction proceeds in the following way:
First, for the sketchable parts, we reconstruct the image
from the image primitives after fitting some parameters for
the intensity profiles. For the remaining area �nsk, we follow
[9] and divide �nsk into homogeneous texture regions by
k-means clustering and then synthesize each texture region
by sampling the Julesz ensemble so that the synthesized
image has histograms matching the observed histograms of
filter responses. More specifically, we compute the histo-
grams of the derivative filters within a local window (e.g.,
7 � 7 pixels). For example, we use seven filters and seven
bins are used for each histogram. Then, in total, we have a
49-dimensional feature vector at each pixel. We then cluster
these feature vectors into different regions.

68 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 1, JANUARY 2009

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 28, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

In the computed configurations, some rectangles are
missing due to the strong occlusion. For instance, some
rectangles on the floor in the kitchen scene are missing due
to the occlusion caused by the table on the floor. In addition,
the results clearly show that high-level knowledge intro-
duced by the graph grammar greatly improves the results.
For example, in the building scene in the third column in
Fig. 10, the windows become very weak on the left side of
the image. By grouping them into a line rectangle group, the
algorithm can recover these weak windows, which will not
appear when using the likelihood model alone.

During our experiments, phase 1 is the most time-
consuming stage and takes about 2 minutes on a 640 � 480

image since we have to test many combinations to generate
all of the rectangle proposals and build up their occlusion
relations. Phases 2 and 3 are very fast and take about
1 minute altogether.

Quantitative evaluation. To evaluate our algorithm in a
quantitative way, we collect a data set with 40 images. The
average number of rectangles in each image of this data set
is 38. Six have been shown in Figs. 10 and 11. We then
manually annotate these images to get the ground truth for
all the rectangles in each image.

Then, we randomly select 15 images from this data set as
training data to tune all of the parameters and thresholds in
our algorithm. After that, we run phase 2 and then phase 3 of

HAN AND ZHU: BOTTOM-UP/TOP-DOWN IMAGE PARSING WITH ATTRIBUTE GRAMMAR 69

Fig. 8. Four sets of proposed candidates �2, �3, �4, and �6 for production rules r2, r3, r4, and r6, respectively, and the candidate set � for the

instantiation rule r5. Each circle represents a rectangle � or a bounding box of a nonterminal node, while the associated upward (or downward) arrow

indicates that it is generated through a bottom-up (or top-down) process. The size of the circle represents its weight !ð�Þ. Each ellipse in �2, �3, �4,

and �6 stands for a rectangle group candidate � which consists of a few circles. A circle may participate in more than one rectangle group candidate.

Fig. 9. A kitchen scene as running example. (a) Edge map. (b) Subset of � for rectangle candidates detected in phase 1. We show a subset for

clarity. (c) Configuration CðGÞ with a number of accepted rectangles in phase 2. (d)-(f) Candidates in �2, �3, �4, and �6, respectively. They are

proposed based on the current node in G (i.e., shown in (b)).

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 28, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

our algorithm on the rest images to generate detection results

(note that the detection results shown in Figs. 10 and 11 are

obtained when these six images are in testing data). Due to

inherent randomness in splitting the data set into training

data and testing data, we repeat the experiment six times.

Fig. 12 shows the ROC curves with confidence intervals [23]

for phase 2 (using bottom up only) and phase 3 (using both

bottom up and top down), which are obtained by changing

the threshold in phase 2. From these ROC curves, we can

clearly see the dramatic improvement by using a top-

down mechanism over the traditionally bottom-up me-

chanism only. Intuitively, some rectangles are nearly

impossible to detect using the bottom-up methods and

70 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 1, JANUARY 2009

Fig. 10. Some experimental results. (a) Input image. (b) Edge map. (c) Computed rectangle configurations and missing rectangles compared with

the ground truth: True positive rectangles are shown with solid lines, false positive rectangles are shown in dotted lines, and missing rectangles are

shown in dashed lines. (d) Reconstructed image from the primal sketch model using the rectangle configurations only. (e) Reconstructed images

after adding some background sketches to the configurations.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 28, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

can only be recovered through the context information

using the grammar rules.
To plot the ROC curves, we need to classify each

detected rectangle as either a true positive or a false alarm

in comparison to a rectangle in the ground truth. To be

considered as a correct detection, the area of overlap

between the detected rectangle adet and the ground truth

rectangle agt is required to exceed 95 percent:

HAN AND ZHU: BOTTOM-UP/TOP-DOWN IMAGE PARSING WITH ATTRIBUTE GRAMMAR 71

Fig. 11. More experimental results. (a) Input image. (b) Edge map. (c) Computed rectangle configurations and missing rectangles compared with the

ground truth: True positive rectangles are shown with solid lines, false positive rectangles are shown in dotted lines, and missing rectangles are

shown in dashed lines. (d) Reconstructed image from the primal sketch model using the rectangle configurations only. (e) Reconstructed images

after adding some background sketches to the configurations.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 28, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

� ¼ Areaðadet \ agtÞ
Areaðadet [agtÞ > 0:95:

6 DISCUSSION

In this paper, we study an attribute grammar for image
parsing in man-made scenes. This paper makes two main
contributions to the vision literature. First, it uses an
attributed grammar for incorporating prior knowledge.
Such grammar representations have long been desired for
high-level vision, especially scene understanding and
parsing. Second, it integrates a top-down/bottom-up
procedure for computing the parse graph with grammars.
It extends the previous DDMCMC image parsing work [33]
by including more flexible and hierarchical representations.
The computing algorithm is compatible with the DDMCMC
scheme, but we use deterministic ordering for efficiency
considerations.

For our future work, we shall study the following
aspects: 1) the image parsing is only for generic image
interpretation in the current work. In ongoing projects, we
are extending this framework to recognizing object cate-
gories [42], especially functional objects where objects
within each category exhibit a wide range of structural
variabilities [3]. The extended grammar will have many
more production rules. 2) In the current work, we manually
tune some probabilities and parameters in the energy
function. These parameters should be learned automatically
when we have a large number of manually parsed training
examples, e.g., through supervised learning. We are
currently collecting a large manually parsed image data
set for learning grammars. An automatic learning algorithm
is presented in a recent work [28], [42]. In experiments, we
observe that the stopping thresholds �0 and �1 in phases 2
and 3 have to be decided by minimizing the detection errors
(missing rate and false alarm) and cannot be decided by the
posterior probability alone.

ACKNOWLEDGMENTS

This work was supported in part by a subaward of the W.M.
Keck Foundation, the Chinese 863 Grant 2006AA01Z121, the
US National Science Foundation under Grant IIS-0413214
and grant IIS-0713652, and the US Office of Naval Research
under Grant N00014-05-01-0543. The authors would like to
thank the Lotus Hill Institute for its assistance in preparing
the data set and the Lotus Hill Data Annotation [44]. They

would also like to thank the anonymous reviewers, whose

constructive comments helped improve this paper in many

aspects.

REFERENCES

[1] S. Baumann, “A Simplified Attribute Graph Grammar for High-
Level Music Recognition,” Proc. Third Int’l Conf. Document Analysis
and Recognition, 1995.

[2] R. Brooks, “Symbolic Reasoning Among 3D Models and 2D
Images,” Stanford AIM-343, STAN-CS-81-861, 1981.

[3] H. Chen, Z.J. Xu, and S.C. Zhu, “Composite Templates for Cloth
Modeling and Sketching,” Proc. IEEE Int’l Conf. Computer Vision
and Pattern Recognition, June 2006.

[4] A.R. Dick, P.H.S. Torr, and R. Cipolla, “Modeling and Interpreta-
tion of Architecture from Several Images,” Int’l J. Computer Vision,
vol. 60, no. 2, pp. 111-134, 2004.

[5] S. Dickinson, A. Pentland, and A. Rosenfeld, “3-D Shape Recovery
Using Distributed Aspect Matching,” IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 14, no. 2, pp. 174-198, Feb. 1992.

[6] T. Fan, G. Medioni, and R. Nevatia, “Recognizing 3-D Objects
Using Surface Descriptions,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 11, no. 11, pp. 1140-1157, Nov. 1989.

[7] M.A. Fischler and R.C. Bolles, “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis
and Automated Cartography,” Comm. ACM, vol. 24, pp. 381-395,
1981.

[8] K.S. Fu, Syntactic Pattern Recognition and Applications. Prentice
Hall, 1981.

[9] C.E. Guo, S.C. Zhu, and Y.N. Wu, “A Mathematical Theory of
Primal Sketch and Sketchability,” Proc. Ninth IEEE Int’l Conf.
Computer Vision, 2003.

[10] C.E. Guo, S.C. Zhu, and Y.N. Wu, “Primal Sketch: Integrating
Texture and Structure,” Computer Vision and Image Understanding,
vol. 106, no. 1, pp. 5-19, Apr. 2007.

[11] A. Hanson and E. Riseman, “Visions: A Computer System for
Interpreting Scenes,” Computer Vision Systems, 1978.

[12] K. Huang, W. Hong, and Y. Ma, “Symmetry-Based Photo
Editing,” Proc. First IEEE Workshop Higher-Level Knowledge in 3D
Modeling & Motion Analysis, 2003.

[13] V. Hwang and T. Matsuyama, “SIGMA: A Framework for Image
Understanding: Integration of Bottom-Up and Top-Down Ana-
lyses,” Proc. Int’l Joint Conf. Artificial Intelligence ’85, pp. 908-915,
1985.

[14] V. Hwang, L.S. Davis, and T. Matsuyama, “Hypothesis Integra-
tion in Image Understanding Systems,” Computer Vision, Graphics,
and Image Processing, vol. 36, nos. 2/3, pp. 321-371, 1986.

[15] S. Ioffe and D. Forsyth, “Probabilistic Methods for Finding
People,” Int’l J. Computer Vision, vol. 43, no. 1, pp. 45-68, 2001.

[16] Y. Jin and S. Geman, “Context and Hierarchy in a Probabilistic
Image Model,” Proc. IEEE Int’l Conf. Computer Vision and Pattern
Recognition, June 2006.

[17] D. Lagunovsky and S. Ablameyko, “Straight-Line-Based Primitive
Extraction in Grey-Scale Object Recognition,” Pattern Recognition
Letters, vol. 20, no. 10, pp. 1005-1014, Oct. 1999.

[18] A. Levinshtein, C. Sminchisescu, and S.J. Dickinson, “Learning
Hierarchical Shape Models from Examples,” Proc. Fifth Int’l
Workshop Energy Minimization Methods in Computer Vision and
Pattern Recognition, 2005.

[19] C. Lin and R. Nevatia, “Building Detection and Description from a
Single Intensity Image,” Computer Vision and Image Understanding,
vol. 72, no. 2, pp. 101-121, 1998.

[20] S. Mallat and Z. Zhang, “Matching Pursuit with Time-Frequency
Dictionaries,” IEEE Trans. Signal Processing, vol. 41, no. 12,
pp. 3397-3415, 1993.

[21] W. Mann and T. Binford, “Successor: Interpretation Overview and
Constraint System,” Proc. Image Understanding Workshop, pp. 1505-
1518, 1996.

[22] D. McKeown, W. Harvey, and L. Wixson, “Automating Knowl-
edge Acquisition for Aerial Image Interpretation,” Computer
Vision, Graphics, and Image Processing, vol. 46, no. 1, pp. 37-81, 1989.

[23] S. Munder and D. Gavrila, “An Experimental Study on Pedestrian
Classification,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 28, no. 11, Nov. 2006.

72 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 31, NO. 1, JANUARY 2009

Fig. 12. ROC curves for the rectangle detection results by using bottom

up only and using both bottom up and top down.

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 28, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

[24] Y. Ohta, T. Kanade, and T. Sakai, “An Analysis System for Scenes
Containing Objects with Substructures,” Proc. Fourth Int’l Conf.
Pattern Recognition, pp. 752-754, 1978.

[25] Y. Ohta, Knowledge-Based Interpretation of Outdoor Natural Color
Scenes. Pitman, 1985.

[26] I. Pollak, J.M. Siskind, M.P. Harper, and C.A. Bouman, “Parameter
Estimation for Spatial Random Trees Using the EM Algorithm,”
Proc. IEEE Int’l Conf. Image Processing, 2003.

[27] I. Pollak, J.M. Siskind, M.P. Harper, and C.A. Bouman, “Modeling
and Estimation of Spatial Random Trees with Application to
Image Classification,” Proc. 28th IEEE Int’l Conf. Acoustics, Speech,
and Signal Processing, 2003.

[28] J. Porway, B. Yao, and S.C. Zhu, “Learning Compositional Models
for Object Categories from Small Sample Sets,” Object Categoriza-
tion: Computer and Human Vision Perspectives, S. Dickinson et al.,
eds., Cambridge Univ. Press, 2009.

[29] J. Rekers and A. Schürr, “Defining and Parsing Visual Languages
with Layered Graph Grammars,” J. Visual Language and Comput-
ing, Sept. 1996.

[30] K. Siddiqi, A. Shokoufandeh, S.J. Dickinson, and S.W. Zucker,
“Shock Graphs and Shape Matching,” Int’l J. Computer Vision,
vol. 35, no. 1, pp. 13-32, 1999.

[31] J.M. Siskind, J. Sherman, I. Pollak, M.P. Harper, and C.A. Bouman,
“Spatial Random Tree Grammars for Modeling Hierarchal
Structure in Images,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 29, no. 9, pp. 1504-1519, Sept. 2007.

[32] W.-B. Tao, J.-W. Tian, and J. Liu, “A New Approach to Extract
Rectangle Building from Aerial Urban Images,” Proc. Sixth Int’l
Conf. Signal Processing, pp. 143-146, 2002.

[33] Z.W. Tu, X.R. Chen, A.L. Yuille, and S.C. Zhu, “Image Parsing:
Unifying Segmentation, Detection and Recognition,” Int’l J.
Computer Vision, vol. 63, no. 2, pp. 113-140, 2005.

[34] W. Wang, I. Pollak, T.-S. Wong, C.A. Bouman, M.P. Harper, and
J.M. Siskind, “Hierarchical Stochastic Image Grammars for
Classification and Segmentation,” IEEE Trans. Image Processing,
vol. 15, no. 10, pp. 3033-3052, Oct. 2006.

[35] T.F. Wu, G.S. Xia, and S.C. Zhu, “Compositional Boosting for
Computing Hierarchical Image Structures,” Proc. IEEE. Int’l Conf.
Computer Vision and Pattern Recognition, June 2007.

[36] F.C You and K.S. Fu, “A Syntactic Approach to Shape Recognition
Using Attributed Grammars,” IEEE Trans. Systems, Man, and
Cybernetics, vol. 9, pp. 334-345, 1979.

[37] F.C. You and K.S. Fu, “Attributed Grammar: A Tool for
Combining Syntactic and Statistical Approaches to Pattern
Recognition,” IEEE Trans. Systems, Man, and Cybernetics, vol. 10,
pp. 873-885, 1980.

[38] W. Zhang and J. Kosecka, “Extraction, Matching and Pose
Recovery Based on Dominant Rectangular Structures,” Proc. First
IEEE Workshop Higher-Level Knowledge in 3D Modeling and Motion
Analysis, 2003.

[39] S.C. Zhu, R. Zhang, and Z.W. Tu, “Integrating Top-Down/
Bottom-Up for Object Recognition by DDMCMC,” Proc. IEEE Int’l
Conf. Computer Vision and Pattern Recognition, 2000.

[40] S.C. Zhu and A.L. Yuille, “FORMS: A Flexible Object Recognition
and Modeling System,” Int’l J. Computer Vision, vol. 20, no. 3,
pp. 187-212, 1996.

[41] S.C. Zhu, Y.N. Wu, and D. Mumford, “Minimax Entropy Principle
and Its Application to Texture Modeling,” Neural Computation,
vol. 9, pp. 1627-1660, 1997.

[42] S.C. Zhu and D. Mumford, “A Stochastic Grammar of Images,”
Foundations and Trends in Computer Graphics and Vision, vol. 2,
no. 4, pp. 259-362, 2006.

[43] Y. Zhu, B. Carragher, F. Mouche, and C. Potter, “Automatic
Particle Detection through Efficient Hough Transforms,” IEEE
Trans. Medical Imaging, vol. 22, no. 9, pp. 1053-1062, Sept. 2003.

[44] Z.Y. Yao, X. Yang, and S.C. Zhu, “Introduction to a Large Scale
General Purpose Groundtruth Dataset: Methodology, Annotation
Tool, and Benchmarks,” Proc. Sixth Int’l Conf. EMMCVPR, Aug.
2007.

Feng Han received the BS degree in computer
science from Dalian University of Technology in
1996, the ME degree in electrical and electronic
engineering from Nanyang Technological Uni-
versity in 2000, and the PhD degree in computer
science from the University of California, Los
Angeles (UCLA) in 2005. He is currently a
member of the technical staff in the Vision and
Learning Laboratory at Sarnoff Corp. His re-
search interests include computer vision, image

processing, pattern recognition, and computer graphics.

Song-Chun Zhu received the BS degree from
the University of Science and Technology of
China in 1991 and the MS and PhD degrees
from Harvard University in 1994 and 1996,
respectively. He is currently a professor with
the Department of Statistics and the Department
of Computer Science at the University of
California, Los Angeles (UCLA). Before joining
UCLA, he was a postdoctoral researcher in the
Division of Applied Math at Brown University

from 1996 to 1997, a lecturer in the Department of Computer Science at
Stanford University from 1997 to 1998, and an assistant professor of
computer science at Ohio State University from 1998 to 2002. His
research interests include computer vision and learning, statistical
modeling, and stochastic computing. He has published more than
100 papers in computer vision. He has received a number of honors,
including the David Marr Prize in 2003, the J.K. Aggarwal prize in 2008,
the Marr Prize honorary nominations in 1999 and 2007, a Sloan
Fellowship in Computer Science in 2001, a US National Science
Foundation Early Career Development Award in 2001, and an US Office
of Naval Research Young Investigator Award in 2001. In 2005, he
founded, with friends, the Lotus Hill Institute for Computer Vision and
Information Science in China as a nonprofit research organization
(www.lotushill.org).

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HAN AND ZHU: BOTTOM-UP/TOP-DOWN IMAGE PARSING WITH ATTRIBUTE GRAMMAR 73

Authorized licensed use limited to: Univ of Calif Los Angeles. Downloaded on January 28, 2009 at 14:09 from IEEE Xplore. Restrictions apply.

