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Abstract—This paper presents a framework of layered graph matching for integrating graph partition and matching. The objective is to

find an unknown number of corresponding graph structures in two images. We extract discriminative local primitives from both images

and construct a candidacy graph whose vertices are matching candidates (i.e., a pair of primitives) and whose edges are either

negative for mutual exclusion or positive for mutual consistence. Then we pose layered graph matching as a multicoloring problem on

the candidacy graph and solve it using a composite cluster sampling algorithm. This algorithm assigns some vertices into a number of

colors, each being a matched layer, and turns off all the remaining candidates. The algorithm iterates two steps: 1) Sampling the

positive and negative edges probabilistically to form a composite cluster, which consists of a few mutually conflicting connected

components (CCPs) in different colors and 2) assigning new colors to these CCPs with consistence and exclusion relations

maintained, and the assignments are accepted by the Markov Chain Monte Carlo (MCMC) mechanism to preserve detailed balance.

This framework demonstrates state-of-the-art performance on several applications, such as multi-object matching with large motion,

shape matching and retrieval, and object localization in cluttered background.

Index Terms—Graph matching, graph partitioning, DDMCMC, cluster sampling.

Ç

1 INTRODUCTION

1.1 Objective and Motivation

MANY computer vision tasks can be posed as either a
graph partitioning (or coloring) problem, such as

image segmentation [1], [32] and scene labeling, or a graph
matching (or correspondence) problem, such as wide base-
line stereo [2], [20], [8], large motion [20], [26], [33], [35],
object, and shape recognition [14], [3], [31], [37]. In this paper,
we study a framework called layered graph matching for
integrating graph partitioning and matching with their
graphs edited. The objective is to find an unknown number
of common graph structures in two images (or shapes). Fig. 1
shows an example in our experiments. From the two input
images (column 1), we compute their primal sketch graphs
(column 2) and partition them into three pairs of objects
(columns 3-5): person, cars, and parking meters with graph
edited (thick line segments) to achieve common (isomorph-
ism) graph structures. The remaining fragments (column 6)
are unmatched.

Our study is motivated by some recent tasks in object
categorization, recognition, and unsupervised learning, for
example, matching two object instances in the same
category, learning object parts in large articulated motion,

and detecting and localizing object templates in cluttered
scenes. These tasks are different from conventional match-
ing and correspondence problems in three major aspects:
1) The two matched objects or parts are often different
instances in a category. They have quite different appear-
ances and undergo large motion or nonrigid deformations,
while sharing similar graph structures. This is in contrast to
problems such as structure from motion, wide baseline
stereo, and motion tracking, where the same instance shows
up in two images. 2) The explicit graph structures, by which
we mean the connectivity of constituent elements, are
important for learning the templates of objects and parts
and for localizing objects in clutter and with occlusion. This
is in contrast to previous methods that represent objects by
isolated points. 3) The number of common objects and parts
is often unknown and their graph structures, extracted from
images, are imperfect and need graph editing to achieve
exact matching (or isomorphism).

These new tasks demand more general representation,
and more effective inference algorithms for simultaneously
solving the segmentation and matching problems.

1.2 Related Work and Comparison

Graph (or shape) matching has been extensively studied in
the literature for numerous vision tasks. We can roughly
divide the existing methods into three categories, according
to their representations.

1.2.1 Category 1: Single-Layer and Point Based

These methods match local independent features without
explicit graph structures, such as Harris corners, KLT
features [25], scale invariant features [18], local edge features
[2], and geometric blur descriptors [3], [28], [4]. The two sets
of feature points are matched under a rigid affine transform
plus nonrigid and locally smooth distortions accounted by a
thin-plate spline (TPS) model. These point features are often
robust against certain geometric distortions and illumination
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changes, but carry little information about larger object
structures. Current state of the art algorithms include the
iterative closest point (ICP) algorithm [28] and the soft
assignment algorithm [4].

1.2.2 Category 2: Single-Layer Graph Based

Methods in this category match explicit graph structures
with graph editing, such as skeleton (medial axis) graphs
[37] and shock graphs [23], [27]. For recognizing flexible
and articulated objects, the distance is calculated based on
not only the similarity of parts, but also their connections
and relative positions. Thus, graph operators are intro-
duced with cost to edit the graphs to achieve perfect
structural match. In this paper, we use the terms graph
structure or graph topology for connectivity between vertices.
Recently, a similar method has also applied to unsuper-
vised learning of object categories through matching parse
trees across multiple images [30]. Some recent works on
shape recognition, such as shape context [3] and shape
matching [31], represent the graph structures implicitly for
computational efficiency.

1.2.3 Category 3: Multilayer Point Based

This category includes layered EM clustering [33], [26] for
small motion and RANSAC-based methods [9], [20] for
large rigid motion. A state-of-the-art algorithm in this
category is the recent work by Wills et al. [35] which
computes large motion segmentation using RANSAC
iteratively based on local texture features.

Our method belongs to category 4: multilayer graph-based
matching with explicit graph editing. It is aimed at more
general cases arising in recent object categorization [30],
unsupervised part learning, and object detection and
localization in cluttered scenes. In these tasks, many of the
traditional assumptions no longer hold, for example, the
slow and smooth motion in layered motion [34], rigid
transform and static objects in wide baseline stereo, and
foreground and background segmentation in the medial-
axis-based shape recognition [23], [27].

Our work is built on a series of previous works on image
segmentation [32], graph partition [1], and matching [12]. In
this paper, we extend the SW-cut method [1] to composite
cluster sampling on a new candidacy graph representation
(to be introduced in the next section) with both positive and
negative connections, and in each step, it can move
effectively in the joint space of partitioning and matching.
Thus, it overcomes a major obstacle—strong coupling
between local structures. A similar algorithm, called C4, is
studied for scene labeling in conditional random fields and
aerial image understanding by Porway and Zhu [21] that
outperforms other popular algorithms, such as Belief
Propagation, Gibbs sampling, and SW-cut, in general
settings.

A preliminary version of this work was introduced by
[13]. We provide additional algorithmic and computational
details, and extend the framework considering more
complete measure distance between graphs. A few exam-
ples (e.g., Figs. 1 and 17) in this paper are studied in one of
our previous works [12] with a different algorithm which
iteratively solves graph matching and partition in two
computational dynamics.

1.3 Overview of Our Approach

In this paper, we pose the layered graph matching problem
as a multicoloring task and solve it on a candidacy graph
representation with a cluster sampling algorithm. Our
approach includes three major components: the candidacy
graph representation, the matching distance metrics, and
the composite cluster sampling algorithm.

1.3.1 Candidacy Graph Representation

As Fig. 2 illustrates, given the source and target images
(cropped from Fig. 1 for clarity), we compute the primal
sketches and extract a number of discriminative local
structural primitives, such as corners, junctions, and small
curves. Some primitives are highlighted in thick line
segments in Fig. 1a. Each primitive in the source graph
has a number of matching candidates in the target graph.
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Fig. 1. An example of simultaneous graph matching and partition. Given two input images IS; IT (column 1), two primal sketch representations
GS;GT are computed as the source and target graphs, respectively (column 2). They are partitioned into four layers of subgraphs with layers 1-2-3
being the common objects matched (columns 3-5), and layer 0 the unmatched background fragments (column 6). The dark line segments in
columns 3-5 are the edited portions on the graphs to achieve isomorphic matching between each pair of subgraphs.



For computational efficiency, we first compute layered
matching for these primitives and then propagate the
matching to other less discriminative line segments.

Each primitive has a layer index (coloring) and a
matching (correspondence) index shown by the red and
blue bars, respectively, in Fig. 2b, where the marks on the
bars represent possible assignments. This search space is
combinatorial. Consider two images with N and
M primitives, respectively, which are to be matched in
K layers, and each primitive in the source graph has a total
of KM possible assignments. Thus, the solution space has
OððKMÞNÞ possible states. In fact, this space has been much
reduced because the number of primitives is much smaller
than the number of points/line segments in the images.

To further prune the search space, we eliminate a large
number of unlikely matches and keep the most promising
matching candidates as vertices in a candidacy graph, as
shown in Fig. 2c. For example, primitive 1 in the source
image has five candidates which are primitives 1; 2; 7; 9; 10.
Thus, we have five vertices as candidates c1; c2; c3; c4; c5 in
the candidacy graph.

Our objective is to color this graph so that some vertices
are assigned K colors representing K matched subgraph for
objects or parts, and the remaining vertices are set to be
inactive, and thus, eliminated.

Two vertices in the candidacy graph may be linked by
either a negative edge or a positive edge, which are
illustrated, respectively, by red and blue lines in Fig. 2c.
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Fig. 2. Simultaneously partitioning and matching in the candidacy graph. (a) From the images cropped from Fig. 1, we compute the primal sketches
and highlight some primitives in thick line segments. (b) Each primitive has a layer index (coloring) and a matching index shown by the red and blue
bars, respectively, with marks representing the possible assignments. (c) The candidacy graph with positive and negative connections between two
candidate matches.



The negative edge indicates that the two candidates are
conflicting due to having the same source primitive or their
target primitives overlapping, and thus, the two vertices
should not both be assigned to the same color. For example, c1

and c2 in Fig. 2c are conflicting. The positive edge indicates
that the two vertices are collaborative, and thus, enforce each
other so that they are likely assigned to the same color if they
have similar geometric transformations.

In summary, the candidacy graph is an effective
representation since it prunes the vertices by: 1) searching
for discriminative primitives and 2) eliminating nonpromis-
ing matching candidates; and it is informed by compat-
ibility information on the edges which will be useful for
driving the cluster sampling process later.

1.3.2 Distance Metrics

Each pair of matched subgraphs represents common objects
or parts under geometric deformations and structural editing
for occlusion. In our method, the distance measure between
two matched subgraphs includes geometric deformations,
appearance dissimilarities, and the cost of graph editing
operators. Editing the graph is able to fix the errors caused by
interobject occlusion and image clutter. The distance mea-
sure will be used to define both the global energy function
and probabilities on the edges of the candidacy graph.

1.3.3 Composite Clustering Sampling

With the candidacy graph representation and distance, we
study a stochastic Bayesian inference algorithm using the
Markov Chain Monte Carlo (MCMC) mechanism. The
algorithm iterates the following two steps: 1) Generating a
composite cluster by turning on/off the positive and
negative edges probabilistically. Vertices (candidates) con-
nected by positive “on” edges form a connected component
(CCP) and receive the same color. CCPs connected by
negative “on” edges form a composite cluster. 2) Assigning
colors to the CCPs in the composite cluster. Vertices in a
CCP always receive the same color until the CCP is
regrouped in the later iterations. CCPs in a composite
cluster receive different colors under the conflicting
constraints imposed by the negative “on” edges.

The key contribution of this composite cluster sampling
approach lies in the fact that each step is a large MCMC move

involving many primitives simultaneously in the joint space
of matching and partition. The clustering step identifies
strongly coupled local matches in the graph (see examples in
Fig. 3) and the color assigning step swaps competing groups
of matches. This allows us to quickly move through the
search space and jump out of local minima caused by
symmetric or cluttered structures and occlusion.

We apply our algorithm to the following four vision
tasks and achieve state-of-the-art performance:

1. Multi-object wide-baseline matching (underlying
both rigid and nonrigid motion) with occlusion.

2. Shape matching and retrieval against distortions,
occlusion, and clutter.

3. Human body matching and learning parts from
articulated motion.

4. Detecting and localizing objects from cluttered
background.

This paper is organized as follows: We first introduce the
representation in Section 2 and Bayesian formulation in
Section 3, respectively. Then, Section 4 presents the
inference algorithms, and Section 5 discusses a set of
experiments with comparisons. Finally, the paper is con-
cluded with discussions in Section 6.

2 REPRESENTATIONS

In this section, we introduce three representations which
are essential for layered graph matching: 1) the primal
sketch graph G and primitives, 2) the mapping function �
for graph matching and coloring function � for graph
partition, and 3) the candidacy graph �.

2.1 Primal Sketching and Primitives

Given an image, we compute a primal sketch representa-
tion [10], which is an attribute graph computed in
Bayesian inference:

G ¼ arg max pðIjGÞpðGÞ: ð1Þ

The sketch graph is similar to an edge map, but is more
suitable than the edge maps in our task for two reasons:
1) Texture edges are suppressed and 2) junctions are
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Fig. 3. Repetitive and symmetric structures in the image create strongly coupled but erroneous partial matches. The algorithm needs to
simultaneously flip multiple matches to jump out from local minima.



extracted explicitly. The computed graph G could be
imperfect and need editing in the later process.

In our tasks, we are either given two images or we are
given an object template (a perfect graph) plus an image. In
both cases, we can assume that we have two attribute graphs
GS and GT , and refer to them as the “source graph” and
“target graph,” respectively. In the original sketch graph [10],
a smooth curve may be represented by a few control points
for efficiency. In our work, we sample points densely on the
sketches so that each line segment is of 5-7 pixels in length.
We call them “linelets” as in the literature. We denote the two
sets of linelets by P ¼ fxg and Q ¼ fyg, respectively, and
their spatial adjacency information is preserved.

From P and Q, we search for structural primitives,
such as junctions, corners, and curve segments, as shown
in Fig. 2a. Unlike the junctions in the primal sketch
graphs, these primitives are searched simultaneously from
both P and Q for potential matches. The computation of
these primitives will be introduced in Section 4.1. We
denote the two sets of primitives by U ¼ fug and V ¼ fvg
for P and Q, respectively.

Each primitive u (or v) consists of a few (3-7) linelets. We
denote them by u ¼ fx0; x1; . . . ; xng � P or v ¼ fy0; y1; . . . ;
yng � V . These primitives are more discriminative than the
single short linelets and thus have fewer matching candi-
dates in the corresponding graph. Like superpixels for image
segmentation, they largely reduce the search space.

In the algorithm, we start from matching these primitives
between U and V , and then it is straightforward to
propagate the matches to other less discriminative linelets
in P and Q.

2.2 Graph Partition and Matching

We first define the graph partition � with respect to the
source graph GS . It divides GS into K þ 1 disjoint
subgraphs with the unknown number of K objects:

� ¼ fg0; g1; . . . ; gKg: ð2Þ

Each subgraph gk is a separate layer of GS with vertex set
Uk, and

[Kk¼0 Uk ¼ U; Ui \ Uj ¼ ;; 8i 6¼ j: ð3Þ

All vertices in Uk receive a unique color label lðuÞ ¼
l 2 f0; 1; . . . ; Kg; 8u 2 Uk. Similarly, the target graph GT is
also divided into K þ 1 layers with [Kk¼0Vk ¼ V and
primitives in each vertex set receive the same color
lðvÞ 2 f0; 1; . . . ; Kg; 8v 2 Vk.

We denote the graph matching function from the source
graph GS to the target graph GT by

� : U 7!V [ ;: ð4Þ

For each vertex u 2 U , �ðuÞ 2 V or it has no match in V with
�ðuÞ ¼ ;. The vertices are not matched as independent
points, and graph structures (i.e., connectivity) are imposed
through the distance measures in the next section.

To couple with the graph partition formulation �, we
rewrite � in K matching functions:

�k : Uk 7! Vk [ ;; k ¼ 1; 2; . . . ; K: ð5Þ

As the result of matching, both GS and GT are partitioned
into K þ 1 pairs of subgraphs, as shown in Fig. 1:

ðgk; g0kÞ; k ¼ 0; 1; 2; . . . ; K: ð6Þ

g0 and g00 are the background layers that are not matched.
Each matched pair ðgk; g0kÞ, k ¼ 1; 2; . . . ; K, represents a
common object or part with gk transformed into g0k by a
geometric transform, a photometric transform for appear-
ance changes, and topological graph editing operators. We
denote these transforms by

�k ¼
�
�geo
k ;�pho

k ;�top
k

�
: ð7Þ

We shall define the matching distances between gk and g0k
based on the three aspects in Section 3.2. Note that for a
matched graph pair, some vertices in Uk; Vk may still be
mapped to ; due to partial occlusion.

2.3 Candidacy Graph Representation

For each primitive u 2 U , as illustrated in Fig. 2b, it has two
labels: a coloring index lðuÞ 2 f0; 1; 2; . . . ; Kg for layers and
a matching index �ðuÞ 2 V [ ; for correspondence. To
reduce the search scope, we prune the set of matching
candidates for u 2 U to a small set V ðuÞ � V . For dis-
criminative primitives, V ðuÞ becomes small, say less than
eight candidates. The computation of U , V , and
V ðuÞ; 8u 2 U , will be discussed in Section 4.1.

To solve the graph partition and matching problem
simultaneously, we propose a candidacy graph representa-
tion and formulate the layered matching problem as a
multiple coloring problem.

As illustrated in Fig. 2c, we define a candidacy graph
� ¼ <CC; IE>, where each vertex c 2 CC is a possible
matching pair of two primitives from the two graphs:

CC ¼ fci ¼ ðui; viÞ : ui 2 U; vi 2 V ðuiÞ [ ; i ¼ 1; . . . ; NCg:
ð8Þ

The vertices are either assigned a color to denote the layer
that they belong to or made inactive.

In traditional graph matching formulation, for example,
Chui and Rangarajan [4], the matching is represented by a
binary matrix of jU j � jV j entries with hard constraints that
each row or column sums to one. In comparison, the
candidacy graph prunes the number of entries to a small
number of promising matching candidates and allow more
than two labels.

For a pair of vertices in the candidacy graph, ci ¼
ðui; viÞ and cj ¼ ðuj; vjÞ, we may link them with an edge
e ¼ <ci; cj> for either a negative (conflicting) or a positive
(consistent) relation. Thus, we divided IE into two disjoint
subsets:

IE ¼ IEþ [ IE�: ð9Þ

Negative edges IE�. As we assume one-to-one matching
between U and V , e ¼ <ci; cj> is called a negative edge if
ui ¼ uj or vi ¼ vj. That is, the two candidates ci and cj are
mutually exclusive and thus may not be both assigned the
same color. Later, we shall define a probability �� on e ¼
<ci; cj> for how likely two candidates are to conflict with
each other.
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Positive edges IEþ. e ¼ <ci; cj> is called a positive edge
if the geometric transforms between ðui; viÞ and ðuj; vjÞ are
consistent and thus ci and cj are likely to be assigned to the
same layer. Later, we define a probability �þ on e based on
their geometric properties for how likely they are assigned
to the same layer.

2.4 Summary of the Representations

In summary, the representations of the layered graph
matching problem can be written as

W ¼ ðK;� ¼ fg0; g1; . . . ; gKg; � ¼ f�kg; � ¼ f�kgÞ; ð10Þ

where ðK;�Þ represents the partition and ð�;�Þ represents
the matching. By introducing the candidacy graph, we
integrate � and � into a coloring problem. We denote the
labels of the candidacy graph � ¼ <CC; IE> by

L ¼ flðciÞ ¼ li : li 2 f0; 1; 2; . . . ; Kg; i ¼ 1; . . . ; NC; ci 2 CCg:
ð11Þ

Since we define a candidate ci as a pair of possible matching
primitives, specifying that lðciÞ indicates activating a
matching correspondence as well as assigning these two
matched primitives with a layer. lðciÞ ¼ 0 means that the
candidate match ci is made inactive. With L, we can derive
fðgk; g0kÞ; k ¼ 0; 1; . . . ; Kg deterministically. We rewrite W
equivalently as

W ¼ ðK;L;� ¼ f�kgÞ: ð12Þ

Thus, it becomes a coloring problem on the candidacy
graph �.

3 BAYESIAN FORMULATION

In this section, we present the Bayesian formulation of
layered graph matching based on the candidacy graph
representation.

3.1 Maximizing the Posterior Probability

With the representations defined in the previous section, we
solve the layered graph matching problem by maximizing a
posterior probability:

W � ¼ arg max pðW jGS;GT Þ ¼ arg max pðWÞpðGS;GT jWÞ:
ð13Þ

We define the prior probability pðWÞ and the likelihood
pðGS;GT jW Þ in the following:

Prior probability. pðWÞ penalizes the number of layers K
(i.e., complexity) and the number N of unmatched vertices
in GS and GT so as to avoid degenerated solutions that
matches all linelets as separate objects (i.e., K is too large) or
inactivates all linelets as unmatched (i.e., N is too large). N
can be derived from L deterministically:

pðWÞ / expf��KK � �NNg � pðLÞ; ð14Þ

where �K ¼ 1:4 and �N ¼ 0:08 are two important scale
parameters representing the costs of adding a new layer or
leaving a primitive unmatched, and pðLÞ is a Potts model
for the label L:

pðLÞ /
Y
e2IEþ

 þðli; ljÞ �
Y
e2IE�

 �ðli; ljÞ;

 þðli; ljÞ ¼ expfþ�L1ðli ¼ lj 6¼ 0Þg;
 �ðli; ljÞ ¼ expf��L1ðli ¼ lj 6¼ 0Þg;

ð15Þ

where �L is set to ½0:10; 0:25� in our experiments. 1ð�Þ 2
f0; 1g is an indicator function. The probability is defined to
discourage inconsistent assignments. It is maximized when
candidates connected by positive edges are assigned the
same label, while candidates connected by negative edges
are assigned to different labels.

Likelihood. The likelihood probability of the solution is
defined as

pðGS;GT jW Þ ¼
YK
k¼1

pðgk; g0kj�k;�kÞ /
YK
k¼1

expf�Eðgk; g0kÞg;

ð16Þ

where Eðgk; g0kÞ is a distance measure between the two
subgraphs gk and g0k given the transform �k, and is defined
in the following section.

3.2 Distance Measures

For a pair of graphs gk; g
0
k matched through a transform

�k ¼ ð�geo
k ;�pho

k ;�top
k Þ, we define the distance or equiva-

lently energy over the three types of attributes:

Eðgk; g0kÞ ¼ Egeoðgk; g0kÞ þ Ephoðgk; g0kÞ þEtopðgk; g0kÞ: ð17Þ

In the following, we define the three types of distances:
Geometric distance. The geometric transform �geo

k from
gk to g0k includes: 1) a global affine transformation Sk, 2) a
residual of the matched vertices,

Egeo
res ðUk; VkÞ¼

X
u2Uk;�kðuÞ6¼;

�geo
res ððxu � xvÞ

2 þ ðyu � yvÞ2Þ; ð18Þ

and 3) a TPS warping for local deformation Fkð�; �Þ in the
2D domain �i covered by gk, given the matched vertices,

Egeo
TPSðFkÞ ¼ �

geo
tps

Z Z
�k

�
F 2
k;�� þ 2F 2

k;�� þ F 2
k;��

�
d�d�: ð19Þ

ðxu; yuÞ and ðxv; yvÞ are the center points of the two
primitives, which are the mean coordinates of all linelets
in the primitives. In our experiments, we set �geo

res ¼ 0:35 and
�geo

tps ¼ 0:25. This geometric distance accounts for the spatial
configuration similarity of two graphs.

Then the overall energy for geometric transform is

Egeoðgk; g0kÞ ¼ E
geo
Aff ðSkÞ þ E

geo
res ðUk; VkÞ þ E

geo
TPSðFkÞ: ð20Þ

We may drop the affine term if we allow free rigid affine
transforms between objects in the two images.

Photometric distance. Letu 2 Uk, v 2 Vk with v ¼ �kðuÞbe
two geometrically aligned primitives in gk and g0k, respec-
tively. Each primitive has n ¼ 3 � 7 linelets. The photometric
distance between them is defined by their intensity profiles
along the matched linelets. The penalty for unmatched line
segments, and thus, inconsistent structures between u and v,
is included in the graph topological cost below.

Supposing there are n matched line segments between v
and u, we denote the intensity profile perpendicular to each
linelet by �seg

j ðuÞ, j ¼ 1; . . . ; n, the photometric energy is
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EphoðUk; VkÞ ¼
X
ðu;vÞ

X
j

�phok�segj ðuÞ � �
seg
j ðvÞk

2: ð21Þ

The photometric distance provides cues and is weighted
differently in experiments for different tasks. For motion
estimation, the appearance cue is very strong, and we set
�pho ¼ 0:15. For wide-baseline stereo matching, we set �pho ¼
0:05. For shape matching, it is not used and we set �pho ¼ 0.

Topological distance. Preserving graph connectivity
structure is an important aspect in graph matching [33],
[12], [4], especially for object localization under occlusions
and learning common templates from multiple images.
Editing the graphs is also needed for fixing the errors in
primal sketch computation.

For a primitive u 2 Uk in gk, we denote its neighbors in
the image by @u. Suppose v ¼ �ðuÞ 2 V is a matched
vertex. The match �k is said to be isomorphic between Uk
and Vk, if

u0 2 @u , v0 2 @v; v ¼ �kðuÞ;
u ¼ ��1

k ðvÞ; 8u 2 Uk; 8v 2 Vk:
ð22Þ

If the match is not isomorphic, a number of operators have
to be applied, such as adding/deleting points and line
segments. Previous graph editing work includes medial
axis and shock graphs [37], [23].

For computing efficiency, we define only two basic
graph operators 	A and 	B, as shown in Fig. 4, and they are
associated with costs costð	AÞ and costð	BÞ. They are
capable of correcting all topological differences.

Suppose the two operators 	A and 	B are used m and
n times, respectively, between a pair of matched subgraphs
ðgk; g0kÞ. More precisely, we have

m ¼
X
u2Uk

1ð�kðuÞ ¼ ;Þ þ
X
v2VkÞ

1
�
��1
k ðvÞ ¼ ;

�
; ð23Þ

n ¼
X

<u;u0> 2Ek
1ð�ðuÞ;�ðu0Þ 62 E0kÞ

þ
X

<v;v0>2E0
k

1ð<�ðvÞ;��1ðv0Þ> 62 EkÞ:
ð24Þ

In the above definitions, Ek and E0k are the edge sets in gk
and g0k, respectively. The topological distance for matching g
to g0 is

Etopðgk; g0kÞ ¼ m � costð	AÞ � n � costð	BÞ; k ¼ 1; 2; . . . ; K:

ð25Þ

The costs of editing operators are application-dependent.
For shape matching and retrieval with no cluttered back-
ground in Experiments I and II, we set costð	AÞ ¼ 0:8 and
costð	BÞ ¼ 0:6. For shape localization in clutter in Experi-
ment IV, we set costð	AÞ ¼ 0:18 and costð	BÞ ¼ 0:10.

4 INFERENCE

In this section, we first introduce a bottom-up step for
constructing the candidacy graph � ¼ <CC; IE> from the
primal sketch graphs GS and GT , and then present a
composite cluster sampling algorithm on � for Bayesian
inference.

4.1 Bottom-Up: Constructing the Candidacy Graph

In this section, we discuss how we extract two primitive sets
U ¼ fug and V ¼ fvg from the densely sampled linelets P ¼
fxg and Q ¼ fyg in GS and GT simultaneously. Then from
U and V , we construct the candidacy graph.

As mentioned in Section 2.1, each primitive u � U (or
v � V ) consists of a small number (3-7) of adjacent short line
segments. We denote each line segment by its center
position x or y in the image domain �. Thus, we denote
u ¼ fx0; x1; . . . ; xag and v ¼ fy0; y1; . . . ; ybg. Fig. 5 illustrates
the process of extracting U , V from P , Q collectively.

In Fig. 5, the source graph GS is a car template shown
on the top and the target graph GT is shown to the right
side. From an arbitrary line segment x0 2 P , we grow x0

into a potential primitive u through a Branch-and-Bound
algorithm, as shown in Fig. 5b. This algorithm includes
two key steps: “branching” to split searching space and
“bounding” to prune bad candidates; it was used in
matching skeleton (medial axis) graphs for object recogni-
tion by [37].

To initialize the growing process, we set u ¼ fx0g, and as
the linelet is not discriminative, u can be matched to all
linelets in Q, i.e., the set of candidate matches is V ðuÞ ¼ Q.
We grow u by adding one adjacent linelet, say x1. Then we
get a longer line or curve segment, see the top of Fig. 5b. The
set of possible matches V ðuÞ is reduced to a smaller set,
shown by the darker primitives. With two more line
segments added, we obtain an L-junction in the second
row and then a Y-junction in the third row. When we grow
u, we grow its matching candidates v 2 V ðuÞ accordingly. A
candidate v is eliminated when it can no longer find an
adjacent line segment or the goodness of match falls below a
threshold. By the end of this example, u ¼ fx0; x1; . . . ; x5g
includes six linelets, and the number of candidate matches
in Q reduces sequentially to 5, each has six line segments:
vi ¼ fyi0; . . . ; yi5g, i ¼ 1; 2; . . . ; 5.
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Fig. 4. Two basic graph operators for editing graphs. 	A: adding/deleting
a vertex and 	B: adding/deleting a link or arm. Some typical examples of
editing are shown under each operator.



In the Branch-and-Bound algorithm, we use the squared
Procrustes distance [5] to measure the goodness of match
between two primitives u and v and prune bad candidates.
By writing the coordinates of xi ¼ ð�i; �iÞ in u and yi ¼
ð�0i; �0iÞ in v in complex form, namely, X and Y , respectively,
we have

Dðu; vÞ ¼ 1� jY � �Xj2

Y � � Y �X� �X ; ð26Þ

where X� and Y � are the conjugate forms of X and Y .
The Branch-and-Bound algorithm searches for a local

compact primitive u so that it is matched to a set of
primitives V ðuÞ � V . In this way, we obtain primitive sets U
and V simultaneously. Fig. 5a shows some results. The first
column shows examples of u 2 U in the car template, and
the remaining primitives in each row are the candidate
matches V ðuÞ found in the target sketch graph. We prune
those primitives which have too many matches (say
jV ðuÞj > 10) as they are less discriminative.

Once we finish extracting one primitive u, we remove
from P all the linelets in u and repeat the growing process.
In this way, the primitives in U do not overlap, but the
primitives in V may share common linelets.

The process of primitive searching and candidacy graph
construction is summarized in Fig. 6.

Once we have the set of candidates CC ¼ fci ¼ ðui; viÞ; i ¼
1; 2; . . . ; Ncg, we establish the negative and positive edges
and calculate their edge probabilities in the following way.
These edges will act as binary “switches” (Boolean variable)
that are turned “on” or “off,” as in the Swendson-Wang cut
algorithm [1] to form connected components.

First, e ¼ <ci; cj> is connected as a negative edge in two
cases: 1) The two candidates are mutually exclusive: ui ¼ uj.
It is a hard constraint that they cannot be both activated.
2) The two candidates overlap: vi \ vj 6¼ ;. It is a soft

constraint that they probably should not be activated

together. We define the probability ��e for how likely e is

a negative edge:

��e ¼
1; ui ¼ uj;
1
Ze

expf��kvi \ vjkg; ui 6¼ uj; vi \ vj 6¼ ;;

�
ð27Þ

where Ze and � are constants.
Second, e ¼ <ci; cj> is connected as a positive edge if the

geometric transforms between ci ¼ ðui; viÞ and cj ¼ ðuj; vjÞ
are consistent, and ci and cj are likely to be assigned to the

same layer.
Fig. 7a shows two neighboring candidate matches ci ¼

ðA;A0Þ and cj ¼ ðB;B0Þ on the sketch graphs. We define the

positive connecting probability �þe between ci and cj by a

local geometric distanceDþe ðci; cjÞ. This �þe is a bottom-up (or

data-driven) probability which will be used to form con-

nected components, and it does not have to be very accurate.
We first apply a similarity transformation to align ci and

cj, as shown in Fig. 7b. Let � be the similarity transform

between ci and cj, the distance between ci an cj can be

defined as

Dþe ðci; cjÞ ¼ Dðvi;�ðuiÞÞ þDðvj;�ðujÞÞ; ð28Þ

where DðÞ is the Procrustes distance [5] used in (26).
Then the connecting probability between ci and cj is

defined as

�þ / expf�Dþe ðci; cjÞg: ð29Þ

4.2 Composite Cluster Sampling in the Candidacy
Graph

Based on the candidacy graph � ¼ <CC; IE>, we study a

composite cluster sampling algorithm to optimize the

Bayesian posterior probability, inspired by the Swendsen-

Wang cut algorithm [1].
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Fig. 5. Primitive searching and candidates pruning. (a) A few structural primitives detected in the source graph (template) (on the top) and detected
primitives and possible matches (at the bottom). (b) The branch-and-bound progress to prune candidates.



Cluster sampling is a powerful MCMC technique
proposed by Swendson and Wang [29] and modified by
Edwards and Sokal [6] for simulating Ising/Potts models in
physics during the 1980s. At each single step, it can flip the
label of multiple sites—called a “cluster” or a CCP in the
Ising/Potts model. Thus, it moves effectively in the search
space. It was extended to general posterior probabilities in
vision by Barbu and Zhu [1], who designed the algorithm
called Swendson-Wang cut. Most recently, the SW-cut
algorithm is further extended to graphical models (MRF
or CRF) on scene labeling with both positive and negative
connections by Porway and Zhu [21] who called the
algorithm C4. We adopt this approach to the candidacy
graph for layered graph matching. We refer to [1], [21] for
the technical background.

This algorithm iterates two steps:

. Step I: Generating composite clusters by turning on
the edges in IE� and IEþ probabilistically. Candidates

connected by the positive “on” edges form a CCP. A
few CCPs connected by negative “on” edges form a
composite cluster.

. Step II: Reassigning colors of the CCPs in the
composite cluster guided by the posterior probabil-
ity and constraints.

4.2.1 Step I: Generating Composite Clusters

We introduce a Boolean variable !e 2 f1; 0g on each edge e ¼
<ci; cj> 2 IE as an indicator for whether the edge is turned

“on” or “off.” According to the cluster sampling algorithms,

these variables follow the following Bernoulli probabilities:

!þe � Bernoullið�þe 1ðlðciÞ ¼ lðcjÞÞÞ; 8e 2 IEþ; ð30Þ

!�e � Bernoullið��e 1ðlðciÞ 6¼ lðcjÞÞÞ; 8e 2 IE�; ð31Þ

where 1ð�Þ 2 f0; 1g is an indicator function.
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Fig. 7. (a) Measuring consistence between two matching candidates ci ¼ ðA;A0Þ and cj ¼ ðB;B0Þ. (b) They are aligned through a similarity transform.
The distance is the Procrustes measure between the alignment residuals.

Fig. 6. BU: primitive extraction and candidacy graph construction.



For a positive edge e 2 Eþ, if the two candidates have the
same label, i.e., lðciÞ ¼ lðcjÞ, then the edge is turned on (i.e.,
!þe ¼ 1), with probability �þe . Intuitively, if ci and cj are
strongly coupled (consistent), they have a high chance of
being connected. Otherwise, if lðciÞ 6¼ lðcjÞ, then the edge is
turned off with probability 1, i.e., �þe ¼ 0 deterministically.
This guarantees that all candidates in a cluster have the
same label. A CCP is a set of candidates which are
connected by the positive edges that are turned on.

For a negative edge e 2 E�, at the beginning of the
algorithm, we have lðciÞ ¼ lðcjÞ ¼ 0; thus, the edge is off
(!�e ¼ 0) deterministically. No negative edges should be
turned on between candidates of the same label as they
are conflicting. At a certain step, the two candidates may
be assigned different colors, then the negative edge
becomes active and we have !�e ¼ 1 with probability ��e .
Thus, for a hard constrained negative edge with ��e ¼ 1,
the negative edges are always “on” so as to impose a
constraint that the two candidates have to be labeled
differently to maintain consistency. The negative edges
that are turned on will connect some CCPs into a
composite cluster, denoted by Vcc.

We summarize this clustering step in Fig. 8.
Fig. 9 shows two states A and B in the process of coloring

the candidacy graph. Each ellipse represents a CCP, and the
three CCPs connected by some negative edges inside the big

ellipse form a composite cluster Vcc. To generate this Vcc,
some edges are cut (turned off) probabilistically (denoted
by k in the figure) and some are cut deterministically and
denoted by the black crosses.

4.2.2 Step II: Recoloring Candidates Inside the

Composite Cluster

We choose at random a composite cluster Vcc from step I.
For example, Vcc ¼ fCCP1; CCP2; CCP3g in Fig. 9. In the
second step, we reassign colors to the CCPs inside Vcc
probabilistically, and thus, implement a reversible jump
between the two states A and B in one MCMC move.

In both states A and B, candidates inside each CCPi,
i ¼ 1; 2; 3, are connected by positive edges and receive the
same label, while different CCPs are connected by
negative edges which prevent them from receiving the
same label for consistency.

The reversible jump between A and B is implemented by
a Metropolis-Hastings [19] method. Let qðA! BÞ be the
proposal probability for moving from state A to state B, and
conversely, qðB! AÞ is the proposal probability from B to
A. The acceptance rate of the move from A to B is

�ðA! BÞ ¼ min 1;
qðB! AÞ � pðW ¼ BjGS;GT Þ
qðA! BÞ � pðW ¼ AjGS;GT Þ

� �
: ð32Þ
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Fig. 8. BU-II: Generating composite clusters.

Fig. 9. Two states A and B in coloring the candidate graph. Each ellipse is a CCP within which the candidates are connected by positive edges and
receive the same color. A composite cluster Vcc consists of multiple CCPs connected by negative edges. The algorithm reassigns colors to the CCPs
inside a Vcc and therefore realizes a reversible jump between the two states A and B in one MCMC move.
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Fig. 10. Algorithm for layered graph matching.

Fig. 11. The illustration of composite cluster sampling. See text for explanation.

Fig. 12. Graph matching for layered motion. (a) Three source graphs, (b) three target graphs, and (c) the matching results of our method which
automatically decomposes the graph into multilayers (indicating by different colors) and matches each pair with geometric and topological transform.
The occluded parts are unmatched, and thus, edited. We compare with the state-of-the-art methods: (d) matching results from Chui and Rangarajan
[4] and (e) matching results from shape context (Belongie et al. [3]).



In such a Markov chain transition, the computation cost for
each move is relatively low since the computation of the
posterior probability ratio only involves the recoloring of
candidates in Vcc. The proposal probability qðA! BÞ is the

product of two probabilities: 1) qðVcc j AÞ—the probability of
generating Vcc at state A and 2) qðcoloringðVccÞ ¼ BðVccÞ j
Vcc; AÞ—the probability of recoloring the CCPs to state B.
Therefore, we have the proposal probability ratio below:

qðB! AÞ
qðA! BÞ ¼

qðVccjBÞ � qðcoloringðVcc ¼ AðVccÞjVcc; BÞÞ
qðVccjAÞ � qðcoloringðVcc ¼ BðVccÞÞjVcc; AÞÞ

:

ð33Þ

In the above equation, coloringðVccÞ denotes the new colors
of Vcc, BðVccÞ, and AðVccÞ denotes the coloring of Vcc at states
B and A, respectively.

The ratio of generating Vcc is similar to the Swendson-
Wang cut:

qðVccjBÞ
qðVccjAÞ

¼
Q

e2CutþB
ð1� �þe Þ

Q
e2Cut�B ð1� �

�
e ÞQ

e2Cutþ
A
ð1� �þe Þ

Q
e2Cut�A

ð1� ��e Þ
; ð34Þ

where CutþA and Cut�A denote the sets of positive and
negative edges which are the “cut” probabilistically around
Vcc on state A:

CutþA ¼ fe ¼ <ci; cj> 2 EEþ : ci 2 Vcc; cj 62 Vcc; lðciÞ
¼ lðcjÞ at Ag;

ð35Þ

Cut�A ¼ fe ¼ <ci; cj> 2 EE� : ci 2 Vcc; cj 62 Vcc; lðciÞ
6¼ lðcjÞ at Ag:

ð36Þ

Similarly, the sets CutþB and Cut�B are defined for the edges
that are cut around Vcc probabilistically at state B.
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Fig. 13. Another example for simultaneous graph matching and partition. Two input images are partitioned into four layers of subgraphs with
layers 1-2-3 being the common objects matched: cup, book, and computer screen, and layer 0 the unmatched backgrounds. The dark line
segments are edited portions.

Fig. 14. Results for the MEPG7 CE-SHAPE-1 data set [11]. (a) Classification rate comparison. (b) Examples that the layer graph matching obtains
correct results, while other approaches often fail. (c) Failed examples of the layered graph matching method.

Fig. 15. The articulated shape data set from [15].



For the detailed derivation of this equation, the reader

is referred to [21]. We summarize the overall algorithm in

Fig. 10.
Fig. 11 illustrates one step moving from a state A in

Figs. 11a and 11d to state B in Figs. 11c and 11e by

recoloring a Vcc in Fig. 11b, which consists of three CCPs

in blue rectangles: CCP1 ¼ fc2; c4; c7; c9g, CCP2 ¼ fc5; c10g,
and CCP3 ¼ fc12; c15g. In state A, coloringðCCP1Þ ¼ 1

where candidates are activated and coloringðCCP2;
CCP3Þ ¼ 0 where candidates are inactivated. The colors
are flipped in state B with coloringðCCP1Þ ¼ 0 and
coloringðCCP2; CCP3Þ ¼ 1.

By flipping the colors, some local matches due to
symmetry are corrected in one step. Thus, it overcomes
the coupling problem raised in Fig. 3.

In Fig. 11, the blue edges are positive, while the red
edges are negative. The crosses and k mark the edges that
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Fig. 16. Matching test on LHI-Shape data set. (a) The original shape (the first column) and different level of transformed shapes (2-7 columns).
(b) The matching rates with distortion, clutter, and occlusion increasing. (c) The convergence time. The red curves denote the proposed
composite cluster sampling, and the blue and green curves denote the Swendsen-wang cluster sampling [1] and Gibbs sampling, respectively.



are turned off by algorithm BU-I in generating the
composite cluster.

5 EXPERIMENTS

We evaluate the layered graph matching algorithm in
four tasks:

1. multi-object wide-baseline matching under both
rigid and nonrigid motions with occlusion,

2. shape similarity matching and retrieval,
3. human body matching and segmentation of parts

from articulated motion, and
4. object detection and localization in cluttered back-

ground.

In each task, we compare with the state-of-the art methods
in the literature. The algorithm is implemented by C++ on a
PC with Core Duo 2.8 GHZ CPU.

Experiment I. We first test the layered graph matching
algorithm on some artificial examples of layered large
motion with opaque and transparent occlusion. The three
pairs of source and target graphs are shown in Figs. 12a
and 12b. In these examples, no photometric information is
used and the connected components are assigned colors
under a uniform likelihood probability during the parti-
tion sampling. The matching results are shown in Fig. 12c,
where the occluded line segments are recovered. For
comparison, Fig. 12d shows the single-layer matching
results produced by the state-of-the-art graph matching
algorithm [4], and Fig. 12e displays the shape context [3]
matching results. As one may expected, these single-layer
matching methods do not work in such examples.

Figs. 1 and 13 show three experiment results for layered
wide-baseline matching in real images. In Fig. 1, the cars
have different appearance and are in slightly different poses
occluded by a person. They are matched, and the occluded
segments are recovered. Fig. 13 shows another similar
example in indoor scene.

Experiment II. In the second experiment, we test our
method on three data sets for shape matching and retrieval.

The first data set is the MPEG7 CE-Shape-1 data set [11].
This database contains 70 types of objects, each of which has
20 different instances, giving a total of 1,400 binary
silhouettes. According to the Bull’s eye criterion [11], we
look at the 40 most similar images and count how many of
those are in the same class as the query image. The
recognition rate is reported in Fig. 14a, and our method
outperforms the existing approaches due to the layered
representation, which accounts for some articulated defor-
mations, as shown in Fig. 14b. This data set is quite
challenging due to the large intraclass variability, and a few
failure examples from six classes are shown in Fig. 14c.

The second data set tests the matching of articulated
objects. Introduced by [15], it consists of eight objects with
five shapes each (Fig. 15a). The criteria follow [15]: For each
shape, the four most similar matches are selected and the
number of correct hits for ranks 1-4 is counted. The result is
presented in Fig. 15b. Our method performs well due to the
explicit layer representation that models large articulation.

The third data set tests more difficult shapes with
internal edges in contrast to the silhouettes in the two data
sets above. This data set contains five categories with three
instances each, selected from the LHI data set [36]. The
testing shapes are created from original shapes by applying
distortion, spurious clutter, and occlusion. The testing
shapes are divided into six levels of complexity. Level 1
only adds nonrigid deformation, level 2 adds 15 percent
occlusion, and level 3 adds spurious clutter (15 percent
compared to the original shape). Levels 4-6 increase
occlusion and clutter by both 5 percent in a stepwise
manner. Each level contains six testing shapes and the
typical shapes are selected in Fig. 16. The task is to match
the original sketch shapes (5� 3 ¼ 15) to the testing shapes
(5� 3� 6� 4 ¼ 360). Matchings with more than 80 percent
correct pairs of points are counted as correct for each pair.
Figs. 16b and 16c show the detection (correct matching) rate
and convergence time at each testing level. We compare
with the Swendsen-Wang sampling algorithm [1] and
traditional Gibbs sampler.

Experiment III. We demonstrate that the layered graph
matching algorithm can be used in articulate motion
analysis and learning object parts. Fig. 17a shows two far
frames extracted in a video sequence and the corresponding
sketch graphs are shown in Fig. 17b. Four body parts are
matched and segmented in different layers (red, yellow,
blue, and green) in Fig. 17c. This example runs in 62 seconds.
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Fig. 17. Articulate motion analysis and part learning. (a) Two far frames
in a video sequence, (b) the sketch graphs, and (c) four body parts are
matched and segmented in four layers (red, yellow, blue, and green).

Fig. 18. One contour motion analysis example by Liu et al. [16]. (a) and
(b) Two testing images (with sketch graphs) and motion estimation
result.



For comparison, we also compute the result on an
example of contour motion analysis in Fig. 18. This example
was originally used in [16].

Experiment VI. We test the algorithm on object detection
and localization from natural images. We select 80 images
containing five object categories from the LHI data set [36].
We draw one template for each category. For each image, we
compute the sketch graph and match it against the five
templates. There are thus 5� 80 ¼ 400 matches in total and a
match is said to be correct if the template is registered at the
correct position in the images. Fig. 20 shows some matching
results together with failure examples in the bottom raw. The
overall hit rate and false alarm rate are reported in Fig. 19
with comparison to matching algorithms by Tu et al. [31] and
Liu et al. [17]. The horse category has relatively lower

detection rate due to articulations. A 91 percent detection
rate can be achieved if we use three horse templates.

In addition to this data set, an early version of our
layered graph matching method was used as an indepen-
dent module for top-down verification in the object
recognition framework [14].

6 CONCLUSION

In this paper, we study a layered graph matching method
for integrating graph partition and matching with graph
editing, and demonstrate its applications in a series of
vision tasks in comparison with state-of-the-art approaches
in the literature. We formulate the problem in a candidacy
graph representation and adopt a composite cluster
sampling algorithm for inference. The representation is
augmented with bottom-up (data-driven) information in
terms of both positive and negative links. The cluster
sampling algorithm overcomes the problem of combinator-
ial search space by constructing large MCMC moves and
thus can jump from local minimums caused by symmetry,
clutter, and occlusion.

Our method can segment and match common structures
in an unsupervised way and thus has the potential for
automatically learning object categories and their parts.
Experiments I and III demonstrate this capability in
learning and matching objects (cars, humans, etc.) and
parts (human body) from articulated or layered motion. In
future research, we will further investigate this problem
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Fig. 19. Comparison results of object localization on real images, as
shown in Fig. 20. The true positive rate and false positive rate are
reported for each method. The data are selected from LHI data set [36].

Fig. 20. Object detection and localization from cluttered background. (a) Templates of five objects. (b) Some localization results by a two-layer graph
matching method. The failure results are marked by red color in the bottom row.



with a substantial data set and integrate the matching and

learning with the hierarchic representation, such as And-Or

graph and stochastic image grammar.
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