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Abstract—In this paper, we present a generative sketch model for human hair analysis and synthesis. We treat hair images as

2D piecewise smooth vector (flow) fields and, thus, our representation is view-based in contrast to the physically-based 3D hair models in

graphics. The generative model has three levels. The bottom level is the high-frequency band of the hair image. The middle level is a

piecewise smooth vector field for the hair orientation, gradient strength, and growth directions. The top level is an attribute sketch graph for

representing the discontinuities in the vector field. A sketch graph typically has a number of sketch curves which are divided into 11 types of

directed primitives. Each primitive is a small window (say 5� 7 pixels) where the orientations and growth directions are defined in

parametric forms, for example, hair boundaries, occluding lines between hair strands, dividing lines on top of the hair, etc. In addition to the

three level representation, we model the shading effects, i.e., the low-frequency band of the hair image, by a linear superposition of some

Gaussian image bases and we encode the hair color by a color map. The inference algorithm is divided into two stages: 1) We compute the

undirected orientation field and sketch graph from an input image and 2) we compute the hair growth direction for the sketch curves and the

orientation field using a Swendsen-Wang cut algorithm. Both steps maximize a joint Bayesian posterior probability. The generative model

provides a straightforward way for synthesizing realistic hair images and stylistic drawings (rendering) from a sketch graph and a few

Gaussian bases. The latter can be either inferred from a real hair image or input (edited) manually using a simple sketching interface. We

test our algorithm on a large data set of hair images with diverse hair styles. Analysis, synthesis, and rendering results are reported in the

experiments.

Index Terms—Hair modeling, hair analysis and synthesis, flow patterns, generative models, orientation field, texture,

nonphotorealistic rendering.

Ç

1 INTRODUCTION

HUMAN hair is a very complex visual pattern where
hundreds of thousands of hairs are grouped into

strands and wisps in diverse hair styles. Modeling hair
appearance is an important and challenging problem in
graphics, digital human animation, and nonphotorealistic
rendering. It is evident that hair style also plays a rather
significant role in human recognition. For example, it often
takes a longer amount of time to recognize a friend in a
meeting if that person has changed to a very different hair
style. In another case, if we keep somebody’s hair the same
and replace his/her face, there is a good chance that the
image will be identified as the original subject by familiar
people, especially when the image is small.

In computer graphics, hair acquisition, modeling, and
animation have attracted growing interest in recent years
[13], [14], [5], [7], [11], [22]. Hair models in graphics are three-
dimensional and typically haveOð104 � 105Þhair strands and
Oð106Þ line segments connected to a scalp surface. These
models often include hair dynamics, friction, lighting effects,
and occlusion relations, which are either input through user
interfaces [7], [5], [14], [13] or acquired from multiple (say 30
to 40) views using advanced computer vision techniques [17],
[22]. Editing and rendering such a complex 3D model
typically takes many hours on a computer.

In computer vision, hair is studied as an oriented (flow)
field [12], [26] similar to other texture patterns, such as
wood grain, flows, and fingerprints. To our knowledge,
there has been no explicit model dedicated to human hair in
the vision literature. As each element in the orientation field
is a periodic angle in ½0; �� (a Riemannian space), in contrast
to image intensities (Euclidean space) in conventional
Markov random field, special metrics are needed in
designing filters and computing the diffusion equations
[18], [4]. Some other vision work [20] has studied the
structure characteristics in the orientation (flow) field
analysis, such as node, saddle, star-node, etc.

In this paper, we present a generative sketch model for
human hair analysis and synthesis. Our sketch model is a
view-based, two-dimensional, symbolic representation
which can be encoded totally in the order of Oð100Þ bytes. It
is extremely parsimonious in comparison to the physically-
based 3D hair models in graphics. This sketch representation
can be inferred from real hair images rapidly (in a few
minutes on a PC) and realistic hair images can be synthesized
or reconstructed from the sketch representation in a few
seconds (see Fig. 9 and Fig. 15). We also provide a user
interface to edit the sketch and to generate different hair styles
(see Fig. 16).

Our representation is motivated by the following
observations and applications.

1. Although the number of hairs is huge (Oð106Þ),
many hairs are occluded and the visible hairs are

often thinner than a pixel. It is neither practical nor

necessary to infer the position of each individual

hair for general vision purposes. As was argued in
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texture modeling [2] and the information scaling

theory [23], human vision perhaps only perceives a
general impression of the whole hair style without

paying attention to the exact shape of an individual

hair. In other words, two hair images are percep-

tually equivalent if they share some common

structural and statistical properties.

2. Artists/painters can capture the essential character-
istics of a hair style by a sketch with only a small
number (10 to 20) of strokes (See Fig. 1). In this paper,
we demonstrate that realistic hair images can be
rendered from simple sketches. The reconstructed
images (see Fig. 8g and Fig. 15) are different from the
original image,butbearsimilarperceivablestructures.

3. Our compact representation is aimed at a number of

vision applications:

a. extremely low bit image/video compression for
telecommunication and video phones,

b. hair style recognition and understanding in
human-computer interface,

c. nonphotorealistic rendering or cartoon anima-
tion from video images, and

d. human portraits [6].

Fig. 2 shows our generative model for both hair analysis
and synthesis with an optional user interface for hair input
and editing. The generative model has three levels. The
bottom level is the high-frequency band of the hair image. The
middle level is a piecewise smooth vector field for the hair
orientation, gradient strength, and growth directions. The top
level is an attribute sketch graph for the discontinuities and
features in the vector field. Both the vector field and the sketch
graph are directed in the hair growth directions. The curves in
the sketch graph are divided into five categories of flow
primitives in parametric form. Fig. 4 shows some examples
for hair boundaries, occluding lines between hair strands,
dividing lines on top of the hair, etc. These parametric
primitives are essential for generating clear, sharp disconti-
nuities for the orientation field (See Fig. 8d for example). The
shading effects are represented in the low-frequency band of
the hair image which is modeled as a linear superposition of
Gaussian image bases. The color is represented by a color map
after a Luv transform. The color map is a mapping from the
gray intensity ½0; 255� to a color.

The vector field and sketch graph are computed in a
Bayesianframework which maximizes a posterior probability
in two steps. The first step includes a greedy sketch pursuit
algorithm for constructing the undirected sketch and a
diffusion algorithm for computing the orientation field
conditional on the sketch graph. The second step infers the
growth directions of the sketches and augments the orienta-
tion field to a vector field. The hair directions cannot be
decided locally and often need global information. We adopt a
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Fig. 1. Three examples of hair sketches drawn by artists.

Fig. 2. Overview of our model and algorithm which consists of three modules: analysis, synthesis/reconstruction/rendering, and an optional editing
interface. For an input image Iobs, we decouple it into a gray image Iobs

Y and a color channel Iobs
UV represented by a color map. The gray image is

decomposed into a texture part Iobs
H and a shading part Iobs

L by a low-pass Gaussian filter. From Iobs
H , we compute the vector field V and the sketch S

with direction dS . The synthesis goes from the sketch S to the vector field Vsyn and to the hair image Isyn
H . The latter is combined with the shading Isyn

L

and color Isyn
UV to produce the final result Isyn. We can render the cartoon sketch in some artistic style Jrnd. The sketch can be input or edited through

an interface before entering the synthesis process.



Swendsen-Wang cut algorithm [1] to compute the directions
of the sketch graph. We test our algorithm on a large data set of
hair images with diverse hair styles. Both analysis, synthesis,
editing,andrenderingresultsarereportedintheexperiments.

Our representation is inspired by the primal sketch
model in [10] and the human portrait application in [6]. The
latter computes a stylistic cartoon sketch of a human face
and hair using an example-based learning method similar
to the image analogy work in graphics.

The paper is organized as follows: Section 2 presents the
three-level hair model. Section 3 demonstrates that hair
images can be synthesized using this generative model.
Section 4 discusses the inference algorithm. Section 5 shows
some experimental results in both hair analysis, synthesis,
editing, and cartoon rendering. Section 6 concludes the
work with a discussion of limitations and future work.

2 A GENERATIVE SKETCH MODEL OF HAIR

The generative model for both analysis and synthesis is
illustrated in Fig. 2. There are three factors contributing to
the appearance of hair: 1) hair color, 2) shading effects, and
3) texture. Therefore, a hair image is first decomposed into
these three components.

Let Iobs denote an observed color hair image. By a Luv
transform, we obtain an intensity image Iobs

Y and a color
channel image Iobs

UV. The color channel Iobs
UV is discretized

into a small number of colors and represented by a color
map, which maps the gray-scale intensity ½0; 255� of Iobs

Y to a
color. The intensity image Iobs

Y is further decomposed into a
low-frequency band Iobs

L for illumination and shading with
a low-pass Gaussian filter and the remaining high-
frequency band is the texture for the hair pattern Iobs

H .
The low-frequency band is simply represented by a linear
superposition of Gaussian image bases plus a mean
intensity �,

Iobs
L ðx; yÞ ¼ �þ

XKL

i¼1

�iGðx� xi; y� yi; �i; �xi; �yiÞ þ noise:

ð1Þ

Usually, KL ¼ Oð10Þ and each Gaussian base is represented
symbolically by an ellipses for editing (see Fig. 9). Each ellipse
has five parameters, for the center, orientation, and standard
deviation along the two axes. The coefficients f�ig can be
positive or negative for highlights and shadows, respectively.
The Matching Pursuit algorithm is used to automatically
extract the coefficients from the input image. In the editing
interface, a user can change the shading by editing the
number of ellipses and changing their parameters.

Our study is focused on modeling the texture
appearance Iobs

H with a three level generative model. A
hair texture IH on a lattice � is generated by a hidden
layer V—the vector field for hair growth flow, and V is
in turn generated by an attribute hair sketch S which is a
number of sketch curves representing the boundaries of
hair strands and wisps with direction dS .

Sketch ðS;dSÞ�!
�sk

Vector field V�!hair image IH:

�sk is a dictionary of sketch primitives shown in Fig. 3. Each
primitive is a rectangular window (say 5� 7 pixels) and
some examples are shown in Fig. 4 and Fig. 5.

In the following, we present the three level model in the
top-down order as it is shown in the right panel of Fig. 2.

2.1 Top Level Representation: The Hair Sketch S

The hair sketch S consists of a number of curves denoted
by Ci and each curve represents a long stroke with certain
width,

S ¼ ðNC; fCi : i ¼ 1; 2; . . . :; NCgÞ:
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Fig. 3. Five primitives for the orientation field �� and 11 primitives for the
directed vector field V in a dictionary �sk. (a) Side boundary. (b) Source
(origin) or sink (end) of hair strands. (c) Occluding boundary. (d) Dividing
line. (e) Stream line. The line segments and arrows in the primitive
windows show the canonical orientations, and the angles may change in
½��=6; �=6�. See Fig. 5.

Fig. 4. (a) Windows A-F are six primitive examples. (b) Zoomed-in views of the six windows.



These curves are undirected and represent the noticeable

structures such as the discontinuities in the hair flow. They

consist of a consecutively aligned windows called sketch

“primitives.” We define five categories of undirected

primitives which produce 11 types of directed primitives

for the vector field V, as shown in Fig. 3. Each primitive

specifies the orientations �l; �r 2 ½0; �Þ and directions dl; dr 2
f�1;þ1g of the hair flow on the left and right sides of the

primitive window. Six examples of the primitives are shown

in Fig. 4. These primitives are represented in parametric form

for the flow directions and angles on both sides and they are

important for generating sharp discontinuities in the vector

fields. The five categories of primitives are the following:

1. Side boundary: The hair flows along one side and the
other side is nonhair. See window E in Fig. 4. Thus, it
has only one direction dl. Fig. 5a shows an example
with a window of 5� 7 pixels.

2. Source and sink: The origin or ending of hair flow. See
windows B and F in Fig. 4.

3. Occluding boundary: the boundary of two hair strands
of different orientations. It often occurs at the places
where one hair cluster covers the other. See window A
in Fig. 4. Fig. 5b shows its window in the vector field.

4. Dividing line: Hair grows in the same orientation but
opposite directions. This primitive often occurs at
the top the head. See window D in Fig. 4 and Fig. 5c.
Note that it has a middle section for the white scalp
and the directions dl; dr are fixed, as hair always
grow outward from the scalp.

5. Stream line: Hair strands with the same orientation
and direction but strong contrast in appearance, for
example, different dye. See window C in Fig. 4.

Each primitive is represented by a number of variables or

denoted by

B ¼ ð‘; x; y; �; �; ð�l; �rÞÞ; ð2Þ

where ‘ 2 fa; b; c; d; eg indexes the five primitive types,

ðx; yÞ is the center position, � is the axis orientation in ½0; 2�Þ,
� is the strength of the intensity gradient perpendicular to

the axis, and ð�l; �rÞ are the relative orientation angles at the

left and right side vector fields. We discretize the angles so

that � has 12-16 orientations. We set �l ¼ 0 and �r ¼ 0 to 0 if

the orientation on the left side or right side is along the

primitive axis. Otherwise, �l; �r 2 f�3 ; �2 ; 2�
3 g. Thus, we obtain

a dictionary for the undirected primitives.

�B ¼
(
ð‘; x; y; �; �; ð�l; �rÞÞ :

‘ 2 fa; b; c; d; eg; ðx; yÞ 2 �; � 2
�

0; . . . ;
11�

12

�
; 8�l; �r

)
:

ð3Þ

The hair growth directions are important for hair

understanding and stylistic rendering. It is studied sepa-

rately from the orientation because the directions have to be

inferred from the global image and cannot be decided

within local windows. We augment the primitive B with a

direction ðdl; drÞ specifying the flow directions on the two

sides. Thus, we have a sketch primitive dictionary

�sk ¼ fðB; dl; drÞ : B 2 �B; dl; dr 2 f�1; 1gg: ð4Þ

As Fig. 3 shows, the primitive types (a), (b), and (e) have only

one direction variable, the primitive type (d) (the dividing

line) is deterministic and, thus, has no direction variables, and

only primitive type (c) has two direction variables. For clarity

of discussion, we use the uniform notation above.
We denote the direction of the sketch by

dS ¼ fðdli; driÞ : i ¼ 1; . . . ; NCg:

We request that all primitives in a sketch curve C have the

same type ‘ and same directions d ¼ ðdl; drÞ. Therefore, we

denote a directed curve of NB primitives by,

ðC;dÞ ¼ ð‘;NB; fBj : j ¼ 1; 2; . . . ; NBg;d ¼ ðdl; drÞÞ:

Fig. 6 shows a curve with a sequence of primitive windows

overlapping each other so that the pixels along the curve are

covered seamlessly by the primitives.
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Fig. 5. The windows of three directed primitives. (a) A window of
5� 7 pixels for a side boundary primitive. (b) A window of 5� 7 pixels for
an occluding boundary primitive. (c) A window of 6� 7 pixels for an
dividing line primitive. Each window has a center ðx; yÞ and a main axis
with orientation �. The left and right side vector fields are specified by the
parameters �l ¼ ð�l; dlÞ and �r ¼ ð�r; drÞ, respectively. The dividing line
primitive is special because its left and right vector fields must grow in
opposite directions and there is a middle vector field for the scalp.

Fig. 6. Pixels along a curve C. C consists of NB primitives whose windows overlap with neighbors so that the pixels along the curve are covered
seamlessly.



Suppose the sketch level S has a total of K primitives
B1; . . . ;BK and each primitive Bk covers a window �k. The
image lattice � is divided into two disjoint areas.

� ¼ �sk [ �nsk; �sk \ �nsk ¼ ;:

Pixels in �sk are said to be sketchable or on the sketch and
the remaining pixels in �nsk are nonsketchable or off the
sketch, according to the terminology used in [10]. The
sketchable part is divided as

�sk ¼ [Kk¼1�k:

To learn a prior probability model for the sketch level,
we collect a set of hair images which are centered in
position and normalized in size with manual sketches and
vector fields. Then, we compute two types of empirical
probabilities (histograms) shown in Fig. 7.

Fig. 7a is a point-wise probability pðx; y; �; dÞ. At each
point ðx; yÞ, we divide the vector ð�; dÞ (where � 2 ½0; �Þ and
d 2 f�1;þ1g) into eight bins (i.e., eight directions in ½0; 2�Þ)
and construct the histogram pdirðx; y; �; dÞ. The length of the
arrows shows how likely it is that a vector flow will point in
a certain direction at a given point.

Fig. 7b shows two empirical probabilities for the
intensity gradient � perpendicular to the sketch curves.
pskð�Þ and pnskð�Þ are the histograms for pixels on and off
the sketch, respectively. Clearly, the gradients are generally
larger on the sketch due to high intensity contrast and,
therefore, pskð�Þ has a much heavier tail than pnskð�Þ. We fit
both histograms by a mixture of two Gaussian distributions.

pskð�Þ ¼ !skNð�;�sk1; �sk1Þ þ ð1� !skÞNð�;�sk2; �sk2Þ: ð5Þ

We have the following prior probability for the sketch
level representation.

pðS;dSÞ ¼

pðNcÞ
YNC

i¼1

( Y
Bj2Ci

½pdirðxj; yj; �lj; dljÞpdirðxj; yj; �rj; drjÞ�

Y
<Bja;Bjb>

Gðeð�ja; �jbÞÞ
) Y

v2�sk

pskð�ðvÞÞ:

ð6Þ

In the above equation, pðNCÞ / e�	NC penalizes the number of

curves. For each primitive Bj 2 Ci, the intensity gradient �ðvÞ
on the sketch follows the prior psk, the flow directions ð�lj; dljÞ
and ð�rj; drjÞ on both sides follow the prior pdir, and GðÞ is a

Gaussian probability on the angle difference eð�ja; �jbÞ (see

definition in (11)) so that any two consecutive primitives have

similar orientations �ja and �jb.

2.2 The Middle Level Representation:
The Vector Field V

The middle level vector field represents the directed flow of

the hair and includes three components V ¼ ð��; ��;dV Þ on a

lattice �.

1. An orientation field for the local hair orientation
(undirected) in ½0; �Þ,

�� ¼ f�ðvÞ : �ðvÞ 2 ½0; �Þ; v 2 �g:
2. A gradient strength field for the intensity gradient

perpendicular to the orientation �ðvÞ,

�� ¼ f�ðvÞ : �ðvÞ ¼ r?�ðvÞIH; v 2 �g:
3. A direction field d for the growth direction of the hair

at each pixel.

dV ¼ fdðvÞ : dðvÞ 2 f�1;þ1g; v 2 �g:
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Fig. 7. (a) The empirical point-wise prior probability in the image field pdirðx; y; �; dÞ for the flow vector (orientation and direction) ð�; dÞ at each pixel

ðx; yÞ. Longer arrows mean higher probabilities. (b) The empirical prior probability pskð�Þ and pnskð�Þ for the intensity gradient perpendicular to the

orientation � for pixels on and off the sketch, respectively. The pixels on the sketch generally have higher intensity gradients and, thus, the histogram

has much a heavier tail on the right side.



At each point v, the orientation plus direction decides
the flow vector �ðvÞ 2 ½0; 2�Þ by �ðvÞ ¼ �ðvÞ þ dðvÞþ1

2 �.
The vector field is divided by the sketch graph into two

disjoint parts V ¼ ðVsk;VnskÞ for �sk and �nsk, respectively.
The generative model from ðS;dSÞ to V is

pðVjS;dSÞ ¼ pðVnskjVskÞpðVskjS;dSÞ: ð7Þ

pðVskjS;dSÞ is a Dirac delta function as S;dS specifies Vsk

deterministically. Each window �k has a left and a right
subwindow with �k ¼ �lk [ �rk, where the vector field is
determined by the parameters of the primitive Bk and the
direction dk ¼ ðdlk;drkÞ. Examples are shown in Fig. 5.

Vðx; yÞ ¼ ð�lk; �k; dlkÞ; ðx; yÞ 2 �lk;

Vðx; yÞ ¼ ð�rk; �k; drkÞ; ðx; yÞ 2 �rk; k ¼ 1; . . . ; K:
ð8Þ

The remaining lattice �nsk corresponds to smooth flow areas
where the vector field is “filled-in” from Vsk using the
following probability:

pðVnskjVskÞ ¼ pð��nsk;dVnsk
j��sk;dVsk

Þ �
Y
v2�nsk

pnskð�ðvÞÞ; ð9Þ

where pnskðÞ is the prior probability shown in Fig. 7b for the
gradient strength on pixels off the sketch and pð��nsk;
dVnsk
j��sk;dVsk

Þ is a smoothness model of the flow field with
the sketchable part as its boundary condition.

pð��nsk;dVnsk
j��sk;dVsk

Þ / exp �
X
v2�nsk

X
u2@v

eð�ðvÞ; �ðuÞÞ2

2	2
�

( )
;

ð10Þ

where @v is the 4-nearest-neighbor of v and eð�ðvÞ; �ðuÞÞ is
the distance between adjacent flow vectors �ðvÞ and �ðuÞ
defined on ½0; 2�Þ � ½0; 2�Þ. We adopt the following distance
measure metric as in [18], [4].

eð�ðvÞ; �ðuÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� cosð�ðvÞ � �ðuÞÞ

p
: ð11Þ

Fig. 8 shows an example of the vector field. Fig. 8b is a
directed sketch level representation ðS;dSÞ. Fig. 8c shows
the vector field Vsk generated by the parameters of the
sketch level within the primitive windows. The overall
vector field V is shown in Fig. 8d after filling in Vnsk

conditioned on Vsk.

2.3 The Bottom-Level Representation: The Hair
Texture Image IH

The hair texture image IH is generated by the vector field V
in the following probability,

pðIHj��; ��Þ / exp �
X
v2�

ðr�ðvÞIHÞ2

2�2
�

þ
ðjjr?�ðvÞIHjj � �ðvÞÞ2

2�2
�

( )
:

ð12Þ
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Fig. 8. Example of hair model and inference. (a) is an input color image Iobs, (b) is the computed sketch S with directions dS, (c) is the sketchable

vector field V�sk
generated from ðS;dSÞ, (d) is the overall vector field V after filling-in the nonsketchable part, (e) is the high-frequency hair texture

image Isyn
H generated from the vector field, (f) is the shading and lighting image, and (g) is the synthesized color image Isyn after adding the shading

and color. We render an artistic sketch Jrnd in (h).



Note that the image does not depend on the flow direction dV .
Intuitively, a hair texture image should have low intensity
gradients along the flow orientation �ðvÞ; v 2 �, while the
gradients in the perpendicular direction ?�ðvÞ should be
close to the gradient �ðvÞ in V.

The probability above is an inhomogeneous Markov
random field on the image intensity IH modulated by a
hidden vector field V. This inhomogeneous MRF model has
a similar effect to the line integral convolution (LLC)
method in flow visualization [3].

Fig. 8e shows an example of the synthesized texture
image sampled from the above probability using the vector
field in Fig. 8d. With the shading image and color map, it
produces a hair image Isyn in Fig. 8g.

To summarize the three-level model, we have the
following joint probability for the overall representation,

pðIH;V;S;dSÞ ¼ pðIHj��; �Þpð��; ��;dV jS;dSÞpðS;dSÞ: ð13Þ

The three probabilities represent the three level models in
(12), (7), and (6), respectively.

3 SYNTHESIZING HAIR IMAGES FROM THE

GENERATIVE SKETCH MODEL

Following the spirit of analysis-by-synthesis in the texture
modeling literature [2], [25], we verify the probability
models in the previous section by synthesizing hair images.

Our prior model on the sketch level pðS;dSÞ is not strong
enough for generating hair styles through random sampling,
therefore we assume that ðS;dSÞ is either inferred from a hair
image in the next section or edited manually through a simple
user interface. From ðS;dSÞ, we synthesize a hair image Isyn

H in
three steps according to the generative model.

1. Synthesizing the vector field from the sketch
Vsyn � pðVjS;dÞ.

2. Synthesizing the hair texture from the vector field
Isyn

H � pðIHjVsynÞ.
3. Synthesizing color image Isyn by adding a shading

image Isyn
L to Isyn

H and then transferring the gray
image to color by the color map. The shading image
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Fig. 9. Three examples of hair drawing and synthesis. (a) Manually input hair sketch S with directions dS . (b) Synthesized vector field Vsyn given
ðS;dSÞ. (c) Edited shading maps with a small number of ellipses. (d) Synthesized color images Isyn.



is either edited through the interface or inferred
from images. One can uses various color maps
stored for different hairs.

In this section, we briefly mention the sampling
processes for Steps 1 and 2.

3.1 Synthesis of the Vector Field

Given the directed sketch ðS;dSÞ, the vector field Vsk on �sk

is generated deterministically from the parameters of the
sketch primitives according to (8). For Vnsk on the
nonsketchable part �nsk, the gradient strengths are sampled
iid from the prior model

�ðvÞ � pnskð�ðvÞÞ; v 2 �nsk: ð14Þ

The orientation and direction fields for nonsketchable part
are filled in by a diffusion equation derived from minimizing
the energy of the smoothness prior in (10). Since the
information is propagated from the sketchable part, the
pixels near the sketch need to be updated earlier and their
values are more confident in the diffusion procedure. Thus,
we assign a confidence weight wðvÞ for each pixel v 2 �. At
the beginning, wðvÞ ¼ 1 for v 2 �sk and wðvÞ ¼ 0 for v 2 �nsk.
Thus, we modify the energy function in (10) to

Eð��;dV jS;dSÞ ¼
X
v2�nsk

X
u2@v

wðuÞð1� cosð�ðuÞ � �ðvÞÞÞ: ð15Þ

Minimizing the above energy leads to the following
diffusion equations for the nonsketchable part:

@�ðvÞ
dt
¼
X
u2@v

wðuÞ sinð�ðuÞ � �ðvÞÞ; for v 2 �nsk: ð16Þ

We compute the diffusion equations by nonlinear Gaussian-
Seidel method as in [4] and raise wðvÞ in the nonsketchable
part gradually at each iteration by a heat diffusion equation
with fixed step size.

wðvÞ  wðvÞ þ 0:2
1

4

X
u2@v

wðuÞ � wðvÞ
 !

; for v 2 �nsk: ð17Þ

The weights converge to wðvÞ ¼ 1; 8v 2 �.

3.2 Synthesis of Hair Image

The probability pðIHj��; ��Þ in (12) has two energy terms. The
first is a diffusion term which reduces the gradients along the
orientation �ðvÞ, while the second is a “reaction” term which
forces the intensity gradient in the direction perpendicular to
�ðvÞ to be close to the expected gradient �ðvÞ. �ðvÞ is provided
by the vector field. We can sample Isyn

H � pðIHj��; ��Þ by the
Gibbs sampler, as in texture synthesis [25]. This is quite slow,
in practice, so we adopt a much faster method which can
generate Isyn

H in seconds.
To start with, we define the neighborhood of the

inhomogeneous MRF model pðIHj��; ��Þ. For each pixel
v 2 �, we trace a 1D curve neighborhood of 3-5 pixels
along the orientation �ðvÞ in both directions. The first energy
term in pðIHj��; ��Þ enforces smoothness on the pixel
intensities along the 1D curve neighborhood. This is very
similar to the flow visualization algorithm LLC [3]. We
initialize the image with white noise and then iterate two
steps. The first step is to average the pixel intensities along
its 1D curve neighborhood like in the LLC algorithm. The
second step is to match the expected gradient strength

along the perpendicular direction. We calculate current

gradient strength along the perpendicular direction for the

synthesized result of the first step. Then, for each pixel, we

scale the local contrast by the rate of the expected gradient

strength over the current gradient strength.
Fig. 9 shows three examples of hair synthesis to verify the

generative model. Fig. 9a displays the manually input and

edited sketches with directions which produce the vector

fields in Fig. 9b. Fig. 9c shows the shading image with the

ellipses for highlight or dark regions. Fig. 9d is the final

synthesized images after a color map transform. Editing and

rendering such hair images takes only a few minutes.

4 COMPUTATION AND INFERENCE

Given an input image Iobs, our goal is to compute the vector

field V ¼ ð��; ��;dV Þ and the directed sketch ðS;dSÞ by

maximizing the Bayesian posterior defined in Section 2.

ðS;dS;VÞ� ¼ arg max pðIobs
H j��; ��Þpð��; �;dV jS;dSÞpðS;dSÞ:

ð18Þ

We choose a two-step greedy algorithm for maximizing the

above probability where the two steps minimize different

energy terms, respectively.

1. Step 1. Computing the orientation field �� and the
undirected sketch S. This step can be accomplished
by local computation.

2. Step 2. Inferring the growth directions dS and dV for
the sketch and orientation field, respectively. The
directions have to be inferred with global informa-
tion on the sketch S and are important for hair
understanding and cartoon rendering.

The gradient strength field �� is computed from the

orientation field �� and Iobs deterministically with

�ðvÞ ¼ r?�ðvÞIobs
H ðvÞ; 8v 2 �.

4.1 Step 1. Computing the Orientation Field �� and
Undirected Sketch S

We transfer the probabilities in (18) into energy functions on

the orientation field and undirected sketch,

ð��;SÞ� ¼ arg minEð��;SÞ
¼ arg minE1ðIobs

H j��Þ þ E2ð��; ��jSÞ þ E3ðSÞ:
ð19Þ

The three energy functions E1, E2, and E3 are derived from

(12), (10), and (6), respectively, by omitting the terms

involving the directions dV ;dS .

E1ðIobs
H j��Þ ¼

X
v2�

ðr�ðvÞI
obs
H Þ

2

2�2
�

; ð20Þ

E2ð��; ��jSÞ ¼
X
v2�nsk

X
u2@v

eð�ðvÞ; �ðuÞÞ2

2	2
�

�
X
v2�nsk

log pnskð�ðvÞÞ

�
X
v2�sk

log pskð�ðvÞÞ;

ð21Þ
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E3ðSÞ ¼ 	NC
NC þ

X
Ci2S

X
<Bia;Bib>

eð�ia; �ibÞ2

2	2
�

: ð22Þ

In energy E2ð��; ��; jSÞ, as the orientations are in ½0; �Þ, we
need to renormalize the metric in (11) [18], [4].

eð�ðvÞ; �ðuÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð1� cosð2�ðvÞ � 2�ðuÞÞ

r
: ð23Þ

The second and third terms inE2ð��; ��; jSÞ are responsible for
pursuing the streamlines. The streamline primitives are
distinguished from the nonsketchable part not by their
orientations but by their relatively high gradients �ðvÞ.
Drawing a sketch curve on the high gradient areas will
reduce E2.

We initialize S ¼ ;. We then add one sketch primitive Bþ
at each iteration Sþ ¼ S [ fBþg and recalculate the orienta-
tion field by updating �� to ��þ. The primitive Bþ either
starts a new curve Cþ or extends an existing curve Ci in S.
Bþ 2 �B is selected from a set of primitives in the
dictionary �B (see (3)) with various locations, orientation,
and types so that it achieves a maximum reduction of the
energy Eð��;SÞ until the reduction amount is zero.

B�þ ¼ arg max
Bþ2�B

Eð��;SÞ �Eð��þ;SþÞ: ð24Þ

For the current sketch S and updated sketch Sþ, we need to
compute the optimal orientation fields �� and ��þ, respec-
tively, by diffusion equations in order to evaluateEð��;SÞand
Eð��þ;SþÞ. In the following, we first present the computation
of �� given S. This is similar to the diffusion of the vector field
in the synthesis step, except that the orientation field is
influenced by both the sketch and the observed image.
Second, we present the algorithm for adding the primitives in
a spirit similar to matching pursuit [15].

4.1.1 Computing the Orientation Field by Diffusion

As the sketch S determines the orientation field ��sk in the
sketch area �sk ((8)), we only need to compute ��nsk by
minimizing E1ðIobs

H j��Þ þE2ð��jSÞ (we omit �� for clarity in
this section). Therefore, the orientation field ��nsk should
achieve small image gradients r�ðvÞI

obs
H and align smoothly

with ��sk in the undirected primitives.

From the image Iobs
H , we calculate its intensity gradient

sðvÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrxI

obs
H j

2 þ jryI
obs
H j

2
q

�oðvÞ ¼ arctanðryI
obs
H

rxI
obs
H

Þ; 8v 2 �:

We rewrite the gradient at direction � in the following form:

ðr�ðvÞIHÞ2 ¼ ðrxIH cos �ðvÞ þ ryIH sin �ðvÞÞ2

¼ sðvÞ2ðcos �oðvÞ cos �ðvÞ þ sin �oðvÞ sin �ðvÞÞ2

¼ s2ðvÞ sin2ð�ðvÞ � �oðvÞÞ

¼ s
2ðvÞ
2
ð1� cosð2�ðvÞ � 2�oðvÞÞ:

Therefore, the energy function E1ðIobs
H j��Þ þ E2ð��jSÞ

becomes,

X
v2�nsk

s2ðvÞ
4�2

�

ð1� cosð2�oðvÞ � 2�ðvÞÞ

þ 1

2

X
v2�nsk

X
u2@v

1

2
ð1� cosð2�ðuÞ � 2�ðvÞÞ:

The equation above can be minimized by the following

diffusion equations:

d�ðvÞ
dt
¼� s

2ðvÞ
4�2

�

sinð2�oðvÞ � 2�ðvÞÞ

� 1

2

X
u2@v

sinð2�ðuÞ � 2�ðvÞÞ; v 2 �nsk:

ð25Þ

We use the nonlinear Gauss-Seidel method [4] to solve for

��. Once the diffusion equations converge, the energyEð��;SÞ
measures the goodness of the orientation field �� and sketch S

and is used in the primitive pursuit algorithm below.

4.1.2 Pursuing the Primitives

In the initial stage S ¼ ;, the orientation field �� computed by

the diffusion equation has blurry hair boundaries. The

sketch S plays an important role in computing the orientation

field. Figs. 10b and 10c shows a contrasting example of the

orientation field computed with and without the primitives.
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Fig. 10. Comparison of the orientation field computed by diffusion with and without the sketch. (a) The input image. (b) Orientation field �� computed
with S ¼ ;. We visualize the angle � 2 ½0; �Þ by color. (c) The zoomed-in view of the orientation field within the dashed window in (b). The orientation
field has blurred boundary. (d) Orientation field �� computed together with the sketch S. (e) The zoomed-in view of the orientation field within the
dashed window in (d). The orientation field has sharp discontinuities along the occluding hair boundary.



Suppose Bþ 2 �B is a candidate primitive with
window �þ and S is the current sketch. The fitness of
Bþ is evaluated by three energy terms in Eð��;SÞ.

First, Bþ should fit well with the current sketch according
to energy E3ðSÞ. If it starts a new curve, the energy will be
increased in 	NC

. Otherwise, it extends a current curve with a
smoothness energy eð�ia; �ibÞ2.

Second, adding Bþ will affect the overall orientation field
in the nonsketchable part ��nskþ through the diffusion
equation (25), which minimizes E1ðIobs

H j��þÞ þ E2ð��þ; �þj
SþÞ on �nsk. This is too expensive to compute by running the
diffusion equations for each new primitive, so we simply set
the orientation fields of the primitive to the current orientation
fields �� as an approximation of ��þ.

Third, Bþ should fit well with the image appearance
in the local window. As Bþ determines the orientation
field ��þ within its window �þ, it should be aligned
well with the minimum image gradient directions in
terms of the energy term

X
v2�þ

ðr�ðvÞI
obs
H Þ

2

2�2
�

:

This energy is part of E1ðIobs
H j��Þ (see (20)) over window �þ.

In the following, we shall focus on the computation of

X
v2�þ

ðr�ðvÞI
obs
H Þ

2

2�2
�

;

as other energy terms have been discussed before.
As the dictionary �B includes five types of primitives at

all locations, orientations, and angle variations, directly
computing the summation

P
v2�þ
ðr�ðvÞI

obs
H Þ

2 for all possible
windows is quite expensive. We compute the following
quantities once at the beginning and then use them
repeatedly in later computation.

At each point ðx; yÞ 2 �, we compute a matrix (tensor),

T ðvÞ ¼
rxI

obs
H rxI

obs
H rxI

obs
H ryI

obs
H

ryI
obs
H rxI

obs
H ryI

obs
H ryI

obs
H

0
@

1
A: ð26Þ

Due to the properties of the tensor, for the window �0

which has any constant orientation �, we can compute the
summation of ðr�I

obs
H Þ

2 by the summation of the tensor,

X
v2�0

ðr�I
obs
H Þ

2 ¼ ðcos �; sin �Þ
X
v2�0

T ðvÞ
 !

ðcos �; sin �Þ0: ð27Þ

From the definition of the primitives, each primitive is
composed of a few (less than three) subwindows with
constant orientations. Therefore, we compute and store the
summation of the tensor for all kinds of subwindows. Then,
the fitness of each primitive can be computed efficiently by
combining the fitness energy in the subwindows.

To summarize Step 1, we have the following algorithm
for computing the undirected sketch S and the orientation
field �� from the hair texture image Iobs

H :

Step 1: Algorithm for the undirected sketch S and

orientation field ��

0. Given hair texture image Iobs
H and primitive

dictionary �B.

1. Initialize S ¼ ;, �sk  ;, NC  0, �nsk  �.
2. Compute the orientation field ��nsk by diffusion (25).

3. Compute the current total energy function Eð��;SÞ
in (19).

3. Iterate the following steps.

4. Birth of a new sketch

5. For any Bþ 2 �B, compute


ðBþÞ ¼ Eð��;SÞ � Eð��þ;S [ fBþgÞ
6. Choose B�þ ¼ arg maxBþ2�B


ðBþÞ.
7. If 
ðB�þÞ � 0, exit. Output S� and ���.

8. Update Ci ¼ B�þ, NC  NC þ 1,

�nsk  �nsk n ��þ; �sk  �sk [ ��þ.

9. Trace the sketch curve CNc
:

10. For Bþ at the two ends of CNC
,

compute 
ðBþÞ ¼ Eð��;SÞ � Eð��þ;S [ fBþgÞ,
11. Choose B�þ ¼ arg max 
ðBþÞ.
12. If 
ðB�þÞ � 0, go to Step 4.
13. Update CNC

 CNC
[ fB�þg,

�nsk  �nsk n ��þ; �sk  �sk [ ��þ. Goto Step 9.

The sketch pursuit algorithm above resembles the match-
ing pursuit algorithm [15] in signal decomposition with
wavelets. The matching pursuit algorithm adds one wavelet
base at a time to achieve maximum reduction of reconstruc-
tion error. Our primitives are disjoint rather than linear
additive. Furthermore, the orientation field is a layer of
hidden variables that have to be computed iteratively. All
these factors make the computation more complicated than
matching pursuit.

4.2 Step 2: Computing the Hair Growth Directions

In the second step, we compute the hair growth directions dS
and dV for the sketch S and orientation field ��, respectively.
Suppose S ¼ fCi : i ¼ 1; . . . ; NCg has a set of NC undirected
sketch curves and the primitives on each curve share the same
direction labels. The five primitives (a)-(e) have 1, 1, 2, 2, 1
direction variables, respectively. For notation clarity, we pool
all the direction variables together and denote,

dS ¼ ðd1; d2; . . . ; dmÞ 2 f�1; 1gm: ð28Þ

Fig. 11a shows an example with a number of curves. We
represent each variable by a node and form an adjacency
graph in Fig. 11b. Two nodes di; dj are said to be adjacent if
they belong to two different curves and there is a straight line
connecting the two curves without intersecting other curves.

Therefore, the problem of inferring the direction becomes
a binary Graph labeling/coloring problem.

4.2.1 The Energy Terms Related to Directions

In the maximum posterior probability formulation in (18),
the direction is not involved in the image model pðIobs

H j��; ��Þ.
Only two energy terms contribute to the hair directions. The
first term is included in pðVjS;dSÞ and it is the smoothness
of vector flow field �ðvÞ; v 2 �sk for the nonsketchable part
conditioned on the sketch part �ðvÞ; v 2 �nsk (see (10)). The
second term is included in the prior probability pðS;dSÞ,
where the directions within the primitive windows follow a
prior probability pdirðv; �ðvÞ; dðvÞÞ. An additional source of
information for determining the directions comes from the
dividing line primitives whose directions are known.

Given �� and S, we transfer (18) to the following energy
minimization problem:
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ðdS;dV Þ� ¼ arg minEðdS;dV j��;SÞ ð29Þ
¼ arg min

X
v2�nsk

X
u2@v
ð1� cosð�ðuÞ � �ðvÞÞÞ

�
X
v2�sk

log pdirðv; �ðvÞ; dðvÞÞ: ð30Þ

dðvÞ; v 2 �sk is determined by dS , and the nonsketchable part
dðvÞ; v 2 �nsk is computed through the diffusion (25) which
minimizes the first energy term above. Therefore, the
computation of dS is the key to solving the equation and dS
is evaluated by the smoothness of the vector field dV in the
above equation.

There are several possible algorithms for solving the
graph labeling problem. For example, Belief propagation
and graph cut are fast solutions and the Gibbs sampler [8] is
a general algorithm. However, in this problem, Belief
propagation and Graph cut are not applicable to the general
energy functions above and the Gibbs sampler is inefficient
because of the strong coupling in the labels. In the
following, we adopt a Swendsen-Wang cut algorithm [1]
which can simultaneously flip the labels of several nodes.

4.2.2 The Swendsen-Wang Cut Algorithm for Labeling

the Adjacent Graph

For each link e ¼< di; dj > in the adjacency graph, we define
a local compatibility probability qij which represents how
strongly di and dj are correlated based on some local
measurements. Fig. 12 shows some examples for two
streamline directions. These probabilities qij are used for
proposing clusters (connected components) in the Swendsen-
Wang cut method [1]. As a bottom-up proposal probability,
the exact formula for qij does not matter too much, though a
good probability will lead to fast convergence.

Without loss of generality, suppose di and dj are the
direction variables on the right and left sides of two curvesCm
and Cn, respectively. We denote the neighborhood between
the two curves by �ðdi; djÞ. One may use the heuristic method
for computing �ðdi; djÞ and we define the energy of
directional compatibility as

Eðdi; djÞ ¼
X

v2�nsk\�ðdi;djÞ

X
u2@v
ð1� cosð�ðuÞ � �ðvÞÞÞ:
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Fig. 11. (a) A portion of a sketch with a number of curves. Each curve has 1-2 direction variables. (b) Each direction variable in (a) is represented by a

node/vertex in the adjacency graph. Two adjacent nodes (curves) have a weighted edge for their direction compatibility constraints. The compatibility

probability qðdi; djÞ is abbreviated by qij.

Fig. 12. Direction compatibility between two adjacent streamline curves. Row 1 shows the vector fields in color and row two shows the energy
tension in the vector fields with darker spots for high energy. Intuitively, the two curves in (a) and (b) have compatible directions and, thus, lower
energies. (b) and (d) are not compatible and have high energies.
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Fig. 13. Sketch pursuit procedure. (a) Inferred sketch. It is a null sketch at the first step. (b) The orientation field. (c) The energy function

E1ðIobs
H j��Þ þ E2ð��; ��jSÞ at each pixel.

Fig. 14. Inference of hair growth directions. (a) The input image; (b) Sketch S with direction dS computed with the point wise prior pdir. Some hairs on

the top run in opposite directions. (c) The vector field V generated by the directed sketch ðS;dSÞ in (b). The directions are wrong at some pixels and,

therefore, the energy in the vector field is high. (d) Sketch with directions inferred with curve compatibility constraints. (j) The vector field generated

by the directed sketch ðS;dSÞ in (d).



As the probability is the same if we flip both di; dj

simultaneously, we normalize the probability,

qij ¼ pðdi ¼ djÞ

¼ expð�Eðdi ¼ 1; dj ¼ 1ÞÞ
expð�Eðdi ¼ �1; dj ¼ 1ÞÞ þ expð�Eðdi ¼ 1; dj ¼ 1ÞÞ :

di and dj are highly correlated if qij is close to 1 or 0 and they

are less correlated when qij is close to 0.5.

In [1], the Swendsen-Wang cut algorithm generalizes the
original Swendsen-Wang algorithm so that it can be applied
for general probability models in vision tasks. It samples the
posterior probability pðdS;dV j��;SÞ / e�EðdS;dV j��;SÞ, where
EðdS;dV j��;SÞ is defined in (29) In our experiment, we do not
use the simulated annealing schedule which is often needed
in optimization. The reason, in our opinion, is that the energy
has already rather low temperature and the Swendsen-Wang
method is known to mix rapidly in low temperature.

CHEN AND ZHU: A GENERATIVE SKETCH MODEL FOR HUMAN HAIR ANALYSIS AND SYNTHESIS 1037

Fig. 15. Experiments in hair sketching and synthesis on seven hair styles. (a) are the input images, (b) are the computed sketches with growth

directions, (c) are the vector fields, (d) are the synthesized images, and (e) are the cartoon renderings in different stroke styles.



Step 2: The Swendsen-Wang cut method for direction

inference

0. Initialize a labeling dS ¼ ðd1; d2; . . . ; dmÞ randomly

or uniformly.

1. Iterate the following steps for current dS .

2. For each adjacency link e ¼< di; dj > ,
Turn e off deterministically if di 6¼ dj.
Turn e off with probability 1� qij if di ¼ dj.

3. Collect a set of connected components CP .

4. Select a connected component V0 2 CP with

probability qðV jCP Þ (say uniformly).

5. Flip the direction labels in the connected

component V0 from ‘ to ‘0, ‘; ‘0 2 f�1; 1g.
6. Compute the new labeling d0S and the

corresponding d0V .

7. Accept the proposed flip with probability

�ððdS;dV Þ ! ðd0S;d0V ÞÞ as �ððdS;dV Þ ! ðd0S;d0V ÞÞ ¼

min 1;

Q
e2CðV0 ;V‘0 nV0Þ

ð1�qijÞQ
e2CðV0 ;V‘nV0Þ

ð1�qijÞ
� pðd

0
S;d

0
V j��;SÞ

pðdS;dV j��;SÞ

� �
.

In the above acceptance probability, V‘ and V‘0 are the

subgraphs with direction labels ‘ and ‘0, respectively.

CðV0; V‘ n V0Þ is the cut between Vo and V‘ n V0 and CðV0; V‘0 n
V0Þ is the cut between Vo and V‘0 n V0. We refer to [1] for more

details of the Swendsen-Wang cut algorithm.

5 EXPERIMENTS

We collected a hair data set containing 300 realistic human

hair images extracted from a cosmetic makeup software. The

hairs were segmented from human images and pasted on a

background of constant color.

For our training examples, we manually labeled the
sketches of 20 hair images with distinct styles. From these
sketches, we learned the primitives and computed the vector
field through diffusion. We learned the two prior probabil-
ities shown in Fig. 7. We also learned a number of parameters,
such as the standard deviations used in the representation.

Experiment 1: Hair sketching and synthesis. Fig. 8
illustrates the steps in inferring the sketch and synthesis
and more results are shown in Fig. 15. A detailed sketch
pursuit example is shown in Fig. 13. From the figure, we can
see that the energy E1ðIobs

H j��Þ þE2ð��; ��jSÞ is reduced while
the new curves are added into the sketch graph.

Our experiments reveal that the sketch level representa-
tion plays two important roles in computing the vector field.

1. As Fig. 10 shows, the primitives correct the errors in
the initial orientation field ð�; �Þ, especially around
the discontinuities of flows, which is a well-known
problem in filtering or feature extraction in any
random fields. On one hand, we need a large
window to pool information locally, but, on the
other hand, large windows lose spatial resolution.
This problem is resolved by fitting a number of
parametric primitives in generative windows.

2. The sketch helps to determine the directions which
cannot be determined locally. With the sketch, we
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Fig. 16. Examples of hair editing for hair images. (a) Original hair image. (b) Original hair sketch S. (c) Edited hair sketch. (d) Novel hair styles after

editing.

Fig. 17. A brush example for the nonphotorealistic hair rendering.



have high level information of hair structure, such as
the dividing line, the source, and sink boundary.
Fig. 14 shows a comparison experiment where the
compatibility among curves plays an important role
in computing the correct directions.

Experiment 2: Hair editing. Fig. 16 shows two examples
of hair editing. For a given image in Fig. 16a, we compute
the sketch graph shown in Fig. 16b. Then, we provide a user
interface to edit the sketches. The interface provides a
number of operators, such as adding/moving/deleting a
curve, changing its directions, editing the shading effects,
setting parameters for the intensity contrast, etc. Fig. 16c
shows examples of the edited sketch and Fig. 16d displays
the novel hair style. These editing steps are more con-
venient and much faster than the 3D graphics interfaces.

Experiment 3: Hair rendering. Rendering cartoon hair is
an application of hair analysis and is extremely straightfor-
ward using the generative models. All we need to do is
replace the sketch curves by stylistic brush drawings.

In nonphotorealistic animation and rendering (NPAR) [9],
different drawing styles can be achieved by different types of
strokes. In our experiments, we use a simple brush shown in
Fig. 17. We sample a number of key points on each sketch
curve Ci and draw a smooth Catmull-Rom spline passing
these points as the skeleton of the brush. For each key point on
the skeleton, we define a width and get two points along its
normal direction. These points determine two Catmull-Rom
splines which are the boundaries of the brush stroke. We
assume the brush has two narrowed ends. Some examples of
hair rendering are shown as Jrnd in Fig. 8 and Fig. 15. Other
styles can be generated with more fancy brushes.

6 LIMITATIONS AND FUTURE WORK

The three level generative hair model is extremely compact
(Oð100Þ bytes) and yet it is shown to be effective in
synthesizing realistic hair images with diverse hair styles. It
also supports convenient hair editing and rendering. The
representation is aimed at applications such as extremely
low bit image compression in video phones, human hair
recognition, and cartoon animation, etc.

The current model is still limited in the following
aspects:

1. The model is 2D and, therefore, its vector field does
not work well for very curly hairs, as seen in

Fig. 18a. These examples need short sketch curves
with occluding relations in the sketch representation.
Similar work was studied in a curve process in [21].

2. It cannot work well for very short hairs growing
forward (see in Fig. 18b) or black hairs (see in
Fig. 18c). The latter have very weak textures for
computing the vector field reliably.

3. We work on segmented hair images and we shall
integrate the hair sketch with our face sketch work [24]
and use the face as context to detect hair.

4. We cannot model more structured hair styles, such
as pigtail and braid which will need more sophis-
ticated primitives and sketch graphs.
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