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a b s t r a c t

This paper presents a novel background model for video surveillance—Spatio-Temporal Patch based
Background Modeling (STPBM). We use spatio-temporal patches, called bricks, to characterize both the
appearance and motion information. Our method is based on the observation that all the background
bricks at a given location under all possible lighting conditions lie in a low dimensional background sub-
space, while bricks with moving foreground are widely distributed outside. An efficient online subspace
learning method is presented to capture the subspace, which is able to model the illumination changes
more robustly than traditional pixel-wise or block-wise methods. Experimental results demonstrate that
the proposed method is insensitive to drastic illumination changes yet capable of detecting dim fore-
ground objects under low contrast. Moreover, it outperforms the state-of-the-art in various challenging
scenes with illumination changes.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Background modeling is a key component in a video surveil-
lance system with static cameras. In the past decade, various back-
ground modeling algorithms (Piccardi, 2004; Elhabian et al., 2008;
Bouwmans, 2009) have been proposed and achieved good perfor-
mance on well-illuminated scenes. However, the challenging
scenes with lighting and illumination changes still remain un-
solved, such as (1) sudden sunlight changes in daytime, (2) light
turned on or off, and (3) car lighting in nighttime outdoor scenes.
Especially, in a nighttime outdoor scene, the faint lighting, low
signal-noise-ratio (SNR), low contrast, and drastic illumination
changes are combined to form a really difficult scenario for back-
ground modeling.

Spatial neighborhood information and temporal one are two
fundamental elements to understand appearance structure and dy-
namic motion respectively and complementary to each other. For
example, in a low contrast environment, the motion of foreground
provides most of the visual information; whereas when there are
illumination changes, the appearance of foreground contributes
the main visual information. However, the traditional pixel-wise
methods (Wren et al., 1997; Stauffer et al., 2000; Elgammal et al.,

2002) model the background as a set of independent pixel pro-
cesses without considering neighborhood information, the block-
wise methods use only the spatial correlations between pixels
(Seki et al., 2003; Heikkila and Pietikainen, 2006; Lin et al., 2009)
or employ the spatial and temporal information separately (Mon-
net et al., 2003; Wang et al., 2007), and the motion based methods
(Wixson, 2000) exploit the temporal neighborhood information
alone. While it is difficult for these methods to deal with the above
scenarios individually, background modeling will benefit from uti-
lizing the spatial and temporal information jointly. Moreover,
according to the illumination literature (Belhumeur and Kriegman,
1998; Basri and Jacobs, 2003; Garg et al., 2009), the illumination
variations of a static object (e.g., a background patch in a surveil-
lance scene) could be represented by a low-dimensional subspace
under the assumption of Lambertian surface.

Motivated by these observations, we propose to build back-
ground models on spatio-temporal patches (called ‘‘bricks’’), which
characterize both the appearance and motion information in the
spatial and temporal neighborhood of a pixel (e.g., 6 � 6 � 4 pixels
as shown in Fig. 1). In the proposed method, a brick is the atomic pro-
cessing unit, which differs from the traditional pixel-wise or block-
wise methods. Similar to image patches (or blocks) (Belhumeur and
Kriegman, 1998), we observe that under all possible lighting condi-
tions the background bricks extracted from a given location lie in a
low-dimensional subspace, i.e., background subspace or background
model. Then, we present an efficient online subspace learning meth-
od to capture the background model and adapt it to the recent
variations in a real scene. The low computation complexity of this
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method makes it suitable for real-time applications. Here, we cap-
ture the background model of bricks at each background location
independently.

Once the background model is learnt and adapted, we could
perform ‘‘foreground detection’’ or ‘‘background subtraction’’ by
thresholding the residual errors of incoming bricks on it. The resid-
ual errors of background bricks are usually distinct from those of
foreground bricks and an adaptive threshold is proposed for reli-
able detection. Extensive experiments demonstrate the robustness
of the proposed method in overcoming various illumination
changes and low contrast in real-world video surveillance. The pro-
posed brick based method advances the state-of-the-art in three
aspects:

� It is robust to both sudden and gradual illumination changes and
achieves superior performance to the state-of-the-art.

� It is sensitive to dim moving objects under low contrast.
� It is simple yet effective for almost all the real challenging cases

including indoor and outdoor, and daytime and nighttime scenes.

1.1. Related work

While most of the pixel-wise methods (Wren et al., 1997;
Stauffer et al., 2000; Elgammal et al., 2002; Kaewtrakulpong and
Bowden, 2001; Lee, 2005) could handle gradual illumination
changes by adapting their models, they often have difficulty deal-
ing with sudden changes and are vulnerable to noises. Some meth-
ods explicitly alleviate the illumination effects by an extra
illumination estimation (Messelodi et al., 2005) or a color model
(Kim et al., 2005; Patwardhan et al., 2008). Recently, instead of
modeling the intensities of pixels, Pilet et al. (2008) model the ratio
of intensities between a stored background image and an input im-
age by Gaussian Mixture Models to deal with sudden illumination
changes. Their method successes in coping with sudden illumina-
tion changes, such as light switch in indoor scenes.

Block-wise methods use spatial correlations between pixels to
improve robustness to noises and illumination changes. Seki et al
(2003) exploit the cooccurrence of adjacent blocks for background
subtraction. Heikkila and Pietikainen (2006) present a texture-
based method (TBMOD), which employs the Local Binary Pattern
(LBP) operator and can tolerate considerable illumination varia-
tions. In (Yao and Odobez, 2007), a multi-layer method is proposed,
which combines the LBP feature and a color feature. In (Grabner
and Bischof, 2006; Lin et al., 2009), classification based methods
are proposed using image blocks. Edge (or gradient-based) features
are used to model the background for its robustness to illumina-
tion changes in (Yang and Levine, 1992). A fusion of color and edge
information is used in (Jabri et al., 2000). Noriega and Bernier

(2006) combine local kernel histograms and contour-based fea-
tures for background subtraction.

Motion based methods exploit temporal neighborhood infor-
mation for foreground detection. Wixson (2000) defines a salient
motion that tends to move in a consistent direction over time
and detects the salient motion by integrating frame-to-frame opti-
cal flow. The information of successive frames enhances the sal-
iency of moving objects despite of the similarity of appearances
to the background.

A subspace learning based method for background modeling is
first introduced by Oliver et al. (2000). This method establishes a
global subspace over the whole frames, i.e., the eigen-background
model, which can handle the global illumination changes to a cer-
tain degree. But they cannot deal with local illumination changes,
and fail to distinguish slow moving foreground objects. While some
improvements (Li, 2004; Skočaj et al., 2007; Skočaj and Leonardis,
2008) are made to deal with the slow moving objects, the local illu-
mination change still remains unsolved. Some other methods
(Monnet et al., 2003; Wang et al., 2007) operate on image blocks
and exploit an additional prediction model (e.g., on-line auto-
regression model) to predict future frames to capture the dynamic
changes in temporal domain. While their methods capture the spa-
tial and temporal information by two separate models respectively
and can deal with the local illumination changes, they still miss
detections in low contrast cases like other block-wise methods,
which could be addressed by our brick-based method that models
the spatio-temporal variations jointly in the brick space.

Some researchers also use the spatio-temporal information
for background modeling. Pless (2005) builds background models
based on the responses of spatiotemporal derivative filters at each
pixel. Wang et al. (2006) integrate spatial and temporal dependen-
cies for foreground segmentation and shadow removal via a dy-
namic probabilistic framework based on the conditional random
field.

Stereo information is also employed to construct the back-
ground model invariant to illumination changes (Ivanov et al.,
2000). Their method requires an off-line construction of disparity
fields mapping the primary background images via using two or
more cameras and suffers from both missing and false detections
due to certain geometric considerations. Lim et al. (2005) introduce
an improvement to Ivanov’s method (Ivanov et al., 2000) to allevi-
ate the false detections and some other issues.

1.2. Paper organization

The rest of the paper is arranged as follows: Section 2 presents
two conjectures about the distribution of a video brick sequence,
which is the motivation of the novel proposed algorithm.

Fig. 1. A brick xijt is a small spatio-temporal patch with h � w � s pixels around the point (i, j, t).
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Section 3 presents our background model based on video bricks
and online subspace learning and introduces an adaptive thres-
holding scheme for foreground object detection. In Section 4, the
parameter selections of the proposed method are discussed in de-
tails and the comparison results are described. The discussion and
conclusions are made in Section 5.

2. Empirical distributions of video bricks

A video brick xijt, as shown in Fig. 1, consists of a small number
of image patches extracted at the same location in successive video
frames. All bricks in a brick sequence Xij distribute in the brick
space according to their variations of appearance and motion,
which are often caused by illumination changes, foreground
occluding, or noises, etc. There are mainly three types of bricks:
(i) normal background bricks, (ii) bricks with illumination changes
and (iii) bricks with foreground occlusion (Fig. 4). The first two are
considered as background bricks. In order to build background mod-
el on video bricks, we need to study the properties of the space dis-
tribution of video bricks in the surveillance scenario.

The set of image patches (or blocks) of an object, under all pos-
sible lighting conditions, usually lies in a low-dimensional sub-
space in the image space (Belhumeur and Kriegman, 1998; Basri
and Jacobs, 2003; Garg et al., 2009). As the temporal extension of
image patches, here, we have the following two conjectures on
the space distribution of video bricks in visual surveillance.

Conjecture 1. The set of bricks at a given static background location
under all possible lighting conditions lies in a very low-dimensional
(2–5) manifold (or background subspace) embedded in the high-
dimensional brick space.

The static background means that except illumination variation
there is not any other real physical motion, e.g., trees or water wav-
ing in a wind.

Conjecture 2. Due to the diversity of foreground, the bricks with
foreground occlusion are widely scattered in the high-dimensional
brick space and can be well separated from the background subspace.

Two experiments are conducted to validate the above two con-
jectures. We select a patch with 15 � 15 pixels on the road surface
in a night outdoor scene and use successive 7 patches to form a
brick. A set of 20,000 bricks containing various changes is captured.
To facilitate the analysis, the brick set is manually divided into
three subsets:

j Subset-A 14,968 normal background bricks (i.e., excluding the
random noises, there are no any other factors, e.g., lighting
changes, acting on the brick).
h Subset-A1 14,168 bricks selected from Subset A randomly.
h Subset-A2 800 bricks selected from Subset A randomly.

j Subset-B 3449 background bricks with only lighting changes.
h Subset-B1 2649 bricks selected from Subset B randomly.
h Subset-B2 800 bricks selected from Subset B randomly.

j Subset-C 1583 bricks with foreground occlusion.

The bricks in subsets A and B are considered as ‘‘background
bricks’’, while the ones in subset C are ‘‘foreground bricks’’. For
training and testing, subsets A and B are further randomly divided
into two subsets respectively. Then we analyze the space distribu-
tion of bricks in each subset off-line by principal component anal-
ysis (PCA) (Oliver et al., 2000).

Fig. 2 plots the curves of eigenvalues learned from two subsets.
Subsets A2 and B are used for learning in Fig. 2(a). In Fig. 2(b),
the training samples are all the bricks in subset C. By preserving
95% information, we can see that background bricks lie in a

low-dimensional (2–4) subspace, whereas the foreground bricks
distribute in a high-dimensional (>20) space. For instance, in
Fig. 3 the distribution of the background bricks with only lighting
changes (subset B) on the first two principal components of the
background subspace is shown. The first component describes the
brightness of the bricks and the second interprets the directions
of car lighting on the bricks. There are several underlying curves
connected by points, each of which stands for a procedure that
the brightness of bricks changes with a car passing the scene. The
curves above the zero point (e.g., the curve marked by red square)
correspond to different cars passing in the same direction, while
the curves below the zero point (e.g., the curve marked by blue cir-
cle) correspond to cars passing in an opposite direction. From Fig. 3,
we can find that the drastic car lighting changes on a road surface
could be characterized meaningfully by a 2 dimensional subspace.

To demonstrate the discriminative power of the background
model, two background subspaces are learnt on subsets A1 and
B1 by keeping 95% information respectively. The residual errors
of test bricks on them are shown in Fig. 4(a) and (b), where the hor-
izontal coordinate is the index of test bricks (the first 1583 bricks
are from subset C, the middle 800 are from subset A2 and the last
800 come from subset B2). The residual errors of the foreground
bricks are distinguished from those of the background bricks.
Fig. 4(c) and (d) give the corresponding ROC curves (red solid)1

of classification of foreground/background. Note that both sub-
spaces separate the foreground bricks from the background ones.
These results demonstrate that normal background bricks and
bricks with lighting changes do lie in the same subspace, from
which the foreground bricks could be separated well. Moreover,
it is worth noting that the discriminative power of the background
model learnt on bricks with lighting changes (B1) is higher than
that learnt on normal background bricks (A1). For comparison,
we also perform the same experiments in the block level. That is,
the basic processing unit is an image block (or patch) instead of
the video brick. The corresponding ROC curves (blue dashed) are
illustrated in Fig. 4(c) and (d). It is apparent that the background
subspaces learnt on video bricks are more discriminative than
the ones learnt on image blocks.

3. Background modeling on video bricks

Based on the conjectures on space distribution of video bricks,
an online subspace learning method is employed to capture the
background subspaces and to adapt them on-the-fly.

3.1. Notation

As a new frame It arrives, we extract a patch with h � w (e.g.,
6 � 6) pixels around each pixel (e.g., at point (i, j)). It is combined
with the previous s � 1 patches (e.g., s = 4) to form a video brick xijt

with h � w � s pixels (as shown in Fig. 1). Then at a location (i, j),
we obtain a brick sequence Xij = {xij1,xij2, . . . ,xijt, . . .}. Each brick xijt

is reshaped into a D-dimensional (D = h � w � s) column vector.
The background bricks, including normal background bricks

and bricks with only illumination changes lie in a low-dimensional
background subspace Sij in the RD brick space, which can be learnt
and maintained by an online subspace learning method (Weng
et al., 2003; Ross et al., 2008). The foreground detection is imple-
mented by thresholding the distance L(xijt,Sij) between the incom-
ing brick xijt and the background model Sij.

For simplicity of notation, the formulation of the proposed algo-
rithm is based on one brick sequence extracted from a fixed local

1 For interpretation of color in Figs. 3 and 4, the reader is referred to the web
version of this article.
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patch and the subscript of the location (i, j) is omitted. The exten-
sion to the whole frame is straightforward.

3.2. Background modeling by online subspace learning

In this paper, we adopt an online principal component analysis
algorithm, which is a modified version of the Candid Covariance-
free IPCA (CCIPCA) (Weng et al., 2003) algorithm, to compute the
principal components of a brick sequence, i.e., the background
model. The online version inherits the merits of CCIPCA in fast con-
vergence rate and low computational complexity. The main differ-
ences are the learning rate setting and updating scheme. By our
new learning rate, as discussed below, the online version develops
the CCIPCA algorithm to adapt the recent variations. The new
updating scheme keeps the model away from outliers (e.g., fore-
ground bricks). These properties make it suitable for the video sur-
veillance application.

Given a brick sequence X = {x1,x2, . . . ,xt, . . .} with the latest esti-
mated mean brick lt�1, the first d dominant eigenvectors of the
background subspace S are estimated recursively by following
two equations:

vk;t ¼ ½1� gðtÞ�vk;t�1 þ gðtÞuk;t uk;t ;
vk;t�1

kvk;t�1k

� �
; ð1Þ

ukþ1;t ¼ uk;t � uk;t ;
vk;t

kvk;tk

� �
vk;t

kvk;tk
; ð2Þ

where h�, �i denotes inner product, vk,t is the kth (1 6 k 6 d) eigen-
vector updated by the tth brick, u1,t = xt � lt�1, uk+1,t is the residual

brick after being projected onto the first k estimated eigenvectors
and g(t) is the learning rate. In the initialization stage (1 6 t 6 d,
and t = k), vk,t = xt � lt�1 and l0 = 0. To speed up the convergence
of estimation, a batch PCA algorithm could be performed on the first
few bricks (e.g., Tinit = 50) to initialize the recursive algorithm in-
stead of using the first d samples directly. In addition, the mean
lt is updated by

lt ¼ ½1� gðtÞ�lt�1 þ gðtÞxt : ð3Þ

The learning rate g(t) is set as

gðtÞ ¼ 1� a
cðtÞ þ a; ð4Þ

where a is a constant learning rate and c(t) counts the number of
matching observations for the model S. In (4), it is apparent that
in the initial stage of learning a model when only a few matching
samples have been observed, g(t) � 1/c(t), and parameters are up-
dated in a manner consistent with the CCIPCA algorithm (Weng
et al., 2003). As more samples are introduced for the model estima-
tion, g(t) approaches a and behaves like a typical recursive learning
(Lee, 2005).

The learning rate setting in (4) distinguishes our new online
version algorithm from the CCIPCA algorithm (Weng et al., 2003)
and the method adopted by Zhao (2008). In (Weng et al., 2003),
the model updated by (1) and (2) with learning rate g(t) =
(1 + l)/t (l is a positive amnesic parameter) reflects the long term
cumulative distribution and could not adapt to distribution
changes over time in a real surveillance task. If the learning rate
is set to a fixed value a (e.g., 0.001) like Zhao (2008), the model
estimated will reflect the most recent observations within roughly
L = 1/a window with exponential decay. However, in this way, it
loses the good property of the CCIPCA in convergence rate.

The incoming bricks do not always belong to the background
subspace S, so it is necessary to keep these outliers away from dis-
turbing the subspace model. When a new brick xt arrives, the dis-
tance L between xt and S is recursively computed as follows,

ukþ1;t ¼ uk;t � uk;t;
vk;t�1

kvk;t�1k

� �
vk;t�1

kvk;t�1k
; ð5Þ

Lðxt; SÞ ¼ kudþ1;tk; ð6Þ

where k = 1,2, . . . ,d and u1,t = xt � lt�1. If L is less than a pre-defined
threshold T (an adaptive threshold will be discussed in the next
subsection), xt will be marked as background and used to update
S, otherwise foreground. Note that the distance L in (6) is just the
residual error of xt on S and different from the reconstructed error
computed in the traditional manner:
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Fig. 2. Plots of eigenvalues for two brick subspaces learnt from two subsets.

Fig. 3. The distribution of bricks with lighting changes on the first two background
PCs. Two of the underlying curves corresponding to two cars passing in an opposite
direction are marked by red square and blue circle respectively.
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Lðxt ; SÞ ¼ ut �
Xd

k¼1

vk;t�1

kvk;t�1k
ut ;

vk;t�1

kvk;t�1k

� ������
�����; ð7Þ

where ut = xt � lt�1. Eq. (7) requires the eigenvectors fvk;t�1gd
k¼1

orthogonal to each other. In this case, (5) and (6) are equivalent
to (7). However, if the orthogonality does not hold strictly, just like
our current case, the residual in (6) is significantly different from
that in (7) (Weng et al., 2003).

3.3. Threshold setting and foreground detection

Threshold setting. Fig. 5 illustrates the results of an indoor
scene with two different threshold schemes. The residual errors

and its lateral view are shown in column 2, which are calculated
by (5) and (6). Note that the residual errors of moving foreground
objects are distinctive. It is straightforward to detect foreground
objects by a fixed threshold T (e.g.,70) (in column 3). In (Zhao
et al., 2008), a fixed threshold for all pixels and all frames often
achieves satisfactory results of foreground detection. However,
there are still many missing detections on the bodies.

In experiments, we find that besides the variations of appear-
ance and motion the residual error of an incoming brick xt on the
background subspace is mainly influenced by two factors: the
intensity of the mean brick lt�1 and the intensity of xt. In other
words, the residual errors in the region with high intensity are of-
ten higher than those in the region with low intensity. And the
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Fig. 4. Residual error curves of three types of bricks projected on two background subspaces learnt on (a) normal background bricks and (b) background bricks with lighting
changes. (c) and (d) illustrate the corresponding ROC curves of classification of background/foreground in the brick level (red solid) and block level (blue dashed).

Fig. 5. Comparison of two threshold schemes: fixed and adaptive threshold. The residual error map and its lateral view are shown in 2nd col. In the lateral view of the residual
errors, the vertical axis indicates the values of residual errors and the horizontal axis stands for the width (352 pixels) of the testing frame. Foreground masks (right-up) and
detected foreground objects (right-down) are shown.
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intensity of incoming brick has a similar influence. Based on these
observations, we propose an adaptive threshold Tadap for each brick
sequence empirically, which is proportional to the norm of lt�1

and adjusted by the difference dt ¼
P

i xi
t � li

t�1

� �
between xt and

lt�1. Here, xi
t is the intensity of the i-th pixel in the tth brick xt.

Tadap ¼
klt�1k=kþ dt=f; if dt > C;

klt�1k=kþ dt=q; if dt < �C;

klt�1k=k; otherwise;

8><
>: ð8Þ

where k is the main threshold factor, f and q are the accessorial fac-
tors, and C is a pre-defined positive threshold for the difference. In
addition, a minimum threshold Tmin for Tadap is kept, i.e., Tadap = Tmin,
if Tadap 6 Tmin, avoiding a too small threshold. Employing this adap-
tive threshold, the foreground objects are detected more reliably as
shown in Fig. 5. In the following, all tests are performed using the
adaptive threshold.

Algorithm 1. Spatio-Temporal Patch based Background
Modeling (STPBM) (for one brick sequence)

1 Initialization: Perform batch-PCA on first Tinit samples.
The first d PCs obtained as the initial values of vi,0,
0 < i 6 d and the mean vector as the initial value of l0.
c(0) = 0, Nfg = 0;

2 While new brick xt, (t = 1,2, . . .) do
3 Compute matching threshold Tadap by (8)
4 If Tadap < Tmin then Tadap = Tmin

5 Compute residual error L(xt,S) by (5) and (6)
6 If L < Tadap then// Background
7 c(t) = c(t � 1) + 1;
8 Compute learning rate g(t) by (4)
9 Update the background model S by (1)–(3);

10 If Nfg > 0 then Nfg = Nfg � 1;
11 Else// Foreground
12 Nfg = Nfg + 1;
13 If Nfg > Tstay then // Object staying

14 Update the background model S by (1)–(3);
15 Endif
16 Endif
17 Endwhile

Foreground detection. As a new brick xt arrives, the residual
error L of xt on the subspace S is recursively computed by (5) and
(6). If L is less than the threshold Tadap, xt will be classified as back-
ground, otherwise foreground. If there is a position in the scene
persisting to be foreground for Nfg frames and Nfg > Tstay, the
incoming bricks will be used to update the background model.
The Nfg is a counter and the threshold Tstay controls the stay time
of foreground objects in the scene, which is application-related.
Note that the threshold Tstay is introduced to account for the back-
ground evolution. For example, a car staying for a long time is usu-
ally considered as background. The proposed algorithm is called
Spatio-Temporal Patch based Background Modeling (STPBM) and
summarized in Algorithm 1 for one brick sequence.

3.4. Computational complexity

Let N be the number of pixels in a testing video frame, d be the
number of principal components used and (D = h � w � s) be the
dimension of a brick. In Algorithm 1, there are two major process-
ing steps, namely, computing residual error L(xt,S) and updating
the background model S. The computational complexity of these
two steps are both O(dD). Then the computational complexity of
Algorithm 1 is also O(dD). If extended to the whole testing video

frame, the computational complexity of the proposed algorithm
of background modeling is O(dDN). The value of d is quite small
(usually 2–5) and therefore the computational complexity can be
estimated to be O(DN). It is apparent that the spatiotemporal scale
of video bricks and the resolution of testing videos are two major
factors that affect the performance of the proposed algorithm in
terms of time. In order to achieve real time performance, the
space–time scale of video bricks should be kept small and the res-
olution of testing videos should be not too high. In our real system,
we usually adopt a partial-update scheme, i.e., only updating a
small part of all the models (e.g., five rows every frame) in turn
with each incoming frame. This scheme is effective to further re-
duce the computational complexity with performance reduced
slightly.

4. Experiments

In this section, we first introduce a dataset for experimental
evaluation, which contains various challenging problems for back-
ground modeling. The parameter setting of our STPBM is discussed
in details. Then we compare our method to the state-of-the-art
(Stauffer et al., 2000; Heikkila and Pietikainen, 2006; Pilet et al.,
2008). Modified AS: We also evaluate our method on a common
used dataset (Toyama et al., 1999) and an artificial dataset (Brutzer
et al., 2011). All the video clips used in the following experiments,
the results and the corresponding parameters for all methods are
supplied as Supplementary material and available at ‘‘http://
www.hyphone.org/stpbm’’.

4.1. Data sets

We evaluate the proposed algorithm on 10 challenging scenes
shown in Fig. 11 and 13, where scenes 1–3, 5–7, and 9 are from
LHI Dataset (Yao et al., 2007), scenes 42 and 83 are from PETS data-
base, and scene 10 is from Heikkila and Pietikainen (2006). Each
scene contains special problems with which a surveillance system
often faces in real-world conditions. The resolution of all the video
sequences is resized to 352 � 288 with 25 fps. And we only utilize
the intensity information of video sequences. For each scene, three
or four representative frames are labeled manually as ground truth
for quantitative analysis. In total, there are 29 labeled frames with
resolution 352 � 288 pixels.

Scenes 1 and 2 are two nighttime urban traffic scenes and scene
2 has more noises and lower contrast. Scene 3 is a night highway
scene in distance. The three nighttime outdoor scenes contain hea-
vy illumination changes due to car lighting. Scene 4 is collected
from a train station, in which there are shadows, reflections etc.
Scene 5 has 691 frames and is a very busy traffic scene, where
many pixels are covered by moving cars from the first frame to
the end. In scene 6, there are non-connected shadows on the road
due to the occlusion of trees, waving leaves, low contrast and cam-
era gain. Scene 7 is a campus scene in distance, and has many very
small pedestrians, waving trees and low contrast regions. Scene 8
is another campus scene that has sudden sunlight changes. Scene
9 is a port scene that contains water ripple and small flying birds
with low contrast. Scene 10 (Fig. 13) has heavy waving trees in
the wind.

4.2. Parameter selection

While there are eleven parameters, the proposed algorithm is
not very sensitive to most of them and there is a wide range from

2
ftp://ftp.cs.rdg.ac.uk/pub/PETS2006/.

3
ftp://ftp.cs.rdg.ac.uk/pub/PETS2001/.
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which each parameter can choose a proper value. The detail set-
tings of all parameters for the following experiments are given in
Table 1. We now examine the impacts of each parameter one by
one. As one is being inspected, others are kept fixed at the default
values in Table 1. The quantitative results in Figs. 9 and 10 are
computed over all the nine scenes in Fig. 11 based on ground truth.

Brick size. The brick size is critical to the performance of the
proposed algorithm. Through empirical analysis, we find that a
small space–time scale (e.g., 4 � 4 � 3 pixels) is enough for effec-
tive background modeling. In Fig. 6, the intermediate results of
three brick sizes (i.e., 4 � 4 � 1 pixels, 3 � 3 � 2 pixels, and
4 � 4 � 3 pixels) are illustrated. It is apparent that the spatio-tem-
poral information enhances the saliency of foreground object,
which is essential to object detection. The ROC curves in Fig. 9
demonstrate the superiority of brick level methods to block level
methods quantitatively. In addition, for the brick level methods,
most of the false alarms occur on the contour areas of moving ob-
jects due to the use of spatio-temporal neighborhood information.
While the missing detections in the brick level methods mainly oc-
cur on the flat body areas, those in the block level occur not only on
the flat regions but also on the moving boundaries, especially in
low contrast scenes in Fig. 9(b), which is unacceptable for real
applications. Moreover, the computation cost is proportional to
the brick size. With consideration of trade-off between the perfor-
mance and efficiency, we select 4 � 4 � 3 pixels for the following
experiments.

Number of initial samples Tinit. As shown in Fig. 7, we test two
values of Tinit (i.e., 5 and 50) for a very busy traffic scene. It is obvi-
ous that our method is not sensitive to the initialization. In the fol-
lowing tests, Tinit is set to 50 as default.

Subsample ratio b. In Fig. 8 , we run our algorithm on three vi-
deo resolutions, namely original resolution 352 � 288 pixels
(b = 1), medium resolution 176 � 144 pixels (b = 2) and low resolu-
tion 88 � 72 pixels (b = 4). In the original resolution, the results are
the most accurate but the computation cost is also the highest. The
processing speeds for the three resolutions are about 3 fps, 12 fps
and 48 fps in C++ (Intel Core II 2.66G with 1 GB RAM). In the fol-
lowing, we report results of our method in the medium resolution.

Number of PCs d and learning rate a. The number of PCs d
determines the descriptive power of the background model and
is also related to the computation complexity. The background
model adapts itself to the changes of a scene by a constant learning
rate a in (4). The larger the learning rate is, the more weight is gi-
ven to recent observations and the faster the adaptation. Although

a wide range of values for two parameters could be chosen (as
shown in Fig. 10), we empirically select d = 5 and a = 0.001 as their
default values.

Adaptive threshold Tadap. The adaptive threshold Tadap is
mainly determined by the main threshold factor k in (8). The influ-
ence of k to performance is shown in Fig. 10. The two auxiliary fac-
tors g and q along with C determine the contribution of the new
brick to Tadap. Generally just as the new brick is very different from
the mean brick lt (too bright or dark), it will be used to adjust the
threshold. So C should not be too small. Here, we set it as the ten
times the dimensions of the brick (i.e., C = 48 � 10). The smaller
the g and q are, the larger the contribution of the new brick to Tadap

is. In order to keep Tadap approximately stable, they should not be
too small. Empirically, the g and q are fixed at 100 and 20 for all
experiments. The minimum threshold Tmin is relevant to noise level
of the test scene. In the case of low noise level, a small value (e.g.,
16) is proper. Otherwise, a high value (e.g., 30) will be needed.

Stay threshold Tstay. The threshold Tstay controls the stay time
of foreground objects in the scene and is application-related. A
small Tstay means that the background model will be updated by
the stay foreground object detected quickly. In our experiments,
it is usually set to 200.

4.3. Comparison with other methods

Comparison with two classical methods. When s = 1 (e.g.,
4 � 4 � 1 pixels), our method is reduced to a block-based method,
which is similar to early subspace learning methods (Monnet et al.,
2003; Wang et al., 2007). Comparison results between block-based
methods and brick-based methods are shown in Figs. 6 and 9. Here,
we compare the proposed method (STPBM) with two classical ap-
proaches, i.e., MOG (Stauffer et al., 2000) and TBMOD (Heikkila and
Pietikainen, 2006) on the nine scenes in Fig. 11. The MOG is one of
the most widely used background modeling method and used as
baseline in our comparison. The TBMOD is a typical block-based
method that can deal with considerable illumination changes.
Moreover, in the proposed and two compared methods there are
not any higher level processing, e.g., illumination estimator, sha-
dow removing, detection of stay object, etc. The MOG and TBMOD
methods are evaluated with several sets of parameters according
to the suggestions of the authors and the best results are reported
for comparison.

From the results in Fig. 11, we can see that MOG performs worst
for almost all the testing scenes while the proposed method
achieves the best performance. For sudden illumination changes,
e.g., car lighting in nighttime scenes 1–3, camera gain in scene 6
and sudden sunlight changes in scene 8, our method shows its abil-
ity to overcome extreme illumination changes. While TBMOD can
tolerate moderate illumination changes, it fails in the extreme con-
ditions. The results of TBMOD on scenes 1–3 and 5 with respect to
various parameter settings show that while the false alarms could
be reduced slightly by tuning the parameters, the missing detec-
tions correspondingly increase rapidly (these video results are
available in our Website mentioned previous). In scenes 1, 4 and

Table 1
The parameter settings of our method for the results in Figs. 5–8, 11, 13, 17.

Figure Scene(s) b d a k f q Tmin Tstay

5–8 – 2 5 0.001 10 100 20 30 200
11 2–6, 8, 9 2 5 0.001 10 100 20 30 200
11 1, 7 2 5 0.001 10 100 20 16 200
13 10 2 5 0.001 10 100 20 30 200
17 1–7 1 5 0.001 10 100 20 90 100

Fig. 6. The residual error maps obtained with three brick sizes. The block level method (4 � 4 � 1 pixels) gives low residual errors for foreground in the regions of both
boundaries and bodies, whereas the brick level method (even only using two successive frames, e.g., 3 � 3 � 2 pixels) is sensitive to the moving boundaries. The size of
4 � 4 � 3 pixels is used for experiments hereafter.
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8, while both MOG and TBMOD suffer from false alarms due to
shadows or reflections, our method could supress considerable
shadows (even moderate reflections). In scene 5 and 8, our method
fails in the strong shadows due to the moving boundaries caused
by the shadows, which can be solved by specialized shadow
removing technique (Huang and Chen, 2009; Finlayson et al.,
2006). In low contrast conditions in scenes 1–3, 6, 7 and 9, while
the block-based TBMOD suffers from heavy missing detections,
our method could detect the dim moving objects successfully
thanks to using motion and appearance information simulta-
neously. The results in scene 6, 7 and 9 demonstrate that our meth-
od could cope with dynamic background, such as waving trees and
water ripples to a certain degree, which indeed violates our
assumptions (see Section 2) of static background. For the busy traf-
fic scene 5, MOG fails to establish background models and TBMOD
suffers from both false alarms and missing detections due to the
persistent moving cars from the first frame to the end, however,
our method succeeds in modeling the background and detects
the moving cars successfully. In addition, while our method is sen-
sitive to subtle moving foreground objects, it is robust to various
noises. These results further demonstrate the two conjectures on

the brick distribution and the discriminative power of background
subspaces captured by the online subspace learning method in var-
ious real-world conditions.

In Fig. 12, we also compare the performances of the three meth-
ods quantitatively based on the ground truth of the nine scenes in
Fig. 11. These statistical results should be considered together with
the visual results in Fig. 11. Our method gives less false alarms than
the two compared methods in the scenes 1–4 and 8–9. In scenes 5
and 6, while MOG or TBMOD achieve similar results in the number
of false alarms to our method, they have more missing detections
as shown in Fig. 11. In scene 7, though our method produces more
false alarms than the other two methods, it gives best results in
sense of object detection (Fig. 11). Note that the false alarms of
our method mainly occur around the bodies of the moving objects
due to the use of spatio-temporal neighborhood information in
STPBM. On the false negative, the difference is very small among
three methods except the scene 5 where MOG fails to establish
background models and TBMOD suffers from both false alarms
and false negatives. Most of the false negatives of our method ap-
pear on the flat regions of the foreground bodies since the flat
bricks with different intensities lie in the same subspace.

Fig. 7. The residual error maps computed with two different Tinit illustrate the robustness of our algorithm to the model initialization.
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Fig. 9. Performance comparison among different brick sizes: (a) computed over all nine scenes and (b) computed over four scenes with low contrast, i.e., Scenes 1–3 and 6.
Here, in order to compute the ROC curves, we simply adopt the fixed threshold scheme rather than the adaptive threshold scheme discussed in Section 3.3.

Fig. 8. Comparison of three subsample rates b. Residual error maps and detected objects are shown in row 1 and 2 respectively.
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Fig. 12 shows precision–recall of all scenes. Recall is the ratio
of the number of true foreground pixels detected to the number
of true foreground pixels. And precision is defined as the
ratio of the number of true foreground pixels detected to the
number of foreground pixels detected. The precision and recall
of a perfect result are both 1. The results of STPBM distribute
closer to the perfect point (1,1) than other two methods. While
our method detects the moving objects in scenes 7 and 8 well

in terms of object detection (in Fig. 11), it achieves low precisions
(near 0.4) because the foreground objects in the two scenes are
so small that the number of false alarm pixels around the objects
are comparable to that of ground truth. Moreover, we consider
the F1 metric, also known as Figure of Merit or F-measure,
F1 = 2 ⁄ recall ⁄ precision/(recall + precision), that is the weighted
harmonic mean of precision and recall (Maddalena and Petrosino,
2008a). Such measure allows to obtain a single measure to ‘‘rank’’
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Fig. 10. Performance evaluation with three parameters. The vertical axis is the number of false alarm (FA) or false negative (FN) pixels.
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Fig. 11. Comparison results of our method (STPBM) with MOG (Stauffer et al., 2000) and TBMOD (Heikkila and Pietikainen, 2006) for nine typical scenes. The results of STPBM
are obtained with the adaptive threshold in (8) based on the residual error maps in the bottom. The original resolution is 352 � 288 pixels.
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different methods. Results of three methods on all nine scenes are
given in Table 2. Overall, our method outperforms the two com-
pared ones in the test scenes.

As shown in Fig. 11, while our method is robust to waving trees
to a certain degree (e.g., scenes 6 and 7), it fails in heavy waving
trees in the wind in Fig. 13, which severely disobeys the original
hypotheses that background regions were static except illumina-
tion changes. Fortunately, this problem could be alleviated by a
simple preprocess, i.e., a smoothing operator. After using a Gauss-
ian kernel of 13 � 13 pixels to pre-smooth the incoming frames,
the small foreground objects are still salient and detected success-
fully, whereas most of the waving trees are suppressed. This is
comparable to the results in (Heikkila and Pietikainen, 2006).

Comparison with the state-of-the-art. We also compare our
STPBM with a state-of-the-art method (Pilet et al., 2008), which
achieves great progress in coping with sudden illumination
changes, such as light switch. They present a novel Gaussian back-
ground model on the ratio of intensities between a stored back-
ground image and an input image, model the foreground object

by a mixture of Gaussian and a uniform distribution on color val-
ues, and introduce a spatial prior of foreground/background utiliz-
ing spatial correlation and texture information. For each input
pixel, its probabilities corresponding to the foreground and the
background model are summed respectively. And the segmenta-
tion is made by thresholding the probability of background model.
In this experiment, for convenient comparison, STPBM also simply
thresholds the residual errors of all pixels and all fames by a single
threshold rather than the adaptive threshold described in Section
3.3. For Pilet et al. method, besides using their default spatial prior
distribution, we also learn a new prior on our own dataset (includ-
ing the two test scenes in Fig. 15).

We first evaluate two methods with scene 1 and 2, which have
clean and static background frames needed by Pilet et al. method.
In order to avoid the influence of different thresholds, a series of
thresholds are adopted for two methods. Fig. 14 shows the three
ROC curves corresponding to STPBM and Pilet et al. method with
new prior and default prior respectively. The blue circle on each
curve is the cut-off point for best sensitivity and specificity. That
is, at this point the algorithm achieves best balance between false
alarms and missing detections. With the thresholds corresponding
to the three cut-off points, the visual results of foreground detec-
tion are shown in Fig. 15. From these results it is apparent that
STPBM detects the foreground objects successfully with a few false
alarms. However, Pilet et al. method with new or default prior fails
to distinguish the foreground objects due to heavy false alarms
caused by drastic car lighting, low contrast and low SNR. The above
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Fig. 12. Quantitative comparison results. The scene numbers correspond to Fig. 11.
The vertical axis is the number of false alarm (FA) or false negative (FN) pixels. In
the subfigure of precision–recall, a point stands for the result of one method in a
scene and an ideal result should be 1 precision and 1 recall rate. The number in each
marker corresponds to the scene index.

Table 2
Quantitative results of three methods on all nine scenes.

Methods MoG TBMOD STPBM

Num. Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Scene1 0.19 0.94 0.31 0.42 0.92 0.58 0.72 0.83 0.77
Scene2 0.06 0.72 0.11 0.16 0.89 0.27 0.59 0.83 0.69
Scene3 0.11 0.85 0.19 0.20 0.80 0.32 0.53 0.89 0.66
Scene4 0.47 0.93 0.62 0.47 0.88 0.61 0.64 0.88 0.74
Scene5 0.48 0.24 0.32 0.71 0.89 0.79 0.79 0.94 0.86
Scene6 0.32 0.83 0.46 0.66 0.67 0.66 0.73 0.81 0.77
Scene7 0.50 0.79 0.61 0.40 0.64 0.50 0.39 0.89 0.54
Scene8 0.01 0.91 0.01 0.18 0.69 0.28 0.37 0.95 0.54
Scene9 0.08 0.89 0.15 0.42 0.76 0.54 0.65 0.75 0.69
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Fig. 13. Results of our method for a scene with heavy waving trees without and
with pre-smoothing operator (using the same parameter setting). Residual error
maps and foreground masks are shown in row 1 and 2, respectively.
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quantitative and qualitative analysis demonstrates that our STPBM
is superior to the state-of-the-art in handling extremely difficult
real surveillance scenarios, e.g., nighttime traffic scenes.

In Fig. 16, we also compare two methods on two daytime
scenes, namely, scenes 4 and 6. The corresponding quantitative re-
sults are listed in Table 3. In these two scenes, the clean and static
background images are not available. Thus, we simply use the
average images of the first five frames as the background images
shown in Fig. 16. Note that there are some foreground objects in
the ‘‘background images’’. The results of Pilet et al. method are
computed with default prior. In these two daytime scenes, the per-
formances of Pilet et al. method with default prior and new prior
are similar. The results of our STPBM are the same as those shown
in Fig. 11. We can find that in Scene 4 Pilet et al. method achieves
satisfactory performance except the false alarms caused by the
non-clean background images. In Scene 6, however, Pilet et al.
method fail to detect most of foreground objects due to low con-
trast. Additionally, besides the false alarms caused by non-clean
background images, there are many false alarms of small spots in
the upper part of the scene.

Results on two public datasets. In Fig. 17, our method is eval-
uated on the Wallflower dataset (Toyama et al., 1999). The scene

of ‘‘Waving Trees’’ is pre-smoothed. All the seven scenes use the
same parameter setting in Table 1, though better results could be
obtained by tuning the parameters carefully. In the ‘‘Light Switch’’
scene, the performance of our method is superior to those in (Hei-
kkila and Pietikainen, 2006; Toyama et al., 1999; Pilet et al., 2008),
and other results are comparable. There are often missing detec-
tions on the black flat areas of foreground objects, which is caused
by the fact that the pure black bricks lie in any background sub-
spaces. Fortunately, the moving contours of foreground objects
are detected reliably, which is enough from the object detection
point of view.

We also evaluate the proposed method on the SABS dataset
(Brutzer et al., 2011). The SABS (Stuttgart Artificial Background
Subtraction) dataset is an artificial dataset for pixel-wise evaluation
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Fig. 15. Performance comparison between our STPBM and Pilet et al. method (Pilet et al., 2008). (a) Input frames (scene 1: 4485 and 4856 frames, and scene 2: 6970 and 7010
frames). (b) Ground truth. (c)(d)(e) are the results of STPBM with a single fixed threshold, Pilet et al. method with new priors and Pilet et al. method with default priors
respectively, which correspond to the three cut-off points in Fig. 14. (f) The background models used by Pilet et al. method are the means of the first six frames in two scenes.
The original resolution is 352 � 288 pixels.

Fig. 16. Performance comparison between our STPBM and Pilet et al. method (Pilet et al., 2008) on two daytime scenes. The original resolution is 352 � 288 pixels.

Table 3
Quantitative results of two methods on two daytime scenes.

Methods Pilet et al. method STPBM

Num. Prec. Rec. F1 Prec. Rec. F1

Scene 4 0.62 0.90 0.73 0.64 0.88 0.74
Scene 6 0.34 0.64 0.44 0.73 0.81 0.77
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of background models. In contrast to manually annotated ground-
truth data, the SABS dataset does not suffer from imperfect labels
or only a small number of annotated frames. The use of artificial
data also makes it possible to separably judge the performance of
background subtraction methods for typical challenges. For
evaluation they consider the following typical challenges: gradual
illumination changes, sudden illumination changes, dynamic back-
ground, camouflage, shadows, bootstrapping, and video noise. Nine
different test scenarios are provided to cover these challenges,
which are basic, dynamic background (DyBg), bootstrapping (Bts),
darkening (Dark), light switch (LS), noisy night (NN), camouflage
(Cam), and video compression (H264). The dataset consists of nine
video sequences for the nine different scenarios. These sequences
are further split into training and test data. For every frame of each
test sequence ground-truth annotation is provided. The sequences
have a resolution of 800 � 600 pixels and are captured from a fixed
viewpoint. For some scenarios, a detail of a sequence is considered
to focus on regions with high impact to a specific problem. (More
details about the dataset and the evaluation process can be found
in (Brutzer et al., 2011).)

The performance of background modeling methods are mea-
sured by the F-measure on pixel-level. Comparison results with
other nine background modeling methods are listed in Table 4.
The results of the nine compared methods directly come from
the website of SABS dataset (http://www.vis.uni-stuttgart.de/in-
dex.php?id=sabs). For the proposed method, the parameter set-
tings for the results in Table 4 are listed in Table 5. Note that all
the test scenes share the same parameter setting except the mini-
mum threshold Tmin that is tuned to adapt the noise level of the
test scenes. In addition, there is not any pre-processing step (e.g.,
pre-smoothing) adopted by the proposed method. Again, the false
alarms of our method mainly occur around the bodies of the mov-
ing cars due to the use of spatio-temporal neighborhood informa-
tion and most of the false negatives appear on the flat regions of
the cars’ bodies, as shown in Fig. 18. The best results of the pro-
posed method on the bootstrapping (Bts), light switch (LS), and
noisy night (NN) are consistent with the previous experiments
and further demonstrate the pretty properties of the STPBM. The
results on the dynamic background (DyBg) also show the ability
of the proposed method to deal with dynamic background to a cer-
tain degree.

5. Discussion and conclusions

We present a novel method for background modeling by online
subspace learning on spatio-temporal patches (or video bricks).
The proposed method models the variations of video bricks via a
low-dimensional background subspace in the high-dimensional
brick space. Both off-line and on-line experimental results demon-
strate the two conjectures on the space distribution of video bricks.
In the proposed method there is no more extra post-processing ex-
cept the pre-smoothing for scenes with very heavy waving trees.
All the promising results are obtained by our simple and effective
framework.

The proposed method has three major appealing properties:

(1) Robust to illumination changes. Due to the fact that all video
bricks of a static background patch under arbitrary illumina-
tion conditions can be explained well by a low-dimensional
background subspace that is learnt and updated by online
subspace learning, our STPBM method is robust to various
illumination changes in real surveillance scenario.
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Fig. 17. Background modeling results of our method on Wallflower dataset
(Toyama et al., 1999). The original resolution is 160 � 120 pixels.

Table 4
Quantitative results of the proposed method (STPBM) and nine other methods (McFarlane and Schofield, 1995; Stauffer et al., 2000; Oliver et al., 2000; McKenna et al., 2000; Li
et al., 2003; Kim et al., 2005; Zivkovic and van der Heijden, 2006; Maddalena and Petrosino, 2008b; Barnich and Vibe, 2009) on the SABS dataset (Brutzer et al., 2011).

Methods Basic DyBg Bts Dark LS NN Cam nCam H264

STPBM 0.709 0.594 0.714 0.644 0.552 0.593 0.724 0.718 0.702
McFarlane 0.614 0.482 0.541 0.496 0.211 0.203 0.738 0.785 0.639
Stauffer 0.800 0.704 0.642 0.404 0.217 0.194 0.802 0.826 0.761
Oliver 0.635 0.552 – 0.300 0.198 0.213 0.802 0.824 0.669
McKenna 0.522 0.415 0.301 0.484 0.306 0.098 0.624 0.656 0.492
Li 0.766 0.641 0.678 0.704 0.316 0.047 0.768 0.803 0.773
Kim 0.582 0.341 0.318 0.342 – – 0.776 0.801 0.551
Zivkovic 0.768 0.704 0.632 0.620 0.300 0.321 0.820 0.829 0.748
Maddalena 0.766 0.715 0.495 0.663 0.213 0.263 0.793 0.811 0.772
Barnich 0.761 0.711 0.685 0.678 0.268 0.271 0.741 0.799 0.774

Table 5
The parameter settings of the proposed method for the results in Table 4.

Scene(s) b d a k f q Tmin Tstay

Noisy night (NN) 4 5 0.001 10 100 20 30 200
Other 8 scenes 4 5 0.001 10 100 20 16 200
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(2) Sensitive to dim moving objects. Since the basic processing
unit ‘‘video brick’’ encodes appearance variations and
motion dynamics jointly in a straightforward manner, our
STPBM method is able to capture subtle variations of fore-
ground objects in a low contrast environment effectively. It
is this property that distinguishes the proposed STPBM
method from the conventional block-based methods that
often suffer from heavy missing detections in low contrast.

(3) Adapt busy scenes well and quickly. The proposed method is
capable to adapt a challenging busy scene quickly and
achieves satisfactory performance. This mainly should be
due to two merits: (i) the online subspace learning method
adopted can well capture the background subspace quickly
and (ii) the background subspace adapted on-the-fly is not
disrupted by outliers (e.g., bricks with foreground occlusion).

Moreover, from the systematic experimental results, we can
find that the proposed method can deal with specular reflection,
shadows, waving trees, water ripple, etc. to a certain degree, de-
spite the violation of the original assumptions that background re-
gions are static and have Lambertian surface. These properties
make the proposed method be ready for many real scenes.

For dynamic background (e.g., heavy waving trees), a simple
pre-smoothing operator is introduced. However, coping with the
dynamic background is still an open problem in the proposed
method. This is due to the fact that the proposed method is uni-
modal. The illumination changes of a static (or near static) back-
ground can be modeled well by one background subspace,
whereas the appearance variations of dynamic backgrounds are
difficult to model only by one background subspace. The algorithm
also fails in the surface with strong specular reflection as it breaks
the Lambertian assumption. This problem can be alleviated by
using the geometry contextual information (Hu et al., 2008).
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