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a b s t r a c t 

The first attention model in the computer science community is proposed in 1998. In the following years, 

human attention has been intensively studied. However, these studies mainly refer human attention as 

the image regions that draw the attention of a human (outside the image) who is looking at the image. 

In this paper, we infer the attention of a human inside a third-person view video where the human is 

doing a task, and define human attention as attentional objects that coincide with the task the human 

is doing. To infer human attention, we propose a deep neural network model that fuses both low-level 

human pose cue and high-level task encoding cue. Due to the lack of appropriate public datasets for 

studying this problem, we newly collect a video dataset in complex Virtual-Reality (VR) scenes. In the 

experiments, we widely compare our method with three other methods on this VR dataset. In addition, 

we re-annotate a public real dataset and conduct the extensional experiments on this real dataset. The 

experiment results validate the effectiveness of our method. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Attention is an important topic in the computer vision field. In

he past 20 years, saliency map estimation [52] and saliency ob-

ect estimation [51] are two intensively-studied problems concern-

ng visual attention, with the goal of estimating saliency regions or

aliency objects in an image that draw the attention of the human

 outside the image ) who is looking at the image. In this paper, we

tudy the attention of the human ( inside a video ), we call it Inside-

ideo human attention. 

Saliency-based visual attention has wide applications in video

racking [17] , image retrieval [30] , and scene rendering [14] , while

he main advantage of inside-video human attention estimation

ies in its significance for human-robot interaction, which has

romising applications in various facets of society like the elderly

are [47] , education [25] , and military [13] . In a typical human-

obot interaction scenario in daily life, a robot is installed with

 camera capturing a video, inside which a human is performing

aily activities. In this kind of scenarios, inferring human attention

rom the robot’s view equals to inferring the attention of a human

nside a video (Inside-video human attention). Elderly care is a po-

ential and valuable application of human-robot interaction. As we
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now, it is laborious for the elderly people to perform some sim-

le activities such as open the refrigerator, lift a cup, and move a

ottle. To enable the robot to assist the human, it is necessary for

he robot to infer human attentional objects. For example, a human

s going to take an apple from a refrigerator, when the human is

pproaching the refrigerator, the robot could infer that human at-

entional object is the refrigerator, so that the robot could assist

he human to open the refrigerator door in advance. 

To infer human attention, the foremost thing is to make clear

hat the human attention is. Originally, attention is a concept in

hilosophy. Nowadays, it is well known as a concept in psychology.

ne dominant definition in psychology is that attention is the pro-

ess of attending to objects [42] . This definition indicates that the

ttention is based on objects. Actually, some studies [7,8,37] in psy-

hophysics and biology fields as well as some inter-discipline stud-

es in neuro image filed [63] and brain image field [34] also claim

he object-based attention. Especially, Chou [8] provides the evi-

ence of object-based attention. These studies provide the strong

heory support for defining human attention as objects. Another

idely accepted definition in psychology is that attention is some-

hing that happens in the mind - a mental “inside” which is linked

ith the perceivable “outside” [43] . This definition indicates that

ttention is related with the high-level mental information in hu-

an mind. When a human is doing a task, the task is a kind of

igh-level information in the mind, guiding human attention. For

xample, the juicer tends to draw human attention in the task of

https://doi.org/10.1016/j.patcog.2020.107314
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Fig. 1. The attentional objects (denoted as red bounding boxes) in three typical situations. (a) Easy situation where human gaze or human pose significantly indicates the 

attentional objects. (b) Moderate situation where human gaze is not available but human pose conveys the sufficient information for inferring the attentional objects. (c) 

Hard situation where the attentional objects can not be estimated only depending on human pose and human gaze because both cues indicate multiple possible attentional 

objects (denoted as green bounding boxes). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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“make juice”, while the coffee machine tends to draw human at-

tention in the task of “make coffee”. 

Based on these studies, we define human attention as the at-

tentional objects that coincide with the task a human is doing.

With a task in the mind, a human finishes the task by doing sev-

eral sub-tasks in certain temporal order. For example, when a hu-

man is doing the task of “take the water from the drinking foun-

tain”, the human firstly finds the cup, then goes to the drinking

fountain, and finally takes the water. To finish each sub-task, a hu-

man behaves purposely to operate on or approach to the atten-

tional objects. For example, when the human is doing the sub-task

of “finding the cup”, the human uses the hand to catch the atten-

tional object cup . When the human is doing the sub-task of “go-

ing to the drinking fountain”, the human walks to approach to the

attentional object drinking fountain . For inside-video human atten-

tion estimation, we have a basic assumption that attentional ob-

jects locate inside videos/images. 

The intuitive method to infer human attention is to estimate

where a human is gazing at. It is true in some easy situations that

human gaze significantly signals the attentional objects. As shown

in Fig. 1 (a), human gaze conveys sufficient cues to infer the atten-

tional objects. However, human gaze does not absolutely indicate

attentional objects, since in many cases a human is not necessarily

gazing at attentional objects all the time. For example, when a hu-

man is walking to a drinking fountain to take the water, though

the human’s attentional object is the drinking fountain, the hu-

man could gaze at other objects in this procedure. In addition, hu-

man gaze estimation usually heavily depends on human facial in-

formation [35,45] , but the facial information is often unavailable

when a human moves naturally in uncontrolled scenes. As shown

in Fig. 1 (b), human faces are not observable, so it is difficult to

estimate the human gaze. On the contrary, in these situations, hu-

man pose is available and significantly indicates the attentional ob-

jects. In most cases, the object, a human’s hand is reaching to or

a human’s body is approaching to, is most likely to be the atten-

tional object. However, human pose can not accurately signals at-

tentional objects in all situations. For example, during the transi-

tion of two sub-tasks, the attentional objects are hardly signaled

by human pose. One main reason is that “what a human thinks”

goes ahead of “what a human does”, so at the shifting time point

from one sub-task to another sub-task, the attentional object might

have changed while human pose still signals the attentional object

in the previous sub-task. In some more complex and challenging

situations, attentional objects can not be revealed even if both hu-
 t
an gaze and pose are available. As shown in Fig. 1 (c), even as-

uming that the human pose and human gaze are known, we still

an not correctly infer the attentional objects because the human

s facing a large number of objects and every object is possible to

e the attentional object. In these cases, to correctly infer human

ttention, we need to resort to invisible high-level task informa-

ion. For example, when a human is facing a juicer, a pot, and a

tove at the same time, if the task was making juice, the atten-

ional object is most likely to be the juicer, if the task was cooking

oup, the attentional object is most likely to be the pot, and if the

ask was making pizza, the attentional object is most likely to be

he stove. 

Based on these observations, we propose a deep neural network

odel that fuses both visible low-level human pose cue and invis-

ble high-level task encoding cue. The low-level human pose con-

eys the rich information of human body key joints, and the high-

evel task encoding cue is organized as a graph which encodes a

ask as several sub-tasks. By integrating the low-level human pose

ue with the high-level task encoding cue, our model exhibits im-

ressive robustness and effectiveness. 

To validate our model, we conduct the intensive experiments

or the comparison with other methods and for the ablation study

f our method. We collect a new VR dataset and re-annotate a

ublic real dataset. The experiments on both datasets validate the

ffectiveness of our method. 

Our contributions are three-fold: (1) We propose and define a

roblem of inferring inside-video human attention that is different

rom the traditional human (outside images) attention. (2) We pro-

ose a model that integrates the low-level visible human pose cue

ith the high-level invisible task encoding information. (3) We col-

ect and annotate a large-scale dataset in Virtual-Reality scenes and

e-annotate a public real dataset. To our best knowledge, our newly

ollected dataset is the first VR dataset for inferring the task-driven

nside-video human attention, and the dataset will be publicly re-

eased. 

. Related work 

In this section, we review three related works. For each work,

e first explain how it differs from our work, then briefly intro-

uce the classical methods for solving the problem, finally analyze

he datasets that are widely used for studying the problem. 
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.1. Visual attention. 

Visual attention mainly refers to the eye fixation saliency object

31,53,55] or saliency map [2,23,54] , which signals the regions of

n image where the human observer would pay attention at the

rst glance. The ground truth of saliency map or saliency object

s usually obtained by the eye-tracking equipment that records the

ye fixations of the observer looking at the image. Therefore, the

isual attention is the attention of a human outside images. In this

aper, we infer the attention of a human inside videos. 

The classical pipeline is firstly predicting a saliency map and

hen minimizing the loss that signals the difference between the

stimated saliency map and the ground truth. To predict a saliency

ap, early works use the single stream network to extract the

eature map. However, the single stream network can not extract

ultiple-scale cues. Therefore, the multiple stream network is also

roposed [22] . Feature map extraction is important for many vi-

ual problems, some researchers have proposed excellent models

or feature extraction in unsupervised framework [12,60] . Recently,

otivated by the study showing that early layers in a network cap-

ure low-level detail information while later layers capture high-

evel semantic information [6] , one novel architecture, which is

ermed as skip-layer, is proposed to extract feature by combin-

ng the features from different layers [27,50] . A detailed survey for

aliency object detection can be found in the work [49] . 

MIT1003 [24] , TORONTO [3] , PASCAL-S [28] , and DUT-OMRON

62] are four widely used datasets. These datasets are proposed for

tudying the attention of a human outside images. Therefore, they

re not suitable for inferring the inside-video human attention. 

.2. Human gaze 

Human gaze is roughly categorized as first-person view gaze

15,32] and third-person view gaze [36,39,56] . For the first-person

iew gaze, the typical scenario is that a human is equipped with

he wearable sensors, the data (images or videos) collected by the

earable sensors are used for the gaze estimation. For the third-

erson view gaze, a camera is installed in a fixed place, capturing

ideos or images that are used for the gaze estimation. In this pa-

er, we estimate the attention of a human inside third-person view

ideos, which is related with the third-person view human gaze.

he difference is that human gaze is usually defined as a direction

35,64,65] indicating where a human is physically gazing at, while

uman attention is the task-driven attentional objects. 

Human gaze estimation methods usually operate in the bottom-

p manner. Low-level visual features extracted from human pupil,

ye, and/or face are fed to a model to regress a gaze direction

35,45] or used to fit to a known model [48,59] to estimate the

ost possible gaze. For example, the work [45] extracts the visual

eature from the full-face image using convolution neural network,

hen the feature is fed into the fully connected layers to regress

he 2D gaze location or 3D gaze direction. The work [48] consists

f the offline and online stages. During the offline stage, a generic

D eye-face model, which describes the relationship between the

yeball and facial landmarks, is learned. During the online stage,

he facial landmarks are fit to the offline-learned model to esti-

ate eyeball, the eyeball is then combined with the 3D geometric

ye model to infer the human gaze. 

EYE-DIAP [18] , MPIIGaze [65] , and Columbia Gaze [44] are three

enchmark datasets for human gaze estimation. These datasets are

ollected in simple scenarios and the humans are restricted with

imited head and body movements. The humans involved in the

YE-DIAP dataset [18] are gazing at a point on a screen or a float-

ng target in the nearby space while keeping their heads static or

ith slight movements. MPIIGaze dataset [65] is collected in the

ingle scenario that humans are gazing at the front camera of a
aptop. When collecting Columbia Gaze dataset [44] , the humans

re controlled with the maximum 30 ◦ horizontal head rotation. As

 result, the detailed facial information (such as pupil, eye, and

ace) of a human is fully observed in these datasets. To stride to

arge and complex scenes where humans are moving freely and the

etailed facial information is not always available, some challeng-

ng and natural datasets like GazeFollow [39] , Flickr gaze [36] and

ideoGaze [40] are proposed. However, these datasets either lack

bject-level annotations or do not involve high-level task informa-

ion. Therefore, they are not suitable for inferring the object-based

nd task-driven human attention. 

.3. Human object interaction 

Human object interaction (HOI) involves two tasks, HOI classifi-

ation and HOI detection. Given an image, the goal of HOI classifi-

ation is to estimate a binary label for each HOI category, while the

oal of HOI detection is to estimate a triplet of the human, object

nd HOI label [5] . Objects involved in the HOI detection usually re-

er to the objects that a human is directly interacting with at the

urrent time. However, attentional objects might be far away from

 human that the human is not currently interacting with or gaz-

ng at. 

The typical methods for HOI detection firstly propose some

OI candidates, and then score each candidate based on the vi-

ual features that encode the relationship of human, object, and

ction. Constructing HOI feature is significant for HOI detection.

ome early works extract features by encoding the spatial relation

etween human skeleton keypoints and the object [26,57] . These

eatures are handcrafted. Recently, benefiting from the success of

eep learning and the availability of large-scale HOI datasets, deep

earning methods are used for feature extraction. For example, to

epresent the human-object relationship, the work [38] extracts

he CNN feature of the bounding box enclosing both the human

nd the object. In [61] , a novel feature is extracted by combining

uman gaze feature with human pose and object feature. 

HICO-DET [5] and V-COCO [20] are two benchmark datasets for

OI detection and classification. They are not suitable for studying

he task-driven human attention in videos for two reasons: (1) the

atasets are composed of still images, which do not have temporal

nformation; (2) the annotations are limited to the objects that a

uman is directly interacting with, while attentional objects might

e the objects that a human is not directly interacting with at the

urrent time. 

. Approach 

In this section, we introduce our method by starting with the

verview of our proposed deep neural network model. We then

etail the architecture and data flow of our model. Finally, the loss

unctions are introduced. 

.1. Overview 

Fig. 2 shows the overview of our model. The input is an image

equence, for simplicity, three images are shown in the figure to

epresent the input image sequence. The output is the attentional

bjects (denoted by red bounding boxes) in each image of the im-

ge sequence. Our model mainly consists of four modules: encoder,

D convolution, task encoding module, and decoder. For clarifica-

ion, we summarize some important denotations in Tab. 1 . Each

mage I in the image sequence, together with the human pose h

xtracted from I , are served as the input of the encoder. The out-

ut m en of each encoder for all images are concatenated together

o serve as the input of the 3D convolution module. The output

 of the 3D convolution module is further processed by the task
3 d 
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Fig. 2. Overview of our method. Given an image sequence as input, the purpose of our model is to output human attention a (denoted as red bounding boxes) in each 

image of the input sequence. To this end, the image I and the human skeleton h serve as the input of the model. The model is mainly composed of four modules: encoder 

module, 3D convolution module, decoder module, and task encoding module. m en is the output of the encoder module for each image, the m en for all images in the input 

image sequence are concatenated and processed by the 3D convolution module, generating the feature map m 3 d which is further processed by a 2D convolution network 

to output the feature map m td . m 3 d and m td are summed as m + , which is processed by the decoder and the activation function σ to generate the attention map y a . The 

human attention a is jointly inferred by attention heat map y a and the attentional object candidates O (obtained by an object detection network named RetinaNet). In this 

figure, for the simplicity, the attentional object candidate generation network (RetinaNet) is only illustrated for one image of the input sequence. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

The summary of denotations. 

Denotations Representations 

I Input image 

h Human pose 

m en Encoder feature map 

m 3 d 3D convolution feature map 

m td Task-driven feature map 

y t Task encoding prediction 

Y t Task encoding ground truth 

m + Fusion feature map 

m de Decoder feature map 

y a Attention heat map 

O Attentional object candidates 

a Human attention/ attentional objects 
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encoding module, obtaining the feature map m td . m 3 d and m td are

summed as the fusion feature map m + , which is taken as the in-

put of the decoder. The output m de of the decoder is activated by

the sigmoid function σ , generating the attention heat map y a . The

human attention a is jointly inferred by the attentional object can-

didates O and attention heat map y a . 

3.2. Network architecture design motivation 

The base architecture of our neural network model is “En-

coder+Decoder”, which is inspired by some classic works of se-

mantic segmentation [1,33] and saliency estimation [53] . The “En-

coder+Decoder” architecture is effective to extract the intrinsic fea-

ture, and can regress the attention map with the same size as the

input image. To explore the temporal information in the image se-

quence, we configure a 3D convolution module between the en-

coder and decoder. Therefore, the backbone of our architecture is

“Encoder+3D Convolution+Decoder”. 

However, the backbone architecture does not consider the high-

level task information. Therefore, as shown in Fig. 2 , we add a 2D

convolution network on the top of 3D convolution feature map m 
3 d 
o extract the task-driven feature map m td , which goes through

 linear layer to generate the task encoding prediction y t . The

otivation of this architecture is two-fold. On one hand, we can

ompute the loss between the task encoding prediction y t and its

round truth Y t , the backward propagation of the loss can update

he parameters of 3D convolution module and encoder module,

uiding the network to predict the task-driven feature map. On the

ther hand, the feature map m td conveying high-level task infor-

ation is fused with the feature map m 3 d to construct the fusion

eature map m + , allowing the network to predict attentional ob-

ects using both the low-level human pose cue and the high-level

ask encoding information. 

.3. Data flow 

Input is an image sequence { I t | t = 1 , 2 , . . . , T } with T images,

nd the output is human attention { a t | t = 1 , 2 , . . . , T } in all T im-

ges. For the convenience of expression, we omit the subscript t

f all variables. That is, we use I to represent an image and a to

epresent the human attention in the image I . In the following, we

etail the data flow of each module. 

Encoder . The input of the encoder is the image I and human

ose h . The image I is with the size of 3 × H × W (3 channels, H

ixels in height, and W pixels in width). Human pose h is repre-

ented by the human skeleton, which is an informative represen-

ation and has been widely used in various computer vision tasks

46,58,61] . We use the method proposed in [4] to extract human

keleton. To align the data format with I , we use a binary 1 × H × W

ask to represent h , where human skeleton pixels are set as “1”

nd other pixels are set as “0”. I and h are concatenated together

s a 4 × H × W array to serve as the input of encoder, the encoder

eature map m en is defined as: 

 en = F en ([ I, h ]) (1)

here F en (·) is the encoder neural network, [ · , · ] denotes the

oncatenation operation. 
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3D Convolution . Each image has an encoder feature map m en 

ith the size of C en × H en × W en . Let T be the image number of the

nput image sequence. By concatenating each m en together, we ob-

ain a feature map M en with the size of T × C en × H en × W en , which

s taken as the input of 3D Convolution module. The output M 3 d of

D Convolution module is defined as: 

 3 d = F 3 d (M en ) (2)

here F 3 d (·) is the 3D convolution neural network. M 3 d is with

he size of T × C en × H en × W en . m 3 d is extracted from M 3 d , denoting

he 3D convolution feature map for each image, and the size of

 3 d is C en × H en × W en . 

Task Encoding . A task is usually composed of several sub-tasks.

et N T be the number all possible tasks and N S be the number of

ll possible sub-tasks, then there are totally N T × N S possible com-

ositions. Task encoding ground truth Y t is one among N T × N S pos-

ible compositions, so we use one-hot vector to represent Y t . 

y t is a N T × N S vector, representing task encoding prediction. y t 
s generated based on the task-driven feature map m td by a linear

unction F l (·) : 
 t = F l (m td ) (3)

here m td is computed by adding a 2D convolution neural network

n the top of 3D convolution feature map m 3 d , defined as: 

 td = F 2 d (m 3 d ) (4)

here F 2 d (·) is the 2D convolution neural network. m td has the

ame size with m 3 d . 

Decoder . The input of encoder is the fusion feature map

 + , which is computed by adding m 3 d and m td together in the

lement-wise manner: 

 + = m 3 d + m td (5)

he output m de of the decoder has the same size with input image

n width and height, defined as: 

 de = F de (m + ) (6)

here F de (·) is the decoder neural network. 

Attention Heat Map . Attention heat map y a is computed as: 

 a = σ ( m de ) (7) 

here σ is the sigmoid activation function, y a is a probability map,

nd y a ∈ [0, 1] 1 × H × W . 

Human attention a is jointly inferred by y a and attentional ob-

ect candidates O. 

.4. Loss function 

The loss L consists of the local loss L l , global loss L g , and the

ask encoding loss L t : 

 = λ1 L g + λ2 L l + λ3 L t (8)

here λ1 , λ2 , and λ3 are weights for the individual loss. 

Let Y a be the ground truth of attention heat map. Y a ∈ {0,

} 1 × H × W is a binary map with attention region R + assigned with

1’ and non-attention region R − assigned with ‘0’. 

The purpose of local loss L l is to compute the element-wise

oss between y a defined in Eq. (7) and attention heat map ground

ruth Y a . Let y 
i j 
a be the ( i, j )th element of y a , and Y 

i j 
a be the ( i,

 )th element of Y a . One classic loss function is computing the cross

ntropy loss for every local ( i, j )th element, and then add them

p or compute their average. However, in many cases, the propor-

ion of the attention region R + and the non-attention region R − is

mbalanced, leading to the poor performance of this kind of loss

unction. To weaken the effect of imbalance, inspired by the loss
unction used in [53] , we use the average weighted cross entropy

oss, defined as: 

 l = − 1 

W × H 

∑ 

i, j 

( ( 1 − ω) Y i j 
a log y i j 

a + ω(1 − Y i j 
a ) log (1 − y i j 

a )) (9) 

here ω is automatically computed, representing the area ratio of

 

+ to Y a . 

The global loss L g computes the overall loss between y a and

 a , which is targeted to compensate for the local loss to avoid its

xcessive dominance. Inspired by the Dice coefficient proposed in

11] , we formulate the L g as: 

 g = 1 −
2 

∑ 

i, j 

y i j 
a Y 

i j 
a 

∑ 

i, j 

( y i j 
a ) 

2 + 

∑ 

i j 

( Y i j 
a ) 

2 
(10) 

 g is essentially a measure of overlap between y a and Y a . 

The task encoding loss L t is defined as standard cross-entropy

oss: 

 t = CE(y t , Y t ) (11)

here CE is the cross-entropy computing function, y t is the predic-

ion of task encoding defined in Eq. (3) , and Y t is the ground truth

f task encoding. 

. Learning and inference 

Let W n be all parameters involved in the neural network. Learn-

ng the optimal parameter W 

∗
n is equal to minimize the loss L de-

ned in Eq. (8) : 

 

∗
n = arg min 

W n 

L (12) 

We use ADAM algorithm to learn the parameters, with the

earning rate set as 0.0 0 01. 

The attentional object candidates are objects that are possible

o be the attentional objects. We use an object detection model

RetinaNet [29] ) to detect objects to be the attentional object can-

idates. Let O be N o attentional object candidates: 

 = { o k | k = 1 , 2 , . . . , N o } (13)

The goal of inference is to estimate the score of each candidate

eing the attentional object, based on the estimation of attention

eat map y a defined in Eq. (7) . The score S o k of k th object candi-

ate o k is computed as: 

 o k = 

∑ 

(i, j) ∈ o k 
y i j 

a 

A o k 

(14) 

here A o k 
is the area of o k . The score factually indicates the ratio

etween the summation of attention heat map inside o k and the

rea of o k . 

. Implementation details 

Our model is implemented with PyTorch. The input images are

esized to 3 × 224 × 224, that is, H = W = 224 . The encoder neu-

al network F en defined in Eq. (1) is implemented by the ResNet18

21] , which encodes the input image as a 512 × 7 × 7 feature map,

hat is, C en × H en × W en = 512 × 7 × 7 . The length of the input im-

ge sequence is set as T = 7 , so the size of M en in Eq. (2) is

 × 512 × 7 × 7. F 3 d (·) defined in Eq. (2) is implemented with the

Conv3d” function in PyTorch. The linear function F l defined in

q. (3) is implemented with the fully connected layers, and 2D

onvolution neural network defined in Eq. (4) is composed of two

onvolution layers with the kernel size of 1 × 1. The decoder neural
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Table 2 

The statistics of the AttentionObject-VR dataset. Videos: video number, 

Images: image number, Attentional objects: attentional object annota- 

tion number, other objects: non-attention object annotation number. 

– Videos Images Attentional objects Other objects 

Train 596 100,951 117,643 1,330,431 

Test 184 32,468 37,211 402,573 

Total 780 133,419 154,854 1,733,004 
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network defined in Eq. (6) is implemented with five deconvolution

layers. 

λ1 , λ2 , and λ3 in Eq. (8) are set as 1, 1, and 0.1, respectively. The

reason why we set λ3 = 0 . 1 is to adjust the task encoding loss to

have the similar quantitative magnitude with the global loss and

local loss. The batch size is set as 6. The RetinaNet model [29] is

pretrained on the ImageNet dataset [10] and fine-tuned on our

dataset. 

6. A new VR dataset 

Though there exists a large number of datasets for the studies

of human gaze, visual attention, and human-object interaction, to

our best knowledge, no publicly available dataset is targeted for

inferring the task-driven inside-video human attention. Therefore,

we collect a video dataset in VR (Virtual Reality) scenes using VRK-

itchen platform [19] , we call it the “AttentionObject-VR” dataset.

With the development of VR technique, the VR data has become

extremely life-like as real data. In VR scenes, all objects are con-

figured with accurate locations and sizes, allowing the automatic

object annotations and large-scale data collection. 

To collect the dataset, we build 8 different kitchen scenes us-

ing Unreal Engine 4 (UE4). In each scene, many furniture and ob-

jects are configured, objects can be divided into two categories:

tools (e.g., knife, juicer, oven, etc.) and ingredients (e.g. bread, or-

ange, tomato, etc.). A human can use a tool to change the state of

an ingredient . For example, to do the task of making orange juice, a

human uses a knife to cut an orange into halves and put them into

a juicer to get juice. Some statistics of our dataset are summarized

in Table 2 and some samples are shown in Fig. 3 . The dataset has

following characteristics: 

Diverse and large . The dataset consists of 8 scenes, 10 tasks, 33

sub-tasks, and 4 humans. As shown in Fig. 3 , different scenes vary

significantly in the scene scale, furniture configuration, and object

placement. For each scene, we collect videos from 3 different cam-

era views to make the data more diverse. As shown in the Table 2 ,

the images of different camera views notably differ from each

other. The 10 tasks are: bake bread, cook soup, cut meat, fry steak,

make coffee, make juice, make sandwich, microwave food, pour

coke, and turn on light. The dataset consists of 133,419 images and

1,887,858 object annotations in total. Averagely, each video consists

of 171 images. The video resolution resolution is 1280 × 720. 

Well-organized . To make the dataset qualified for inferring hu-

man attentional objects, it is necessary to guarantee humans and

attentional objects are inside images. Therefore, we remove the im-

ages and videos that do not satisfy this requirement. To divide the

dataset into training set and testing set, the data collected in scene

7 and scene 8 are used for testing, and the data collected in other

scenes are used for training. 

Well-annotated . Fig. 4 shows an example of annotating a video.

Given a video with a task label, it is segmented as several sub-

tasks to guarantee that the attentional object in each sub-task is

determinate. To accurately segment a task into several sub-tasks,

three volunteers are asked to find the key frames in a video to seg-

ment sub-tasks. For most cases, the key-frame is not controversial.

For controversial ones, the average key-frame is taken as the key-
rame. For each frame, the location, size and class of both atten-

ional objects and non-attentional objects are annotated. Averagely,

ne image has 1.16 attentional object annotations and 13 non-

ttentional object annotations. Benefiting from the rich annota-

ions, the dataset can also be used for other studies like task/event

ecognition, video segmentation, and action recognition. 

. Experiments 

In this section, we first introduce the three baseline methods

nd the metric to evaluate the methods, followed by the detailed

escription of the comparison experiments as well as the abla-

ion experiments, finally, the extension experiment on a public real

ataset is introduced. 

.1. Baselines 

We study the problem of inferring the task-driven attentional

bjects of a human inside third-person view videos, to our best

nowledge, there does not exist exactly same work with ours. The

ost related work is to estimate where a human is looking. There-

ore, we select two state-of-the-art human face and head direction

stimation methods as baselines. In addition, we design a classifi-

ation method. We briefly describe the three baseline methods as

ollows. 

PRNet [16] is a face alignment method that can estimate hu-

an face direction. It takes the raw image and human face as in-

ut, and the output is the dense (more than 40K) aligned face key

oints. These dense points are compared with a pretrained model

o compute the camera matrix, which is further combined with 68

acial key points to estimate the human face direction. 

Hopenet [41] is a head pose estimation method. It takes the

aw image and human face as input, and the output is the three

uler angles that signal human head direction. 

ResNet-BinCls is a binary classification method based on

esNet-18 [21] . It first detects the objects in an image, then a bi-

ary classifier estimates the score of each object being and not be-

ng the attentional object. To estimate the score of a candidate ob-

ect, the human skeleton and the candidate object are represented

s a binary 1 × H × W mask, which is concatenated with 3 × H × W

aw image to serve as the input of the binary classifier. Same with

ur method, the RetinaNet model [29] and OpenPose model [4] are

espectively used for attentional object candidate generation and

uman pose estimation. 

.2. Metric 

Let n 2 be the total number of testing images and n 1 be the

umber of images in which human attentional objects are correctly

stimated, we evaluate the performance of a method using the fol-

owing defined accuracy: 

cc = 

n 1 

n 2 

(15)

For PRNet [16] and Hopenet [41] , the outputs are respectively

he face and head direction. To evaluate whether the attentional

bjects in an image are correctly estimated, we propose to es-

imate whether the face/head direction line intersects with the

round truth bounding boxes of attentional objects. For ResNet-

inCls and our method, the output is the scores of the attentional

bject candidates. We first find the object with the highest score.

et p o be the center point of the highest scored object and p h be

he center point of the human head. If the line, which starts from

 h and passes through p o , intersects with the ground truth bound-

ng boxes of attentional objects, this image is counted to be cor-

ectly estimated. 
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Fig. 3. Samples of the AttentionObject-VR dataset. The dataset is collected in eight scenes. In each scene, videos are captured from three different camera views. In this 

figure, each row shows three images from the three camera views at the same time in the same scene. 

Fig. 4. An example of annotating a video. Given a video with the task label of “cut meat”, the video is segmented as five sub-tasks (“approach to refrigerator”, “take meat”, 

“approach to board”, “put down meat”, and “use knife to cute meat”). In each sub-task, the attentional object (red bounding boxes) and other non-attentional objects (green 

bounding boxes) are annotated. To conclude, the annotations include task label, sub-task labels, attentional objects, and non-attentional objects. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 
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Table 3 

Accuracies of different methods on the AttentionObject-VR dataset. “All” corresponds to the overall accuracy. T1 

to T10 correspond to the accuracies on different tasks. T1: bake bread, T2: cook soup, T3: cut meat, T4: fly steak, 

T5: make coffee, T6: make juice, T7: make sandwich, T8: microwave food, T9: pour coke, and T10: turn on light. 

The last row corresponds to the accuracy of our method using the ground truth object annotations as attentional 

object candidates. 

Methods T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 All 

PRNet [16] 0.41 0.28 0.29 0.28 0.26 0.29 0.31 0.34 0.27 0.07 0.30 

Hopenet [41] 0.54 0.36 0.36 0.37 0.17 0.37 0.39 0.39 0.29 0.00 0.35 

ResNet-BinCls [21] 0.49 0.51 0.46 0.55 0.19 0.53 0.48 0.71 0.50 0.48 0.48 

Our 0.57 0.58 0.48 0.53 0.12 0.56 0.49 0.75 0.66 0.40 0.52 

Our ∗ 0.72 0.65 0.68 0.54 0.70 0.68 0.68 0.79 0.82 0.45 0.69 

Fig. 5. Samples of human attention heat map visualization in the task of make coffee. Red masks correspond to the regions with higher probability, while blue masks 

correspond to the regions with lower probability. Red bounding boxes are ground truth attentional object annotations. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 
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To provide the accurate head location for our method and the

baselines, we first use the skeleton detector proposed in [4] to de-

tect a human’s five key points of nose, left eye, right eye, left ear,

and right ear. Then, the average location of the available key points

is taken as the head location. These five key points are distributed

around human head, so the average location accurately indicates

the location of human head. In addition, it rarely happens that no

key point is detected, so the head location estimation is robust. To

provide the accurate human face for PRNet [16] and Hopenet [41] ,

instead of detecting faces on the whole image, we apply a face de-

tector on a small region centered on the head location. 

7.3. Quantitative results 

Table 3 shows the human attention estimation accuracies of the

baseline methods and our method. For each method, we compute

the overall accuracy as well as the individual accuracy for each

task. We can observe that our method achieves the highest overall

accuracy and outperforms other methods on the majority of indi-

vidual tasks, which benefits from our model that considers both

the low-level visible human body cue and high-level invisible task

encoding cue. 

Attentional objects are usually the objects that the human’s

hands are operating on or the human’s body is approaching to.

Human skeleton conveys the motion and pose information of the

whole body, thus significantly indicates the attentional objects. In

addition, different from human facial cues, human skeleton is usu-

ally observable and easy to detect, contributing to robust perfor-

mance when the detailed facial features are not available. Taking

task encoding into consideration is also useful. Attention shifting

procedure is a task-driven procedure of selecting attentional ob-

jects. Given a task, a human knows what to do now and what to do

next. In this paper, we design a task encoding module. The module

outputs the task-driven feature map and task encoding prediction.

The task-driven feature map is fused with the low-level feature

map, allowing the model to estimate human attention using both

the low-level human body cue and the high-level task information.

The task encoding prediction is compared with its ground truth to

compute the loss, and the loss is used to update the parameters of

neural network to involve the task guidance information. 

From Table 3 we can observe that our method achieves a low

accuracy on the task of make coffee (T5). In this task, the main

attentional objects are the coffee machine and cup. However, the
bject detection model fails to detect the coffee machine in most

ases, and the average precision for coffee machine detection is

nly 0.04. Actually, since the AttentionObject-VR dataset is col-

ected in large and complex scenes and many objects are with

mall scales, the object detection on this dataset is not qualified.

bject detection is not the focus of this paper, so we conduct an-

ther experiment using the ground truth object annotations as at-

entional object candidates, the results are shown in the last row

 Our ∗) in Table 3 . We can observe that the performance improves

y a large margin, the overall accuracy improves from 0.52 to 0.69.

specially for the task of make coffee, the accuracy improves from

.12 to 0.70, proving that our attention heat map estimation is

ualified. Fig. 5 shows some samples of attention heat map esti-

ation in the task of make coffee, and we can observe the heat

ap concentrates on the ground truth bounding boxes of atten-

ional objects. In the tasks of fly steak (T4) and turn on light (T10),

ur method behaves slightly worse than the ResNet-BinCls method.

he main reason is, some attentional objects are with small sizes

o that noisy objects near to the ground truth bounding boxes of

ttentional objects are easily to be falsely recognized as attentional

bjects. 

.4. Qualitative results 

Fig. 6 shows some qualitative results of different methods in

hree typical scenarios. In easy scenarios, as shown in Fig. 6 (a), the

umans’ facial cues are available and they are gazing at the atten-

ional objects. Human pose also strongly indicates the attentional

bjects. Therefore, all methods correctly estimate the attentional

bjects. 

However, in complex cases, as shown in Fig. 6 (b), the hu-

ans are not facing to the cameras, so the detailed facial infor-

ation is not available. As a result, the methods (PRNet [16] and

openet [41] ) that heavily depend on facial features present poor

erformance, factually, when we analyze the experiment results,

e found that the most failure of the PRNet [16] and Hopenet

41] happens in these situations. In contrast, our model takes the

uman skeleton as the low-level human pose cue, and the human

keleton is available and easy to detect even if the human face is

artly or fully occluded. Therefore, our method presents better per-

ormance in these scenarios. 

In some more challenging scenarios, as shown in Fig. 6 (c), the

uman facial cue is difficult to extract, and human pose signals
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Fig. 6. Samples of qualitative results of different methods in three typical scenarios. (a) Human facial information is available and conveys the distinct cue to infer attentional 

objects. (b) Human facial information is not available, but the human pose provides the informative cue to infer attentional objects. (c) Human facial cue and human pose 

cue are not sufficient, and invisible high-level task information is needed to infer attentional objects. In this figure, the red bounding boxes represent the ground truth 

attentional object annotations, the blue lines represent the face and head directions estimated by the PRNet [16] model and Hopenet [41] model, and blue bounding boxes 

represent the attentional objects estimated by the ResNet-BinCls method [21] and our method. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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Table 4 

The human attention estimation ac- 

curacies of our model with differ- 

ent loss compositions. Local repre- 

sents L l defined in Eq. (9) , global 

represents L g defined in Eq. (10) , 

and task represents L t defined in 

Eq. (11) . 

Loss compositions Accuracies 

task 0.29 

local 0.48 

global 0.48 

global + local 0.48 

global + task 0.51 

local + task 0.49 

global + local+task 0.52 

 

u  

c  

e  

B  

o  

o  

t  

s  

b  

h  

t  

F  

m  
ultiple possible attentional objects. In these cases, the high-level

ask information is more important than the low-level cue. For ex-

mple, as shown in the upper row images in Fig. 6 (c), the human

s facing a pot, a stove and a juicer. Assume that the task is cook

oup, the attentional object is more likely to be the pot. Assume

hat the task is make juice, the attentional object is more likely to

e the juicer. Assume that the task is bake bread, the attentional

bject is more likely to be the stove door. 

.5. Ablation studies 

The purpose of ablation studies is to test the human attention

stimation accuracies of our model with different model configura-

ions. To this end, we design five experiments to test the effects of

ifferent loss com positions, encoder-decoder architectures, visual

eature extraction methods, cue compositions and neural network

onfigurations, respectively. 

Experiment 1: loss compositions. In this paper, we propose

hree losses, local loss, global loss, and task encoding loss. In this

xperiment, we test the performance of our model with different

oss compositions. We disable a loss by setting its weight as zero.

s shown in Table 4 , seven compositions are tested. From the ta-

le we can observe the highest accuracy is achieved when combing

hree losses, proving that every individual loss is useful. The accu-

acy of “global+task” is higher than that of “global” and the accu-

acy of “local+task” is higher than that of “local”, proving the im-

ortance of the task encoding loss. The accuracy of “global+local” is

ame with that of “global” or “local”, proving that the global con-

traint on the human attention heat map estimation and the local

onstraint on the human attention heat map estimation exhibit the

imilar effect. 
Experiment 2: encoder-decoder architectures. In this paper, we

se the ResNet18 [21] neural network as the encoder and five de-

onvolution layers as the decoder. The ResNet18 neural network

ncodes a 3 × 224 × 224 input image as a 512 × 7 × 7 feature map.

y removing the layers at the end of ResNet18 [21] , the encoder

utputs different sizes of the feature map. We test the performance

ur model when encoding the input image as different sizes of fea-

ure maps. As shown in Tab. 5 , we test four feature map sizes, each

ize corresponds to one encoder-decoder architecture. From the ta-

le, we can observe that the 512 × 7 × 7 feature map achieves the

ighest accuracy. Fig. 7 shows four samples of attention heat maps

hat are estimated by four different encoder-decoder architectures.

rom the figure we can also observe that the 512 × 7 × 7 feature

ap achieves better attention heat maps. For the encoder-decoder
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512 256 128 64

Fig. 7. Samples of attention heat maps that are estimated by four different encoder-decoder architectures. One architecture corresponds to one encoder feature map size, 

and the sizes are respectively 512 × 7 × 7, 256 × 14 × 14, 128 × 28 × 28, and 64 × 56 × 56. Red masks correspond to the regions with higher probability, while blue masks 

correspond to the regions with lower probability. Red bounding boxes are ground truth attentional object annotations. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.) 

Table 5 

The human attention estimation ac- 

curacies of our model with different 

encoder-decoder architectures. 

Feature map sizes Accuracies 

64 × 56 × 56 0.43 

128 × 28 × 28 0.46 

256 × 14 × 14 0.47 

512 × 7 × 7 0.52 

Table 6 

The human attention estimation accuracies of our model with different 

visual feature extraction neural networks. 

Encoder types Accuracies (pre-train) Accuracies (no pre-train) 

ResNet18 0.52 0.45 

ResNet34 0.52 0.45 

VGG16 0.52 0.48 

VGG19 0.52 0.46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7 

The human attention estimation accuracies of our 

model with different cue compositions. image rep- 

resents that the model only uses the raw image 

cue, image + task-cue represents that the model 

uses the raw image cue and the task encoding cue, 

image + skeleton-cue represents that the model 

uses the raw image cue and the human skele- 

ton cue, and image + skeleton-cue + task-cue rep- 

resents that the model uses the raw image cue, 

skeleton cue and task encoding cue. 

Cue compositions Accuracies 

image 0.45 

image + task-cue 0.50 

image + skeleton-cue 0.49 

image + task-cue + skeleton-cue 0.52 
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architecture, deeper encoder generates smaller feature map and

exhibits better performance. 

Experiment 3: feature extraction networks. The encoder in our

model is actually a visual feature extraction neural network. In this

experiment, we test the performance of our model with different

feature extraction networks. As shown in Table 6 , we test four

widely used neural networks. For each network, we test the ac-

curacy when it is pretrained on the ImageNet dataset [10] as well

as the accuracy when it is not pretrained. From the table we can

observe that pretrained networks present better performance than

non-pretrained networks, and four pretrained networks achieve

same accuracies. 

Experiment 4: cue compositions. One main contribution of this

paper is that we propose a model fusing both low-level human

pose cue (represented by the human skeleton) and high-level task

cue (represented by the task encoding). To analyze the effective-

ness of individual cues, we conduct an ablation experiment to test

the performance of our model with different cue compositions. The

experiment results are summarized in the Table 7 . We can observe
hat the model using all cues achieves the highest accuracy, prov-

ng that each individual cue is effective. The model additively us-

ng individual skeleton cue (or task encoding cue) achieves higher

ccuracy than the model only using the raw image, which also val-

dates the effectiveness of human pose cue and task encoding cue.

Experiment 5: network configurations. Our model is composed

f four neural network modules: encoder network, 3D convolution

etwork, task encoding network, and decoder network. Encoder-

ecoder is the basic unit of our neural network model, 3D convolu-

ion network is a module to utilize the temporal information of in-

ut image sequence, and task encoding network is a module to uti-

ize the task information. To analyze the effectiveness of individual

etwork module, we conduct an ablation experiment to test the

erformance of our model with different network configurations.

he experiment results are summarized in the Table 8 . We can ob-

erve that the model achieves higher accuracy after adding the 3D

onvolution network and the model configured with all networks

chieves the highest accuracy, which proves the effectiveness of in-

ividual networks. 
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Fig. 8. Samples of qualitative results on the CAD120 dataset. In this figure, the red bounding boxes represent the ground truth attentional object annotations, the blue lines 

represent the face and head directions that are estimated by the PRNet [16] model and Hopenet [41] model, and blue bounding boxes represent the attentional objects that 

are estimated by the ResNet-BinCls method [21] and our method. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 

of this article.) 

Table 8 

The human attention estimation accuracies of our model 

with different neural network configurations. “encoder- 

decoder” represents that the model is only config- 

ured with the basic encoder-decoder network, “encoder- 

decoder + 3DConv” represents that the model is config- 

ured with encoder-decoder network as well as the 3D 

convolution network, and “encoder-decoder + 3DConv + 

task-net” represents that the model is configured with 

encoder-decoder network, 3D convolution network and 

task encoding network. 

Network configurations Accuracies 

encoder-decoder 0.45 

encoder-decoder + 3DConv 0.49 

encoder-decoder + 3DConv + task-net 0.52 
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Table 9 

The statistics of the re-annotated CAD120 dataset used in our ex- 

periment. Videos: video number, Images: image number, Attentional 

objects: attentional object annotation number, other objects: non- 

attention object annotation number. 

– Videos Images Attentional objects Other objects 

Train 84 41,805 44,852 48,312 

Test 28 13,499 14,258 16,739 

Total 112 55,304 59,110 65,051 

F  

n  

m  

t  

t  

a  

t  
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.6. Extension experiment on a real dataset 

To further validate the robustness and effectiveness of our

odel, we re-annotate a publicly available dataset named CAD120

26] and extensively evaluate our model on this real dataset. The

AD120 dataset [26] consists of 124 videos. In each video, a hu-

an is doing a task. There are totally 10 tasks, 10 sub-tasks, and 4

umans. The 10 tasks are: arranging objects, cleaning objects, mak-

ng cereal, microwaving food, picking objects, stacking objects, tak-

ng food, taking medicine, unstacking objects, and having a meal.
or each video, the task label and sub-task labels have been an-

otated. For each frame in a video, the objects are annotated. To

ake it eligible for inferring human attentonal objects, we anno-

ate the attentional objects in all frames of all videos except for

he videos with the task label of having a meal since the original

nnotations are not qualified. Following the setting in [26] , we use

he videos of three humans for training and the videos of one hu-

an for testing. The statistics of the re-annotated CAD120 dataset

re summarized in the Table 9 . 

Table 10 shows human attention estimation accuracies of dif-

erent methods on the CAD120 dataset, from which we can ob-

erve that our method achieves the highest accuracy in all tasks.

ur method exhibits better performance on the CAD120 dataset

han on the AttentionObject-VR dataset. One main reason is that

he CAD120 dataset is a simple dataset collected in small-scale
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Table 10 

Accuracies of different methods on the CAD120 dataset. “All” corresponds to the overall accuracy. T1 to 

T9 correspond to the accuracies on different tasks. T1: arranging objects, T2: cleaning objects, T3: making 

cereal, T4: microwaving food, T5: picking objects, T6: stacking objects, T7: taking food, T8: taking medicine, 

and T9: unstacking objects. The last row corresponds to the accuracy of our method using the ground truth 

object annotations as attentional object candidates. 

Methods T1 T2 T3 T4 T5 T6 T7 T8 T9 All 

PRNet [16] 0.30 0.74 0.82 0.59 0.41 0.71 0.36 0.80 0.80 0.66 

Hopenet [41] 0.19 0.80 0.67 0.73 0.31 0.51 0.48 0.55 0.57 0.59 

ResNet-BinCls [21] 0.31 0.97 0.89 0.82 0.66 0.73 0.89 0.69 0.74 0.79 

Our 0.35 0.97 0.90 0.95 0.69 0.88 0.89 0.78 0.85 0.85 

Our ∗ 0.62 0.96 0.91 0.93 1.0 0.88 0.99 0.82 0.85 0.89 
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scenes where human pose and motion are not complex as that in

the AttentionObject-VR dataset. In addition, videos with the same

task label share the similar camera view and object placement,

while the AttentionObject-VR dataset is collected from different

camera views and the appearance of scenes from different cam-

era views significantly vary from each other. The last row (Our ∗) in

the Table 10 shows the accuracies of our model using the ground

truth attentional object annotations as the attentional object can-

didates. We can observe that the accuracy slightly improves from

0.85 (Our) to 0.89 (Our ∗). This gap is smaller than the gap between

the accuracy of 0.52 (Our) and 0.69 (Our ∗) on the AttentionObject-

R dataset as shown in Table 3 . The main reason is that object de-

tection model presents better performance on the CAD120 dataset.

Fig. 8 shows some samples of qualitative results. In Fig. 8 (a),

the human is operating on and gazing at the attentional objects,

so the attentional objects can be easily inferred by the human pose

or human face/head direction. In Fig. 8 (b), the human is not gaz-

ing at the attentional objects or the human face is not observable.

Therefore, PRNet model [16] and Hopenet model [41] fail to infer

the attentional objects. In Fig. 8 (c), neither the human human gaze

nor human pose reveals the attentional objects. Our method inte-

grates the low-level human pose cue with the high-level task in-

formation, so exhibits better performance in this kind of situation. 

8. Conclusion 

This paper infers the attention of a human doing a task inside

a third-person view video. Human attention is defined as the at-

tentional objects coinciding with the on-going task. To solve the

problem, we propose a neural network that fuses both low-level

human pose cue and high-level task encoding cue. To validate the

proposed method, we collect a new dataset and re-annotate a pub-

lic dataset. A large number of experiments are conducted on these

two datasets, and the experiment results show that our method is

robust and effective. 

For the problem, this paper is tackling inside-video human at-

tention estimation, which is different from traditional human at-

tention estimation targeting to infer the saliency regions that draw

the attention of a human outside images or videos. 

For the methodology, this paper not only considers the low-

level human pose cue, but also involves the high-level task infor-

mation that can not be observed from the image. This framework

is more reasonable than the framework that only uses bottom-up

information, and has strong theory supports from psychology and

biology studies demonstrating that human attention is controlled

in both bottom-up and top-down manner [9] . 

This paper may provide some inspirations to the related prob-

lems like human-object interaction, human gaze estimation, and

human intention prediction. For example, involving invisible high-

level information may improve the performance of human gaze es-

timation. However, since the high-level task information can not be

observed in images, this paper only adopts a simple mechanism to

incorporate the task information. In the future, we will explore the
etter way to make use of the invisible task information. In ad-

ition, we will extend this work by connecting human attention

nd human intention. Human attention is a strong signal to infer

uman intention. We plan to build a graph model to concurrently

nfer human attention and human intention. 
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