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Abstract.
The pattern theory of Grenander is a mathematical framework where patterns are represented

by probability models on random variables of algebraic structures. In this paper, we review three
families of probability models, namely, the discriminative models, the descriptive models, and
the generative models. A discriminative model is in the form of a classifier. It specifies the con-
ditional probability of the class label given the input signal. A descriptive model specifies the
probability distribution of the signal, based on an energy function defined on the signal. A gen-
erative model assumes that the signal is generated by some latent variables via a transformation.
We shall review these models within a common framework and explore their connections. We
shall also review the recent developments that take advantage of the high approximation capaci-
ties of deep neural networks.

1. Introduction. Initially developed by Grenander in the 1970s, the pattern theory [30, 31]
is a unified mathematical framework for representing, learning and recognizing patterns that
arise in science and engineering. The objects in pattern theory are usually of high complexity or
dimensionality, defined in terms of the constituent elements and the bonds between them. The
patterns of these objects are characterized by both the algebraic structures governed by local and
global rules, as well as the probability distributions of the associated random variables. Such
a framework encompasses most of the probability models in various disciplines. In the 1990s,
Mumford [70] advocated the pattern theoretical framework for computer vision, so that learning
and inference can be based on probability models.

Despite its generality, developing probability models in the pattern theoretical framework re-
mains a challenging task. In this article, we shall review three families of models, which we

2000 Mathematics Subject Classification. Primary 62M40.

c©XXXX Brown University

1



2 YING NIAN WU, RUIQI GAO, TIAN HAN, AND SONG-CHUN ZHU

call the discriminative models, the descriptive models, and the generative models, following the
terminology of [113]. A discriminative model is in the form of a classifier. It specifies the con-
ditional probability of the output class label given the input signal. Such a model can be learned
in the supervised setting where a training dataset of input signals and the corresponding output
labels is provided. A descriptive model specifies the probability distribution of the signal, based
on an energy function defined on the signal through some descriptive feature statistics extracted
from the signal. Such models originated from statistical physics, where they are commonly called
the Gibbs distributions [28]. The descriptive models belong to the broader class of energy-based
models [59] that include non-probabilistic models as well as models with latent variables. A
generative model assumes that the signal is generated by some latent variables via a determin-
istic transformation. A prototype example is factor analysis [83], where the signal is generated
by some latent factors via a linear transformation. Both the descriptive models and generative
models can be learned in the unsupervised setting where the training dataset only consists of
input signals without the corresponding output labels.

In this paper, we shall review these three families of models within a common framework
and explore their connections. We shall start from the flat linear forms of these models. Then
we shall present the hierarchical non-linear models, where the non-linear mappings in these
models are parametrized by neural networks [58, 56] that have proved exceedingly effective in
approximating non-linear relationships.

Currently the most successful family of models are the discriminative models. A discrimina-
tive model is in the form of the conditional distribution of the class label given the input signal.
The normalizing constant of such a probability model is a summation over the finite number of
class labels or categories. It is readily available, so that the model can be easily learned from big
datasets. The learning of the descriptive models and the generative models can be much more
challenging. A descriptive model is defined as a probability distribution of the signal, which is
usually of a high dimensionality. The normalizing constant of such a model is an integral over
the high dimensional signal and is analytically intractable. A generative model involves latent
variables that follow some prior distribution, so that the marginal distribution of the observed
signal is obtained by integrating out the latent variables, and this integral is also analytically
intractable. Due to the intractabilities of the integrals in the descriptive and generative mod-
els, the learning of such models usually requires Markov chain Monte Carlo (MCMC) sampling
[25, 65]. Specifically, the learning of the descriptive models require MCMC sampling of the
synthesized signals, while the learning of the generative models require MCMC sampling of the
latent variables. Nonetheless, we shall show that such learning methods work reasonably well
[106, 24, 35], where the gradient-based Langevin dynamics [71] can be employed conveniently
for MCMC sampling, which is an inner loop within the gradient-based learning of the model
parameters.

Because of the high capacity of the neural networks in approximating highly non-linear map-
pings, the boundary between representation and computation is blurred in neural networks. A
deep neural network can be used to represent how the signal is generated or how the features
are defined. It can also be used to approximate the solution of a computational problem such
as optimization or sampling. For example, the iterative sampling of the latent variables of a
generative model can be approximated by an inference model that provides the posterior sam-
ples directly, as is the case with the wake-sleep algorithm [41] and the variational auto-encoder
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(VAE) [53, 78, 68]. As another example, the iterative sampling of a descriptive model can be
approximated by a generative model that can generate the signal directly [104, 105]. In general,
the solutions to the on-line computational problems can be encoded by high capacity neural net-
works, so that iterative computations only occur in the off-line learning of the model parameters.

The three families of models do not exist in isolation. There are intimate connections between
them. In [33, 34], the authors proposed to integrate the descriptive and generative models into a
hierarchical model. In [97, 98], the authors proposed data-driven MCMC where the MCMC is
to fit the generative models, but the proposal distributions for MCMC transitions are provided by
discriminative models. The discriminative model and the descriptive model can be translated into
each other via the Bayes rule. Tu [96] exploited this relationship to learn the descriptive model
via discriminative training, thus unifying the two models. Similarly, the discriminative model
can be paired with the generative model in the generative adversarial networks (GAN) [29], and
the adversarial learning has become an alternative framework to likelihood-based learning. The
descriptive model and the generative model can also be paired up so that they can jumpstart each
other’s MCMC sampling [104, 105]. Moreover, the family of descriptive models and the family
of generative models overlap in terms of undirected latent energy-based models [59].

2. Non-hierarchical linear forms of the three families. We shall first review the non-
hierarchical linear forms of the three families of models within a common framework.

2.1. Discriminative models. This subsection reviews the linear form of the discriminative
models.

The table below displays the dataset for training the discriminative models:

input features output

1 X>1 h>1 Y1

2 X>2 h>2 Y2

...
n X>n h>n Yn

There are n training examples. For the i-th example, let Xi = (xij , j = 1, ..., p)> be the p-
dimensional input signal (the (n, p) notation is commonly used in statistics to denote the number
of observations and the number of predictors respectively). Let Yi be the outcome label. In the
case of classification, Yi is categorical or binary. hi = (hik, k = 1, ..., d)> is the d-dimensional
vector of features or hidden variables.

The discriminative models can be represented by the diagram below:

output : Yi
↑

features : hi
↑

input : Xi

(2.1)

where the vector of features hi is computed from Xi via hi = h(Xi). In a non-hierarchical or
flat model, the feature vector hi is designed, not learned, i.e., h() is a pre-specified non-linear
transformation.
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For the case of binary classification where Yi ∈ {+1,−1}, (Yi, Xi) follow a logistic regres-
sion

log
Pr(Yi = +|Xi)

Pr(Yi = −|Xi)
= h>i θ + b, (2.2)

where θ is the d-dimensional vector of weight or coefficient parameters, and b is the bias or
intercept parameter. The classification can also be based on the perceptron model

Ŷi = sign(h>i θ + b), (2.3)

where sign(r) = +1 if r ≥ 0, and sign(r) = −1 otherwise. Both the logistic regression and the
perceptron can be generalized to the multi-category case. The bias term b can be absorbed into
the weight parameters θ if we fix hi1 = 1.

Let f(X) = h(X)>θ. f(X) captures the relationship between X and Y . Because h(X) is
non-linear, f(X) is also non-linear. We say the model is in the linear form because it is linear in
θ, or f(X) is a linear combination of the features in h(X). The following are the choices of h()

in various discriminative models.
Kernel machine [12]: hi = h(Xi) is implicit, and the dimension of hi can potentially be

infinite. The implementation of this method is based on the kernel trick 〈h(X), h(X ′)〉 =

K(X,X ′), where K is a kernel that is explicitly used by the classifier such as the support vec-
tor machine [12]. f(X) = h(X)>θ belongs to the reproducing kernel Hilbert space where
the norm of f can be defined as the Euclidean norm of θ, and the norm is used to regularize
the model. A Bayesian treatment leads to the Gaussian process, where θ is assumed to fol-
low N(0, σ2Id), and Id is the identity matrix of dimension d. f(X) is a Gaussian process with
Cov(f(X), f(X ′)) = σ2K(X,X ′).

Boosting machine [22]: For hi = (hik, k = 1, ..., d)>, each hik ∈ {+,−} is a weak classifier
or a binary feature extracted from X , and f(X) = h(X)>θ is a committee of weak classifiers.

CART [6]: In the classification and regression trees, there are d rectangle regions {Rk, k =

1, ..., d} resulted from recursive binary partition of the space of X , and each hik = 1(Xi ∈ Rk)

is the binary indicator such that hik = 1 if Xi ∈ Rk and hik = 0 otherwise. f(X) = h(X)>θ is
a piecewise constant function.

MARS [23]: In the multivariate adaptive regression splines, the components of h(X) are hinge
functions such as max(0, xj − t) (where xj is the j-th component of X , j = 1, ..., p, and t is a
threshold) and their products. It can be considered a continuous version of CART.

Encoder and decoder: In the diagram in (2.1), the transformation Xi → hi is called an
encoder, and the transformation hi → Yi is called a decoder. In the non-hierarchical model, the
encoder is designed, and only the decoder is learned.

The outcome Yi can also be continuous or a high-dimensional vector. The learning then
becomes a regression problem. Both classification and regression are about supervised learning
because for each input Xi, an output Yi is provided as supervision. The reinforcement learning
is similar to supervised learning except that the guidance is in the form of a reward function.

2.2. Descriptive models. This subsection describes the linear form of the descriptive models
and the maximum likelihood learning algorithm.

The descriptive models [113] can be learned in the unsupervised setting, where Yi are not
observed, as illustrated by the table below:
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input features output

1 X>1 h>1 ?
2 X>2 h>2 ?
...
n X>n h>n ?

The linear form of the descriptive model is an exponential family model. It specifies a prob-
ability distribution on the signal Xi via an energy function that is a linear combination of the
features,

pθ(X) =
1

Z(θ)
exp

[
h(X)>θ

]
p0(X), (2.4)

where h(X) is the d-dimensional feature vector extracted from X , and θ is the d-dimensional
vector of weight parameters. p0(X) is a known reference distribution such as the white noise
model X ∼ N(0, σ2Ip), or the uniform distribution within a bounded range.

Z(θ) =

∫
exp[h(X)>θ]p0(X)dX = Ep0{exp[h(X)>θ]} (2.5)

is the normalizing constant (Ep denotes the expectation with respect to p). It is analytically
intractable.

The descriptive model (2.4) has the following information theoretical property [16, 117, 2].
Let Pdata be the distribution that generates the training data {Xi}. Let Θ = {pθ,∀θ} be the
family of distributions defined by the descriptive model. Let Ω = {p : Ep[h(X)] = ĥ},
where ĥ = EPdata

[h(X)]. ĥ can be estimated from the observed data by the sample average∑n
i=1 h(Xi)/n. Ω is the family of distributions that reproduce the observed ĥ. Let p̂ = pθ̂ ∈

FIG. 1. The two curves illustrate Θ and Ω respectively, where each point is a
probability distribution.

Θ ∪ Ω be the intersection between Θ and Ω. Then for any pθ ∈ Θ and any p ∈ Ω, we have
KL(p‖pθ) = KL(p‖p̂)+KL(p̂‖pθ), which can be interpreted as a Pythagorean property that de-
fines orthogonality. KL(p‖q) = Ep[log(p(X)/q(X))] denotes the Kullback-Leibler divergence
from p to q. Thus Θ and Ω are orthogonal to each other, Θ ⊥ Ω, as illustrated by Figure 1.

This leads to the following dual properties of p̂, which can be considered the learned model:
(1) Maximum likelihood. p̂ = arg minΘ KL(Pdata‖pθ). That is, p̂ is the projection of

Pdata on Θ. KL(Pdata‖pθ) = EPdata
[logPdata(X)] − EPdata

[log pθ(X)]. The second term
EPdata

[log pθ(X)] is the population version of the log-likelihood. Thus minimizing KL(Pdata‖pθ)
is equivalent to maximizing the likelihood.
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(2) Maximum entropy: p̂ = arg minΩ KL(p‖p0). That is, p̂ is the minimal modification of p0

to reproduce the observed feature statistics ĥ. KL(p‖p0) = Ep[log p(X)]−Ep[log p0(X)]. If p0

is the uniform distribution, then the second term is a constant, and the first term is the negative
entropy. In that case, minimizing KL(p‖p0) is equivalent to maximizing the entropy over Ω.

Given the training data {Xi}, let L(θ) =
∑n
i=1 log pθ(Xi)/n be the log-likelihood. The

gradient of L(θ) is

L′(θ) =
1

n

n∑
i=1

h(Xi)− Eθ[h(X)], (2.6)

because ∂ logZ(θ)/∂θ = Eθ[h(X)], where Eθ denotes the expectation with respect to pθ. This
leads to a stochastic gradient ascent algorithm for maximizing L(θ),

θt+1 = θt + ηt

[
1

n

n∑
i=1

h(Xi)−
1

ñ

ñ∑
i=1

h(X̃i)

]
, (2.7)

where {X̃i, i = 1, ..., ñ} are random samples from pθt , and ηt is the learning rate. The learning
algorithm has an “analysis by synthesis” interpretation. The {X̃i} are the synthesized data gen-
erated by the current model. The learning algorithm updates the parameters in order to make the
synthesized data similar to the observed data in terms of the feature statistics. At the maximum
likelihood estimate θ̂, the model matches the data: Eθ̂[h(X)] = EPdata

[h(X)].
One important class of descriptive models are the Markov random field models [5, 26], such

as the Ising model in statistical physics. Such models play an important role in the pattern theory.

FIG. 2. Two types of potential functions learned by [115] from natural images.
The function on the left encourages big filter responses and creates patterns
via reaction, while the function on the right prefers small filter responses and
smoothes out the synthesized image via diffusion.

One example of the descriptive model (2.4) is the FRAME (Filters, Random field, And Max-
imum Entropy) model [117, 103], where h(X) consists of histograms of responses from a bank
of filters. In a simplified non-convolutional version, h(X)>θ = f(WX) =

∑d
k=1 fk(WkX),

where W is a d× p matrix, and Wk is the k-th row of W . WX consists of the d filter responses
with each row of W being a linear filter. (fk, k = 1, ..., d) are d one-dimensional potential func-
tions applied respectively to the d elements of WX . In the FRAME model, the rows of W are
a bank of Gabor wavelets or filters [15]. Given the filters, [115] learned the potential functions
(−fk, k = 1, ..., d) from natural images. There are two types of potential functions as shown
in Figure 2 taken from [115]. The function on the left encourages big filter responses while the
function on the right prefers small filter responses. [115] used the Langevin dynamics to sample
from the learned model. The gradient descent component of the dynamics is interpreted as the
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Gibbs Reaction And Diffusion Equations (GRADE), where the function on the left of Figure 2
is for reaction to create patterns, while the function on the right is for diffusion to smooth out the
synthesized image.

FIG. 3. Learning a two dimensional FRAME model by sequentially adding
rows to W [64]. Each row of W corresponds to a projection of the data. Each
step finds the projection that reveals the maximum difference between the ob-
served data and the synthesized data generated by the current model.

In [64], the authors illustrated the idea of learning W = (Wk, k = 1, ..., d) by a two-
dimensional example. Each step of the learning algorithm adds a row Wk to the current W .
Each row corresponds to a projection of X . Each step finds a direction of the projection that
reveals the maximum difference between the data points sampled from the current model and
the observed data points. The learning algorithm then updates the model to match the marginal
distributions of the model and the data in that direction. After a few steps, the distribution of the
learned model is almost the same as the distribution of the observed data. See Figure 3 for an
illustration. By assuming a parametric differentiable form for fk(),W can be learned by gradient
descent. Such models are called product of experts [40, 93] or field of experts [80].

FIG. 4. Under the uniform distribution of images defined on a large lattice (that
goes to Z2) where the images share the same marginal histograms of filter re-
sponses, the conditional distribution of the local image patch given its boundary
(in blue color) follows the FRAME model.

The FRAME model is convolutional, where the rows of W can be partitioned into differ-
ent groups, and the rows in the same group are spatially translated versions of each other, like
wavelets. They are called filters or kernels. The model can be justified by a uniform distribution
over the images defined on a large lattice that goes to Z2, where all the images share the same
marginal histograms of filter responses. Under such a uniform distribution, the distribution of
the local image patch defined on a local lattice Λ conditional on its boundary (illustrated by the
blue color, including all the pixels outside Λ that can be covered by the same filters as the pixels
within Λ) follows the FRAME model [103]. See Figure 4 for an illustration.

2.3. Generative models. This subsection reviews various versions of the linear generative
models. These models share the same linear form, but they differ in terms of the prior assump-
tions of the latent factors or coefficients.
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Like the descriptive models, the generative models can be learned in the unsupervised setting,
where Yi are not observed, as illustrated below:

input hidden output

1 X>1 h>1 ?
2 X>2 h>2 ?
...
n X>n h>n ?

In a generative model, the vector hi is not a vector of features extracted from the signalXi. hi
is a vector of hidden variables that is used to generateXi, as illustrated by the following diagram:

hidden : hi
↓

input : Xi

(2.8)

The components of the d-dimensional hi are variably called factors, sources, components or
causes.

Auto-encoder: hi is also called a code in the auto-encoder illustrated by the following dia-
gram:

code : hi
↑↓

input : Xi

(2.9)

The direction from hi to Xi is called the decoder, and the direction from Xi to hi is called the
encoder. The decoder corresponds to the generative model in (2.8), while the encoder can be
considered the inference model.

Distributed representation and disentanglement: hi = (hik, k = 1, ..., d) is called a dis-
tributed representation of Xi. Usually the components of hi, (hik, k = 1, ..., d), are assumed to
be independent, and (hik) are said to disentangle the variations in Xi.

Embedding: hi can also be considered the coordinates of Xi, if we embed Xi into a low-
dimensional space, as illustrated by the following diagram:

← hi →
|

← Xi →
(2.10)

In the training data, we find a hi for each Xi, so that {hi, i = 1, ..., n} preserve the relative
relations between {Xi, i = 1, ..., n}. The prototype example of embedding is multi-dimensional
scaling, where we want to preserve the Euclidean distances between the examples. A more recent
example of embedding is local linear embedding [81]. In the embedding framework, there are
no explicit encoder and decoder.

Linear generative model: The linear form of the generative model is as follows:

Xi = Whi + εi, (2.11)

for i = 1, ..., n, where W is a p × d dimensional matrix (p is the dimensionality of Xi and d
is the dimensionality of hi), and εi is a p-dimensional residual vector. The following are the
interpretations of W :
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(1) Loading matrix: Let W = (wjk)p×d. xij ≈
∑d
k=1 wjkhik, i.e., each component of Xi,

xij , is a linear combination of the latent factors. wjk is the loading weight of factor k on variable
j.

(2) Basis vectors: Let W = (Wk, k = 1, ..., d), where Wk is the k-th column of W . Xi ≈∑d
k=1 hikWk, i.e., Xi is a linear superposition of the basis vectors (Wk), where hik are the

coefficients.
(3) Matrix factorization: (X1, ..., Xn) ≈W (h1, ..., hn), where the p×n matrix (X1, ..., Xn)

is factorized into the p× d matrix W and the d× n matrix (h1, ..., hn).
The following are some of the commonly assumed prior distributions or constraints on hi.
Factor analysis [83]: hi ∼ N(0, Id), Xi = Whi + εi, εi ∼ N(0, σ2Ip), and εi is independent

of hi. The dimensionality of hi, which is d, is smaller than the dimensionality of Xi, which is p.
The factor analysis is very similar to the principal component analysis (PCA), which is a popular
tool for dimension reduction. The difference is that in factor analysis, the column vectors of W
do not need to be orthogonal to each other.

The factor analysis model originated from psychology, where Xi consists of the test scores
of student i on p subjects. hi consists of the verbal intelligence and the analytical intelligence
of student i (d = 2). Another example is the decathlon competition, where Xi consists of the
scores of athlete i on p = 10 sports, and hi consists of athlete i’s speed, strength and endurance
(d = 3).

Independent component analysis [48]: In ICA, for hi = (hik, k = 1, ..., d), hik ∼ Pk inde-
pendently, and Pk are assumed to be heavy-tailed distributions. For analytical tractability, ICA
assumes that d = p, and εi = 0. Hence Xi = Whi, where W is a squared matrix assumed to
be invertible, so that hi = AXi, where A = W−1. Let P (hi) =

∏d
k=1 Pk(hik). The marginal

distribution of Xi has a closed form Xi ∼ P (AX)|det(A)|. The ICA model is both a generative
model and a descriptive model.

Sparse coding [73]: In the sparse coding model, the dimensionality of hi, which is d, is bigger
than the dimensionality of Xi, which is p. However, hi = (hik, k = 1, ..., d) is a sparse vector,
meaning that only a small number of hik are non-zero, although for different example i, the
non-zero elements in hi can be different. Thus unlike PCA, sparse coding provides adaptive
dimension reduction. W = (Wk, k = 1, ..., d) is called a redundant dictionary because d > p,
and each Wk is a basis vector or a “word” in the dictionary. Each Xi ≈ Whi =

∑d
k=1 hikWk

is explained by a small number of Wk selected from the dictionary, depending on which hik are
non-zero. The inference of the sparse vector hi can be accomplished by Lasso or basis pursuit
[94, 8] that minimizes

∑n
i=1

[
‖Xi −Whi‖2 + λ‖hi‖`1

]
, which imposes the sparsity inducing

`1 regularization on hi with a regularization parameter λ.
A Bayesian probabilistic formulation is to assume a spike-slab prior: hik ∼ ρδ0 + (1 −

ρ)N(0, τ2) with a small 1− ρ, which is the probability that hik is non-zero.
Figure 5 displays a sparse code learned from a training set of natural image patches of size

12× 12 [73]. Each column of W , Wk, is a basis vector that can be made into an image patch as
shown in the figure.

Non-negative matrix factorization [60]: In NMF, hi is constrained to have non-negative com-
ponents, i.e., hik ≥ 0 for all k. It is also called positive factor analysis [75]. The rationale for
NMF is that the parts of a pattern should be additive and the parts should contribute positively.
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FIG. 5. Sparse coding [73]: learned basis vectors from natural image patches.
Each image patch in the picture is a column vector of W .

Matrix factorization for recommender system [54]: In recommender system, Xi = (xij , j =

1, ..., p) are the ratings of user i on the p items. For instance, in the Netflix example, there are
n users and p movies, and xij is user i’s rating of movie j. Let wj be the j-th row of matrix
W , then xij = 〈wj , hi〉 + εij , where hi characterizes the desires of user i in d aspects, and
wj characterizes the desirabilities of item j in the corresponding aspects. The rating matrix
(Xi, i = 1, ..., n) thus admits a rank d factorization. The rating matrix is in general incomplete.
However, we can still estimate (hi) and (wj) from the observed ratings and use them to complete
the rating matrix for the purpose of recommendation.

Probabilistic formulation: In the above models, there is a prior model hi ∼ p(h) or a prior
constraint such as hi is sparse or non-negative. There is a linear generative modelXi = Whi+εi,
with εi ∼ N(0, σ2Ip), for i = 1, ..., n. This defines the conditional distribution p(X|h;W ). The
joint distribution is p(h)p(X|h;W ) = p(h,X|W ). The marginal distribution is obtained by
integrating out h:

p(X|W ) =

∫
p(h)p(X|h;W )dh =

∫
p(h,X|W )dh. (2.12)

This integral is analytically intractable. According to the Bayes rule, h can be inferred from X

based on the posterior distribution, p(h|X;W ) = p(h,X|W )/p(X|W ), which is proportional
to p(h,X|W ) as a function of h. We call p(h|X;W ) the inference model.

In the auto-encoder terminology, p(h) and p(X|h;W ) define the decoder, p(h|X;W ) defines
the encoder. In factor analysis and independent component analysis, h can be inferred in closed
form. For other models, however, h needs to be inferred by an iterative algorithm.

Restricted Boltzmann machine [42]: In RBM, unlike the above models, there is no explicit
prior p(h). The model is defined by the joint distribution

(hi, Xi) ∼ p(h,X|W ) =
1

Z(W )
exp

∑
j,k

wjkxjhk

 (2.13)

=
1

Z(W )
exp

[
X>Wh

]
. (2.14)
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The above model assumes that both hi andXi are binary. Under the above model, both the gener-
ative distribution p(X|h;W ) and the inference distribution p(h|X;W ) are independent logistic
regressions. We may modify the model slightly to make X continuous, so that in the modified
model, the generative distribution p(X|h;W ) is normal linear regression: X = Wh + ε, with
ε ∼ N(0, σ2Ip). The inference model, p(h|X;W ), is logistic regression, h ∼ logistic(W>X),
i.e., Pr(hk = 1|X;W ) = sigmoid(

∑p
j=1 wjkxj), where sigmoid(r) = 1/(1 + e−r).

If we sum out h, the marginal distribution p(X|W ) =
∑
h p(h,X|W ) can be obtained in

closed form, and p(X|W ) is a descriptive model.
RBM-like auto-encoder [100, 4]: The RBM leads to the following auto-encoder: Encoder:

hk = sigmoid(
∑p
j=1 wjkxj), i.e., h = sigmoid(W>X); Decoder: X = Wh.

Like the descriptive model, the generative model can also be learned by maximum likeli-
hood. However, unlike the “analysis by synthesis” scheme for learning the descriptive model,
the learning algorithm for generative model follows an “analysis by inference” scheme. Within
each iteration of the learning algorithm, there is an inner loop for inferring hi for each Xi. The
most rigorous inference method is to sample hi from the posterior distribution or the inference
distribution p(hi|Xi;W ). After inferring hi for each Xi, we can then update the model pa-
rameters by analyzing the “imputed” dataset {(hi;Xi)}, by fitting the generative distribution
p(X|h;W ). The EM algorithm [17] is an example of this learning scheme, where the inference
step is to compute expectation with respect to p(hi|Xi;W ). From a Monte Carlo perspective,
it means we make multiple imputations [82] or make multiple guesses of hi to account for the
uncertainties in p(hi|Xi;W ). Then we analyze the multiply imputed dataset to update the model
parameters.

3. Interactions between different families.
3.1. Discriminative learning of descriptive model. This subsection shows that the descriptive

model can be learned discriminatively.
The descriptive model (2.4) can be connected to the discriminative model (2.2) if we treat

p0(X) as the distribution of the negative examples, and pθ(X) as the distribution of the positive
examples. Suppose we generate the data as follows: Yi ∼ Bernoulli(ρ), i.e., Pr(Yi = 1) = ρ,
which is the prior probability of positive examples. [Xi | Yi = 1] ∼ pθ(X), and [Xi | Yi = 0] ∼
p0(X). According to the Bayes rule

log
Pr(Yi = 1 | Xi)

Pr(Yi = 0 | Xi)
= h(Xi)

>θ − logZ(θ) + log[ρ/(1− ρ)], (3.1)

which corresponds to (2.2) with b = − logZ(θ) + log[ρ/(1− ρ)].
Tu [96] made use of this fact to estimate pθ discriminatively. The learning algorithm starts

from p0. At step t, we let the current pt serve as the negative distribution, and generate synthe-
sized examples from pt. Then we fit a logistic regression by treating the examples generated by
pt as the negative examples, and the observed examples as the positive examples. Let θ be the
estimated parameter of this logistic regression. We then let pt+1(X) = exp(h(X)>θ)pt(X)/Z.
See [96] for an analysis of the convergence of the learning algorithm.

Figure 6 taken from [96] illustrates the learning process by starting from the uniform p0. By
iteratively fitting the logistic regression and modifying the distribution, the learned distribution
converges to the true distribution.
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FIG. 6. Discriminative learning of the descriptive model [96]. By fitting a
logistic regression to discriminate between the observed examples and the syn-
thesized examples generated by the current model, we can modify the current
model according to the fitted logistic regression, so that the modified model
gets closer to the distribution of the observed data.

3.2. Integration of descriptive and generative models. Natural images contain both stochastic
textures and geometric objects (as well as their parts). The stochastic textures can be described
by some feature statistics pooled over the spatial domain, while the geometric objects can be
represented by image primitives or textons. The psychophysicist Julesz [51] studied both texture

FIG. 7. Pre-attentive vision is sensitive to local patterns called textons.

statistics and textons. He conjectured that pre-attentive human vision is sensitive to local patterns
called textons. Figure 7 illustrates the basic idea. Inspired by Julesz’s work, in [114], the authors

FIG. 8. A model of textons [114], where each texton is a composition of a
small number of wavelets.
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proposed a generative model for textons, where each texton is a composition of a small number
of wavelets, as illustrated by Figure 8. The model is a generalization of the sparse coding model
of [73].

FIG. 9. Active basis model [102, 44]: each active basis template is a compo-
sition of wavelets selected from a dictionary, and the wavelets are allowed to
shift their locations and orientations to account for shape deformation. Here
each wavelet is illustrated by a bar. The templates are learned at two differ-
ent scales. The observed images can be reconstructed by the wavelets of the
deformed templates.

Building on the texton model of [114], [102, 44] proposed an active basis model, where each
model is a composition of wavelets selected from a dictionary, and the wavelets are allowed
to shift their locations and orientations to account for shape deformation. See Figure 9 for an
illustration.

FIG. 10. Hybrid image template [87]: integrating generative model for shape
template and the descriptive model for texture.

The texton model and the active basis model are generative models. However, they do not
account for stochastic texture patterns. [87] proposed to integrate the generative model for shape
templates and the descriptive model for stochastic textures, as illustrated by Figure 10. A similar
model was developed by [34] to model both the geometric structures and stochastic textures by
generative models and descriptive models respectively.
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In [33], the authors provided another integration of the generative model and the descriptive
model, where the lowest layer is a generative model such as the wavelet sparse coding model
[73], but the spatial distribution of the wavelets is governed by a descriptive model.

FIG. 11. Data-driven MCMC: when fitting the generative models and descrip-
tive models using MCMC, the discriminative models can be employed to pro-
vide proposals for MCMC transitions.

3.3. DDMCMC: integration of discriminative and generative models. In [97, 98], the authors
proposed a data-driven MCMC method for fitting the generative models as well as the descriptive
models to the data. Fitting such models usually require time-consuming MCMC. In [97, 98], the
authors proposed to speed up the MCMC by using the discriminative models to provide the
proposals for the Metropolis-Hastings algorithm. See Figure 11 for an illustration.

4. Hierarchical forms of the three families. This section presents the hierarchical non-
linear forms of the three families of models, where the non-linear mappings are parametrized by
neural networks, in particular, the convolutional neural networks.

4.1. Recent developments. During the past few years, deep convolutional neural networks
(CNNs or ConvNets) [58, 56] and recurrent neural networks (RNNs) [43] have transformed the
fields of computer vision, speech recognition, natural language processing, and other fields in
artificial intelligence (AI). Even though these neural networks were invented decades ago, their
potentials were realized only recently mainly because of the following two factors. (1) The avail-
ability of big training datasets such as Imagenet [18]. (2) The improvement in computing power,
mainly brought by the graphical processing units (GPUs). These two factors, together with some
recent clever tweaks and inventions such as rectified linear units [56], batch normalization [49],
residual networks [39], etc., enable the training of very deep networks (e.g., 152 layers with
60 million parameters in a residual network for object recognition [39]) that achieve impressive
performances on many tasks in AI (a recent example being Alpha Go Zero [89]).

One key reason for the successes of deep neural networks is that they are universal and flexible
function approximators. For instance, a feedforward neural network with rectified linear units is
a piecewise linear function with recursively partitioned linear pieces that can approximate any
continuous non-linear mapping [69]. However, this does not fully explain the “unreasonable
effectiveness” of deep neural networks. The stochastic gradient descent algorithm that is com-
monly employed to train the neural networks is expected to approach only a local minimum of
the highly non-convex objective function. However, for large and deep networks, it appears that
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most of the local modes are equally good [10] in terms of training and testing errors, and the ap-
parent vices of local modes and stochasticity in the mini-batch on-line training algorithm actually
turn out to be big virtues in that they seem to prevent overfitting and lead to good generalization
[10].

The approximation capacities of the deep neural networks have been extensively exploited in
supervised learning (such as classification networks and regression networks) and reinforcement
learning (such as policy networks and value networks). They have also proven to be useful for
unsupervised learning and generative modeling, where the goal is to learn features or hidden
variables from the observed signals without external guidance such as class labels or rewards.
The unsupervised learning is often accomplished in the context of a generative model (or an
auto-encoder), which explains or characterizes the observed examples.

4.2. Discriminative models by convolutional neural networks. The neural networks in gen-
eral and the convolutional neural networks (ConvNet or CNN) in particular were initially de-
signed for discriminative models. Let X be the p-dimensional input vector, and Y be the output.
We want to predict Y by Ŷ which is a non-linear transformation of X: Ŷ = fθ(X), where
f is parametrized by parameters θ. In a feedforward neural network, f is a composition of L
layers of liner mappings followed by coordinate-wise non-linear rectifications, as illustrated by
the following diagram:

X → h(1) → ...h(l−1) → h(l) → ...→ h(L) → Ŷ , (4.1)

where h(l) is a d(l) dimensional vector which is defined recursively by

h(l) = f (l)(W (l)h(l−1) + b(l)), (4.2)

for l = 1, ..., L. We may treat X as h(0), and Ŷ as h(L+1) and θ = (W (l), b(l), l = 1, ..., L+ 1).
W (l) is the weight matrix and b(l) is the bias or intercept vector at layer l. f (l) is coordinate-wise
transformation, i.e., for a vector v = (v1, ..., vd)

>, f (l)(v) = (f (l)(v1), ..., f (l)(vd))
>.

Compared to the discriminative models in the previous section, we now have multiple layers
of features (h(l), l = 1, ..., L). They are recursively defined via (4.2), and they are to be learned
from the training data instead of being designed.

For classification, suppose there are K categories, the conditional probability of category k
given input X is given by the following soft-max probability:

Pr(Y = k | X) =
exp(fθk(X))∑K
k=1 exp(fθk(X))

, (4.3)

where fθk(X) is the score for category k. We may take fθk(X) = h(L)>W
(L+1)
k + b

(L+1)
k . This

final classification layer is usually called the soft-max layer.
The most commonly used non-linear rectification in modern neural nets is the Rectified Linear

Unit (ReLU) [56]: f (l)(a) = max(0, a). The resulting function fθ(X) can be considered a
multi-dimensional linear spline, i.e., a piecewise linear function. Recall a one-dimensional linear
spline is of the form f(x) = b +

∑d
k=1 wk max(0, x − ak), where ak are the knots. At each

knot ak, the linear spline takes a turn and changes its slope by wk. With enough knots, f(x)

can approximate any non-linear continuous function. We can view this f(x) as a simplified two-
layer network, with hk = max(0, x − ak). The basis function max(0, x − ak) is two-piece
linear function with a bending at ak. For multi-dimensional input X , a two-layer network with
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one-dimensional output is of the following form f(X) = b(2) +
∑d
k=1W

(2)
k h

(1)
k , where h(1)

k =

max(0,W
(1)
k X + b

(1)
k ), and W (1)

k is the k-th row of W (1). The basis function max(0,W
(1)
k X +

b
(1)
k ) is again a two-piece linear function with a bending along the line W (1)

k X + b
(1)
k = 0. The

dividing lines {W (1)
k X + b

(1)
k = 0, k = 1, ..., d(1)} partition the domain of X into up to 2d

(1)

pieces, and f(X) is a continuous piecewise linear function over these pieces.
In the multi-layer network, the hierarchical layers of {h(l), l = 1, ..., L} partition the domain

of X recursively, creating a piecewise linear function with exponentially many pieces [76]. Such
reasoning also applies to other forms of rectification functions f (l), as long as they are non-linear
and create bending. This makes the neural network an extremely powerful machine for function
approximation and interpolation. The recursive partition in neural nets is similar to CART and
MARS, but is more flexible.

Back-propagation. Both ∂fθ(X)/∂θ and ∂fθ(X)/∂X can be computed by the chain-rule
back-propagation, and they share the computation of ∂h(l)/∂h(l−1) = f (l)′(W (l)h(l−1)+b(l))W (l)

in the chain rule. Because f (l) is coordinate-wise, f (l)′ is a diagonal matrix.
A recent invention [39] is to reparametrize the mapping (4.2) by h(l) = h(l−1)+f (l)(W (l)h(l−1)+

b(l)), where f (l)(W (l)h(l−1) + b(l)) is used to model the residual term. This enables the learning
of very deep networks. One may think of it as modeling an iterative algorithm where the layers
l can be interpreted as time steps of the iterative algorithm.

FIG. 12. Filtering or convolution: applying a filter of the size 3 × 3 × 3 on an
image of the size 6×6×3 to get a filtered image or feature map of 6×6 (with
proper boundary handling). Each pixel of the filtered image is computed by the
weighted sum of the 3 × 3 × 3 pixels of the input image centered at this pixel.
There are 3 color channels (R, G, B), so both the input image and the filter are
three-dimensional.

Convolution. The signal X can be an image, and the linear transformations at each layer may
be convolutions with localized kernel functions (i.e. filters). That is, the row vectors of W (l)

(as well as the elements of b(l)) form different groups, and the vectors in the same group are
localized and translation invariant versions of each other, like wavelets. Each group of vectors
corresponds to a filter or a kernel or a channel. See Figures 12 and 13 for illustrations. Recent
networks mostly use small filters of the size 3 × 3 [90, 92]. The minimal size 1 × 1 is also a
popular choice [63, 92]. Such a filter fuses the features of different channels at the same location,
and is often used for reducing or increasing the number of channels. When computing the filtered
image, we can also sub-sample it by, e.g., taking one filter response every two pixels. The filter
is said to have stride 2.
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FIG. 13. Convolutional neural networks consist of multiple layers of filter-
ing and sub-sampling operations for bottom-up feature extraction, resulting in
multiple layers of feature maps and their sub-sampled versions. The top layer
features are used for classification via multinomial logistic regression. The
discriminative direction is from image to category, whereas the generative di-
rection is from category to image.

4.3. Descriptive models. This subsection describes the hierarchical form of the descriptive
models and the maximum likelihood learning algorithm.

We can generalize the descriptive model in the previous sections to a hierarchical form with
multiple layers of features [72, 13, 106, 107],

X → h(1) → ...→ h(L) → fθ(X) (4.4)

which is a bottom-up process for computing fθ(X), and θ collects all the weight and bias pa-
rameters at all the layers. The probability distribution is

pθ(X) =
1

Z(θ)
exp [fθ(X)] p0(X), (4.5)

where again p0(X) is the reference distribution such as Gaussian white noise model p0(X) ∝
exp

(
−‖X‖2/2σ2

)
. Again the normalizing constant is Z(θ) =

∫
exp(fθ(X))p0(X)dX =

Ep0 [exp(fθ(X))]. The energy function is

Uθ(X) = ‖X‖2/2σ2 − fθ(X). (4.6)

q0(X) can also be a uniform distribution within a bounded range, then Uθ(X) = −fθ(X).
The model (4.5) can be considered a hierarchical generalization of the FRAME model. While

the energy function of the FRAME model is defined in terms of element-wise non-linear func-
tions of filter responses, model (4.5) involves recursions of this structure at multiple layers ac-
cording to the ConvNet.

Suppose we observe training examples {Xi, i = 1, ..., n}. The maximum likelihood learning
seeks to maximize L(θ) = 1

n

∑n
i=1 log pθ(Xi). The gradient of L(θ) is

L′(θ) =
1

n

n∑
i=1

∂

∂θ
fθ(Xi)− Eθ

[
∂

∂θ
fθ(X)

]
, (4.7)

where Eθ denotes the expectation with respect to pθ(X). The key identity underlying equation
(4.7) is d logZ(θ)/dθ = Eθ[∂fθ(X)/∂θ].
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The expectation in equation (4.7) is analytically intractable and has to be approximated by
MCMC, such as the Langevin dynamics, which samples from pθ(X) by iterating the following
step:

Xτ+1 = Xτ −
s2

2

∂

∂X
Uθ(Xτ ) + sEτ (4.8)

= Xτ −
s2

2

[
Xτ

σ2
− ∂

∂X
fθ(Xτ )

]
+ sEτ , (4.9)

where τ indexes the time steps of the Langevin dynamics, s is the step size, and Eτ ∼ N(0, Ip)

is the Gaussian white noise term. A Metropolis-Hastings step can be added to correct for the
finiteness of s. The Langevin dynamics was used by [115] for sampling from the linear form of
the descriptive model such as the FRAME model.

We can run ñ parallel chains of Langevin dynamics according to (4.9) to obtain the synthe-
sized examples {X̃i, i = 1, ..., ñ}. The Monte Carlo approximation to L′(θ) is

L′(θ) ≈ ∂

∂θ

[
1

n

n∑
i=1

fθ(Xi)−
1

ñ

ñ∑
i=1

fθ(X̃i)

]
, (4.10)

which is the difference between the observed examples and the synthesized examples. We can
then update θ(t+1) = θ(t) + ηtL′(θ(t)), with L′(θ(t)) computed according to (4.10). ηt is the
learning rate. The convergence of this algorithm has been studied by [79, 108].

Alternating back-propagation: The learning and sampling algorithm is again an “analysis by
synthesis” scheme. The sampling step runs the Langevin dynamics by computing ∂fθ(X)/∂X ,
and the learning step updates θ by computing ∂fθ(X)/∂θ. Both derivatives can be computed by
back-propagation, and they share the same computations of ∂h(l)/∂h(l−1).

Mode shifting interpretation: The data distribution Pdata is likely to have many local modes.
The fθ(X) parametrized by the ConvNet can be flexible enough to creates many local modes to
fit Pdata. We should learn fθ(X) or equivalently the energy function Uθ(X) so that the energy
function puts lower values on the observed examples than the unobserved examples. This is
achieved by the learning and sampling algorithm, which can be interpreted as density shifting
or mode shifting. In the sampling step, the Langevin dynamics settles the synthesized examples
{X̃i} at the low energy regions or high density regions, or major modes (or basins) of Uθ(X),
i.e., modes with low energies or high probabilities, so that 1

ñ

∑ñ
i=1Uθ(X̃i) tends to be low. The

learning step seeks to change the energy function Uθ(X) by changing θ in order to increase
1
ñ

∑ñ
i=1Uθ(X̃i)− 1

n

∑n
i=1 Uθ(Xi). This has the effect of shifting the low energy or high density

regions from the synthesized examples {X̃i} toward the observed examples {Xi}, or shifting the
major modes of the energy function Uθ(X) from the synthesized examples toward the observed
examples, until the observed examples reside in the major modes of the model. If the major
modes are too diffused around the observed examples, the learning step will sharpen them to
focus on the observed examples. This mode shifting interpretation is related to Hopfield network
[45] and attractor network [86] with the Langevin dynamics serving as the attractor dynamics.

The energy landscape may have numerous major modes that are not occupied by the observed
examples, and these modes imagine examples that are considered similar to the observed exam-
ples. While the maximum likelihood learning matches the average statistical properties between
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model and data, the ConvNet is expressive enough to create modes to encode the highly varied
patterns. We still lack an in-depth understanding of the energy landscape.

Adversarial interpretation: The learning and sampling algorithm also has an adversarial in-
terpretation where the learning and sampling steps play a minimax game. Let the value function
be defined as

V =
1

ñ

∑ñ

i=1
Uθ(X̃i) −

1

n

∑n

i=1
Uθ(Xi). (4.11)

The learning step updates θ to increase V , while the Langevin sampling step tends to relax
{X̃i} to decrease V . The zero temperature limit of the Langevin sampling is gradient descent
that decreases V , and the resulting learning and sampling algorithm is a generalized version of
herding [101]. See also [107]. This is related to Wasserstein GAN [3], but the critic and the actor
are the same descriptive model, i.e., the model itself is its own generator and critic.

Multi-grid sampling and learning: In the high-dimensional space, e.g. image space, the model
can be highly multi-modal. The MCMC in general and the Langevin dynamics in particular may
have difficulty traversing different modes and it may be very time-consuming to converge. A sim-
ple and popular modification of the maximum likelihood learning is the contrastive divergence
(CD) learning [40], where we obtain the synthesized example by initializing a finite-step MCMC
from the observed example. The CD learning is related to score matching estimator [46, 47]
and auto-encoder [99, 91, 1]. Such a method has the ability to handle large training datasets
via mini-batch training. However, bias may be introduced in the learned model parameters in
that the synthesized images can be far from the fair examples of the current model. A further
modification of CD is persistent CD [95], where at the initial learning epoch the MCMC is still
initialized from the observed examples, while in each subsequent learning epoch, the finite-step
MCMC is initialized from the synthesized example of the previous epoch. The resulting synthe-
sized examples can be less biased by the observed examples. However, the persistent chains may
still have difficulty traversing different modes of the learned model.

FIG. 14. Synthesized images at multi-grids [24]. From left to right: 4×4 grid,
16×16 grid and 64×64 grid. Synthesized image at each grid is obtained by 30
step Langevin sampling initialized from the synthesized image at the previous
coarser grid, beginning with the 1 × 1 grid.

In [24], we developed a multi-grid sampling and learning method to address the above chal-
lenges under the constraint of finite budget MCMC. Specifically, we repeatedly down-scale each
training image to get its multi-grid versions. Our method learns a separate descriptive model
at each grid. Within each iteration of our learning algorithm, for each observed training image,
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Forest road Volcano Hotel room Building facade

FIG. 15. Synthesized images from models learned by multi-grid method [24]
from 4 categories of MIT places205 datasets.

we generate the corresponding synthesized images at multiple grids. Specifically, we initialize
the finite-step MCMC sampling from the minimal 1 × 1 version of the training image, and the
synthesized image at each grid serves to initialize the finite-step MCMC that samples from the
model of the subsequent finer grid. See Figure 14 for an illustration, where we sample images
sequentially at 3 grids, with 30 steps of Langevin dynamics at each grid. After obtaining the
synthesized images at the multiple grids, the models at the multiple grids are updated separately
and simultaneously based on the differences between the synthesized images and the observed
training images at different grids.

Unlike original CD or persistent CD, the learned models are capable of generating new syn-
thesized images from scratch with a fixed budget MCMC, because we only need to initialize the
MCMC by sampling from the one-dimensional histogram of the 1 × 1 versions of the training
images.

In our experiments, the training images are resized to 64× 64. Since the models of the three
grids act on images of different scales, we design a specific ConvNet structure per grid: grid1
has a 3-layer network with 5 × 5 stride 2 filters at the first layer and 3 × 3 stride 1 filters at the
next two layers; grid2 has a 4-layer network with 5× 5 stride 2 filters at the first layer and 3× 3

stride 1 filters at the next three layers; grid3 has a 3-layer network with 5 × 5 stride 2 filters at
the first layer, 3× 3 stride 2 filters at the second layer, and 3× 3 stride 1 filters at the third layer.
Numbers of channels are 96− 128− 256 at grid1 and grid3, and 96− 128− 256− 512 at grid2.
A fully-connected layer with 1 channel output is added on top of every grid to get the value of
the function fθ(X). At each iteration, we run l = 30 steps of Langevin dynamics for each grid
with step size s = 0.3. All networks are trained simultaneously with mini-batches of size 100

and an initial learning rate of 0.3. Learning rate is decayed logarithmically every 10 iterations.
We learn multi-grid models from several datasets including CelebA [66], MIT places205 [112]

and CIFAR-10 [55]. In the CelebA dataset, we randomly sample 10,000 images for training.
Figure 14 shows the synthesized examples. Figure 15 shows synthesized images from models
learned from 4 categories of MIT places205 dataset by multi-grid method. We learn from each
category separately. The number of training images is 15, 100 for each category.

Traditionally, the mixing time of Markov chain is defined via d(t) = maxx ‖P (t)(x, ·) −
π‖TV, where P (t) is the t-step transition, π is the stationary distribution, and ‖ · ‖TV is the total
variation distance. This is the worst case scenario by choosing the least favorable point mass at x.
In our method, however, the initial distribution at each grid can be much more favorable, e.g., it
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may already agree approximately with π on the marginal distribution of the coarser grid, so that
after t steps, the distribution of the sampled image can be close to π, even if this is not the case
for the worst case starting point. Such non-persistent finite budget MCMC is computationally
more manageable than persistent chains in learning.

FIG. 16. Learning the multi-grid models from the LSUN bedroom dataset [24].
Left: random samples of training examples. Right: synthesized examples gen-
erated by the learned models.

To train multi-grid models on 10,000 training images for 400 iterations with a singe Titan X
GPU, it takes about 7.45 hours. After training, it takes less than 1 second to generate a batch
of 100 images. We also train the multi-grid models on LSUN bedroom dataset [109], which
consists of roughly 3 million images. Figure 16 shows the learning results after 8 epochs.

FIG. 17. Inpainting examples on CelebA dataset [24]. In each block from
left to right: the original image; masked input; inpainted image by multi-grid
method.

The learned descriptive model is a bottom-up ConvNet that consists of multiple layers of
features. These features can be used for subsequent tasks such as classification. The learned
models can also be used as a prior distribution for inpainting, as illustrated by Figure 17. See
[24] for experiment details and numerical evaluations.

4.4. Introspective learning. This subsection describes the introspective learning method that
learns the descriptive model by turning it into a discriminative model.

Model (4.5) corresponds to a classifier in the following sense [13, 106, 50]. Suppose there
are K categories, pθk(X), for k = 1, ...,K, in addition to the background category p0(X).
The ConvNets fθk(X) for k = 1, ...,K may share common lower layers except the final layer
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for computing fθk(X). Let ρk be the prior probability of category k, k = 0, ...,K. Then the
posterior probability for classifying an example X to the category k is a soft-max multi-class
classifier, i.e., the multinomial logistic regression:

Pr(k|X) =
exp(fθk(X) + bk)∑K
k=0 exp(fθk(X) + bk)

, (4.12)

where bk = log(ρk/ρ0)− logZ(θk), and for k = 0, fθ0(X) = 0, b0 = 0. Conversely, if we have
the soft-max classifier (4.12), then the distribution of each category is pθk(X) of the form (4.5).
Thus the descriptive model directly corresponds to the commonly used discriminative ConvNet
model.

FIG. 18. Introspective learning [50]: The discriminative ConvNet trained on
the observed examples versus the synthesized examples generated by the cur-
rent model can be used to update the model and to generate new examples from
the updated model.

In the case where we only observe unlabeled examples, we may model them by a single
distribution p1(X) = pθ(X) in (4.5), and treat it as the positive distribution, and treat p0(X) as
the negative distribution. Let ρ be the prior probability that a random example comes from p1.
Then the posterior probability that a random example X comes from p1 is

Pr(1|X) =
1

1 + exp[−(fθ(X) + b)]
, (4.13)

where b = log(ρ/(1− ρ))− logZ(θ), i.e., a logistic regression.
Generalizing [96], [50] developed an introspective learning method for updating the model

by learning a classifier or logistic regression to distinguish between the observed {Xi} and the
synthesized {X̃i}, and tilt the current model according to the logistic regression. It is also an
“analysis by synthesis” scheme as well as an adversarial scheme, except that the analysis is
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FIG. 19. Introspective learning [50]. Top row: patches of synthesized images
in the introspective learning process. Bottom row: Left is the observed image.
Right is the synthesized image generated by the learned model.

performed by a classifier. Specifically, let pt(X) be the current model. Each iteration of the
introspective learning is as follows. The sampling step generates synthesized examples {X̃i, i =

1, ..., n} from pt(X). The learning step fits a logistic regression to separate the real examples
{Xi, i = 1, ..., n} from the synthesized examples {X̃i, i = 1, ..., n} to estimate fθ(X) and
b. Then we let pt+1(X) = exp(fθ(X))pt(X)/Z, where logZ = −b. [96, 50] show that pt
converges to Pdata if the ConvNet is of infinite capacity. See Figure 18 for an illustration.

FIG. 20. Introspective learning [50] improves the classification performances,
especially if the training dataset is of small or moderate size.

Numerical experiments in [50] show that the introspective method learns more accurate clas-
sifiers than purely discriminative methods in supervised learning, especially when the size of the
training dataset is small or moderate. Figure 20 shows the results.

The introspective learning unifies the discriminative model and the descriptive model [50,
57, 62]. Unlike the generative adversarial networks (GAN) [29], the learned classifier is capa-
ble of introspection itself: it can be translated into a descriptive model to generate synthesized
examples, without relying on a separate generative model.

4.5. Generative models. This subsection describes the hierarchical form of the generative
models and the maximum likelihood learning algorithm.

We can generalize the generative model in the previous sections to a hierarchical form with
multiple layers of hidden variables

h→ h(L) → ...→ h(1) → X, (4.14)
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which is a top-down process that transforms h toX . In the linear form of the generative model in
the previous sections, the mapping from h toX is linear. In the hierarchical version, the mapping
from h to X is a ConvNet defined by

h(l−1) = g(l)(W (l)h(l) + b(l)), (4.15)

for l = L+1, ..., 1, where h(L+1) = h and h(0) = X . g(l) is the non-linear rectification function
such as ReLU that is applied coordinate-wise. Let the resulting ConvNet be X = gα(h), where
α = (W (l), b(l), l = 1, 2, ..., L+ 1).

The top-down generative ConvNet was used by [110] to visualize the bottom-up ConvNet
learned by the discriminative model. It was also used by [21] to learn a generative model of
images of chairs, where the learning is supervised in that for each observed image of chair, a
latent vector h is provided to specify the type of chair (represented by a one-hot vector) as well as
view point and other geometric properties. The top-down ConvNet can learn accurate mapping
from h to X , and the linear interpolation in the space of h leads to very realistic non-linear
interpolation in the space of X .

The generative model can also be learned in unsupervised setting where h is unknown [29,
77, 53, 78, 68]. The model has the following form :

h ∼ N(0, Id); (4.16)

X = gα(h) + ε; ε ∼ N(0, σ2Ip), (4.17)

where h is the d-dimensional hidden vector of latent factors, gα(h) is a top-down ConvNet that
maps the d-dimensional vector h to the p-dimensional signal X , where d ≤ p. The model (4.17)
is a generalization of factor analysis. While independent component analysis, sparse coding etc.
generalize the prior distribution of factor analysis, the model (4.16) and (4.17) maintains the
simple prior distribution of factor analysis, but generalizes the linear mapping in factor analysis
to non-linear mapping parametrized by the top-down ConvNet (4.15). Like the word to vector
representation [67], the hidden vector h may capture semantically meaningful information in the
signal X .

The joint distribution

log qα(h,X) = log [q(h)qα(X|h)] (4.18)

= − 1

2σ2
‖X − gα(h)‖2 − 1

2
‖h‖2 + const. (4.19)

The marginal distribution qα(X) =
∫
qα(h,X)dh. The posterior distribution of the latent factors

qα(h|X) = qα(h,X)/qα(X) ∝ qα(h,X). Here we use the notation qα to denote the generative
model in order to differentiate it from the descriptive model pθ.

In our recent work [35], we study a maximum likelihood algorithm for learning the generative
model (4.17) without resorting to an assisting network. Specifically, if we observe a training set
of examples {Xi, i = 1, ..., n}, then each Xi has a corresponding latent hi. We can train the
generative model by maximizing the observed-data log-likelihood L(α) = 1

n

∑n
i=1 log qα(Xi).
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The gradient of L(α) can be calculated according to the following identity:

∂

∂α
log qα(X) =

1

qα(X)

∫ [
∂

∂α
log qα(h,X)

]
qα(h,X)dh

= Eqα(h|X)

[
∂

∂α
log qα(X|h)

]
. (4.20)

The expectation with respect to qα(h|X) can be approximated by drawing samples from qα(h|X)

and then computing the Monte Carlo average.
The Langevin dynamics for sampling h from pα(h|X) is

hτ+1 = hτ +
s2

2

[
1

σ2
(X − gα(hτ ))

∂

∂h
gα(hτ )− hτ

]
+ sEτ , (4.21)

where τ denotes the time step, s is the step size, and Eτ ∼ N(0, Id). Again we can add
Metropolis-Hastings step to correct for the finiteness of s.

We can use stochastic gradient algorithm of [108] for learning, where in each iteration, for
eachXi, hi is sampled from qα(hi|Xi) by running a finite number of steps of Langevin dynamics
starting from the current value of hi. With the sampled {hi}, we can update the parameters α
based on the gradient L′(α), whose Monte Carlo approximation is:

L′(α) ≈ 1

n

n∑
i=1

∂

∂α
log qα(Xi|hi) =

1

n

n∑
i=1

1

σ2
(Xi − gα(hi))

∂

∂α
gα(hi). (4.22)

It is a non-linear regression of Xi on hi. We update α(t+1) = α(t) + ηtL′(α(t)), with L′(α(t))

computed according to (4.22). ηt is the learning rate. The convergence of this algorithm follows
[108].

Alternating back-propagation: Like the descriptive model, the maximum likelihood learn-
ing of the generative model (4.17) also follows the alternative back-propagation scheme. The
Langevin dynamics for inference needs to compute ∂gα(h)/∂h. The learning step needs to
compute ∂gα(h)/∂α. Both gradients can be computed by back-propagation and they share the
computations of ∂h(l−1)/∂h(l).

Our experiments show that the generative model is quite expressive. We adopt the structure
of the generator network of [77, 21], where the top-down ConvNet consists of 5 layers.

FIG. 21. Modeling texture patterns [35]. For each example, Left: the 224 ×
224 observed image. Right: the 448 × 448 generated image.

Figure 21 shows the results of learning from texture images. We learn a separate model from
each texture image. The images are collected from the Internet, and then resized to 224× 224.
The synthesized images are 448 × 448.
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The factors h at the top layer form a
√
d ×
√
d image, with each pixel following N(0, 1)

independently. The
√
d ×
√
d image h is then transformed to X by the top-down ConvNet. We

use d = 72 in the learning stage for all the texture experiments. In order to obtain the synthesized
image, we randomly sample a 14 × 14 h from N(0, I), and then expand the learned network to
generate the 448 × 448 synthesized image gα(h).

The training network is as follows. Starting from 7 × 7 image h, the network has 5 layers of
convolution with 5 × 5 kernels, with an up-sampling factor of 2 at each layer. The number of
channels in the first layer is 512, and is decreased by a factor 2 at each layer. The Langevin steps
l = 10 with step size s = .1.

experiment d = 20 d = 60 d = 100 d = 200

Ours .0810 .0617 .0549 .0523
PCA .1038 .0820 .0722 .0621

TABLE 1. Reconstruction errors on testing images, using our method and PCA.

FIG. 22. Comparison between [35] and PCA. Row 1: original testing images.
Row 2: reconstructions by PCA eigenvectors learned from training images.
Row 3: Reconstructions by the generative model learned from training images.
d = 20 for both methods.

The generative model performs non-linear dimension reduction which can be more flexible
than linear dimension reduction such as principal component analysis (PCA) or factor analysis.
After learning the model from the training images, we can evaluate how well the learned model
can generalize by computing the reconstruction errors on the testing images. We randomly select
1000 face images for training and 300 images for testing from CelebA dataset. After learning, we
infer the latent factors h for each testing image using Langevin dynamics, and then reconstruct
the testing image by gα(h) using the inferred h and the learned α. Table 1 shows the reconstruc-
tion error (measured by average per pixel difference relative to the range of the pixel intensities)
of our method as compared to PCA learning for different latent dimensions d. Figure 22 shows
some reconstructed testing images. For PCA, we learn the d eigenvectors from the training im-
ages, and then project the testing images on the learned eigenvectors for reconstruction.

In our recent work [38], we generalize the generative model for faces from multiple poses or
views and learn the model from the Multi-PIE database [32]. LetX(j)

i be the j-th view of the i-th
subject, for j = 1, ...,m. We can model X(j)

i = gαj (hi), where different views share the same
latent vector hi, but they are generated by different gαj . We can learn (αj , j = 1, ...,m) using
our learning algorithm. This enables us to change from one view to other views as illustrated by
Figure 23.
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FIG. 23. Face rotation results on testing images [38]. First column: face image
under standard pose (0◦). Second to fifth column: each pair shows the rotated
face by our method (left) and the ground truth target (right).

5. Variational, adversarial and cooperative learning. Both the descriptive model and the
generative model involve intractable integrals. In the descriptive model, the normalizing con-
stant is intractable. In the generative model, the marginal distribution of the observed signal is
intractable. Consequently, the maximum likelihood learning algorithms of both models require
MCMC sampling such as Langevin dynamics. To learn the descriptive model, we need to sample
the synthesized examples. To learn the generative model, we need to sample the latent variables.
It is possible to avoid MCMC sampling by variational and adversarial learning. It is also possible
to speed up MCMC sampling by cooperative learning.

5.1. Variational auto-encoder. This subsection describes the variational learning of the gen-
erative model, where an inference model is learned to replace the MCMC sampling of the latent
variables.

The maximum likelihood learning of the generative model seeks to minimize the divergence
KL(Pdata(X)‖qα(X)), where qα(X) =

∫
q(h)qα(X|h)dh is the marginal distribution that is

intractable. The variational auto-encoder (VAE) [53, 78, 68] changes the objective to

min
α

min
φ

KL(Pdata(X)ρφ(h|X)‖q(h)qα(X|h)), (5.1)

where ρφ(h|X) is an analytically tractable approximation to qα(h|X), and is called the inference
model with parameter φ. Compared to the maximum likelihood objective KL(Pdata(X)‖qα(X)),
which is the KL-divergence between the marginal distributions of X , the VAE objective is the
KL-divergence between the joint distributions of (h,X), i.e., Pdata(X)ρφ(h|X) and qα(h,X) =

q(h)qα(X|h), which is tractable because it does not involve the marginal qα(X). The VAE ob-
jective is an upper bound of the maximum likelihood objective

KL(Pdata(X)ρφ(h|X)‖qα(h,X)) = KL(Pdata(X)‖qα(X)) + KL(ρφ(h|X)‖qα(h|X)). (5.2)

The accuracy of the VAE objective as an approximation to the maximum likelihood objective de-
pends on the accuracy of the inference model ρφ(h|X) as an approximation to the true posterior
distribution qα(h|X).

For simplicity and slightly abusing the notation, write Pdata(h,X) = Pdata(X)ρφ(h|X),
where Pdata here is understood as the distribution of the complete data (h,X), with h imputed
by ρφ(h|X), and Q(h,X) = q(h)qα(X|h). The VAE is

min
α

min
φ

KL(Pdata‖Q). (5.3)

We can think of VAE from the perspective of alternating projection. (1) Fix α, find φ by mini-
mizing KL(Pdata‖Q). This is to project the current Q onto the family of Pdata. (2) Fix φ, find
α by minimizing KL(Pdata‖Q). This is to project the current Pdata onto the family of Q. Com-
pared to the EM algorithm, projection (1) corresponds to the E-step to impute the missing data
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in the form of ρφ(h|X), and projection (2) corresponds to the M-step to fit the complete model
q(h)qα(X|h). The basic idea is illustrated by Figure 24.

FIG. 24. VAE as alternating projection, where the straight lines illustrate
the families of Pdata and Q respectively, and each point is a distribution
parametrized by φ or α.

The problem (5.1) is equivalent to maximizing

EPdata

[
Eφ[log qα(h,X)] + entropy(ρφ(h|X))

]
(5.4)

= EPdata

[
Eφ[log qα(X|h)]−KL(ρφ(h|X)‖q(h))

]
(5.5)

where Eφ denotes the expectation with respect to ρφ(h|X), and EPdata
can be computed by aver-

aging over the training examples. In (5.4) and (5.5), we have qα(h,X) and qα(X|h), as a result
of merging qα(X) and qα(h|X) in (5.2), and both qα(h,X) and qα(X|h) are computationally
tractable. If ρφ(h|X) = qα(h|X), then maximizing (5.4) with respect to α becomes the EM
algorithm.

One popular choice of ρφ(h|X) is N(µφ(X), σ2
φ(X)), where both µφ(X) and σ2

φ(X) can be
represented by bottom-up neural networks with parameter φ.

FIG. 25. Top Row: training images with landmarks. Bottom Row: synthesized
images generated by the learned AAM model [37].

In our recent work [37], we show that VAE can replicate the active appearance model (AAM)
[11]. Our experiments were inspired by a recent paper [7] that studied neurons in the middle
lateral (ML) / middle fundus (MF) and anterior medial (AM) areas of the primate brain that
are responsible for face recognition. Specifically, [7] recorded how these neurons respond to
face stimuli generated by a pre-trained AAM model. We show that the observed properties of
neurons’ responses can be qualitatively replicated by VAE. The AAM model has an explicit shape
representation in the form of landmarks, where the landmarks follow a shape model learned by
principal component analysis. The faces can be aligned based on the landmarks, and the aligned
faces follow an appearance model learned by another principal component analysis. The learning
of the shape and appearance models require the landmarks in the training data. Figure 25 shows
examples of face images to train AAM, and the synthesized face images from the trained AAM.

After learning the AAM model, we generate 20, 000 face images from the learned model.
We then learn a VAE model from these images without the landmarks. Figure 26 displays test
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FIG. 26. Replicating AAM by VAE [37]. Left: test faces generated by AAM.
Middle: reconstructed faces by the learned generative model. Right: synthe-
sized images generated by the learned generative model.

images generated by the AAM model, their corresponding reconstructions by the learned VAE
model, and the synthesized images generated by the learned VAE model.

In [7] the authors show that the responses from face patches ML/MF and AM have strong
linear relationship with the shape and appearance variables in the original AAM model, where
the responses of some neurons are highly correlated with the shape variables while the responses
of other neurons are highly correlated with the appearance variables. In fact, one can further
recover the original face images from the responses of these neurons, by linearly transforming
the neurons’ responses to the shape and appearance variables of the AAM, and then generating
the image by the AAM variables. Apparently the neurons’ responses form a code of the input
face image that captures both the shape and appearance information of the input image. We show
that the code learned by VAE, i.e., µφ(X), has very strong linear relationship with the shape and
appearance variables in AAM that generates X . The R2 measure is over 96%. The biological
observations found by [7] can be qualitatively reproduced by VAE. Even though the AAM model
is highly non-linear due to shape deformation, the generative model has no difficulty replicating
the AAM model without the supervision in the form of landmarks on the faces.

5.2. Adversarial contrastive divergence. This subsection describes the adversarial learning
of the descriptive model, where a generative model is learned to replace the MCMC sampling of
the descriptive model.

The maximum likelihood learning of the descriptive model seeks to minimize the divergence
KL(Pdata(X)‖pθ(X)), where the normalizing constant Z(θ) in pθ is intractable. Recently [52]
and [14] proposed to train the descriptive model pθ and the generative model qα jointly, which
amounts to modifying the objective to

min
θ

max
α

[KL(Pdata(X)‖pθ(X))−KL(qα(X)‖pθ(X))]. (5.6)

See Figure 27 for an illustration. By maximizing over α, we minimize KL(qα(X)‖pθ(X)),
so that the objective function in (5.6) is a good approximation to KL(Pdata‖pθ). Because of
the minimax nature of the objective, the learning is adversarial, where θ and α play a minimax
game. While the generative model seeks to get close to the descriptive model, the descriptive
model seeks to get close to the data distribution and to get away from the generative model. That
is, the descriptive model can be considered a critic of the generative model by comparing it to
the data distribution.
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FIG. 27. Adversarial contrastive divergence. The straight lines illustrate the
families of the descriptive and generative models, and each point is a probability
distribution. The generative model seeks to approximate the descriptive model,
while the descriptive model seeks to get close to the data distribution in contrast
to the generative model.

The objective (5.6) contrasts interestingly with the objective for variational learning in (5.2).
In the variational objective, we upper bound KL(Pdata‖qα) by adding another KL-divergence, so
that we minimize over both α and φ. However, in the adversarial objective (5.6), we lower bound
KL(Pdata‖pθ) by subtracting from it another KL-divergence, hence we need to find its saddle
point. Thus the sign in front of the second KL-divergence determines whether it is variational
learning or adversarial learning.

The adversarial objective (5.6) is also a form of contrastive divergence, except that the syn-
thesized examples are provided by the generative model qα directly, instead of being obtained
by running a finite-step MCMC from the observed examples. We may call (5.6) the adversarial
contrastive divergence. It is equivalent to

min
θ

max
α

[EPdata
[Uθ(X)]− Eθ[Uθ(X)] + entropy(qα)] , (5.7)

which is the form proposed by [14]. In this form, the logZ(θ) term is canceled out, so that we
do not have to deal with this intractable term.

However, the entropy term entropy(qα) or the second KL-divergence in (5.6) is not in closed
form, and still needs approximation. We can again use the variational approach to approximate
KL(qα(X)‖pθ(X)) by

KL(qα(X)‖pθ(X)) + KL(qα(h|X)‖ρφ(h|X)) = KL(qα(h,X)‖pθ(X)ρφ(h|X)), (5.8)

where ρφ(h|X) is again a learned inference model. This leads to the method used by [14]. Again
we only need to deal with the tractable joint model qα(h,X). Thus the learning problem becomes

min
θ

max
α

max
φ

[KL(Pdata(X)‖pθ(X))−KL(qα(h,X)‖pθ(X)ρφ(h|X))]. (5.9)

There are three networks that need to be learned, including the descriptive model pθ, the genera-
tive model qα, and the inference model ρφ. Write Pdata(h,X) = Pdata(X)ρφ(h|X),Q(h,X) =

q(h)qα(X|h), and P (h,X) = pθ(X)ρφ(h|X). The above objective is

min
θ

max
α

max
φ

[KL(Pdata‖P )−KL(Q‖P )]. (5.10)

Compared to the variational learning in (5.2), ρφ(h|X) appears on the left side of KL-divergence
in (5.2), but it appears on the right side of KL-divergence in (5.9). The learning of ρφ(h|X) is
from the synthesized data generated by qα(h,X) instead of real data. This is similar to the sleep
phase of the wake-sleep algorithm [41].
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FIG. 28. Learning the models from the ImageNet dataset. Left: random
samples of training examples. Right: synthesized examples generated by the
learned generative model.

We train the three nets on the down-sampled 32x32 imageNet dataset [18] (roughly 1 million
images). For the generative model, starting from the latent vector h of 100 dimensions, we use 5
layers of kernels of stride 2, where the sizes of kernels of the first 4 layers are 4× 4, and the size
of the kernels of the bottom layer is 3× 3. The numbers of channels at these layers are 512, 512,
256, 128, 3 respectively. Each layer is followed by batch normalization and ReLU non-linearity,
except the last layer where tanh is used. For the inference model, we use the mirror structure
as the generative model. We build the last layer separately to model the posterior mean and
variance. For the descriptive model, we use the same structure as the inference net.

Figure 28 displays the learning results, where the left panel shows randomly selected training
examples and the right panel shows the random examples generated by the learned generative
model.

Another possibility of adversarial contrastive divergence learning is to learn a joint energy-
based model pθ(h,X) by

min
θ

min
φ

max
α

[KL(Pdata(X)ρφ(h|X)‖pθ(h,X))−KL(q(h)qα(X|h)‖pθ(h,X))]. (5.11)

5.3. Integrating variational and adversarial learning. We can integrate or unify the varia-
tional and adversarial learning methods.

FIG. 29. Divergence triangle [36]. The generative model seeks to get close to
the data distribution as well as the descriptive model. The descriptive model
seeks to get close to the data distribution and get away from the generative
model.
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Following the notation of previous subsections, write Pdata(h,X) = Pdata(X)ρφ(h|X),
P (h,X) = pθ(X)ρφ(h|X), and Q(h,X) = q(h)qα(X|h). It has been noticed by the recent
work [36] that the variational objective KL(Pdata‖Q) and the adversarial objective KL(Pdata‖P )−
KL(Q‖P ) can be combined into

max
θ

min
α

min
φ

[KL(Pdata‖Q) + KL(Q‖P )−KL(Pdata‖P )], (5.12)

which is in the form of a triangle formed by Pdata, P , and Q. See Figure 29 for an illustration.
As shown by [36], one can learn the descriptive model, the generative model, and the inference
model jointly using the above objective.

FIG. 30. Learning the models from CelebA dataset [36]. From left to right:
original images, reconstructed images, and generated images.

Figure 30 displays an example in [36] where the models are learned from the CelebA dataset.
The left panel shows some random training examples, the middle panel shows the corresponding
reconstructed examples by the learned inference model, and the right panel shows some examples
generated by the learned generative model.

5.4. Cooperative learning. This subsection describes the cooperative training of the descrip-
tive and generative models which jumpstart each other’s MCMC sampling.

We can learn the descriptive model and the generative model separately, and we have been
able to scale up the learning to big datasets. However, the separate learning algorithms can still
be slow due to MCMC sampling. Recently we discover that we can speed up the learning of
the two models by coupling the two maximum likelihood learning algorithms into a cooperative
algorithm that we call the CoopNets algorithm [104, 105]. It is based on the following two key
observations. (1) The generative model can generate examples directly, so we can use it as an
approximate sampler of the descriptive model. (2) The generative model can be learned more
easily if the latent factors are known, which is the case with the synthesized examples.

Generative model as a sampler. The generative model can serve as an approximate sampler
of the descriptive model. To sample from the descriptive model, we can initialize the synthesized
examples by generating examples from the generative model. We first generate ĥi ∼ N(0, Id),
and then generate X̂i = g(ĥi;α)+ εi, for i = 1, ..., ñ. If the current generative model qα is close
to the current descriptive model pθ, then the generated {X̂i} should be a good initialization for
sampling from the descriptive model, i.e., starting from the {X̂i, i = 1, ..., ñ}, we run Langevin
dynamics for l steps to get {X̃i, i = 1, ..., ñ}, which are revised versions of {X̂i}. These {X̃i}
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can be used as the synthesized examples from the descriptive model. We can then update θ in
the same way as we learn the descriptive model.

MCMC teaching. The descriptive model can teach the generative model via MCMC. In order
to update α of the generative model, we treat the {X̃i, i = 1, ..., ñ} produced by the above
procedure as the training data for the generative model. Since these {X̃i} are obtained by
the Langevin dynamics initialized from {X̂i, i = 1, ..., ñ}, which are generated by the gener-
ative model with known latent factors {ĥi, i = 1, ..., ñ}, we can update α by learning from
{(ĥi, X̃i), i = 1, ..., ñ}, which is a supervised learning problem, or more specifically, a non-
linear regression of X̃i on ĥi. At α(t), the latent vector ĥi generates and thus reconstructs the
initial example X̂i. After updating α, we want ĥi to reconstruct the revised example X̃i. That is,
we revise α to absorb the MCMC transition from X̂i to X̃i for sampling the descriptive model,
so that the generative model shifts its density from {X̂i} to {X̃i}. The left diagram in (5.13)
illustrates the basic idea.

ĥi

X̂i X̃i

α(t) α(t+1)

θ(t)

ĥi h̃i

X̂i X̃i

α(t)

α(t) α(t+1)

θ(t)
(5.13)

In the two diagrams in (5.13), the double-line arrows indicate generation and reconstruction
by the generative model, while the dashed-line arrows indicate Langevin dynamics for MCMC
sampling and inference in the two models. The diagram on the right in (5.13) illustrates a more
rigorous method, where we initialize the Langevin inference of {hi, i = 1, ..., ñ} from {ĥi}, and
then update α based on {(h̃i, X̃i), i = 1, ..., ñ}. The diagram on the right shows how the two
models jumpstart each other’s MCMC.

The learning of the descriptive model is based on the modified contrastive divergence,

KL(Pdata‖pθ)−KL(Mθqα‖pθ), (5.14)

where qα provides the initialization of the finite-step MCMC, whose transition kernel is de-
noted Mθ, and Mθqα denotes the marginal distribution obtained after running Mθ from qα.
The learning of the generative model is based on how Mθqα modifies qα, and is accomplished
by minqα KL(Mθqα(t)‖qα). In the idealized case of infinite capacity of qα so that the KL-
divergence can be minimized to zero, the learned qα will satisfy qα = Mθqα, i.e., qα is the
stationary distribution of Mθ. But the stationary distribution of Mθ is nothing but pθ. Thus the
learned qα will be the same as qθ. Then the second KL-divergence in (5.14) will become zero,
and the learning of the descriptive model is to minimize KL(Pdata‖pθ), which is maximum
likelihood.

We conduct experiments on learning from Imagenet dataset [18]. We adopt a 4-layer descrip-
tive model and a 5-layer generative model. We set the number of Langevin dynamics steps in
each learning iteration to l = 10. The number of learning iterations is 1, 000. After learning the
models, we synthesize images using the learned models.

In our first experiment, we learn from images that are randomly sampled from 10 Imagenet
scene categories. The number of images sampled from each category is 1100. We mix the images
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FIG. 31. Cooperative learning [104, 105]. The training set consists of 11,000
images (64 × 64) randomly sampled from 10 Imagenet scene categories. Left
panel: random samples of training images. Right panel: random samples gen-
erated by the learned models.

from all the categories as a single training set. Figure 31 displays the observed examples ran-
domly sampled from the training set, and the synthesized examples generated by the CoopNets
algorithm.

Figure 32 shows 4 examples of interpolating between latent vectors h. For each row, the
images at the two ends are generated by h vectors randomly sampled from N(0, Id). Each image
in the middle is obtained by first interpolating the h vectors of the two end images, and then
generating the image using the learned models. This experiment shows that we learn smooth
generative model that traces the manifold of the data distribution.

FIG. 32. Cooperative learning [104, 105]. Interpolation between latent vectors
of the images on the two ends.

We evaluate the synthesis quality by the Inception score [85]. Our method is competitive to
DCGAN [77], EBGAN [111], Wasserstein GAN [3], InfoGAN [9], VAE [53], the method of
[52].

Compared to the three nets in [14], the cooperative learning method only needs two nets.
Moreover, the finite-step MCMC serves to bridge the generative model and the descriptive model,
so that the synthesized examples are closer to fair samples from the descriptive model.

6. Discussion. To summarize the relationships between the non-hierarchical linear forms and
the hierarchical non-linear forms of the three families of models, the non-hierarchical form has
one layer of features or hidden variables, and they are designed. The hierarchical form has
multiple layers of features or hidden variables, and all the layers are learned from the data.
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FIG. 33. The connections between the three families of models. The discrim-
inative and the generative models are connected by the generative adversarial
networks (GAN). The discriminative and the descriptive models are connected
by the introspective neural networks (INN). The descriptive and the generative
models are connected by cooperative learning.

To summarize the relationships between the three families of models, we have the following
connections:

(1) The discriminative model and the descriptive model can be translated into each other by
the Bayes rule. The introspective learning method unifies the two models.

(2) The descriptive model and the generative model can be learned together by adversarial
contrastive divergence or the cooperative learning method via MCMC teaching.

(3) The discriminative model and the generative model can be learned together by adversar-
ial training.

See Figure 33 for an illustration.
Besides the models reviewed in this paper, there are other probabilistic models, such as the

deep Boltzmann machine [42, 84, 61], which is an energy-based model with multiple layers of
latent variables, auto-regressive models [74], the deep generalizations of the independent com-
ponent analysis model [19, 20].

In the cooperative learning, the descriptive model and the generative model are parametrized
by separate networks. It is more desirable to integrate the two classes of models within a common
network.

The existing models are still quite far from what Grenander might have searched for, in that
they are still more or less black box models with ConvNet parametrizations. A more interpretable
model is the And-Or graph [116], which alternates between layers of And nodes and Or nodes.
An And node models the composition of parts, while an Or node models the alternative choices
of parts according to a certain probability distribution. Such an And-Or grammar can generalize
to unseen patterns by reconfiguration of parts. In fact the neural network can be interpreted
as a dense version of And-Or graph in that the linear weighted sum can be interpreted as And
nodes and the rectification and max pooling can be interpreted as Or nodes. Figure 34 shows an
example of And-Or template of animal faces [88].

Ideally, as illustrated by Figure 35, we should have simple descriptive and generative models
at the lowest layers, with the descriptive models accounting for high dimensional or high entropy
patterns such as stochastic textures, and the generative models accounting for low-dimensional
or low entropy patterns such as textons. In the middle layers we should have stochastic grammars
to define the explicit compositional patterns of objects and their parts, as well as their relations
[27, 116]. At the top layer, we should have logical reasoning based on the learned common sense
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FIG. 34. And-Or template [88] for modeling recursive compositions of alter-
native parts: Each And node (blue circle) is a composition of some Or nodes.
Each Or node (blank circle) is a probability distribution over some And nodes.
An And node models the composition of parts. An Or node models the alterna-
tive choices of each part.

FIG. 35. Hierarchical representation of patterns, with simple generative and
descriptive models for textons and textures at the lower layers, the stochastic
grammar in the middle layers, and logic reasoning with common sense at higher
layers.

about physics, funtionality and causality. It is our hope that a unified model of this form can be
developed in the future.
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