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Abstract. The pattern theory of Grenander is a mathematical framework where pat-

terns are represented by probability models on random variables of algebraic structures.

In this paper, we review three families of probability models, namely, the discriminative

models, the descriptive models, and the generative models. A discriminative model is in

the form of a classifier. It specifies the conditional probability of the class label given

the input signal. A descriptive model specifies the probability distribution of the signal,

based on an energy function defined on the signal. A generative model assumes that

the signal is generated by some latent variables via a transformation. We shall review

these models within a common framework and explore their connections. We shall also

review the recent developments that take advantage of the high approximation capacities

of deep neural networks.

1. Introduction. Initially developed by Grenander in the 1970s, the pattern theory

[30, 31] is a unified mathematical framework for representing, learning, and recognizing

patterns that arise in science and engineering. The objects in pattern theory are usually

of high complexity or dimensionality, defined in terms of the constituent elements and

the bonds between them. The patterns of these objects are characterized by both the
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algebraic structures governed by local and global rules, as well as the probability dis-

tributions of the associated random variables. Such a framework encompasses most of

the probability models in various disciplines. In the 1990s, Mumford and Desolneux [70]

advocated the pattern theoretical framework for computer vision, so that learning and

inference can be based on probability models.

Despite its generality, developing probability models in the pattern theoretical frame-

work remains a challenging task. In this article, we shall review three families of mod-

els, which we call the discriminative models, the descriptive models, and the generative

models, following the terminology of [113]. A discriminative model is in the form of a

classifier. It specifies the conditional probability of the output class label given the input

signal. Such a model can be learned in the supervised setting where a training dataset

of input signals and the corresponding output labels is provided. A descriptive model

specifies the probability distribution of the signal, based on an energy function defined

on the signal through some descriptive feature statistics extracted from the signal. Such

models originated from statistical physics, where they are commonly called the Gibbs

distributions [28]. The descriptive models belong to the broader class of energy-based

models [59] that include non-probabilistic models as well as models with latent variables.

A generative model assumes that the signal is generated by some latent variables via

a deterministic transformation. A prototype example is factor analysis [83], where the

signal is generated by some latent factors via a linear transformation. Both the descrip-

tive models and generative models can be learned in the unsupervised setting where the

training dataset only consists of input signals without the corresponding output labels.

In this paper, we shall review these three families of models within a common frame-

work and explore their connections. We shall start from the flat linear forms of these

models. Then we shall present the hierarchical non-linear models, where the non-linear

mappings in these models are parametrized by neural networks [56,58] that have proved

exceedingly effective in approximating non-linear relationships.

Currently the most successful family of models are the discriminative models. A dis-

criminative model is in the form of the conditional distribution of the class label given

the input signal. The normalizing constant of such a probability model is a summation

over the finite number of class labels or categories. It is readily available, so that the

model can be easily learned from big datasets. The learning of the descriptive models

and the generative models can be much more challenging. A descriptive model is defined

as a probability distribution of the signal, which is usually of a high dimensionality. The

normalizing constant of such a model is an integral over the high-dimensional signal and

is analytically intractable. A generative model involves latent variables that follow some

prior distribution, so that the marginal distribution of the observed signal is obtained

by integrating out the latent variables, and this integral is also analytically intractable.

Due to the intractabilities of the integrals in the descriptive and generative models, the

learning of such models usually requires Markov chain Monte Carlo (MCMC) sampling

[25, 65]. Specifically, the learning of the descriptive models requires MCMC sampling

of the synthesized signals, while the learning of the generative models requires MCMC

sampling of the latent variables. Nonetheless, we shall show that such learning meth-

ods work reasonably well [24, 35, 106], where the gradient-based Langevin dynamics [71]
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can be employed conveniently for MCMC sampling, which is an inner loop within the

gradient-based learning of the model parameters.

Because of the high capacity of the neural networks in approximating highly non-

linear mappings, the boundary between representation and computation is blurred in

neural networks. A deep neural network can be used to represent how the signal is

generated or how the features are defined. It can also be used to approximate the

solution of a computational problem such as optimization or sampling. For example,

the iterative sampling of the latent variables of a generative model can be approximated

by an inference model that provides the posterior samples directly, as is the case with

the wake-sleep algorithm [41] and the variational auto-encoder (VAE) [53, 68, 78]. As

another example, the iterative sampling of a descriptive model can be approximated

by a generative model that can generate the signal directly [104, 105]. In general, the

solutions to the on-line computational problems can be encoded by high capacity neural

networks, so that iterative computations only occur in the off-line learning of the model

parameters.

The three families of models do not exist in isolation. There are intimate connections

between them. In [33, 34], the authors proposed to integrate the descriptive and gen-

erative models into a hierarchical model. In [97, 98], the authors proposed data-driven

MCMC where the MCMC is to fit the generative models, but the proposal distributions

for MCMC transitions are provided by discriminative models. The discriminative model

and the descriptive model can be translated into each other via the Bayes rule. Tu

[96] exploited this relationship to learn the descriptive model via discriminative training,

thus unifying the two models. Similarly, the discriminative model can be paired with the

generative model in the generative adversarial networks (GAN) [29], and the adversarial

learning has become an alternative framework to likelihood-based learning. The descrip-

tive model and the generative model can also be paired up so that they can jumpstart

each other’s MCMC sampling [104,105]. Moreover, the family of descriptive models and

the family of generative models overlap in terms of undirected latent energy-based models

[59].

2. Non-hierarchical linear forms of the three families. We shall first review the

non-hierarchical linear forms of the three families of models within a common framework.

2.1. Discriminative models. This subsection reviews the linear form of the discrimi-

native models.

The table below displays the dataset for training the discriminative models:

input features output

1 X�
1 h�

1 Y1

2 X�
2 h�

2 Y2

...

n X�
n h�

n Yn

There are n training examples. For the ith example, let Xi = (xij , j = 1, ..., p)� be the

p-dimensional input signal (the (n, p) notation is commonly used in statistics to denote
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the number of observations and the number of predictors, respectively). Let Yi be the

outcome label. In the case of classification, Yi is categorical or binary. hi = (hik, k =

1, ..., d)� is the d-dimensional vector of features or hidden variables.

The discriminative models can be represented by the diagram below:

output : Yi

↑
features : hi

↑
input : Xi

(2.1)

where the vector of features hi is computed from Xi via hi = h(Xi). In a non-hierarchical

or flat model, the feature vector hi is designed, not learned, i.e., h() is a pre-specified

non-linear transformation.

For the case of binary classification where Yi ∈ {+1,−1}, (Yi, Xi) follow a logistic

regression

log
Pr(Yi = +|Xi)

Pr(Yi = −|Xi)
= h�

i θ + b, (2.2)

where θ is the d-dimensional vector of weight or coefficient parameters, and b is the bias

or intercept parameter. The classification can also be based on the perceptron model

Ŷi = sign(h�
i θ + b), (2.3)

where sign(r) = +1 if r ≥ 0, and sign(r) = −1 otherwise. Both the logistic regression

and the perceptron can be generalized to the multi-category case. The bias term b can

be absorbed into the weight parameters θ if we fix hi1 = 1.

Let f(X) = h(X)�θ. f(X) captures the relationship betweenX and Y . Because h(X)

is non-linear, f(X) is also non-linear. We say the model is in the linear form because it

is linear in θ, or f(X) is a linear combination of the features in h(X). The following are

the choices of h() in various discriminative models.

Kernel machine [12]: hi = h(Xi) is implicit, and the dimension of hi can potentially be

infinite. The implementation of this method is based on the kernel trick 〈h(X), h(X ′)〉 =
K(X,X ′), where K is a kernel that is explicitly used by the classifier such as the support

vector machine [12]. f(X) = h(X)�θ belongs to the reproducing kernel Hilbert space

where the norm of f can be defined as the Euclidean norm of θ, and the norm is used

to regularize the model. A Bayesian treatment leads to the Gaussian process, where θ

is assumed to follow N(0, σ2Id), and Id is the identity matrix of dimension d. f(X) is a

Gaussian process with Cov(f(X), f(X ′)) = σ2K(X,X ′).

Boosting machine [22]: For hi = (hik, k = 1, ..., d)�, each hik ∈ {+,−} is a weak

classifier or a binary feature extracted from X, and f(X) = h(X)�θ is a committee of

weak classifiers.

CART [6]: In the classification and regression trees, there are d rectangle regions

{Rk, k = 1, ..., d} resulting from recursive binary partition of the space of X, and each

hik = 1(Xi ∈ Rk) is the binary indicator such that hik = 1 if Xi ∈ Rk and hik = 0

otherwise. f(X) = h(X)�θ is a piecewise constant function.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THREE FAMILIES OF MODELS 427

MARS [23]: In the multivariate adaptive regression splines, the components of h(X)

are hinge functions such as max(0, xj−t) (where xj is the jth component ofX, j = 1, ..., p,

and t is a threshold) and their products. It can be considered a continuous version of

CART.

Encoder and decoder: In the diagram in (2.1), the transformation Xi → hi is called

an encoder, and the transformation hi → Yi is called a decoder. In the non-hierarchical

model, the encoder is designed, and only the decoder is learned.

The outcome Yi can also be continuous or a high-dimensional vector. The learning

then becomes a regression problem. Both classification and regression are about super-

vised learning because for each input Xi, an output Yi is provided as supervision. The

reinforcement learning is similar to supervised learning except that the guidance is in

the form of a reward function.

2.2. Descriptive models. This subsection describes the linear form of the descriptive

models and the maximum likelihood learning algorithm.

The descriptive models [113] can be learned in the unsupervised setting, where Yi are

not observed, as illustrated by the table below:

input features output

1 X�
1 h�

1 ?

2 X�
2 h�

2 ?

...

n X�
n h�

n ?

The linear form of the descriptive model is an exponential family model. It speci-

fies a probability distribution on the signal Xi via an energy function that is a linear

combination of the features,

pθ(X) =
1

Z(θ)
exp

[
h(X)�θ

]
p0(X), (2.4)

where h(X) is the d-dimensional feature vector extracted from X, and θ is the d-

dimensional vector of weight parameters. p0(X) is a known reference distribution such

as the white noise model X ∼ N(0, σ2Ip), or the uniform distribution within a bounded

range

Z(θ) =

∫
exp[h(X)�θ]p0(X)dX = Ep0

{exp[h(X)�θ]} (2.5)

is the normalizing constant (Ep denotes the expectation with respect to p). It is analyt-

ically intractable.

The descriptive model (2.4) has the following information theoretical property [2, 16,

117]. Let Pdata be the distribution that generates the training data {Xi}. Let Θ =

{pθ, ∀θ} be the family of distributions defined by the descriptive model. Let Ω = {p :

Ep[h(X)] = ĥ}, where ĥ = EPdata
[h(X)]. ĥ can be estimated from the observed data by

the sample average
∑n

i=1 h(Xi)/n. Ω is the family of distributions that reproduce the

observed ĥ. Let p̂ = pθ̂ ∈ Θ∩Ω be the intersection between Θ and Ω. Then for any pθ ∈ Θ

and any p ∈ Ω, we have KL(p‖pθ) = KL(p‖p̂) + KL(p̂‖pθ), which can be interpreted
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Fig. 1. The two curves illustrate Θ and Ω, respectively, where each
point is a probability distribution.

as a Pythagorean property that defines orthogonality. KL(p‖q) = Ep[log(p(X)/q(X))]

denotes the Kullback-Leibler divergence from p to q. Thus Θ and Ω are orthogonal to

each other, Θ ⊥ Ω, as illustrated by Figure 1.

This leads to the following dual properties of p̂, which can be considered the learned

model:

(1) Maximum likelihood. p̂ = argminΘ KL(Pdata‖pθ). That is, p̂ is the projection

of Pdata on Θ. KL(Pdata‖pθ) = EPdata
[logPdata(X)] − EPdata

[log pθ(X)]. The second

term EPdata
[log pθ(X)] is the population version of the log-likelihood. Thus minimizing

KL(Pdata‖pθ) is equivalent to maximizing the likelihood.

(2) Maximum entropy: p̂ = argminΩKL(p‖p0). That is, p̂ is the minimal modifica-

tion of p0 to reproduce the observed feature statistics ĥ. KL(p‖p0) = Ep[log p(X)] −
Ep[log p0(X)]. If p0 is the uniform distribution, then the second term is a constant, and

the first term is the negative entropy. In that case, minimizing KL(p‖p0) is equivalent

to maximizing the entropy over Ω.

Given the training data {Xi}, let L(θ) =
∑n

i=1 log pθ(Xi)/n be the log-likelihood. The

gradient of L(θ) is

L′(θ) =
1

n

n∑
i=1

h(Xi)− Eθ[h(X)], (2.6)

because ∂ logZ(θ)/∂θ = Eθ[h(X)], where Eθ denotes the expectation with respect to pθ.

This leads to a stochastic gradient ascent algorithm for maximizing L(θ),

θt+1 = θt + ηt

[
1

n

n∑
i=1

h(Xi)−
1

ñ

ñ∑
i=1

h(X̃i)

]
, (2.7)

where {X̃i, i = 1, ..., ñ} are random samples from pθt , and ηt is the learning rate. The

learning algorithm has an “analysis by synthesis” interpretation. The {X̃i} are the

synthesized data generated by the current model. The learning algorithm updates the

parameters in order to make the synthesized data similar to the observed data in terms

of the feature statistics. At the maximum likelihood estimate θ̂, the model matches the

data: Eθ̂[h(X)] = EPdata
[h(X)].

One important class of descriptive models are the Markov random field models [5,26],

such as the Ising model in statistical physics. Such models play an important role in the

pattern theory.

One example of the descriptive model (2.4) is the FRAME (Filters, Random field, And

Maximum Entropy) model [103, 117], where h(X) consists of histograms of responses
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Fig. 2. Two types of potential functions learned by [115] from nat-
ural images. The function on the left encourages big filter responses
and creates patterns via reaction, while the function on the right
prefers small filter responses and smoothes out the synthesized im-
age via diffusion.

from a bank of filters. In a simplified non-convolutional version, h(X)�θ = f(WX) =∑d
k=1 fk(WkX), where W is a d× p matrix, and Wk is the kth row of W . WX consists

of the d filter responses with each row of W being a linear filter. (fk, k = 1, ..., d) are d

one-dimensional potential functions applied, respectively, to the d elements of WX. In

the FRAME model, the rows of W are a bank of Gabor wavelets or filters [15]. Given

the filters, [115] learned the potential functions (−fk, k = 1, ..., d) from natural images.

There are two types of potential functions as shown in Figure 2 [115]. The function

on the left encourages big filter responses while the function on the right prefers small

filter responses. The work [115] used the Langevin dynamics to sample from the learned

model. The gradient descent component of the dynamics is interpreted as the Gibbs

Reaction And Diffusion Equations (GRADE), where the function on the left of Figure

2 is for reaction to create patterns, while the function on the right is for diffusion to

smooth out the synthesized image.

Fig. 3. Learning a two-dimensional FRAME model by sequentially
adding rows to W [64]. Each row of W corresponds to a projection
of the data. Each step finds the projection that reveals the maxi-
mum difference between the observed data and the synthesized data
generated by the current model.

In [64], the authors illustrated the idea of learning W = (Wk, k = 1, ..., d) by a

two-dimensional example. Each step of the learning algorithm adds a row Wk to the

current W . Each row corresponds to a projection of X. Each step finds a direction of

the projection that reveals the maximum difference between the data points sampled

from the current model and the observed data points. The learning algorithm then

updates the model to match the marginal distributions of the model and the data in that
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direction. After a few steps, the distribution of the learned model is almost the same

as the distribution of the observed data. See Figure 3 for an illustration. By assuming

a parametric differentiable form for fk(), W can be learned by gradient descent. Such

models are called product of experts [40, 93] or field of experts [80].

Fig. 4. Under the uniform distribution of images defined on a large
lattice (that goes to Z2) where the images share the same marginal
histograms of filter responses, the conditional distribution of the local
image patch given its boundary (in blue color) follows the FRAME
model.

The FRAME model is convolutional, where the rows of W can be partitioned into

different groups, and the rows in the same group are spatially translated versions of each

other, like wavelets. They are called filters or kernels. The model can be justified by a

uniform distribution over the images defined on a large lattice that goes to Z2, where

all the images share the same marginal histograms of filter responses. Under such a

uniform distribution, the distribution of the local image patch defined on a local lattice

Λ conditional on its boundary (illustrated by the blue color, including all the pixels

outside Λ that can be covered by the same filters as the pixels within Λ) follows the

FRAME model [103]. See Figure 4 for an illustration.

2.3. Generative models. This subsection reviews various versions of the linear gener-

ative models. These models share the same linear form, but they differ in terms of the

prior assumptions of the latent factors or coefficients.

Like the descriptive models, the generative models can be learned in the unsupervised

setting, where Yi are not observed, as illustrated below:

input hidden output

1 X�
1 h�

1 ?

2 X�
2 h�

2 ?

...

n X�
n h�

n ?

In a generative model, the vector hi is not a vector of features extracted from the

signal Xi. hi is a vector of hidden variables that is used to generate Xi, as illustrated by

the following diagram:

hidden : hi

↓
input : Xi

(2.8)

The components of the d-dimensional hi are variably called factors, sources, components,

or causes.
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Auto-encoder: hi is also called a code in the auto-encoder illustrated by the following

diagram:

code : hi

↑↓
input : Xi

(2.9)

The direction from hi to Xi is called the decoder, and the direction from Xi to hi is

called the encoder. The decoder corresponds to the generative model in (2.8), while the

encoder can be considered the inference model.

Distributed representation and disentanglement: hi = (hik, k = 1, ..., d) is called a

distributed representation of Xi. Usually the components of hi, (hik, k = 1, ..., d), are

assumed to be independent, and (hik) are said to disentangle the variations in Xi.

Embedding: hi can also be considered the coordinates of Xi, if we embed Xi into a

low-dimensional space, as illustrated by the following diagram:

← hi →
|

← Xi →
(2.10)

In the training data, we find an hi for each Xi, so that {hi, i = 1, ..., n} preserves the

relative relations between {Xi, i = 1, ..., n}. The prototype example of embedding is

multi-dimensional scaling, where we want to preserve the Euclidean distances between

the examples. A more recent example of embedding is local linear embedding [81]. In

the embedding framework, there are no explicit encoders and decoders.

Linear generative model: The linear form of the generative model is as follows:

Xi = Whi + εi, (2.11)

for i = 1, ..., n, where W is a p× d-dimensional matrix (p is the dimensionality of Xi and

d is the dimensionality of hi), and εi is a p-dimensional residual vector. The following

are the interpretations of W :

(1) Loading matrix: Let W = (wjk)p×d. xij ≈
∑d

k=1wjkhik, i.e., each component of

Xi, xij , is a linear combination of the latent factors. wjk is the loading weight of factor

k on variable j.

(2) Basis vectors: Let W = (Wk, k = 1, ..., d), where Wk is the kth column of W .

Xi ≈
∑d

k=1 hikWk, i.e., Xi is a linear superposition of the basis vectors (Wk), where hik

are the coefficients.

(3) Matrix factorization: (X1, ..., Xn) ≈ W (h1, ..., hn), where the p×n matrix (X1, ...,

Xn) is factorized into the p× d matrix W and the d× n matrix (h1, ..., hn).

The following are some of the commonly assumed prior distributions or constraints

on hi.

Factor analysis [83]: hi ∼ N(0, Id), Xi = Whi + εi, εi ∼ N(0, σ2Ip), and εi is indepen-

dent of hi. The dimensionality of hi, which is d, is smaller than the dimensionality of

Xi, which is p. The factor analysis is very similar to the principal component analysis

(PCA), which is a popular tool for dimension reduction. The difference is that in factor

analysis, the column vectors of W do not need to be orthogonal to each other.
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The factor analysis model originated from psychology, where Xi consists of the test

scores of student i on p subjects. hi consists of the verbal intelligence and the analytical

intelligence of student i (d = 2). Another example is the decathlon competition, where

Xi consists of the scores of athlete i on p = 10 sports, and hi consists of athlete i’s speed,

strength, and endurance (d = 3).

Independent component analysis [48]: In ICA, for hi = (hik, k = 1, ..., d), hik ∼
Pk independently, and Pk are assumed to be heavy-tailed distributions. For analytical

tractability, ICA assumes that d = p, and εi = 0. HenceXi = Whi, whereW is a squared

matrix assumed to be invertible, so that hi = AXi, where A = W−1. Let P (hi) =∏d
k=1 Pk(hik). The marginal distribution of Xi has a closed form Xi ∼ P (AX)|det(A)|.

The ICA model is both a generative model and a descriptive model.

Sparse coding [73]: In the sparse coding model, the dimensionality of hi, which is d,

is bigger than the dimensionality of Xi, which is p. However, hi = (hik, k = 1, ..., d)

is a sparse vector, meaning that only a small number of hik are non-zero, although for

different example i, the non-zero elements in hi can be different. Thus unlike PCA,

sparse coding provides adaptive dimension reduction. W = (Wk, k = 1, ..., d) is called

a redundant dictionary because d > p, and each Wk is a basis vector or a “word” in

the dictionary. Each Xi ≈ Whi =
∑d

k=1 hikWk is explained by a small number of Wk

selected from the dictionary, depending on which hik are non-zero. The inference of the

sparse vector hi can be accomplished by Lasso or basis pursuit [8, 94] that minimizes∑n
i=1

[
‖Xi −Whi‖2 + λ‖hi‖�1

]
, which imposes the sparsity inducing �1 regularization

on hi with a regularization parameter λ.

A Bayesian probabilistic formulation is to assume a spike-slab prior: hik ∼ ρδ0 + (1−
ρ)N(0, τ2) with a small 1− ρ, which is the probability that hik is non-zero.

Figure 5 displays a sparse code learned from a training set of natural image patches

of size 12× 12 [73]. Each column of W , Wk, is a basis vector that can be made into an

image patch as shown in the figure.

Fig. 5. Sparse coding [73]: learned basis vectors from natural image
patches. Each image patch in the picture is a column vector of W .
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Non-negative matrix factorization [60]: In NMF, hi is constrained to have non-negative

components, i.e., hik ≥ 0 for all k. It is also called positive factor analysis [75]. The

rationale for NMF is that the parts of a pattern should be additive and the parts should

contribute positively.

Matrix factorization for recommender system [54]: In recommender system, Xi =

(xij , j = 1, ..., p) are the ratings of user i on the p items. For instance, in the Netflix

example, there are n users and p movies, and xij is user i’s rating of movie j. Let wj be

the jth row of matrix W ; then xij = 〈wj , hi〉+ εij , where hi characterizes the desires of

user i in d aspects, and wj characterizes the desirabilities of item j in the corresponding

aspects. The rating matrix (Xi, i = 1, ..., n) thus admits a rank d factorization. The

rating matrix is in general incomplete. However, we can still estimate (hi) and (wj)

from the observed ratings and use them to complete the rating matrix for the purpose

of recommendation.

Probabilistic formulation: In the above models, there is a prior model hi ∼ p(h) or

a prior constraint such as hi is sparse or non-negative. There is a linear generative

model Xi = Whi + εi, with εi ∼ N(0, σ2Ip) for i = 1, ..., n. This defines the conditional

distribution p(X|h;W ). The joint distribution is p(h)p(X|h;W ) = p(h,X|W ). The

marginal distribution is obtained by integrating out h:

p(X|W ) =

∫
p(h)p(X|h;W )dh =

∫
p(h,X|W )dh. (2.12)

This integral is analytically intractable. According to the Bayes rule, h can be inferred

from X based on the posterior distribution, p(h|X;W ) = p(h,X|W )/p(X|W ), which is

proportional to p(h,X|W ) as a function of h. We call p(h|X;W ) the inference model.

In the auto-encoder terminology, p(h) and p(X|h;W ) define the decoder, p(h|X;W )

defines the encoder. In factor analysis and independent component analysis, h can be

inferred in closed form. For other models, however, h needs to be inferred by an iterative

algorithm.

Restricted Boltzmann machine [42]: In RBM, unlike the above models, there is no

explicit prior p(h). The model is defined by the joint distribution

(hi, Xi) ∼ p(h,X|W ) =
1

Z(W )
exp

⎡
⎣∑

j,k

wjkxjhk

⎤
⎦ (2.13)

=
1

Z(W )
exp

[
X�Wh

]
. (2.14)

The above model assumes that both hi and Xi are binary. Under the above model,

both the generative distribution p(X|h;W ) and the inference distribution p(h|X;W ) are

independent logistic regressions. We may modify the model slightly to make X contin-

uous, so that in the modified model, the generative distribution p(X|h;W ) is normal

linear regression: X = Wh+ ε, with ε ∼ N(0, σ2Ip). The inference model, p(h|X;W ), is

logistic regression, h ∼ logistic(W�X), i.e., Pr(hk = 1|X;W ) = sigmoid(
∑p

j=1 wjkxj),

where sigmoid(r) = 1/(1 + e−r).
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If we sum out h, the marginal distribution p(X|W ) =
∑

h p(h,X|W ) can be obtained

in closed form, and p(X|W ) is a descriptive model.

RBM-like auto-encoder [4, 100]: The RBM leads to the following auto-encoder: En-

coder: hk = sigmoid(
∑p

j=1 wjkxj), i.e., h = sigmoid(W�X); Decoder: X = Wh.

Like the descriptive model, the generative model can also be learned by maximum

likelihood. However, unlike the “analysis by synthesis” scheme for learning the descrip-

tive model, the learning algorithm for generative model follows an “analysis by inference”

scheme. Within each iteration of the learning algorithm, there is an inner loop for in-

ferring hi for each Xi. The most rigorous inference method is to sample hi from the

posterior distribution or the inference distribution p(hi|Xi;W ). After inferring hi for

each Xi, we can then update the model parameters by analyzing the “imputed” dataset

{(hi;Xi)}, by fitting the generative distribution p(X|h;W ). The EM algorithm [17] is

an example of this learning scheme, where the inference step is to compute expectation

with respect to p(hi|Xi;W ). From a Monte Carlo perspective, it means we make mul-

tiple imputations [82] or make multiple guesses of hi to account for the uncertainties

in p(hi|Xi;W ). Then we analyze the multiply imputed dataset to update the model

parameters.

3. Interactions between different families.

3.1. Discriminative learning of descriptive model. This subsection shows that the de-

scriptive model can be learned discriminatively.

The descriptive model (2.4) can be connected to the discriminative model (2.2) if we

treat p0(X) as the distribution of the negative examples, and pθ(X) as the distribution of

the positive examples. Suppose we generate the data as follows: Yi ∼ Bernoulli(ρ), i.e.,

Pr(Yi = 1) = ρ, which is the prior probability of positive examples. [Xi | Yi = 1] ∼ pθ(X),

Fig. 6. Discriminative learning of the descriptive model [96]. By fit-
ting a logistic regression to discriminate between the observed exam-
ples and the synthesized examples generated by the current model,
we can modify the current model according to the fitted logistic re-
gression, so that the modified model gets closer to the distribution
of the observed data.
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and [Xi | Yi = 0] ∼ p0(X). According to the Bayes rule

log
Pr(Yi = 1 | Xi)

Pr(Yi = 0 | Xi)
= h(Xi)

�θ − logZ(θ) + log[ρ/(1− ρ)], (3.1)

which corresponds to (2.2) with b = − logZ(θ) + log[ρ/(1− ρ)].

Tu [96] made use of this fact to estimate pθ discriminatively. The learning algorithm

starts from p0. At step t, we let the current pt serve as the negative distribution, and

generate synthesized examples from pt. Then we fit a logistic regression by treating the

examples generated by pt as the negative examples, and the observed examples as the

positive examples. Let θ be the estimated parameter of this logistic regression. We then

let pt+1(X) = exp(h(X)�θ)pt(X)/Z. See [96] for an analysis of the convergence of the

learning algorithm.

Figure 6 [96] illustrates the learning process by starting from the uniform p0. By

iteratively fitting the logistic regression and modifying the distribution, the learned dis-

tribution converges to the true distribution.

3.2. Integration of descriptive and generative models. Natural images contain both

stochastic textures and geometric objects (as well as their parts). The stochastic textures

can be described by some feature statistics pooled over the spatial domain, while the

geometric objects can be represented by image primitives or textons. The psychophysicist

Julesz [51] studied both texture statistics and textons. He conjectured that pre-attentive

human vision is sensitive to local patterns called textons. Figure 7 illustrates the basic

idea. Inspired by Julesz’s work, in [114], the authors proposed a generative model for

textons, where each texton is a composition of a small number of wavelets, as illustrated

by Figure 8. The model is a generalization of the sparse coding model of [73].

Fig. 7. Pre-attentive vision is sensitive to local patterns called textons.

Building on the texton model of [114], [44,102] proposed an active basis model, where

each model is a composition of wavelets selected from a dictionary, and the wavelets are

allowed to shift their locations and orientations to account for shape deformation. See

Figure 9 for an illustration.

The texton model and the active basis model are generative models. However, they

do not account for stochastic texture patterns. The work [87] proposed to integrate the

generative model for shape templates and the descriptive model for stochastic textures,

as illustrated by Figure 10. A similar model was developed by [34] to model both the

geometric structures and stochastic textures by generative models and descriptive models,

respectively.
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Fig. 8. A model of textons [114], where each texton is a composition
of a small number of wavelets.

Fig. 9. Active basis model [44, 102]: each active basis template is a
composition of wavelets selected from a dictionary, and the wavelets
are allowed to shift their locations and orientations to account for
shape deformation. Here each wavelet is illustrated by a bar. The
templates are learned at two different scales. The observed images
can be reconstructed by the wavelets of the deformed templates.

Fig. 10. Hybrid image template [87]: integrating the generative
model for shape template and the descriptive model for texture.

In [33], the authors provided another integration of the generative model and the

descriptive model, where the lowest layer is a generative model such as the wavelet
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sparse coding model [73], but the spatial distribution of the wavelets is governed by a

descriptive model.

3.3. DDMCMC: Integration of discriminative and generative models. In [97, 98], the

authors proposed a data-driven MCMC method for fitting the generative models as

well as the descriptive models to the data. Fitting such models usually requires time-

consuming MCMC. In [97, 98], the authors proposed to speed up the MCMC by using

the discriminative models to provide the proposals for the Metropolis-Hastings algorithm.

See Figure 11 for an illustration.

Fig. 11. Data-driven MCMC: when fitting the generative models
and descriptive models using MCMC, the discriminative models can
be employed to provide proposals for MCMC transitions.

4. Hierarchical forms of the three families. This section presents the hierarchi-

cal non-linear forms of the three families of models, where the non-linear mappings are

parametrized by neural networks, in particular, the convolutional neural networks.

4.1. Recent developments. During the past few years, deep convolutional neural net-

works (CNNs or ConvNets) [56, 58] and recurrent neural networks (RNNs) [43] have

transformed the fields of computer vision, speech recognition, natural language process-

ing, and other fields in artificial intelligence (AI). Even though these neural networks were

invented decades ago, their potentials were realized only recently mainly because of the

following two factors. (1) The availability of big training datasets such as Imagenet [18].

(2) The improvement in computing power, mainly brought by the graphical processing

units (GPUs). These two factors, together with some recent clever tweaks and inventions

such as rectified linear units [56], batch normalization [49], residual networks [39], etc.,

enable the training of very deep networks (e.g., 152 layers with 60 million parameters in

a residual network for object recognition [39]) that achieve impressive performances on

many tasks in AI (a recent example being Alpha Go Zero [89]).

One key reason for the successes of deep neural networks is that they are universal and

flexible function approximators. For instance, a feedforward neural network with rectified

linear units is a piecewise linear function with recursively partitioned linear pieces that

can approximate any continuous non-linear mapping [69]. However, this does not fully

explain the “unreasonable effectiveness” of deep neural networks. The stochastic gradient

descent algorithm that is commonly employed to train the neural networks is expected
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to approach only a local minimum of the highly non-convex objective function. However,

for large and deep networks, it appears that most of the local modes are equally good

[10] in terms of training and testing errors, and the apparent vices of local modes and

stochasticity in the mini-batch on-line training algorithm actually turn out to be big

virtues in that they seem to prevent overfitting and lead to good generalization [10].

The approximation capacities of the deep neural networks have been extensively ex-

ploited in supervised learning (such as classification networks and regression networks)

and reinforcement learning (such as policy networks and value networks). They have also

proven to be useful for unsupervised learning and generative modeling, where the goal is

to learn features or hidden variables from the observed signals without external guidance

such as class labels or rewards. The unsupervised learning is often accomplished in the

context of a generative model (or an auto-encoder), which explains or characterizes the

observed examples.

4.2. Discriminative models by convolutional neural networks. The neural networks in

general and the convolutional neural networks (ConvNet or CNN) in particular were

initially designed for discriminative models. Let X be the p-dimensional input vector,

and let Y be the output. We want to predict Y by Ŷ which is a non-linear transformation

of X: Ŷ = fθ(X), where f is parametrized by parameters θ. In a feedforward neural

network, f is a composition of L layers of linear mappings followed by coordinate-wise

non-linear rectifications, as illustrated by the following diagram:

X → h(1) → ...h(l−1) → h(l) → ... → h(L) → Ŷ , (4.1)

where h(l) is a d(l)-dimensional vector which is defined recursively by

h(l) = f (l)(W (l)h(l−1) + b(l)), (4.2)

for l = 1, ..., L. We may treat X as h(0), and Ŷ as h(L+1) and θ = (W (l), b(l), l =

1, ..., L + 1). W (l) is the weight matrix and b(l) is the bias or intercept vector at layer

l. f (l) is coordinate-wise transformation, i.e., for a vector v = (v1, ..., vd)
�, f (l)(v) =

(f (l)(v1), ..., f
(l)(vd))

�.

Compared to the discriminative models in the previous section, we now have multiple

layers of features (h(l), l = 1, ..., L). They are recursively defined via (4.2), and they are

to be learned from the training data instead of being designed.

For classification, suppose there are K categories, the conditional probability of cate-

gory k given input X is given by the following soft-max probability:

Pr(Y = k | X) =
exp(fθk(X))∑K
k=1 exp(fθk(X))

, (4.3)

where fθk(X) is the score for category k. We may take fθk(X) = h(L)�W
(L+1)
k + b

(L+1)
k .

This final classification layer is usually called the soft-max layer.

The most commonly used non-linear rectification in modern neural nets is the Rectified

Linear Unit (ReLU) [56]: f (l)(a) = max(0, a). The resulting function fθ(X) can be

considered a multi-dimensional linear spline, i.e., a piecewise linear function. Recall a

one-dimensional linear spline is of the form f(x) = b +
∑d

k=1wk max(0, x − ak), where

ak are the knots. At each knot ak, the linear spline takes a turn and changes its slope

by wk. With enough knots, f(x) can approximate any non-linear continuous function.
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We can view this f(x) as a simplified two-layer network, with hk = max(0, x− ak). The

basis function max(0, x − ak) is a two-piece linear function with a bending at ak. For

multi-dimensional input X, a two-layer network with one-dimensional output is of the

following form f(X) = b(2) +
∑d

k=1 W
(2)
k h

(1)
k , where h

(1)
k = max(0,W

(1)
k X + b

(1)
k ), and

W
(1)
k is the kth row of W (1). The basis function max(0,W

(1)
k X + b

(1)
k ) is again a two-

piece linear function with a bending along the line W
(1)
k X + b

(1)
k = 0. The dividing lines

{W (1)
k X + b

(1)
k = 0, k = 1, ..., d(1)} partition the domain of X into up to 2d

(1)

pieces, and

f(X) is a continuous piecewise linear function over these pieces.

In the multi-layer network, the hierarchical layers of {h(l), l = 1, ..., L} partition the

domain of X recursively, creating a piecewise linear function with exponentially many

pieces [76]. Such reasoning also applies to other forms of rectification functions f (l),

as long as they are non-linear and create bending. This makes the neural network an

extremely powerful machine for function approximation and interpolation. The recursive

partition in neural nets is similar to CART and MARS, but is more flexible.

Back-propagation. Both ∂fθ(X)/∂θ and ∂fθ(X)/∂X can be computed by the chain-

rule back-propagation, and they share the computation of

∂h(l)/∂h(l−1) = f (l)′
(W (l)h(l−1) + b(l))W (l)

in the chain rule. Because f (l) is coordinate-wise, f (l)′
is a diagonal matrix.

A recent invention [39] is to reparametrize the mapping (4.2) by h(l) = h(l−1) +

f (l)(W (l)h(l−1) + b(l)), where f (l)(W (l)h(l−1) + b(l)) is used to model the residual term.

This enables the learning of very deep networks. One may think of it as modeling an

iterative algorithm where the layers l can be interpreted as time steps of the iterative

algorithm.

Convolution. The signal X can be an image, and the linear transformations at each

layer may be convolutions with localized kernel functions (i.e., filters). That is, the row

vectors of W (l) (as well as the elements of b(l)) form different groups, and the vectors

in the same group are localized and translation invariant versions of each other, like

wavelets. Each group of vectors corresponds to a filter or a kernel or a channel. See

Figures 12 and 13 for illustrations. Recent networks mostly use small filters of the size

Fig. 12. Filtering or convolution: applying a filter of the size 3×3×3
on an image of the size 6×6×3 to get a filtered image or feature map
of 6× 6 (with proper boundary handling). Each pixel of the filtered
image is computed by the weighted sum of the 3× 3× 3 pixels of the
input image centered at this pixel. There are 3 color channels (R,
G, B), so both the input image and the filter are three-dimensional.
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Fig. 13. Convolutional neural networks consist of multiple layers
of filtering and sub-sampling operations for bottom-up feature ex-
traction, resulting in multiple layers of feature maps and their sub-
sampled versions. The top layer features are used for classification
via multinomial logistic regression. The discriminative direction is
from image to category, whereas the generative direction is from cat-
egory to image.

3× 3 [90,92]. The minimal size 1× 1 is also a popular choice [63,92]. Such a filter fuses

the features of different channels at the same location, and is often used for reducing

or increasing the number of channels. When computing the filtered image, we can also

sub-sample it by, e.g., taking one filter response every two pixels. The filter is said to

have stride 2.

4.3. Descriptive models. This subsection describes the hierarchical form of the de-

scriptive models and the maximum likelihood learning algorithm.

We can generalize the descriptive model in the previous sections to a hierarchical form

with multiple layers of features [13, 72, 106, 107],

X → h(1) → ... → h(L) → fθ(X) (4.4)

which is a bottom-up process for computing fθ(X), and θ collects all the weight and bias

parameters at all the layers. The probability distribution is

pθ(X) =
1

Z(θ)
exp [fθ(X)] p0(X), (4.5)

where again p0(X) is the reference distribution such as Gaussian white noise model

p0(X) ∝ exp
(
−‖X‖2/2σ2

)
. Again the normalizing constant is

Z(θ) =

∫
exp(fθ(X))p0(X)dX = Ep0

[exp(fθ(X))].

The energy function is

Uθ(X) = ‖X‖2/2σ2 − fθ(X). (4.6)

q0(X) can also be a uniform distribution within a bounded range; then Uθ(X) = −fθ(X).
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The model (4.5) can be considered a hierarchical generalization of the FRAME model.

While the energy function of the FRAME model is defined in terms of element-wise non-

linear functions of filter responses, model (4.5) involves recursions of this structure at

multiple layers according to the ConvNet.

Suppose we observe training examples {Xi, i = 1, ..., n}. The maximum likelihood

learning seeks to maximize L(θ) = 1
n

∑n
i=1 log pθ(Xi). The gradient of L(θ) is

L′(θ) =
1

n

n∑
i=1

∂

∂θ
fθ(Xi)− Eθ

[
∂

∂θ
fθ(X)

]
, (4.7)

where Eθ denotes the expectation with respect to pθ(X). The key identity underlying

equation (4.7) is d logZ(θ)/dθ = Eθ[∂fθ(X)/∂θ].

The expectation in equation (4.7) is analytically intractable and has to be approxi-

mated by MCMC, such as the Langevin dynamics, which samples from pθ(X) by iterating

the following step:

Xτ+1 = Xτ − s2

2

∂

∂X
Uθ(Xτ ) + sEτ (4.8)

= Xτ − s2

2

[
Xτ

σ2
− ∂

∂X
fθ(Xτ )

]
+ sEτ , (4.9)

where τ indexes the time steps of the Langevin dynamics, s is the step size, and Eτ ∼
N(0, Ip) is the Gaussian white noise term. A Metropolis-Hastings step can be added to

correct for the finiteness of s. The Langevin dynamics was used by [115] for sampling

from the linear form of the descriptive model such as the FRAME model.

We can run ñ parallel chains of Langevin dynamics according to (4.9) to obtain the

synthesized examples {X̃i, i = 1, ..., ñ}. The Monte Carlo approximation to L′(θ) is

L′(θ) ≈ ∂

∂θ

[
1

n

n∑
i=1

fθ(Xi)−
1

ñ

ñ∑
i=1

fθ(X̃i)

]
, (4.10)

which is the difference between the observed examples and the synthesized examples. We

can then update θ(t+1) = θ(t) + ηtL′(θ(t)), with L′(θ(t)) computed according to (4.10).

ηt is the learning rate. The convergence of this algorithm has been studied by [79, 108].

Alternating back-propagation: The learning and sampling algorithm is again an “anal-

ysis by synthesis” scheme. The sampling step runs the Langevin dynamics by computing

∂fθ(X)/∂X, and the learning step updates θ by computing ∂fθ(X)/∂θ. Both deriva-

tives can be computed by back-propagation, and they share the same computations of

∂h(l)/∂h(l−1).

Mode shifting interpretation: The data distribution Pdata is likely to have many local

modes. The fθ(X) parametrized by the ConvNet can be flexible enough to create many

local modes to fit Pdata. We should learn fθ(X) or equivalently the energy function

Uθ(X) so that the energy function puts lower values on the observed examples than

the unobserved examples. This is achieved by the learning and sampling algorithm,

which can be interpreted as density shifting or mode shifting. In the sampling step, the

Langevin dynamics settle the synthesized examples {X̃i} at the low energy regions or

high density regions, or major modes (or basins) of Uθ(X), i.e., modes with low energies
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or high probabilities, so that 1
ñ

∑ñ
i=1Uθ(X̃i) tends to be low. The learning step seeks to

change the energy function Uθ(X) by changing θ in order to increase 1
ñ

∑ñ
i=1Uθ(X̃i) −

1
n

∑n
i=1 Uθ(Xi). This has the effect of shifting the low energy or high density regions

from the synthesized examples {X̃i} toward the observed examples {Xi}, or shifting the

major modes of the energy function Uθ(X) from the synthesized examples toward the

observed examples, until the observed examples reside in the major modes of the model.

If the major modes are too diffused around the observed examples, the learning step will

sharpen them to focus on the observed examples. This mode shifting interpretation is

related to the Hopfield network [45] and the attractor network [86] with the Langevin

dynamics serving as the attractor dynamics.

The energy landscape may have numerous major modes that are not occupied by

the observed examples, and these modes imagine examples that are considered similar

to the observed examples. While the maximum likelihood learning matches the average

statistical properties between model and data, the ConvNet is expressive enough to create

modes to encode the highly varied patterns. We still lack an in-depth understanding of

the energy landscape.

Adversarial interpretation: The learning and sampling algorithm also has an adver-

sarial interpretation where the learning and sampling steps play a minimax game. Let

the value function be defined as

V =
1

ñ

∑ñ

i=1
Uθ(X̃i) − 1

n

∑n

i=1
Uθ(Xi). (4.11)

The learning step updates θ to increase V , while the Langevin sampling step tends

to relax {X̃i} to decrease V . The zero temperature limit of the Langevin sampling is

gradient descent that decreases V , and the resulting learning and sampling algorithm is

a generalized version of herding [101]. See also [107]. This is related to Wasserstein GAN

[3], but the critic and the actor are the same descriptive model, i.e., the model itself is

its own generator and critic.

Multi-grid sampling and learning: In the high-dimensional space, e.g., image space, the

model can be highly multi-modal. The MCMC in general and the Langevin dynamics

in particular may have difficulty traversing different modes and it may be very time-

consuming to converge. A simple and popular modification of the maximum likelihood

learning is the contrastive divergence (CD) learning [40], where we obtain the synthesized

example by initializing a finite-step MCMC from the observed example. The CD learning

is related to score matching estimator [46,47] and auto-encoder [1,91,99]. Such a method

has the ability to handle large training datasets via mini-batch training. However, bias

may be introduced in the learned model parameters in that the synthesized images can

be far from the fair examples of the current model. A further modification of CD is

persistent CD [95], where at the initial learning epoch the MCMC is still initialized from

the observed examples, while in each subsequent learning epoch, the finite-step MCMC is

initialized from the synthesized example of the previous epoch. The resulting synthesized

examples can be less biased by the observed examples. However, the persistent chains

may still have difficulty traversing different modes of the learned model.
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Fig. 14. Synthesized images at multi-grids [24]. From left to right:
4× 4 grid, 16× 16 grid and 64× 64 grid. Synthesized image at each
grid is obtained by 30 step Langevin sampling initialized from the
synthesized image at the previous coarser grid, beginning with the
1× 1 grid.

In [24], we developed a multi-grid sampling and learning method to address the above

challenges under the constraint of finite budget MCMC. Specifically, we repeatedly down-

scale each training image to get its multi-grid versions. Our method learns a separate

descriptive model at each grid. Within each iteration of our learning algorithm, for each

observed training image, we generate the corresponding synthesized images at multiple

grids. Specifically, we initialize the finite-step MCMC sampling from the minimal 1× 1

version of the training image, and the synthesized image at each grid serves to initialize

the finite-step MCMC that samples from the model of the subsequent finer grid. See

Figure 14 for an illustration, where we sample images sequentially at 3 grids, with 30 steps

of Langevin dynamics at each grid. After obtaining the synthesized images at the multiple

grids, the models at the multiple grids are updated separately and simultaneously based

on the differences between the synthesized images and the observed training images at

different grids.

Unlike original CD or persistent CD, the learned models are capable of generating

new synthesized images from scratch with a fixed budget MCMC, because we only need

to initialize the MCMC by sampling from the one-dimensional histogram of the 1 × 1

versions of the training images.

Forest road Volcano Hotel room Building facade

Fig. 15. Synthesized images from models learned by multi-grid
method [24] from 4 categories of MIT places205 datasets.
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In our experiments, the training images are resized to 64 × 64. Since the models of

the three grids act on images of different scales, we design a specific ConvNet structure

per grid: grid1 has a 3-layer network with 5× 5 stride 2 filters at the first layer and 3× 3

stride 1 filters at the next two layers; grid2 has a 4-layer network with 5×5 stride 2 filters

at the first layer and 3 × 3 stride 1 filters at the next three layers; grid3 has a 3-layer

network with 5 × 5 stride 2 filters at the first layer, 3 × 3 stride 2 filters at the second

layer, and 3×3 stride 1 filters at the third layer. Numbers of channels are 96−128−256

at grid1 and grid3, and 96 − 128 − 256 − 512 at grid2. A fully-connected layer with 1

channel output is added on top of every grid to get the value of the function fθ(X). At

each iteration, we run l = 30 steps of Langevin dynamics for each grid with step size

s = 0.3. All networks are trained simultaneously with mini-batches of size 100 and an

initial learning rate of 0.3. Learning rate is decayed logarithmically every 10 iterations.

We learn multi-grid models from several datasets including CelebA [66], MIT places205

[112], and CIFAR-10 [55]. In the CelebA dataset, we randomly sample 10,000 images for

training. Figure 14 shows the synthesized examples. Figure 15 shows synthesized images

from models learned from 4 categories of MIT places205 dataset by multi-grid method.

We learn from each category separately. The number of training images is 15, 100 for

each category.

Traditionally, the mixing time of Markov chain is defined via d(t) = maxx ‖P (t)(x, ·)−
π‖TV, where P (t) is the t-step transition, π is the stationary distribution, and ‖ · ‖TV

is the total variation distance. This is the worst case scenario by choosing the least

favorable point mass at x. In our method, however, the initial distribution at each grid

can be much more favorable, e.g., it may already agree approximately with π on the

marginal distribution of the coarser grid, so that after t steps, the distribution of the

sampled image can be close to π, even if this is not the case for the worst case starting

point. Such non-persistent finite budget MCMC is computationally more manageable

than persistent chains in learning.

To train multi-grid models on 10,000 training images for 400 iterations with a singe

Titan X GPU, it takes about 7.45 hours. After training, it takes less than 1 second to

generate a batch of 100 images. We also train the multi-grid models on LSUN bedroom

dataset [109], which consists of roughly 3 million images. Figure 16 shows the learning

results after 8 epochs.

The learned descriptive model is a bottom-up ConvNet that consists of multiple layers

of features. These features can be used for subsequent tasks such as classification. The

learned models can also be used as a prior distribution for inpainting, as illustrated by

Figure 17. See [24] for experiment details and numerical evaluations.

4.4. Introspective learning. This subsection describes the introspective learning meth-

od that learns the descriptive model by turning it into a discriminative model.

Model (4.5) corresponds to a classifier in the following sense [13, 50, 106]. Suppose

there are K categories, pθk(X), for k = 1, ...,K, in addition to the background category

p0(X). The ConvNets fθk(X) for k = 1, ...,K may share common lower layers except

the final layer for computing fθk(X). Let ρk be the prior probability of category k,

k = 0, ...,K. Then the posterior probability for classifying an example X to the category
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Fig. 16. Learning the multi-grid models from the LSUN bedroom
dataset [24]. Left: random samples of training examples. Right:
synthesized examples generated by the learned models.

Fig. 17. Inpainting examples on CelebA dataset [24]. In each block
from left to right: the original image; masked input; inpainted image
by multi-grid method.

k is a soft-max multi-class classifier, i.e., the multinomial logistic regression:

Pr(k|X) =
exp(fθk(X) + bk)∑K
k=0 exp(fθk(X) + bk)

, (4.12)

where bk = log(ρk/ρ0) − logZ(θk), and for k = 0, fθ0(X) = 0, b0 = 0. Conversely, if

we have the soft-max classifier (4.12), then the distribution of each category is pθk(X) of

the form (4.5). Thus the descriptive model directly corresponds to the commonly used

discriminative ConvNet model.

In the case where we only observe unlabeled examples, we may model them by a single

distribution p1(X) = pθ(X) in (4.5), and treat it as the positive distribution, and treat

p0(X) as the negative distribution. Let ρ be the prior probability that a random example

comes from p1. Then the posterior probability that a random example X comes from p1
is

Pr(1|X) =
1

1 + exp[−(fθ(X) + b)]
, (4.13)

where b = log(ρ/(1− ρ))− logZ(θ), i.e., a logistic regression.

Generalizing [96], [50] developed an introspective learning method for updating the

model by learning a classifier or logistic regression to distinguish between the observed
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Fig. 18. Introspective learning [50]: The discriminative ConvNet
trained on the observed examples versus the synthesized examples
generated by the current model can be used to update the model
and to generate new examples from the updated model.

Fig. 19. Introspective learning [50]. Top row: patches of synthesized
images in the introspective learning process. Bottom row: Left is
the observed image. Right is the synthesized image generated by the
learned model.

{Xi} and the synthesized {X̃i}, and tilt the current model according to the logistic re-

gression. It is also an “analysis by synthesis” scheme as well as an adversarial scheme,

except that the analysis is performed by a classifier. Specifically, let pt(X) be the current
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model. Each iteration of the introspective learning is as follows. The sampling step gen-

erates synthesized examples {X̃i, i = 1, ..., n} from pt(X). The learning step fits a logistic

regression to separate the real examples {Xi, i = 1, ..., n} from the synthesized examples

{X̃i, i = 1, ..., n} to estimate fθ(X) and b. Then we let pt+1(X) = exp(fθ(X))pt(X)/Z,

where logZ = −b. [50, 96] show that pt converges to Pdata if the ConvNet is of infinite

capacity. See Figure 18 for an illustration.

Fig. 20. Introspective learning [50] improves the classification per-
formances, especially if the training dataset is of small or moderate
size.

Numerical experiments in [50] show that the introspective method learns more ac-

curate classifiers than purely discriminative methods in supervised learning, especially

when the size of the training dataset is small or moderate. Figure 20 shows the results.

The introspective learning unifies the discriminative model and the descriptive model

[50,57,62]. Unlike the generative adversarial networks (GAN) [29], the learned classifier

is capable of introspection itself: it can be translated into a descriptive model to generate

synthesized examples, without relying on a separate generative model.

4.5. Generative models. This subsection describes the hierarchical form of the gener-

ative models and the maximum likelihood learning algorithm.

We can generalize the generative model in the previous sections to a hierarchical form

with multiple layers of hidden variables

h → h(L) → ... → h(1) → X, (4.14)

which is a top-down process that transforms h to X. In the linear form of the generative

model in the previous sections, the mapping from h to X is linear. In the hierarchical

version, the mapping from h to X is a ConvNet defined by

h(l−1) = g(l)(W (l)h(l) + b(l)), (4.15)

for l = L + 1, ..., 1, where h(L+1) = h and h(0) = X. g(l) is the non-linear rectification

function such as ReLU that is applied coordinate-wise. Let the resulting ConvNet be

X = gα(h), where α = (W (l), b(l), l = 1, 2, ..., L+ 1).

The top-down generative ConvNet was used by [110] to visualize the bottom-up

ConvNet learned by the discriminative model. It was also used by [21] to learn a genera-

tive model of images of chairs, where the learning is supervised in that for each observed

image of chair, a latent vector h is provided to specify the type of chair (represented by

a one-hot vector) as well as viewpoint and other geometric properties. The top-down

ConvNet can learn accurate mapping from h to X, and the linear interpolation in the

space of h leads to very realistic non-linear interpolation in the space of X.
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The generative model can also be learned in an unsupervised setting where h is un-

known [29, 53, 68, 77, 78]. The model has the following form :

h ∼ N(0, Id); (4.16)

X = gα(h) + ε; ε ∼ N(0, σ2Ip), (4.17)

where h is the d-dimensional hidden vector of latent factors, gα(h) is a top-down ConvNet

that maps the d-dimensional vector h to the p-dimensional signal X, where d ≤ p.

The model (4.17) is a generalization of factor analysis. While independent component

analysis, sparse coding, etc., generalize the prior distribution of factor analysis, the model

(4.16) and (4.17) maintains the simple prior distribution of factor analysis, but generalizes

the linear mapping in factor analysis to non-linear mapping parametrized by the top-

down ConvNet (4.15). Like the word to vector representation [67], the hidden vector h

may capture semantically meaningful information in the signal X.

The joint distribution

log qα(h,X) = log [q(h)qα(X|h)] (4.18)

= − 1

2σ2
‖X − gα(h)‖2 −

1

2
‖h‖2 + const. (4.19)

The marginal distribution qα(X) =
∫
qα(h,X)dh. The posterior distribution of the latent

factors qα(h|X) = qα(h,X)/qα(X) ∝ qα(h,X). Here we use the notation qα to denote

the generative model in order to differentiate it from the descriptive model pθ.

In our recent work [35], we study a maximum likelihood algorithm for learning the

generative model (4.17) without resorting to an assisting network. Specifically, if we

observe a training set of examples {Xi, i = 1, ..., n}, then each Xi has a corresponding

latent hi. We can train the generative model by maximizing the observed-data log-

likelihood L(α) = 1
n

∑n
i=1 log qα(Xi).

The gradient of L(α) can be calculated according to the following identity:

∂

∂α
log qα(X) =

1

qα(X)

∫ [
∂

∂α
log qα(h,X)

]
qα(h,X)dh

= Eqα(h|X)

[
∂

∂α
log qα(X|h)

]
. (4.20)

The expectation with respect to qα(h|X) can be approximated by drawing samples from

qα(h|X) and then computing the Monte Carlo average.

The Langevin dynamics for sampling h from pα(h|X) is

hτ+1 = hτ +
s2

2

[
1

σ2
(X − gα(hτ ))

∂

∂h
gα(hτ )− hτ

]
+ sEτ , (4.21)

where τ denotes the time step, s is the step size, and Eτ ∼ N(0, Id). Again we can add

the Metropolis-Hastings step to correct for the finiteness of s.

We can use the stochastic gradient algorithm of [108] for learning, where in each

iteration, for each Xi, hi is sampled from qα(hi|Xi) by running a finite number of steps of

Langevin dynamics starting from the current value of hi. With the sampled {hi}, we can
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update the parameters α based on the gradient L′(α), whose Monte Carlo approximation

is:

L′(α) ≈ 1

n

n∑
i=1

∂

∂α
log qα(Xi|hi) =

1

n

n∑
i=1

1

σ2
(Xi − gα(hi))

∂

∂α
gα(hi). (4.22)

It is a non-linear regression of Xi on hi. We update α(t+1) = α(t) + ηtL′(α(t)), with

L′(α(t)) computed according to (4.22). ηt is the learning rate. The convergence of this

algorithm follows [108].

Alternating back-propagation: Like the descriptive model, the maximum likelihood

learning of the generative model (4.17) also follows the alternative back-propagation

scheme. The Langevin dynamics for inference needs to compute ∂gα(h)/∂h. The learning

step needs to compute ∂gα(h)/∂α. Both gradients can be computed by back-propagation

and they share the computations of ∂h(l−1)/∂h(l).

Our experiments show that the generative model is quite expressive. We adopt the

structure of the generator network of [21,77], where the top-down ConvNet consists of 5

layers.

Fig. 21. Modeling texture patterns [35]. For each example, Left: the
224× 224 observed image. Right: the 448× 448 generated image.

Figure 21 shows the results of learning from texture images. We learn a separate

model from each texture image. The images are collected from the Internet, and then

resized to 224× 224. The synthesized images are 448 × 448.

The factors h at the top layer form a
√
d×

√
d image, with each pixel following N(0, 1)

independently. The
√
d×

√
d image h is then transformed toX by the top-down ConvNet.

We use d = 72 in the learning stage for all the texture experiments. In order to obtain

the synthesized image, we randomly sample a 14 × 14 h from N(0, I), and then expand

the learned network to generate the 448 × 448 synthesized image gα(h).

The training network is as follows. Starting from 7 × 7 image h, the network has 5

layers of convolution with 5 × 5 kernels, with an up-sampling factor of 2 at each layer.

The number of channels in the first layer is 512, and is decreased by a factor 2 at each

layer. The Langevin steps l = 10 with step size s = .1.

Table 1. Reconstruction errors on testing images, using our method and PCA.

experiment d = 20 d = 60 d = 100 d = 200

Ours .0810 .0617 .0549 .0523

PCA .1038 .0820 .0722 .0621
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Fig. 22. Comparison between [35] and PCA. Row 1: original testing
images. Row 2: reconstructions by PCA eigenvectors learned from
training images. Row 3: reconstructions by the generative model

learned from training images. d = 20 for both methods.

The generative model performs non-linear dimension reduction which can be more

flexible than linear dimension reduction such as principal component analysis (PCA) or

factor analysis. After learning the model from the training images, we can evaluate how

well the learned model can generalize by computing the reconstruction errors on the

testing images. We randomly select 1000 face images for training and 300 images for

testing from CelebA dataset. After learning, we infer the latent factors h for each testing

image using Langevin dynamics, and then reconstruct the testing image by gα(h) using

the inferred h and the learned α. Table 1 shows the reconstruction error (measured by

average per pixel difference relative to the range of the pixel intensities) of our method as

compared to PCA learning for different latent dimensions d. Figure 22 shows some recon-

structed testing images. For PCA, we learn the d eigenvectors from the training images,

and then project the testing images on the learned eigenvectors for reconstruction.

Fig. 23. Face rotation results on testing images [38]. First column:
face image under standard pose (0◦). Second to fifth column: each
pair shows the rotated face by our method (left) and the ground
truth target (right).

In our recent work [38], we generalize the generative model for faces from multiple

poses or views and learn the model from the Multi-PIE database [32]. Let X
(j)
i be the

jth view of the ith subject, for j = 1, ...,m. We can model X
(j)
i = gαj

(hi), where

different views share the same latent vector hi, but they are generated by different gαj
.

We can learn (αj , j = 1, ...,m) using our learning algorithm. This enables us to change

from one view to other views as illustrated by Figure 23.

5. Variational, adversarial and cooperative learning. Both the descriptive

model and the generative model involve intractable integrals. In the descriptive model,

the normalizing constant is intractable. In the generative model, the marginal distribu-

tion of the observed signal is intractable. Consequently, the maximum likelihood learning

algorithms of both models require MCMC sampling such as Langevin dynamics. To learn
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the descriptive model, we need to sample the synthesized examples. To learn the gen-

erative model, we need to sample the latent variables. It is possible to avoid MCMC

sampling by variational and adversarial learning. It is also possible to speed up MCMC

sampling by cooperative learning.

5.1. Variational auto-encoder. This subsection describes the variational learning of

the generative model, where an inference model is learned to replace the MCMC sampling

of the latent variables.

The maximum likelihood learning of the generative model seeks to minimize the di-

vergence KL(Pdata(X)‖qα(X)), where qα(X) =
∫
q(h)qα(X|h)dh is the marginal distri-

bution that is intractable. The variational auto-encoder (VAE) [53, 68, 78] changes the

objective to

min
α

min
φ

KL(Pdata(X)ρφ(h|X)‖q(h)qα(X|h)), (5.1)

where ρφ(h|X) is an analytically tractable approximation to qα(h|X), and is called the

inference model with parameter φ. Compared to the maximum likelihood objective

KL(Pdata(X)‖qα(X)), which is the KL-divergence between the marginal distributions of

X, the VAE objective is the KL-divergence between the joint distributions of (h,X),

i.e., Pdata(X)ρφ(h|X) and qα(h,X) = q(h)qα(X|h), which is tractable because it does

not involve the marginal qα(X). The VAE objective is an upper bound of the maximum

likelihood objective

KL(Pdata(X)ρφ(h|X)‖qα(h,X)) = KL(Pdata(X)‖qα(X)) + KL(ρφ(h|X)‖qα(h|X)). (5.2)

The accuracy of the VAE objective as an approximation to the maximum likelihood

objective depends on the accuracy of the inference model ρφ(h|X) as an approximation

to the true posterior distribution qα(h|X).

For simplicity and slightly abusing the notation, write Pdata(h,X) = Pdata(X)ρφ(h|X),

where Pdata here is understood as the distribution of the complete data (h,X), with h

imputed by ρφ(h|X), and Q(h,X) = q(h)qα(X|h). The VAE is

min
α

min
φ

KL(Pdata‖Q). (5.3)

We can think of VAE from the perspective of alternating projection. (1) Fix α, find φ by

minimizing KL(Pdata‖Q). This is to project the current Q onto the family of Pdata. (2)

Fix φ, find α by minimizing KL(Pdata‖Q). This is to project the current Pdata onto the

family of Q. Compared to the EM algorithm, projection (1) corresponds to the E-step to

impute the missing data in the form of ρφ(h|X), and projection (2) corresponds to the

M-step to fit the complete model q(h)qα(X|h). The basic idea is illustrated by Figure

24.

The problem (5.1) is equivalent to maximizing

EPdata

[
Eφ[log qα(h,X)] + entropy(ρφ(h|X))

]
(5.4)

= EPdata

[
Eφ[log qα(X|h)]−KL(ρφ(h|X)‖q(h))

]
, (5.5)

where Eφ denotes the expectation with respect to ρφ(h|X), and EPdata
can be computed

by averaging over the training examples. In (5.4) and (5.5), we have qα(h,X) and

qα(X|h), as a result of merging qα(X) and qα(h|X) in (5.2), and both qα(h,X) and
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Fig. 24. VAE as alternating projection, where the straight lines il-
lustrate the families of Pdata and Q, respectively, and each point is
a distribution parametrized by φ or α.

qα(X|h) are computationally tractable. If ρφ(h|X) = qα(h|X), then maximizing (5.4)

with respect to α becomes the EM algorithm.

One popular choice of ρφ(h|X) is N(μφ(X), σ2
φ(X)), where both μφ(X) and σ2

φ(X)

can be represented by bottom-up neural networks with parameter φ.

Fig. 25. Top Row: training images with landmarks. Bottom Row:
synthesized images generated by the learned AAM model [37].

In our recent work [37], we show that VAE can replicate the active appearance model

(AAM) [11]. Our experiments were inspired by a recent paper [7] that studied neurons

in the middle lateral (ML) / middle fundus (MF) and anterior medial (AM) areas of

the primate brain that are responsible for face recognition. Specifically, [7] recorded

how these neurons respond to face stimuli generated by a pre-trained AAM model. We

show that the observed properties of neurons’ responses can be qualitatively replicated

by VAE. The AAM model has an explicit shape representation in the form of landmarks,

where the landmarks follow a shape model learned by principal component analysis. The

faces can be aligned based on the landmarks, and the aligned faces follow an appearance

model learned by another principal component analysis. The learning of the shape and

appearance models requires the landmarks in the training data. Figure 25 shows examples

of face images to train AAM, and the synthesized face images from the trained AAM.

After learning the AAM model, we generate 20, 000 face images from the learned

model. We then learn a VAE model from these images without the landmarks. Figure

26 displays test images generated by the AAMmodel, their corresponding reconstructions

by the learned VAE model, and the synthesized images generated by the learned VAE

model.

In [7] the authors show that the responses from face patches ML/MF and AM have a

strong linear relationship with the shape and appearance variables in the original AAM

model, where the responses of some neurons are highly correlated with the shape variables

while the responses of other neurons are highly correlated with the appearance variables.

In fact, one can further recover the original face images from the responses of these

neurons, by linearly transforming the neurons’ responses to the shape and appearance



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

THREE FAMILIES OF MODELS 453

Fig. 26. Replicating AAM by VAE [37]. Left: test faces gener-
ated by AAM. Middle: reconstructed faces by the learned generative
model. Right: synthesized images generated by the learned genera-
tive model.

variables of the AAM, and then generating the image by the AAM variables. Apparently

the neurons’ responses form a code of the input face image that captures both the shape

and appearance information of the input image. We show that the code learned by VAE,

i.e., μφ(X), has a very strong linear relationship with the shape and appearance variables

in AAM that generates X. The R2 measure is over 96%. The biological observations

found by [7] can be qualitatively reproduced by VAE. Even though the AAM model

is highly non-linear due to shape deformation, the generative model has no difficulty

replicating the AAM model without the supervision in the form of landmarks on the

faces.

5.2. Adversarial contrastive divergence. This subsection describes the adversarial

learning of the descriptive model, where a generative model is learned to replace the

MCMC sampling of the descriptive model.

The maximum likelihood learning of the descriptive model seeks to minimize the di-

vergence KL(Pdata(X)‖pθ(X)), where the normalizing constant Z(θ) in pθ is intractable.

Recently [52] and [14] proposed to train the descriptive model pθ and the generative

model qα jointly, which amounts to modifying the objective to

min
θ

max
α

[KL(Pdata(X)‖pθ(X))−KL(qα(X)‖pθ(X))]. (5.6)

See Figure 27 for an illustration. By maximizing over α, we minimize KL(qα(X)‖pθ(X)),

so that the objective function in (5.6) is a good approximation to KL(Pdata‖pθ). Because
of the minimax nature of the objective, the learning is adversarial, where θ and α play a

minimax game. While the generative model seeks to get close to the descriptive model,

the descriptive model seeks to get close to the data distribution and to get away from

the generative model. That is, the descriptive model can be considered a critic of the

generative model by comparing it to the data distribution.

The objective (5.6) contrasts interestingly with the objective for variational learning in

(5.2). In the variational objective, we upper bound KL(Pdata‖qα) by adding another KL-

divergence, so that we minimize over both α and φ. However, in the adversarial objective

(5.6), we lower bound KL(Pdata‖pθ) by subtracting from it another KL-divergence, hence
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Fig. 27. Adversarial contrastive divergence. The straight lines illus-
trate the families of the descriptive and generative models, and each
point is a probability distribution. The generative model seeks to ap-
proximate the descriptive model, while the descriptive model seeks
to get close to the data distribution in contrast to the generative
model.

we need to find its saddle point. Thus the sign in front of the second KL-divergence

determines whether it is variational learning or adversarial learning.

The adversarial objective (5.6) is also a form of contrastive divergence, except that

the synthesized examples are provided by the generative model qα directly, instead of

being obtained by running a finite-step MCMC from the observed examples. We may

call (5.6) the adversarial contrastive divergence. It is equivalent to

min
θ

max
α

[EPdata
[Uθ(X)]− Eθ[Uθ(X)] + entropy(qα)] , (5.7)

which is the form proposed by [14]. In this form, the logZ(θ) term is canceled out, so

that we do not have to deal with this intractable term.

However, the entropy term entropy(qα) or the second KL-divergence in (5.6) is not in

closed form, and still needs approximation. We can again use the variational approach

to approximate KL(qα(X)‖pθ(X)) by

KL(qα(X)‖pθ(X)) + KL(qα(h|X)‖ρφ(h|X)) = KL(qα(h,X)‖pθ(X)ρφ(h|X)), (5.8)

where ρφ(h|X) is again a learned inference model. This leads to the method used by [14].

Again we only need to deal with the tractable joint model qα(h,X). Thus the learning

problem becomes

min
θ

max
α

max
φ

[KL(Pdata(X)‖pθ(X))−KL(qα(h,X)‖pθ(X)ρφ(h|X))]. (5.9)

There are three networks that need to be learned, including the descriptive model pθ, the

generative model qα, and the inference model ρφ. Write Pdata(h,X) = Pdata(X)ρφ(h|X),

Q(h,X) = q(h)qα(X|h), and P (h,X) = pθ(X)ρφ(h|X). The above objective is

min
θ

max
α

max
φ

[KL(Pdata‖P )−KL(Q‖P )]. (5.10)

Compared to the variational learning in (5.2), ρφ(h|X) appears on the left side of

KL-divergence in (5.2), but it appears on the right side of KL-divergence in (5.9). The

learning of ρφ(h|X) is from the synthesized data generated by qα(h,X) instead of real

data. This is similar to the sleep phase of the wake-sleep algorithm [41].

We train the three nets on the down-sampled 32x32 imageNet dataset [18] (roughly

1 million images). For the generative model, starting from the latent vector h of 100

dimensions, we use 5 layers of kernels of stride 2, where the sizes of kernels of the first 4
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Fig. 28. Learning the models from the ImageNet dataset. Left: ran-
dom samples of training examples. Right: synthesized examples gen-
erated by the learned generative model.

layers are 4× 4, and the size of the kernels of the bottom layer is 3× 3. The numbers of

channels at these layers are 512, 512, 256, 128, 3, respectively. Each layer is followed by

batch normalization and ReLU non-linearity, except the last layer where tanh is used.

For the inference model, we use the mirror structure as the generative model. We build

the last layer separately to model the posterior mean and variance. For the descriptive

model, we use the same structure as the inference net.

Figure 28 displays the learning results, where the left panel shows randomly selected

training examples and the right panel shows the random examples generated by the

learned generative model.

Another possibility of adversarial contrastive divergence learning is to learn a joint

energy-based model pθ(h,X) by

min
θ

min
φ

max
α

[KL(Pdata(X)ρφ(h|X)‖pθ(h,X))−KL(q(h)qα(X|h)‖pθ(h,X))]. (5.11)

5.3. Integrating variational and adversarial learning. We can integrate or unify the

variational and adversarial learning methods.

Fig. 29. Divergence triangle [36]. The generative model seeks to get
close to the data distribution as well as the descriptive model. The
descriptive model seeks to get close to the data distribution and get
away from the generative model.

Following the notation of previous subsections, write Pdata(h,X) = Pdata(X)ρφ(h|X),

P (h,X) = pθ(X)ρφ(h|X), and Q(h,X) = q(h)qα(X|h). It has been noticed by the
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recent work [36] that the variational objective KL(Pdata‖Q) and the adversarial objective

KL(Pdata‖P )−KL(Q‖P ) can be combined into

max
θ

min
α

min
φ

[KL(Pdata‖Q) + KL(Q‖P )−KL(Pdata‖P )], (5.12)

which is in the form of a triangle formed by Pdata, P , and Q. See Figure 29 for an

illustration. As shown by [36], one can learn the descriptive model, the generative model,

and the inference model jointly using the above objective.

Fig. 30. Learning the models from CelebA dataset [36]. From left to
right: original images, reconstructed images, and generated images.

Figure 30 displays an example in [36] where the models are learned from the CelebA

dataset. The left panel shows some random training examples, the middle panel shows

the corresponding reconstructed examples by the learned inference model, and the right

panel shows some examples generated by the learned generative model.

5.4. Cooperative learning. This subsection describes the cooperative training of the

descriptive and generative models which jumpstart each other’s MCMC sampling.

We can learn the descriptive model and the generative model separately, and we

have been able to scale up the learning to big datasets. However, the separate learning

algorithms can still be slow due to MCMC sampling. Recently we discovered that we can

speed up the learning of the two models by coupling the two maximum likelihood learning

algorithms into a cooperative algorithm that we call the CoopNets algorithm [104,105].

It is based on the following two key observations. (1) The generative model can generate

examples directly, so we can use it as an approximate sampler of the descriptive model.

(2) The generative model can be learned more easily if the latent factors are known,

which is the case with the synthesized examples.

Generative model as a sampler. The generative model can serve as an approximate

sampler of the descriptive model. To sample from the descriptive model, we can initialize

the synthesized examples by generating examples from the generative model. We first

generate ĥi ∼ N(0, Id), and then generate X̂i = g(ĥi;α)+εi, for i = 1, ..., ñ. If the current

generative model qα is close to the current descriptive model pθ, then the generated {X̂i}
should be a good initialization for sampling from the descriptive model, i.e., starting from

the {X̂i, i = 1, ..., ñ}, we run Langevin dynamics for l steps to get {X̃i, i = 1, ..., ñ}, which
are revised versions of {X̂i}. These {X̃i} can be used as the synthesized examples from
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the descriptive model. We can then update θ in the same way as we learn the descriptive

model.

MCMC teaching. The descriptive model can teach the generative model via MCMC.

In order to update α of the generative model, we treat the {X̃i, i = 1, ..., ñ} produced

by the above procedure as the training data for the generative model. Since these {X̃i}
are obtained by the Langevin dynamics initialized from {X̂i, i = 1, ..., ñ}, which are

generated by the generative model with known latent factors {ĥi, i = 1, ..., ñ}, we can

update α by learning from {(ĥi, X̃i), i = 1, ..., ñ}, which is a supervised learning problem,

or more specifically, a non-linear regression of X̃i on ĥi. At α(t), the latent vector ĥi

generates and thus reconstructs the initial example X̂i. After updating α, we want ĥi to

reconstruct the revised example X̃i. That is, we revise α to absorb the MCMC transition

from X̂i to X̃i for sampling the descriptive model, so that the generative model shifts its

density from {X̂i} to {X̃i}. The left diagram in (5.13) illustrates the basic idea.

ĥi

X̂i X̃i

α(t) α(t+1)

θ(t)

ĥi h̃i

X̂i X̃i

α(t)

α(t) α(t+1)

θ(t) (5.13)

In the two diagrams in (5.13), the double-line arrows indicate generation and reconstruc-

tion by the generative model, while the dashed-line arrows indicate Langevin dynamics

for MCMC sampling and inference in the two models. The diagram on the right in

(5.13) illustrates a more rigorous method, where we initialize the Langevin inference of

{hi, i = 1, ..., ñ} from {ĥi}, and then update α based on {(h̃i, X̃i), i = 1, ..., ñ}. The

diagram on the right shows how the two models jumpstart each other’s MCMC.

The learning of the descriptive model is based on the modified contrastive divergence,

KL(Pdata‖pθ)−KL(Mθqα‖pθ), (5.14)

where qα provides the initialization of the finite-step MCMC, whose transition kernel

is denoted Mθ, and Mθqα denotes the marginal distribution obtained after running Mθ

from qα. The learning of the generative model is based on how Mθqα modifies qα, and is

accomplished by minqα KL(Mθqα(t)‖qα). In the idealized case of infinite capacity of qα so

that the KL-divergence can be minimized to zero, the learned qα will satisfy qα = Mθqα,

i.e., qα is the stationary distribution of Mθ. But the stationary distribution of Mθ is

nothing but pθ. Thus the learned qα will be the same as qθ. Then the second KL-

divergence in (5.14) will become zero, and the learning of the descriptive model is to

minimize KL(Pdata‖pθ), which is maximum likelihood.

We conduct experiments on learning from Imagenet dataset [18]. We adopt a 4-

layer descriptive model and a 5-layer generative model. We set the number of Langevin

dynamics steps in each learning iteration to l = 10. The number of learning iterations is

1, 000. After learning the models, we synthesize images using the learned models.

In our first experiment, we learn from images that are randomly sampled from 10

Imagenet scene categories. The number of images sampled from each category is 1100.
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Fig. 31. Cooperative learning [104,105]. The training set consists of
11,000 images (64 × 64) randomly sampled from 10 Imagenet scene
categories. Left panel: random samples of training images. Right
panel: random samples generated by the learned models.

We mix the images from all the categories as a single training set. Figure 31 displays

the observed examples randomly sampled from the training set, and the synthesized

examples generated by the CoopNets algorithm.

Figure 32 shows 4 examples of interpolating between latent vectors h. For each row,

the images at the two ends are generated by h vectors randomly sampled from N(0, Id).

Each image in the middle is obtained by first interpolating the h vectors of the two

end images, and then generating the image using the learned models. This experiment

shows that we learn the smooth generative model that traces the manifold of the data

distribution.

Fig. 32. Cooperative learning [104, 105]. Interpolation between la-
tent vectors of the images on the two ends.

We evaluate the synthesis quality by the Inception score [85]. Our method is compet-

itive to DCGAN [77], EBGAN [111], Wasserstein GAN [3], InfoGAN [9], VAE [53], the

method of [52].

Compared to the three nets in [14], the cooperative learning method only needs two

nets. Moreover, the finite-step MCMC serves to bridge the generative model and the

descriptive model, so that the synthesized examples are closer to fair samples from the

descriptive model.

6. Discussion. To summarize the relationships between the non-hierarchical linear

forms and the hierarchical non-linear forms of the three families of models, the non-

hierarchical form has one layer of features or hidden variables, and they are designed.
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The hierarchical form has multiple layers of features or hidden variables, and all the

layers are learned from the data.

Fig. 33. The connections between the three families of models. The
discriminative and the generative models are connected by the gen-
erative adversarial networks (GAN). The discriminative and the de-
scriptive models are connected by the introspective neural networks
(INN). The descriptive and the generative models are connected by
cooperative learning.

To summarize the relationships between the three families of models, we have the

following connections:

(1) The discriminative model and the descriptive model can be translated into each

other by the Bayes rule. The introspective learning method unifies the two

models.

(2) The descriptive model and the generative model can be learned together by

adversarial contrastive divergence or the cooperative learning method via MCMC

teaching.

(3) The discriminative model and the generative model can be learned together by

adversarial training.

See Figure 33 for an illustration.

Besides the models reviewed in this paper, there are other probabilistic models, such as

the deep Boltzmann machine [42, 61, 84], which is an energy-based model with multiple

layers of latent variables, auto-regressive models [74], the deep generalizations of the

independent component analysis model [19, 20].

In the cooperative learning, the descriptive model and the generative model are

parametrized by separate networks. It is more desirable to integrate the two classes

of models within a common network.

The existing models are still quite far from what Grenander might have searched for, in

that they are still more or less black box models with ConvNet parametrizations. A more

interpretable model is the And-Or graph [116], which alternates between layers of And

nodes and Or nodes. An And node models the composition of parts, while an Or node

models the alternative choices of parts according to a certain probability distribution.

Such an And-Or grammar can generalize to unseen patterns by reconfiguration of parts.

In fact the neural network can be interpreted as a dense version of And-Or graph in that

the linear weighted sum can be interpreted as And nodes and the rectification and max

pooling can be interpreted as Or nodes. Figure 34 shows an example of And-Or template

of animal faces [88].
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Fig. 34. And-Or template [88] for modeling recursive compositions
of alternative parts: Each And node (blue circle) is a composition of
some Or nodes. Each Or node (blank circle) is a probability distri-
bution over some And nodes. An And node models the composition
of parts. An Or node models the alternative choices of each part.

Fig. 35. Hierarchical representation of patterns, with simple gener-
ative and descriptive models for textons and textures at the lower
layers, the stochastic grammar in the middle layers, and logic rea-
soning with common sense at the higher layers.

Ideally, as illustrated by Figure 35, we should have simple descriptive and generative

models at the lowest layers, with the descriptive models accounting for high-dimensional

or high entropy patterns such as stochastic textures, and the generative models account-

ing for low-dimensional or low entropy patterns such as textons. In the middle layers we

should have stochastic grammars to define the explicit compositional patterns of objects
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and their parts, as well as their relations [27, 116]. At the top layer, we should have

logical reasoning based on the learned common sense about physics, funtionality, and

causality. It is our hope that a unified model of this form can be developed in the future.
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