
Representation Learning: A Statistical Perspective
Jianwen Xie1, Ruiqi Gao2, Erik Nijkamp2, Song-Chun Zhu2, and Ying Nian Wu2

1Hikvision Research Institute, 2UCLA Department of Statistics

Abstract
Learning representations of data is an important problem in statistics and machine learning. While the

origin of learning representations can be traced back to factor analysis and multi-dimensional scaling in
statistics, it has become a central theme in deep learning with important applications in computer vision and
computational neuroscience. In this article, we shall review recent advances in learning representations from
a statistical perspective. In particular, we will review the following two themes. (1) Unsupervised learning
of vector representations. (2) Learning of both vector and matrix representations.

Key words: unsupervised learning, generative representations, relative representations, predictive repre-
sentations, vector representations, matrix representations.

1 Introduction

Statistics is about understanding data. If the input data are complex, it is desirable to find representations
for the data so that they become easier to understand and process. In this article, we shall review learning
representations of data with various models, including models with linear structures and models that are
based on deep neural networks.

1.1 Prototypes of learning representations in statistics

Although representation learning is a central theme in deep learning, it’s essence can be traced back to
familiar examples in statistics.

1.1.1 Factor analysis — generative representation

One prototypical example of learning representations in statistics is factor analysis (Rubin and Thayer,
1982). Here, multivariate observations (e.g., test scores on different subjects) are explained by latent factors
(e.g., verbal and analytical intelligence). Let h be a d-dimensional hidden vector that consists of d latent
factors. Let x be the observed D-dimensional vector. Usually d < D. Then, the model is of the form
x = Wh+ ε , where W is the D× d loading matrix that transforms h to x. It is assumed that h ∼ N(0, Id),
where Id denotes the d-dimensional identity matrix, and ε ∼ N(0,σ2ID), which is independent of h. This
model can be learned by maximum likelihood via the EM algorithm (Dempster et al., 1977) where the E-step
is based on the posterior distribution of h given x.

h is said to be a vector representation of x, which is also called a code. The mapping from h to x is called
a decoder, while the mapping from x to h is called an encoder. Both can be formally written as conditional
distributions. While the decoder p(x|h) and the prior p(h) define a top-down generative model, the encoder
p(h|x) defines an inference model.

Factor analysis is related to principal component analysis, where W is obtained by the first d eigenvectors
of the covariance matrix Cov(x). The factor analysis model can be generalized to independent component
analysis (Hyvärinen et al., 2004), sparse coding (Olshausen and Field, 1997), non-negative matrix factor-
ization (Lee and Seung, 2001), recommender system (Koren et al., 2009), restricted Boltzmann machine
(Hinton, 2012), etc., by modifying the prior distribution or prior assumption on h. If we generalize the
linear mapping from h to x to a non-linear mapping parametrized by a deep network (LeCun et al., 1998;

1

Krizhevsky et al., 2012), then the resulting model becomes what is commonly called generator network
(Goodfellow et al., 2014; Kingma and Welling, 2014).

Factor analysis is an example of what we may call “generative representation”, where the hidden vector
h generates the observed vector x.

1.1.2 Multi-dimensional scaling — relative representation

The other prototypical example of learning representation in statistics is multi-dimensional scaling (Kruskal,
1964). Let (xi, i = 1, ...,n) be a set of D-dimensional observations. We want to represent them by a corre-
sponding set of d-dimensional hidden vectors (hi, i = 1, ...,n), so that (hi) preserve the relations such as
distances between (xi). For instance, we may find (hi) by minimizing ∑i 6= j(‖hi− h j‖−‖xi− x j‖)2, which
enforces global isometry.

Again h is said to be a vector representation of x, which is also called an embedding of x. Unlike factor
analysis, there is no explicit mapping (encoding or decoding) between h and x.

Various modifications of multi-dimensional scaling focus on preserving local adjacency or neighbor-
hood relations between (xi), such as spectral embedding (Bengio et al., 2004), tSNE (t stochastic neighbor
embedding) (Maaten and Hinton, 2008), local linear embedding (Roweis and Saul, 2000), etc.

Multi-dimensional scaling is an example of what we may call “relative representation”, where the hidden
vectors {hi} are to preserve the relations between the observed vectors {xi}.

1.1.3 Sliced inverse regression — predictive representation

The third prototypical example of learning representation in statistics is sliced inverse regression (Li, 1991).
It learns a non-linear regression model from the training examples {(xi,yi)}, where xi is D-dimensional
continuous predictor vector, and yi is one-dimensional continuous outcome. The sliced inverse regression
model assumes a d-dimensional hidden vector hi = Wxi, where W is d×D, so that yi = f (hi,εi) where εi

are iid noises.
Assuming (xi,yi) ∼ p(x,y), and assuming E(x) = 0, and Cov(x) = ID under p(x,y) (which can be

achieved by standardizing x). Then under mild conditions, W can be obtained by the top d eigenvectors
of Cov[E(x|y)], where E(x|y) can be obtained by dividing the range of y into slices, and E(x|y) is the inverse
regression. W can be obtained without knowledge of the non-linear link function f . We may call h =Wx as
encoding, and y = f (h,ε) as decoding.

Sliced inverse regression is an example of what we may call “predictive representation”, where the
hidden vector hi contains all the information of xi for predicting yi, i.e., hi is a sufficient summary of xi as
far as predicting yi is concerned.

1.2 Unsupervised, supervised and reinforcement learning

Sliced inverse regression is a supervised learning problem where for each input xi, an output yi is given as
supervision. Factor analysis and multi-dimensional scaling are unsupervised learning problems where only
xi are observed without yi. Learning representations is of fundamental importance for both supervised and
unsupervised learning. In this paper, we shall focus on unsupervised learning.

Another learning problem that lies in between supervised and unsupervised learning is reinforcement
learning (Sutton and Barto, 1998), where the input x is the state, and the output y is the action. In training,
the optimal y is not directly given, but a reward for an action is provided. For this problem, learning a good
representation of state x is important for learning value and policy functions that are defined on the state.

2

1.3 Plan for the remainder of the paper

Section 2 reviews vector representations based on linear models. We first review a generalization of the
factor analysis model in which the hidden vector is assumed to be sparse (or have independent components)
in the generative representation scheme. We then review continuous vector representations of discrete data,
in predictive and relative representation schemes. Section 3 reviews the learning of both vector and matrix
representations in a relative representation scheme. Section 4 reviews the learning of non-linear vector rep-
resentation based on the generator model, which generalizes linear mapping in the factor analysis model to
non-linear mapping parameterized by deep neural network. Section 5 reviews the joint learning of genera-
tor model and various complementary models. Section 6 reviews the learning of the conditional generator
model.

2 Learning vector representations

In this section, we shall review learning vector representations of data using models that generalize the factor
analysis model.

2.1 Sparse vector representation

(a) (b)

Figure 1: (a) Primary visual cortex or V1 is the first step in representing retina image data. (b) Cells in V1 respond to
bars of different locations, orientations and sizes.

Figure 2: Olshausen-Field sparse coding model. The plot displays the 144 learned basis vectors, each displayed as
an image patch (orders of the patches carry no meaning). These basis vectors represent local image structures such as
edges and bars. The training data were obtained by extracting 12× 12 image patches at random from ten 512× 512
images of natural scenes (trees, rocks, mountains etc.).

3

David Hubel and Torsten Wiesel earned the Nobel Prize for Physiology or Medicine in 1981 for their
discovery of simple and complex cells in the primary visual cortex or V1 (Hubel and Wiesel, 1959). Figure
1 (a) illustrates the V1 area. Hubel and Wiesel discovered that cells in V1 of the cat brain responded to
bars of different locations, orientations and sizes, and each cell responded to the bar at a particular location,
orientation and scale. See Figure 1 (b). Some V1 cells are called simple cells, which behave like linear
wavelets. A mathematical model of a simple cell is Gabor wavelet, which is sine or cosine plane wave
multiplied by an elongate Gaussian function.

Olshausen and Field (Olshausen and Field, 1997) proposed a sparse coding model for the V1 simple
cells by generalizing the factor analysis model. Recall in factor analysis,

x =Wh+ ε =
d

∑
k=1

Wkhk + ε, (1)

where Wk is the k-th column of W and is of the same dimensionality as x, and hk is the k-th element of h.
The above model expresses x as a linear superposition of the basis vectors Wk, with hk being the coefficients.

Unlike factor analysis, in the sparse coding model, the dimensionality of h, i.e., d, is assumed to be
larger than the dimensionality of x, which is D, i.e., d > D. However, h is assumed to be a sparse vector, i.e.,
for each x, only a small number d0 (d0 < D < d) of hk are non-zero or significantly different from zero. For
different x, the non-zero elements of h can be different. Thus unlike principal component analysis, sparse
coding leads to adaptive dimension reduction. W = (Wk,k = 1, ...,d) is sometimes called a “dictionary”,
from which a small number of “words” are chosen to describe x. h is called a sparse code of x.

The training data are in the form of image patches sampled from natural images, {xi, i = 1, ...,n}, where
each xi is a training example of image patch. Each xi is represented by an hi = (hik,k = 1, ...,d), but all
the examples share the same W , where each Wk has the same dimensionality as xi, so that xi = Whi + εi =

∑
d
k=1Wkhik + εi. The learning of W can be accomplished by minimizing the following objective function

L(W,{hi}) =
1
n

n

∑
i=1

[
‖xi−Whi‖2 +

d

∑
k=1

ρ(hik)

]
, (2)

where ρ(hik) is a sparsity inducing term, e.g., ρ(rik) = |rik|, which leads to the Lasso estimator (Tibshirani,
1996) of hi. The minimization can be accomplished by alternating gradient descent over W and {hi}.
Figure 2 displays the learned (Wk), where each Wk is displayed as an image patch of the same size as
xi. The basis vectors (Wk) represent local image structures such as bars and edges.

Given W , the inference of hi from each xi can be accomplished by the Lasso, where (Wk) serve as
variables or regressors. Compared to the Lasso, the sparse coding has an added layer of depth in that W (i.e.,
the regressors) is to be learned from the training data. The sparse coding model has had a profound impact
on computational neuroscience and applied harmonic analysis, in addition to machine learning.

A related model is independent component analysis (Bell and Sejnowski, 1997; Hyvärinen et al., 2004),
which assumes that D = d, ε = 0, and hk are independent. It assumes an invertible transformation x =Wh,
and h = W−1x, so that the distribution of x can be obtained in closed form from the prior distribution of
h: p(x) = p0(W−1x)|W |−1, where p0(h) is the prior distribution of h, and |W | is the absolute value of the
determinant of W .

Other related models include non-negative matrix factorization (Lee and Seung, 2001), which assumes
hk ≥ 0, and restricted Boltzmann machine (Hinton, 2012), which assumes a binary h, and a joint distribution
p(x,h) ∝ exp(−x>Wh) (where we omit bias terms for simplicity), which is an energy-based model on (x,h)
with pairwise potentials defined on (x,h). For this model, both the decoder p(x|h) and the encoder p(h|x)
are in closed form. But the prior distribution p(h) is not in closed form.

4

2.2 Continuous vector representation of discrete or symbolic input

The vector representation h of the original input x can be considered a dimension reduction of x, or visual-
ization of x if h is 2-dimensional (d = 2). The input x is usually continuous.

The input x can also be discrete, such as a word in the dictionary. In that case, x can be expressed as a
one-hot vector. Let D be the number of words in the dictionary. If x is the j-th word in the dictionary, then x
is a D-dimensional vector so that the j-th element of x is 1 and all the other elements are 0’s. We represent
x by a d-dimensional continuous hidden vector h. We can write h = Wx, where W is a d×D dimensional
encoding matrix, so that the j-th word is represented by the j-th column of the encoding matrix W . h is
called a semantic embedding or word2vec (Mikolov et al., 2013; Pennington et al., 2014). In (Mikolov
et al., 2013), h is learned to predict nearby words, i.e., it is a predictive representation. Specifically, for
a particular word y, again expressed as a one-hot vector, in the context of word x in a random sentence,
we predict this word y based on the decoded vector W̃>h, where W̃ is the d×D decoding matrix of the
same dimensionality as the encoding matrix W , so that p(y) ∝ exp(y>W̃>h). More specifically, let Qi j be
the probability that word j is within the context of word i, then Qi j = exp(〈Wi,W̃j〉)/∑ j exp(〈Wi,W̃j〉), the
so-called soft-max classifier, where Wi is the i-th column of W , i.e., the vector representation of word i in
the encoding pass, and W̃j is the j-th column of W̃ , i.e., the vector representation of word j in the decoding
pass.

In (Pennington et al., 2014), h =Wx is learned as a relative representation so that for two words i and j,
logQi j = 〈Wi,W̃j〉+bi + b̃ j, where bi and b̃ j are bias terms.

The above form is similar to matrix factorization in recommender system (Koren et al., 2009). Let Xi j

be the rating of user i on item j, the model is Xi j = 〈Wi,W̃j〉+bi + b̃ j, where Wi is the vector representation
of user i, and W̃j is the vector representation of item j, and bi and b̃ j are the bias terms. The elements of the
d-dimensional vector Wi can be interpreted as the desires of user i in various aspects, and the elements of
the d-dimensional W̃j can be interpreted as the desirabilities of item j in the corresponding aspects. In terms
of matrix, let X be the n×D matrix of ratings where n is the number of users and D is the number of items.
Then X = W>W̃ , where W is the d× n matrix whose i-th column is Wi, and W̃ is the d×D matrix whose
j-th column is W̃j.

For discrete x such as a word, the vector representation h is continuous, dense, and distributed, where
each component of h captures partial semantic meaning of x. Such dense vector representations have revo-
lutionized the natural language processing in recent years, and they are at the foundation of recent natural
language models (Vaswani et al., 2017; Radford et al., 2018; Devlin et al., 2019).

The vector representation has also been applied to encode the nodes in graphs (Hamilton et al., 2017),
which can be conveniently used for subsequent analysis (Kipf and Welling, 2016).

In (Gómez-Bombarelli et al., 2018), each molecular compound, which is a graph structure, is represented
by a continuous vector, which can be used to learn to predict the chemical activity of the compound. One can
also optimize the activity by maximizing over the continuous vector using gradient-based method, and the
optimized vector can then generate the corresponding compound. Such continuous representation is much
more convenient to operate on than the original discrete input.

3 Learning both vector and matrix representations

This section reviews recent work on learning models based on vector and matrix representations. The
representations are of a relative nature, similar to multi-dimensional scaling. The matrices represent the
relations between the vectors, and can be part of a relative representation. An early example is (Paccanaro
and Hinton, 2001).

In terms of computational neuroscience, the vector representations can be interpreted as neuron activi-
ties, and the matrix representations can be stored in the synaptic connections. The vector representations are

5

like “nouns”, while the matrix representations are like “verbs” that transform the “nouns”.
Matrix representations of groups underlie much of modern mathematics (Dornhoff, 1972) and hold the

key to modern physics (Zee, 2016).

3.1 Learning grid cells

You may imagine moving in your living room at night in the dark. Purely based on the movements or
self-motion, you know the current position by summing up the displacements. The grid cells in our brain
accomplish this computation, albeit in a very sophisticated manner.

3.1.1 Hexagon patterns

(a) (b) (c) (d)

Figure 3: Place cells and grid cells. (a) The rat is moving within a square region. (b) The activity of a neuron is
recorded. (c) When the rat moves around (the curve is the trajectory), each place cell fires at a particular location, but
each grid cell fires at multiple locations that form a hexagon grid. (d) The place cells and grid cells exist in the brains
of both rat and human.

Figure 3 (a) depicts Dr. May-Britt Moser, who together with Dr. Edvard Moser, won the 2014 Nobel
Prize for Physiology or Medicine, for their discovery of the grid cells (Hafting et al., 2005) in 2005. Their
thesis advisor, Dr. John O’keefe, shared the prize for his discovery of the place cells (O’Keefe, 1979). Both
the place and grid cells are used for navigation. The discoveries of these cells were made by recording the
activities of the neurons of a rat when it moves within a square region. See Figure 3 (b). Some neurons in
the Hippocampus area are place cells. Each place cell fires when the rat moves to a particular location, and
different place cells fire at different locations. The whole collection of place cells cover the whole square
region. The discovery of grid cells was much more surprising and unexpected. The grid cells exist in the
Entorphinal cortex. Each grid cell fires at multiple locations, and these locations form a regular hexagon
grid. See Figure 3 (c). The grid cells have been identified across many mammalian species, including
human. See Figure 3 (d).

3.1.2 A simple addition problem

There are two problems in navigation. One is path integral. Imagine you walk in your living room at night.
If you know the position of your starting point, then by summing over your displacements over time, you
can calculate where you are at any time. The other problem is path planning. Suppose you want to go to a
target position such as the light switch, which is a position that you know, then you can plan a sequence of
displacements that will lead you from the starting point to the target.

More specifically, consider an agent (e.g., a rat or a human) navigating within a domain D= [0,1]× [0,1].
We can discretize D into an N×N lattice. Let x = (x(1),x(2)) ∈ D be the self-position of the agent. Let
∆x = (∆x(1),∆x(2)) be the displacement or self-motion of the agent at a certain time. The path integral
problem is such that, given the starting point x0, and the sequence of self-displacements (∆xt , t = 1, ...,T),
we want to calculate the positions over time with xt = xt−1+∆xt for t = 1, ...,T . The path planning problem is

6

such that given the starting position x and the target position y, we want to plan a sequence of displacements
(∆xt , t = 1, ...,T), such that x0 = x and xT = y.

Both problems appear to be quite simple, especially path integral, which is merely an addition problem.
But the brain uses a system of grid cells to solve this problem. What is the purpose of this system and how
does this system work? Why the hexagon patterns?

3.1.3 A representational scheme

Recently Gao et al. (2018b) proposed an explanation of grid cells as a representational system. The basic
idea is that the grid cells form a d-dimensional vector representation of the 2D position. Specifically, for any
2D position x ∈ D, we represent it by a d-dimensional vector h(x). Suppose at a position x, the self-motion
or displacement is ∆x, so that the agent moves to x+∆x after one step. We assume the following motion
model:

h(x+∆x) = M(∆x)h(x), (3)

where M(∆x) is a d×d matrix that depends on ∆x. While h(x) is the vector representation of the self-position
x, M(∆x) is the matrix representation of the self-motion ∆x. As we will show below, ‖h(x)‖ = 1 for all x,
thus M(∆x) is a rotation matrix, and the self-motion in 2D is represented by a rotation in the d-dimensional
sphere. We can illustrate the motion model by the following diagram:

xt
+∆x
−−−−→ xt+1

↓ ↓ ↓

h(xt)
M(∆x)×
−−−−→ h(xt+1)

(4)

Both h(x) and M(∆x) are to be learned.
Gao et al. (2018b) proposed that the brain uses the above representational scheme to carry out the simple

addition calculation. See Figure 4 (a) for an illustration. See also (Paccanaro and Hinton, 2001) for an earlier
treatment of the addition problem.

h(x)

h(x + ∆x)
×M(∆x)

h(x)

h(x + ∆x)
ω|∆x|

(a) Vector-matrix multiplication (b) Magnified local isometry

Figure 4: Grid cells form a high-dimensional vector representation of 2D self-position. Two sub-models: (a) Local
motion is modeled by vector-matrix multiplication. (b) Angle between two nearby vectors magnifies the Euclidean
distance.

3.1.4 Error correction

In data visualization such as t-SNE (Maaten and Hinton, 2008), we represent high dimensional data by 2D
points. In grid cells, we do the opposite, where we represent 2D coordinates by high dimensional vectors.
Why does the brain bother with a high-dimensional representation of 2D coordinates? The answer lies in
error correction. The neurons are intrinsically noisy. For a noisy observation of h(x), by projecting it onto
the sub-manifold of (h(x),x ∈ [0,1]2), we can eliminate most of the noises.

7

In order to reduce the noise, we can use a high dimensional h to record multiple noisy copes of x, then
a simple averaging will reduce the variance of noise. Apparently the brain goes much further than that. It
represents 2D x by a high dimensional h, so that the angle between h(x) and h(x+∆x) is ω|∆x| for ω � 1.
This makes the system even more robust to noise, because h(x) and h(x+∆x) are very far apart when ω� 1.

More specifically, we assume a magnified local isometry model:

〈h(x),h(x+∆x)〉= 1−α|∆x|2, (5)

which is a second order Taylor expansion of a function of |∆x| whose maximum is 1 at |∆x|= 0. For ∆x = 0,
we have ‖h(x)‖2 = 1 for all x. Let ∆θ be the angle between h(x) and h(x+∆x), then 〈h(x),h(x+∆x)〉 =
cos(∆θ)≈ 1−∆θ 2/2 for small ∆θ . Thus ∆θ is proportional to |∆x|, i.e., ∆θ =ω|∆x|, where ω =

√
2α� 1.

See Figure 4 (b) for an illustration.
Gao et al. (2018b) showed that even if they randomly shut down (i.e., set to zero) 70% of the neurons in

each step, their learned system can still perform path integral accurately. Such dropout error may occur due
to internal noises, asynchrony of neuron activities, as well as aging and diseases like Alzheimer.

3.1.5 Emergence of hexagon patterns

For a fixed α , we can learn (h(x),∀x) and M(∆x) by minimizing the least squares loss:

Ex,∆x[‖h(x+∆x)−M(∆x)h(x)‖2]+λEx,∆x[(〈h(x),h(x+∆x)〉− (1−α|∆x|2))2]. (6)

The above loss function can be minimized by stochastic gradient descent, where for stochastic approxima-
tion of the expectations, we randomly sample (x,∆x) uniformly where x ∈ [0,1]2 and ∆x is within a limited
range.

α = 18

α = 36

α = 72

α = 108

α = 144

α = 180

(a) Learned h(x) with 6 units. (b) Learned h(x) with 100 units

Figure 5: Learned grid cells. (a) Each row shows a component or a unit of h(x) with a certain metric parameter α ,
where the number of units d is 6. (b) Learned units where the number of units d is 100 and α = 72.

The experiments of Gao et al. (2018b) show that as long as the dimension of h(x), d ≥ 6, then the
learning algorithm always learns the hexagon grid pattern for each element of h(x). Even if d = 100, the
algorithm still learns regular hexagon patterns. In Figure 5 (a), each row displays the learned h(x) for a
given value of α , where d = 6. Figure 5 (b) shows the learned h(x) for α = 72, where d = 100. If d < 6, the
algorithm tends to learn square grid patterns.

8

Thus if we move from x to x+∆x, the corresponding h will be rotated by a matrix M(∆x), and h will
rotate at a much faster speed ω|∆x|. As a result, it will quickly rotate back to itself, causing the periodic
grid patterns, which in turn causes the global ambiguities in position, because the same h may correspond to
multiple positions. Thus one may say that the grid patterns are almost an unwanted consequence of error cor-
rection. To resolve the ambiguities, Gao et al. (2018b) combined multiple blocks of grid cells to determine
the position uniquely, and for each block, the magnifying parameter α can be learned automatically.

3.2 Vector representation of state and matrix representation of motion or action

We may generalize the model in the previous subsection into a more general model for dynamic systems,
where we represent the state by vector and represent the change of the state caused by motion or action by
matrix. For example, recent work of (Gao et al., 2018c) proposes a model of V1 simple cells that is different
from the sparse coding model (Olshausen and Field, 1997) and the independent component analysis model
(Bell and Sejnowski, 1997) reviewed in Section 2.1. (Gao et al., 2018c) proposes that a direct purpose
of V1 cells is to perceive the displacements of pixels over time, where the displacements of pixels are
caused by the relative motion between the agent (a rat or a human) and the surrounding 3D environment.
Specifically, (Gao et al., 2018c) represents the local image contents by vectors, and the local displacements
of pixels by matrices, so that when the pixels undergo displacements, the vectors are rotated by the matrices
representing the displacements. After learning this representational system, the agent will be able to sense
the displacements of pixels based on the rotations of the vectors.

More generally, for a video sequence, we can represent the image frames by vectors, and represent the
motions or actions of the agent or the objects in the image by matrices. This will enable the agent to perceive
the objects and their motions and actions, while the agent is moving or taking actions.

In terms of neuroscience, the vectors correspond to the activities of neurons, and the matrices correspond
to the synaptic connections. Interestingly, such a representational scheme appears to be adopted by the
nature. In quantum theory, the states are represented by vectors in a Hilbert space, and the changes of the
states are represented by matrices or operators (Zee, 2016). Similar to the creation and annihilation operators
in quantum field theory, the matrix representations in vision may also account for discrete events such as
the appearance and disappearance of objects. Perhaps the brain speaks the same mathematical language as
nature.

4 Learning non-linear vector representation by generator network

This section reviews the generator network that is a generalization of factor analysis where the mapping
from the latent factors to the signal is parametrized by a deep network. We shall also review the maximum
likelihood learning algorithm that learns various generator models.

4.1 Deep neural networks

The models reviewed so far are based on linear structures. They can be generalized to non-linear transfor-
mations, such as deep neural networks (LeCun et al., 1998; Krizhevsky et al., 2012), which are compositions
of multiple layers of linear transformations and coordinate-wise non-linear link functions.

Specifically, consider a non-linear transformation f (x) that can be decomposed recursively as sl =
Wlhl−1 + bl , and hl = rl(sl), for l = 1, ...,L, with f (x) = hL and h0 = x. Wl is a weight matrix at layer
l, and bl is the bias vector at layer l. Both sl and hl are vectors of the same dimensionality, and rl is a one-
dimensional non-linear link function or the so-called rectification function that is applied coordinate-wise.
f (x) is a recursive composition of GLM (generalized linear model) structures.

9

Modern deep networks usually use rl(s) = max(0,s), the so-called rectified linear unit (ReLU). For
such non-linear link function, f (x) is a multivariate linear spline where the linear pieces are recursively
partitioned. This is similar to but more general than the recursive partitions in CART (classification and
regression trees) (Breiman, 2017) and MARS (multivariate adaptive regression splines) (Friedman, 1991).

In computational neuroscience, each element or unit in hl can be interpreted as a neuron or a cell, whose
value can be related to the firing rate. Sometimes hl is colloquially called a thought vector.

There are two special classes of neural networks. One consists of convolutional neural networks (Le-
Cun et al., 1998; Krizhevsky et al., 2012), which are commonly applied to images, where the same linear
transformations are applied around each pixel locally. The other class consists of recurrent neural networks
(Hochreiter and Schmidhuber, 1997), which are commonly applied to sequence data such as speech and
nature language.

The neural networks are commonly used in supervised learning and reinforcement learning, where hl at
multiple layers can be considered predictive representations. They are also useful for unsupervised learning
of generative models, as we shall review in the next subsection, where hl at multiple layers can be considered
generative representations.

4.1.1 Non-linear generalization of logistic regression

For the deep network reviewed in the previous subsection, let α = (Wl,bl, l = 1, ...,L) collect all the weight
and bias parameters, and let fα(x) be the resulting non-linear transformation.

We can generalize logistic regression model to

P(y = 1|x) = D(x) =
1

1+ exp(− fα(x))
. (7)

The model is also called a discriminator network. hl at different layers can be considered predictive repre-
sentations of x.

4.1.2 Non-linear generalization of exponential family model

We can also generalize exponential family model to

πα(x) =
1

Z(α)
exp(fα(x))ρ(x), (8)

where ρ(x) is a reference measure such as the uniform distribution, and Z(α) is the normalizing constant.
The model is also called energy-based model or the Gibbs distribution.

The connection between the two models are as follows. Suppose ρ(x) is the distribution of negative
examples, i.e., P(x|y= 0)= ρ(x), and πα(x) is the distribution of positive examples, i.e., P(x|y= 1)= πα(x).
Suppose there are equal numbers of positive and negative examples, then according to the Bayes rule,
P(y = 1|x) is given by (7).

We shall make use of the above two models later on as the complementary models to the generator
model we shall review next.

4.2 Non-linear generalization of factor analysis and maximum likelihood learning

While sparse coding and independent component analysis etc. generalize the prior assumption on the hidden
vector h in factor analysis, the generator model generalizes the mapping from the hidden vector h to the input
x, i.e.,

h∼ N(0, Id), x = gθ (h)+ ε, (9)

10

where g is parametrized by a deep network, similar to f in the previous subsection, i.e., sl = Wlhl+1 + bl ,
and hl = rl(sl), for l = L− 1, ...,0, with hL = h, and x = h0. Wl is a weight matrix at layer l, and bl is the
bias vector at layer l. θ collects all the weight and bias parameters at all the layers. ε ∼ N(0,σ2ID) is the
residual noise image that is independent of h.

While f in the previous subsection is a bottom-up network in the sense that it defines h0 = x→ h1→
...→ hL, g in this subsection is a top-down network in the sense that it defines hL = h→ hL−1→ ...→ h0 = x.

As in factor analysis, the model can be learned by maximum likelihood. We can write the prior dis-
tribution as h ∼ p(h), where p(h) is the density of N(0, Id). The conditional distribution of x given h
is pθ (x|h), which is the density of N(gθ (h),σ2ID). The joint distribution or the complete-data model is
pθ (h,x) = p(h)pθ (x|h). The marginal distribution or the observed-data model is pθ (x) =

∫
pθ (h,x)dh. The

posterior distribution of h given x is pθ (h|x) = pθ (h,x)/pθ (x). Unlike in factor analysis, the marginal pθ (x)
and the conditional pθ (h|x) are not in closed form.

Let qdata be the distribution that generates the observed examples xi, i = 1, ...,n. For large n, the maxi-
mum likelihood estimation of θ is to minimize the Kullback-Leibler divergence KL(qdata‖pθ) over θ , where
the KL-divergence is defined as KL(q|p) = Eq[log(q(x)/p(x))]. In practice, the expectation with respect to
qdata is approximated by the average over the observed examples. The gradient of the log-likelihood can be
computed based on

− ∂

∂θ
KL(qdata(x)‖pθ (x)) = Eqdata(x)pθ (h|x)

[
∂

∂θ
log pθ (h,x)

]
. (10)

The expectation with respect to the posterior distribution pθ (h|x) can be approximated via MCMC sampling
of pθ (h|x), such as Langevin dynamics or HMC (Neal, 2011). It can be efficiently implemented by gradient
computation via back-propagation.

Figure 6: Each dimension of the geometric latent vector h1 encodes geometric information such as shape and viewing
angle. In the fist row, the shape of the face changes from fat to thin from left to right. In the second row, the pose of
the face varies from left to right. In the third row, from left to right, the vertical tilt of the face varies from downward
to upward. In the fourth row, the face width changes from stretched to cramped. The deformable generator model is
trained on the 10,000 face images from CelebA dataset. The training images are cropped to 64× 64 pixels. These
faces have different colors, illuminations, identities, viewing angles, shapes, and expressions.

(Han et al., 2017) learned the generator model by maximum likelihood. More recently, (Xing et al.,
2019) generalized the model to a deformable generator model with two hidden vectors (h1,h2), where h1
is the geometric hidden vector that generates the displacements of the pixels, or the displacement field, and
h2 is the appearance hidden vector that generates the appearance image before deformation. The observed
image is assumed to be generated by deforming or warping the appearance image by the displacement field.
Such a model can be learned by maximum likelihood, and the learned model disentangles variations in shape
and appearance.

11

(Xing et al., 2019) trained the deformable generator on the 10,000 face images from CelebA dataset (Liu
et al., 2015). Figure 6 illustrates the change of the image if we vary the components of h1, while keeping
h2 fixed at a certain value. Different dimensions of h1 capture different aspects of shape change. Figure 7
displays an example of transferring and recombining the vectors. For two images, we can exchange their
geometric vectors, so that each image changes its shape but retains its appearance.

Figure 7: Transferring and recombining geometric and appearance vectors. The first row shows 7 faces from CelebA.
The second row shows the generated faces by transferring and recombining the 2th-7th faces’ geometric vectors h1
with the first face’s appearance vector h2 in the first row. The third row shows the generated faces by transferring and
recombining the 2th-7th faces’ appearance vectors h2 with the first face’s geometric vector h1 in the first row. The
deformable generator model is trained on the 10,000 face images, which are cropped to 64× 64 pixels. The faces
in the training data have a wide and diverse variety of colors, illuminations, identities, viewing angles, shapes, and
expressions.

ob
s

sy
n1

sy
n2

Figure 8: Generating dynamic textures. The dynamic generator model is learned from one single training video
exhibiting burning flame, with the size 64 × 64 pixels × 60 frames, by maximum likelihood. A “longer length”
dynamic texture can be generated from a relatively “short” training sequence by just drawing “longer” iid samples
from Gaussian distribution. The first row displays 6 frames of the 60-frame observed sequence, and the second and
third rows show 6 frames of two synthesized sequences of 120 frames in length, which are generated by the learned
model.

(Xie et al., 2019a) generalized the generator model to a dynamic generator model for video sequence
(xt , t = 1, ...,T) where xt is an image frame at time t, by assuming a model of the form

ht = fα(ht−1,zt), (11)

xt = gβ (ht)+ εt , (12)

where t = 1, ...,T . (11) is the transition model, and (12) is the emission model. ht is the d-dimensional
hidden state vector. zt ∼ N(0, I) is the noise vector of a certain dimensionality. The Gaussian noise vectors
(zt , t = 1, ...,T) are independent of each other. The sequence of (ht , t = 1, ...,T) follows a non-linear auto-
regressive model, where the noise vector zt encodes the randomness in the transition from ht−1 to ht in the

12

ob
s

sy
n1

sy
n2

Figure 9: Generated action patterns. The dynamic generator model is trained on an animal action dataset including 20
videos of 10 animals performing running and walking. Each observed video is scaled to 64 × 64 pixels × 30 frames.
The first row displays 6 frames of the observed sequence, and the second and third rows show the corresponding
frames of two synthesized sequences generated by the learned model.

d-dimensional state space. fα is a feedforward neural network or multi-layer perceptron, where α denotes
the weight and bias parameters of the network. xt is the D-dimensional image, which is generated by the
d-dimensional hidden state vector ht . gβ is a top-down network, where β denotes the weight and bias
parameters of this network. εt ∼ N(0,σ2ID) is the residual error. The model is a state-space model or
hidden Markov model. (Xie et al., 2019a) learned the dynmaic generator model by maximum likelihood.
Figures 8 and 9 show examples of learning the model from video data. Once the model is learned, we can
synthesize dynamic textures from the learned model by firstly randomly initializing the initial hidden state
h0, and then following (11) and (12) to generate a sequence of images with a sequence of innovation vectors
zt sampled from Gaussian noise distribution.

4.3 Flow-based models

A flow-based model is of the form x= gθ (h), but h is of the same dimensionality as x, and gθ is a composition
of a sequence of simple invertible transformations, so that the probability density of x can be obtained
in closed form, pθ (x) = p0(g−1

θ
(x))|∂gθ (x)/∂x|−1, where p0 is the density of h, and |∂gθ (x)/∂x| is the

absolute value of the determinant of the Jacobian of gθ . Such a model can be considered a special generator
model with invertible mapping between the hidden vector and the signal.

The flow-based models (Dinh et al., 2014; Rezende and Mohamed, 2015; Dinh et al., 2017; Kingma and
Dhariwal, 2018; Grathwohl et al., 2019) can be traced back to independent component analysis reviewed
in Subsection 2.1, for example, (Dinh et al., 2014). They also arise from the efforts of strengthening the
inference model in variational auto-encoder to be reviewed in the next section, for example, (Rezende and
Mohamed, 2015). The advantage of such models is that the normalized probability density of x can be
obtained in closed form, so that maximum likelihood learning is simple. A disadvantage is that the mapping
gθ can be of a rather contrived form in order to ensure that the mapping is invertible and the Jacobian can
be efficiently computed.

5 Learning generator model jointly with complementary models

In modern deep learning literature, the generator model is usually learned jointly with a complementary
model, and the learning is not based on maximum likelihood. Such learning methods are unconventional in
statistics, but they can be quite powerful and can be interesting to statisticians.

13

5.1 Issues with maximum likelihood

The maximum likelihood learning of the generator network in the previous section has two issues. (1) The
learning algorithm requires MCMC sampling of the posterior distribution pθ (h|x) as an inner loop, which
can be expensive. (2) The maximum likelihood estimator, which minimizes KL(pdata‖pθ) over θ , seeks to
cover all the local modes of pdata, and as a result, the learned pθ tends to be smoother than pdata, and images
generated by the learned pθ tends to be less sharp than the observed images.

To address the first issue, the variational auto-encoder (VAE) (Kingma and Welling, 2014; Rezende
et al., 2014; Mnih and Gregor, 2014) learns an inference model to approximate the posterior distribution.
To address the second issue, the generator model can be learned jointly with a discriminator as in generative
adversarial networks (GAN) (Goodfellow et al., 2014; Radford et al., 2015) or an energy-based model which
specifies the distribution of x explicitly up to a normalizing constant.

While the generator model is parametrized by a top-down network as show in the left diagram of (13),
the complementary model is parameterized by a separate bottom-up network as shown in the right diagram
of (13).

Top-down mapping Bottom-up mapping
hidden vector h inference qφ (h|x) or energy fα(x)

⇓ ⇑
signal x≈ gθ (h) signal x

(a) Generator model (b) Complementary model

(13)

5.2 Variational auto-encoder: joint learning with inference model

In order to avoid MCMC sampling from the posterior pθ (h|x), the variational auto-encoder (VAE) (Kingma
and Welling, 2014; Rezende et al., 2014; Mnih and Gregor, 2014) approximates pθ (h|x) by a tractable
qφ (h|x), such as

qφ (h|x)∼ N(µφ (x),diag(vφ (x))), (14)

where both µφ and vφ are bottom-up networks that map x to d-dimensional vectors, with φ collecting all
the weight and bias parameters of the bottom-up networks. For h ∼ qφ (h|x), we can write h = µφ (x)+
diag(vφ (x))1/2z, where z∼ N(0, Id). Thus expectation with respect to h∼ qφ (h|x) can be written as expec-
tation with respect to z. This reparametrization trick (Kingma and Welling, 2014) helps reduce the variance
in Monte Carlo integration. We may consider qφ (h|x) as an approximation to the iterative MCMC sampling
of pθ (h|x). In other words, qφ (h|x) is the learned inferential computation that approximately samples from
pθ (h|x).

The VAE objective is a modification of the MLE objective:

KL(qdata(x)qφ (h|x)‖pθ (h,x)) = KL(qdata(x)‖pθ (x))+KL(qφ (h|x)‖pθ (h|x)). (15)

We define the conditional Kullback-Leibler divergence as KL(q(x|y)‖p(x|y)) = Eq(x,y)[log(q(x|y)/p(x|y))]
where the expectation is with respect the joint distribution q(x,y). We estimate θ and φ jointly by

min
θ

min
φ

KL(qdata(x)qφ (h|x)‖pθ (h,x)), (16)

which can be accomplished by gradient descent.
Define Q(h,x) = qdata(x)qφ (h|x). Define P(h,x) = p(h)pθ (x|h). Q is the distribution of the complete

data (h,x), where qφ (h|x) can be interpreted as an imputer that imputes the missing data h. P is the distribu-
tion of the complete-data model. The VAE is minθ minφ KL(Q‖P).

14

Figure 10: Variational auto-encoder as joint minimization by alternating projection.

We may interpret VAE as alternating projection between Q and P. See Figure 10 for illustration. The
wake-sleep algorithm (Hinton et al., 1995) is similar to VAE, except that it updates φ by minφ KL(P‖Q),
where the order is flipped.

(Xing et al., 2019) implemented the VAE learning of the deformable generator model, and the results
are similar to maximum likelihood learning.

5.2.1 MLE algorithm from VAE perspective

Recall the MLE is to minimize KL(qdata‖pθ). Suppose θt is the current estimate in the MLE algorithm. We
can write

KL(qdata(x)pθt (h|x)‖p(h)pθ (x|h)) = KL(qdata(x)‖pθ (x))+KL(pθt (h|x)‖pθ (h|x)), (17)

where we replace qφ (h|x) in VAE by pθt (h|x).
The above identity underlies the EM algorithm (Dempster et al., 1977), where we find θt+1 by maximiz-

ing the left-hand side over θ . Because KL(pθt (h|x)‖pθ (h|x)), as a function of θ , is minimized at θ = θt ,
with minimum value 0, KL(qdata(x)pθt (h|x)‖p(h)pθ (x|h)) majorizes KL(qdata(x)‖pθ (x)) as functions of θ ,
and both functions touch at θ . Thus minimizing the left-hand side will decrease KL(qdata‖pθ), which leads
to the monotonicity of the EM algorithm. Moreover, the derivative of KL(pθt (h|x)‖pθ (h|x)), as a function
of θ , is zero at θt . Thus the gradient of the KL-divergence on the left hand side at θt agrees with the gradient
of the first KL-divergence on the right hand side at θt . This leads to the identity (10).

5.2.2 Comparison with traditional variational inference

In VAE, the model qφ (h|x) and the parameter φ is shared by all the training examples x, so that µφ (x)
and vφ (x) in 14 can be computed directly for each x given φ . This is different from traditional variational
inference (Jordan et al., 1999; Blei et al., 2017), where for each x, a model qµ,v(h) is learned by minimizing
KL(qµ,v(h)‖pθ (h|x)) with x fixed, so that (µ,v) is computed by an iterative algorithm for each x, which
is an inner loop of the learning algorithm. This is similar to maximum likelihood learning, except that
in maximum likelihood learning, the inner loop is an iterative algorithm that samples pθ (h|x) instead of
minimizing over (µ,v). The learned networks µφ (x) and vφ (d) in VAE are to approximate the iterative
minimization algorithm by direct mappings.

5.3 Generative adversarial net (GAN): joint learning with discriminator

The generator model learned by MLE or VAE usually cannot generate very realistic images. Both MLE
and VAE target KL(qdata‖pθ), though VAE only minimizes an upper bound of KL(qdata‖pθ). Consider
minimizing KL(q‖p) over p within a certain model class. If q is multi-modal, then p is obliged to fit all
the major modes of q because KL(q‖p) is an expectation with respect to q. Thus p tends to interpolate the

15

major modes of p if p cannot fit the modes of p closely. As a result, pθ learned by MLE or VAE tends to
generate images that are not as sharp as the observed images.

The behavior of minimizing KL(q‖p) over p is different from minimizing KL(q‖p) over q. If p is multi-
modal, q tends to capture some major modes of p while ignoring the other modes of p, because KL(q‖p)
is an expectation with respect to q. In other words, minq KL(q‖p) encourages mode chasing, whereas
minp KL(q‖p) encourages mode covering.

Sharp synthesis can be achieved by generative adversarial networks (GAN) (Goodfellow et al., 2014;
Radford et al., 2015), which pairs a generator model G with a discriminator model D. For an image x,
D(x) is the probability that x is an observed (real) image instead of a generated (faked) image. It can be
parametrized by a bottom-up network fα(x), so that D(x) = 1/(1+ exp(− fα(x)), i.e., logistic regression.
See Subsection 4.1.1. We can train the pair of (G,D) by an adversarial, zero-sum game. Specifically, let
G(h) = gθ (h) be a generator. Let

V (D,G) = Eqdata [logD(X)]+Eh∼p(h)[log(1−D(G(h))], (18)

where Eqdata can be approximated by averaging over the observed examples, and Eh can be approximated
by Monte Carlo average over the faked examples generated by the generator model. We learn D and G
by minG maxDV (D,G). V (D,G) is the log-likelihood for D, i.e., the log-probability of the real and faked
examples. However, V (D,G) is not a very convincing objective for G. In practice, the training of G is
usually modified into maximizing Eh∼p(h)[logD(G(h))] to avoid the vanishing gradient problem.

For a given θ , let pθ be the distribution of gθ (h) with h∼ p(h). Assuming a perfect discriminator. Then
according to the Bayes rule D(x) = qdata(x)/(qdata(x)+ pθ (x)) (assuming equal numbers of real and faked
examples). Then θ minimizes the Jensen-Shannon divergence

JS(qdata‖pθ) = KL(pθ‖pmix)+KL(qdata‖pmix), (19)

where pmix = (qdata + pθ)/2.
In JS-divergence, the model pθ also appears on the left side of KL-divergence. This encourages pθ to

fit some major modes of qdata, while ignoring others. As a result, the GAN learning suffers from mode
collapsing problem, i.e., the learned pθ may miss some modes of qdata. However, the pθ learned by GAN
tends to generate sharper images than pθ learned by MLE or VAE.

5.4 Energy-based model

Similar to GAN, we can pair the generator model with an energy-based model (Ngiam et al., 2011; Dai et al.,
2014; Lu et al., 2016; Xie et al., 2016, 2017, 2018c; Gao et al., 2018a), instead of a discriminator model.
Similar to the discriminator model, the energy-based model is also defined by a bottom-up network. Also
similar to the discriminator model, which seeks to tell apart the images generated by the generator model
and the real images, the energy-based model plays the role of an evaluator, evaluating the images generated
by the generator model against the real images. We may intuitively consider the generator model as an actor
or a student, and the energy-based model as a critic or a teacher.

5.4.1 Generalizing exponential family model

The energy function in the energy-based model, − fα(x), defines the energy of x, and a low energy x is
assigned a high probability. Specifically, we have the following probability model

πα(x) =
1

Z(α)
exp [fα(x)] , (20)

16

where fα(x) is parametrized by a bottom-up deep network with parameters α , and Z(α) is the normalizing
constant. It is the non-linear generalization of the exponential family model, see subsection 4.1.2. It is also
a Gibbs distribution and a random field model. Here we drop the reference measure ρ(x), or we assume it
is uniform measure. In contrast to the discriminator model D(x), we may intuitively call πα the evaluator
model, where fα assigns the value to x, and πα evaluates x by a normalized probability distribution. See the
diagram (b) in (13).

In terms of learning representations, the generator model represents the observed x by a vector h, and
the energy-based model learns multiple layers of features in the network fα(x).

The energy-based model learned by maximum likelihood tends to have stronger synthesis ability than
the generator model learned by maximum likelihood, because the former directly approximates qdata by fα ,
while the latter approximates qdata by pθ which is obtained by integrating out h.

5.4.2 Maximum likelihood

To learn the energy-based model πα , the maximum likelihood estimator minimizes KL(qdata‖πα) over α .
We can update α by gradient descent

− ∂

∂α
KL(qdata(x)‖πα(x)) = Eqdata

[
∂

∂α
fα(x)

]
−Eπα

[
∂

∂α
fα(x)

]
. (21)

The above identity follows from the fact that the derivative of the cumulant or log partition function logZ(α)
is the expectation of the derivative of fα(x).

To implement the above update, we need to compute the expectation with respect to the current model
πα . It can be approximated by MCMC such as Langevin dynamics or HMC that samples from πα . Again
it can be efficiently implemented by gradient computation via back-propagation. (Lu et al., 2016; Xie et al.,
2016) learned the energy-based model using such a learning method. See Figure 11 for illustration.

ob
s

ob
s

sy
n

sy
n

(a) goose (b) tiger

Figure 11: Learning energy-based model by maximum likelihood. (a) goose (b) tiger. For each category, the first row
displays 4 of the training images, and the second row displays 4 of the images generated by the learning algorithm.
fα(x) is parametrized by a 4-layer bottom-up deep network, where the first layer has 100 7× 7 filters with sub-
sampling size of 2, the second layer has 64 5×5 filters with subsampling size of 1, the third layer has 20 3×3 filters
with sub-sampling size of 1, and the fourth layer is a fully connected layer with a single filter that covers the whole
image. The number of parallel chains for Langevin sampling is 16. The number of Langevin iterations between every
two consecutive updates of parameters is 10. The training images are of size 224×224 pixels.

More recently, Nijkamp et al. (2019) studied a very simple implementation of the learning algorithm,
where within each learning iteration, we run K-step MCMC starting from uniform noise distribution. After
convergence, the K-step MCMC is capable of generating realistic images.

The energy-based model is related to the discriminator model via the Bayes rule, see Subsection 4.1.2.
See also (Dai et al., 2014; Wu et al., 2019). The model can be learned discriminatively by fitting a logistic
regression model, see (Tu, 2007; Lazarow et al., 2017; Jin et al., 2017; Lee et al., 2018).

17

5.4.3 Adversarial contrastive divergence (ACD): joint learning of generator and energy-based model

To avoid MCMC sampling of πα , we may approximate it by a generator model pθ , which can generate
synthesized examples directly (i.e., sampling h from p(h), and transforming h to x by x = gθ (h)). We may
consider pθ as an approximation to the iterative MCMC sampling of πα . In other words, pθ is the learned
computation that approximately samples from πα , i.e., pθ is an approximate direct sampler of πα .

We can learn both πα and pθ (Kim and Bengio, 2016; Dai et al., 2017) using the following objective
function:

min
α

max
θ

[KL(qdata‖πα)−KL(pθ‖πα)], (22)

or equivalently

max
α

min
θ

[KL(pθ‖πα)−KL(qdata‖πα)]. (23)

The gradient for updating α becomes

∂

∂α
[Eqdata(fα(x))−Epθ

(fα(x))], (24)

where the intractable logZ(α) term is canceled.
Because of the negative sign in front of the second KL-divergence in (22), we need maxθ in (22) or minθ

in (23), so that the learning becomes adversarial. See Figure 12 for illustration. Inspired by (Hinton, 2002),
(Han et al., 2019) called (22) the adversarial contrastive divergence (ACD). It underlies (Kim and Bengio,
2016; Dai et al., 2017).

Figure 12: Adversarial contrastive divergence where the energy-based model favors real data against generator.

The adversarial form (22) or (23) defines a chasing game with the following dynamics: the generator
pθ chases the energy-based model πα in minθ KL(pθ‖πα), while the energy-based model πα seeks to get
closer to qdata and get away from pθ . The red arrow in Figure 12 illustrates this chasing game. The result is
that πα lures pθ toward qdata. In the idealized case, pθ always catches up with πα , then πα will converge to
the maximum likelihood estimate minα KL(qdata‖πα), and pθ converges to πα .

The above chasing game is different from VAE minθ minφ KL(Q‖P), which defines a cooperative game
where qφ and pθ run toward each other.

Even though the above chasing game is adversarial, both models are running toward the data distribution.
While the generator model runs after the energy-based model, the energy-based model runs toward the data
distribution. As a consequence, the energy-based model guides or leads the generator model toward the
data distribution. It is different from GAN (Goodfellow et al., 2014). In GAN, the discriminator eventually
becomes a confused one because the generated data become similar to the real data. In the above chasing
game, the energy-based model becomes close to the data distribution.

The updating of α by (24) bears similarity to Wasserstein GAN (WGAN) (Arjovsky et al., 2017), but
unlike WGAN, fα defines a probability distribution πα , and the learning of θ is based on minθ KL(pθ‖πα),

18

which is a variational approximation to πα . This variational approximation only requires knowing fα(x),
without knowing Z(α). However, unlike qφ (h|x), pθ (x) is still intractable, in particular, its entropy does
not have a closed form. Thus, we can again use variational approximation, by changing the problem
minθ KL(pθ‖πα) to

min
θ

min
φ

KL(p(h)pθ (x|h)‖πα(x)qφ (h|x)). (25)

Define Π(h,x) = πα(x)qφ (h|x), then the problem is minθ minφ KL(P‖Π), which is analytically tractable and
which underlies (Dai et al., 2017). In fact,

KL(P‖Π) = KL(pθ (x)‖πα(x))+KL(pθ (h|x)‖qφ (h|x)). (26)

Thus, we can modify (23) into maxα minθ minφ [KL(P‖Π)−KL(Q‖Π)], because KL(Q‖Π)=KL(qdata‖πα).
Note that in VAE (32), it is in the form of KL + KL, whereas in ACD (22), it is in the form of KL -

KL. In both (32) and (22), the first KL is about maximum likelihood. The KL+KL form of VAE makes
the computation tractable by changing the marginal distribution of x to the joint distribution of (h,x). The
KL-KL form of ACD makes the computation tractable by cancelling the intractable logZ(α) term. Because
of the negative sign in (22), the ACD objective function becomes an adversarial one or a minimax game.

Also note that in VAE, pθ appears on the right hand side of KL, whereas in ACD, pθ appears on the left
hand side of KL. Thus in ACD, pθ may exhibits mode chasing behavior, i.e., fitting the major modes of πα ,
while ignoring other modes.

5.4.4 MLE algorithm from ACD perspective

Recall the maximum likelihood is to minimize KL(qdata‖πα). Suppose αt is the current estimate of the MLE
algorithm. We can consider the contrastive divergence

KL(qdata‖πα)−KL(παt‖πα), (27)

where we replace pθ in ACD by παt . Again KL(παt‖πα) as a function of α is minimized at αt , where the
gradient is zero. Thus the gradient of the above contrastive divergence at αt agrees with the gradient of the
first KL-divergence KL(qdata‖πα) for MLE. This leads to identity (21). For K-step MCMC in (Nijkamp
et al., 2019), we can replace παt above by the marginal distribution obtained by K-step MCMC toward παt ,
initialized at the uniform distribution. (Nijkamp et al., 2019) also studies the learned K-step MCMC as a
model in itself.

5.5 Divergence triangle: VAE + ACD, joint learning of three models

We can combine VAE and ACD into a divergence triangle, which involves the following three joint distri-
butions on (h,x) defined in the above subsections:

1. Q-distribution: Q(h,x) = qdata(x)qφ (h|x).

2. P-distribution: P(h,x) = p(h)pθ (x|h).

3. Π-distribution: Π(h,x) = πα(x)qφ (h|x).
(Han et al., 2019) proposed to learn the three models pθ , πα , qφ by the following divergence triangle

loss functional D

max
α

min
θ

min
φ

D(α,θ ,φ),

D = KL(Q‖P)+KL(P‖Π)−KL(Q‖Π). (28)

19

Figure 13: Divergence triangle is based on the Kullback-Leibler divergences between three joint distributions of (h,x).
The blue arrow indicates the “running toward” behavior and the red arrow indicates the “running away” behavior.

See Figure 13 for illustration. The divergence triangle is based on the three KL-divergences between the
three joint distributions on (h,x). It has a symmetric and anti-symmetric form, where the anti-symmetry
is due to the negative sign in front of the last KL-divergence and the maximization over α . Comparing to
the VAE and ACD objective functions in the previous subsections, KL(Q‖P) is the VAE part. KL(P‖Π)−
KL(Q‖Π) is the ACD part.

The divergence triangle leads to the following dynamics between the three models: (1) Q and P seek to
get close to each other. (2) P seeks to get close to Π. (3) π seeks to get close to qdata, but it seeks to get away
from P, as indicated by the red arrow. Note that KL(Q‖Π) = KL(qdata‖πα), because qφ (h|x) is canceled
out. The effect of (2) and (3) is that π gets close to qdata, while inducing P to get close to qdata as well, or in
other words, P chases πα toward qdata.

(Han et al., 2019) also employed a layer-wise training scheme of (Karras et al., 2017) to learn models
by divergence triangle from the CelebA-HQ dataset (Liu et al., 2015) including 200K celebrity face images
with resolutions of up to 1024×1024 pixels. The learning algorithm converges stably, without extra tricks,
to obtain realistic results as shown in Figure 14.

The top row of Figure 14 displays a few 1024×1024 images generated by the learned generator model
with 512-dimensional latent vector. The bottom row of Figure 14 shows an example of interpolation. The
two images at the two ends are generated by two different latent vectors. The images in between are gen-
erated by the vectors that are linear interpolations of the two vectors at the two ends. Even though the
interpolation is linear in the latent vector space, the non-linear mapping leads to a highly non-linear in-
terpolation in the image space. The interpolation experiment shows that the algorithm can learn a smooth
generator model that traces the manifold of the data distribution.

5.6 Cooperative learning via MCMC teaching

In adversarial contrastive divergence (ACD), the generator model pθ is used to approximate the energy-
based model πα , and we treat the examples generated by pθ as if they are generated from πα for the sake of
updating α . The gap between pθ and πα can cause bias in learning. (Xie et al., 2018a,b) proposed to bring
back MCMC to bridge the gap. Instead of running MCMC from scratch, we run a finite step MCMC toward
πα , initialized from the examples generated by pθ . We then use the examples produced by the finite step
MCMC as the synthesized examples from πα for updating α . Meanwhile we update pθ based on how the
finite step MCMC revises the initial examples generated by pθ , in other words, the energy-based model (as
a teacher) πα distills the MCMC into the generator (as a student) pθ . We call this scheme the cooperative
learning.

Specifically, we first generate ĥi ∼ N(0, Id), and then generate x̂i = gθ (ĥi)+ εi, for i = 1, ..., ñ. Starting
from {x̂i, i = 1, ..., ñ}, we run MCMC such as Langevin dynamics for a finite number of steps toward πα to
get {x̃i, i = 1, ..., ñ}, which are revised versions of {x̂i}. {x̃i} are used as the synthesized examples from the
energy-based model. We can then update α according to (21).

20

Figure 14: Learning generator model by divergence triangle from the CelebA-HQ dataset that includes 200K high
resolution celebrity face images. Top: Generated face images with 1024×1024 resolution sampled from the learned
generator model with 512-dimensional latent vector. Bottom: Linear interpolation of the vector representations. The
images at the two ends are generated from latent vectors randomly sampled from Gaussian distribution. Each image
in the middle is obtained by first interpolating the two vectors of the two end images, and then generating the image
using the generator.

The energy-based model can teach the generator via MCMC. The key is that in the generated examples,
the latent h is known. In order to update θ of the generator model, we treat {x̃i, i = 1, ..., ñ} as the training
data for the generator. Since these {x̃i} are obtained by the Langevin dynamics initialized from {x̂i}, which
are generated by the generator model with known latent factors {ĥi}, we can update θ by learning from
the complete data {(ĥi, x̃i); i = 1, ..., ñ}, which is a supervised learning problem, or more specifically, a non-
linear regression of x̃i on ĥi. At θ (t), the latent factors ĥi generates and thus reconstructs the initial example
x̂i. After updating θ , we want ĥi to reconstruct the revised example x̃i. That is, we revise θ to absorb the
MCMC transition from x̂i to x̃i. The left diagram in (29) illustrates the basic idea.

ĥi

x̂i x̃i

θ (t) θ (t+1)

α(t)

ĥi h̃i

x̂i x̃i

θ (t)

θ (t)
θ (t+1)

α(t)
(29)

In the two diagrams in (29), the double-line arrows indicate generation and reconstruction by the gen-
erator model, while the dashed-line arrows indicate Langevin dynamics for MCMC sampling and inference
in the two models. The diagram on the right in (29) illustrates a more rigorous method, where we initialize
the MCMC for inferring {h̃i} from the known {ĥi}, and then update θ based on {(h̃i, x̃i), i = 1, ..., ñ}.

The theoretical understanding of the cooperative learning scheme is given below.
(1) Modified contrastive divergence for the energy-based model. In the traditional contrastive divergence

(Hinton, 2002), x̂i is taken to be the observed xi. In cooperative learning, x̂i is generated by p
θ (t) . Let Mα

be the Markov transition kernel of finite steps of Langevin dynamics that samples πα . Let (Mα pθ)(x) =∫
Mα(x′,x)pθ (x′)dx′ be the marginal distribution by running Mα initialized from pθ . Then similar to the

traditional contrastive divergence, the learning gradient of the evaluator model α at iteration t is the gradient
of KL(qdata ‖ πα)−KL(M

α(t) pθ (t) ‖ πα) with respect to α . In the traditional contrastive divergence, qdata
takes the place of p

θ (t) in the second KL-divergence.
(2) MCMC teaching of the generator model. The learning gradient of the generator θ in the right

diagram of (29) is the gradient of KL(M
α(t) pθ (t) ‖ pθ) with respect to θ . Here π(t+1) = M

α(t) pθ (t) takes the

21

place of qdata as the data to train the generator model. It is much easier to minimize KL(M
α(t) pθ (t) ‖ pθ)

than minimizing KL(qdata ‖ pθ) because the latent variables are essentially known in the former, so that the
learning is supervised. The MCMC teaching alternates between Markov transition from p

θ (t) to π(t+1), and
projection from π(t+1) to p

θ (t+1) , as illustrated by Figure 15.

Figure 15: The MCMC teaching of the generator alternates between Markov transition and projection. The family of
the generator models G is illustrated by the black curve. Each distribution is illustrated by a point.

Figure 16 displays two examples of image synthesis by cooperative learning algorithm on datasets LSUN
bedrooms (Yu et al., 2015) and CelebA human faces (Liu et al., 2015).

ob
s

ob
s

sy
n

sy
n

(a) bedroom (b) face

Figure 16: Image synthesis by cooperative learning. (a) Generating bedroom images (256×256 pixels). The synthe-
sized images are generated by the cooperative learning algorithm that learns from LSUN dataset with 3,033K training
images. (b) Generating human face images (128×128 pixels). The synthesized images are generated by the cooper-
ative learning algorithm that learns from celebA dataset with 200K training images. For each category, the top panel
shows some examples of the training images, and the bottom panel shows some examples of the synthesized images
generated by the learned models.

6 Learning conditional generator model

The models and methods in the previous section can be easily generalized to conditional versions, which
can be more useful in various applications.

6.1 Conditional generator, conditional VAE and GAN

The unconditioned generator model can be extended to a conditional model. Let x be the observed signal,
and c be the observed condition. For instance, x may be an image, and c may be a class label (e.g., cat or

22

bird), or some text description (e.g., a bird is flying). The goal is to learn the conditional distribution pθ (x|c)
of the signal x given the condition c from the training dataset of the pairs {(xi,ci), i = 1, ...,n} that follow
the data distribution qdata(x,c). This is a supervised learning problem, except that x is a high-dimensional
signal, and c may also be high dimensional.

The conditional generator model is of the following form:

h∼ N(0, Id), x = gθ (h,c)+ ε, (30)

where gθ (h,c) is a top-down ConvNet defined by the parameters θ . The ConvNet g maps the latent noise
vector h together with the observed condition c to the signal x directly. Again, ε ∼N(0,σ2ID) is the residual
noise signal that is independent of h. If c is the class label, it takes the form as a one-hot vector of label
and is concatenated with h and fed into the decoder g. If the c is of high dimensionality, e.g., an image or
text, we can parametrize g by an encoder-decoder structure: we first encode c into a latent vector z, and then
we map the concatenation of h and z, i.e., (h,z), to x by a decoder. Given c, we can generate x from the
conditional generator model by direct sampling, i.e., first sampling h from its prior distribution, and then
mapping (h,c) into x directly.

The conditional generator model can be trained by maximum likelihood or equivalently minimizing the
Kullback-Leibler divergence KL(qdata(x|c)‖pθ (x|c)) over θ . The gradient of the conditional log-likelihood
is computed by

− ∂

∂θ
KL(qdata(x|c)‖pθ (x|c)) = Eqdata(x,c)pθ (h|x,c)

[
∂

∂θ
log pθ (h,x|c)

]
, (31)

where the expectation with respect to the conditional posterior distribution pθ (h|x,c) can be approximated
via MCMC sampling of pθ (h|x,c).

Conditional variational auto-encoder (CVAE) (Sohn et al., 2015) trains the conditional generator model
by learning a tractable conditional inference model qφ (h|x,c) to approximate the true conditional posterior
distribution pθ (h|x,c) for the sake of getting around the MCMC sampling from pθ (h|x,c). Its objective
function is given by

KL(qdata(x|c)qφ (h|x,c)‖pθ (h,x|c)) = KL(qdata(x|c)‖pθ (x|c))+KL(qφ (h|x,c)‖pθ (h|x,c)). (32)

The adversarial learning framework can also be used to train the conditional generator model, where
both the generator and discriminator are conditioned on the same condition. The resulting model is called
conditional GANs (Mirza and Osindero, 2014), whose objective function of a two-player minimax game is

V (D,G) = Eqdata [logD(x|c)]+Eh∼p(h)[log(1−D(G(h|c))]. (33)

The conditional generator models have had a wide variety of application scenarios in computer vi-
sion and graphics, such as synthesizing images from text description (Reed et al., 2016), image-to-image
translation (Isola et al., 2017) including synthesizing photo images from label maps or edge maps, and
video-to-video translation (Wang et al., 2018) including converting an input source video, e.g., a sequence
of semantic segmentation masks, to a target realistic video.

6.2 Conditional learning via fast thinking initializer and slow thinking solver

Recently, (Xie et al., 2019b) extended the cooperative learning scheme to the conditional learning problem
by jointly learning a conditional energy-based model and a conditional generator model. The conditional
energy-based model is of the following form

πα(x|c) =
1

Z(c,α)
exp[fα(x,c)], (34)

23

Figure 17: Generated handwritten digits conditioned on class labels. Each column is conditioned on one class label,
and each row represents a different generated handwritten digit image. The synthesized images are generated by the
jointly trained initializer and solver from 30,000 MNIST handwritten digit images along with their class labels. The
image size is 64×64 pixels.

where x is the input signal and c is the condition. Z(c,α) is the normalizing constant conditioned on c.
fα(x,c) can be defined by a bottom-up convolutional network (ConvNet) where α collects all the weight
and bias parameters. Fixing the condition c, fα(x,c) defines the value of x for the condition c, and− fα(x,c)
defines the conditional energy function. πα(x|c) is also a deep generalization of conditional random field
(Lafferty et al., 2001). Both the conditional generator model and the conditional energy-based model can be
learned jointly by the cooperative learning scheme in Subsection 5.6.

Figure 17 shows some examples of learning the conditional distribution of an image given a class label.
The two models are jointly learned on 30,000 MNIST (LeCun et al., 1998) handwritten digit images con-
ditioned on their class labels, which are encoded as one-hot vectors. For each class, 10 randomly sampled
images are displayed. Each column is conditioned on one label and each row is a different generated sample.

Figure 18 shows some examples of pattern completion on the CMP Facades dataset (Tyleček and Šára,
2013) by learning a mapping from an occluded image (256× 256 pixels), where a mask of the size of
128× 128 pixels is centrally placed onto the original version, to the original image. In this case, c is the
observed part of the signal, and x is the unobserved part of the signal.

The cooperative learning of the conditional generator model and conditional energy-based model can
be interpreted as follows. The conditional energy function defines the objective function or value function,
i.e., it defines what solutions are desirable given the condition or the problem. The solutions can then be
obtained by an iterative optimization or sampling algorithm such as MCMC. In other words, the conditional
energy-based model leads to a solver in the form of an iterative algorithm, and this iterative algorithm is a
slow thinking process. In contrast, the conditional generator model defines a direct mapping from condition
or problem to solutions, and it is a fast thinking process. We can use the fast thinking generator as an
initializer to generate the initial solution, and then use the slow thinking solver to refine the fast thinking
initialization by the iterative algorithm. The cooperative learning scheme enables us to learn both the fast
thinking initializer and slow thinking solver. Unlike conditional GAN, the cooperative learning scheme has
a slow thinking refining process, which can be important if the fast thinking initializer is not optimal.

In terms of inverse reinforcement learning (Abbeel and Ng, 2004; Ziebart et al., 2008), the conditional
energy-based model defines the reward or value function, and the iterative solver defines an optimal control
or planning algorithm. The conditional generator model defines a policy. The fast thinking policy is about
habitual, reflexive, or impulsive behaviors, while the slow thinking solver is about deliberation and planning.
Compared to the policy, the value is usually simpler and more generalizable, because it is in general easier
to specify what one wants than to specify how to produce what one wants.

24

input ground truth initializer solver conditional GAN

Figure 18: Pattern completion by conditional learning. Each row displays one example, where the first image displays
the testing image (256 × 256 pixels) with a hole of 128× 128 that needs to be recovered, the second image shows
the ground truth, the third image shows the recovered result by the initializer (i.e., conditional generator model), the
fourth image shows the recovered result by the solver (i.e., the MCMC sampler of the conditional energy-based model,
initialized from the result of the initializer), and the last image shows the recovered result by the conditional GAN as
a comparison.

7 Conclusion

This paper reviews recent work on learning representations from a statistical perspective. We focus on
unsupervised learning from unlabeled data. The representations can be either generative, like factor analysis,
or relative, like multi-dimensional scaling.

A generative representation is a latent variable model. In this paper, we focus on learning the model
with a hidden vector at the top layer, and the hidden vector generates the signal via a linear or non-linear
transformation. Such a model can be and should be extended to multiple layers of hidden vectors, or a
hierarchical or graphical model (Lee et al., 2009; Salakhutdinov and Hinton, 2009). While statisticians tend
to learn such models by maximum likelihood or Bayesian method, with the help of MCMC, people in deep
learning prefer to learn such models by variational approximations or adversarial training. It is our hope that
this paper explains the latter methods and connect them to more traditional statistical methods.

A relative representation seeks to preserve important relations in the original observations. Such rep-
resentations can be useful for exploratory data analysis or visualization. In relative representations, matrix
representations can be used to represent the relations. For modeling dynamic systems, we can use vectors
to represent the states, and matrices to represent the changes of states caused by motions and actions.

Between vector representations and matrix representations, the latter are much less studied than the
former, but the brain appears to need both for representing the sensory data, where vector representations
are “nouns” and matrix representations are “verbs”. From a philosophical point of view, the brain only has
access to the sensory data (including external and internal sensory data), and our notion of the outside world
are the vector and matrix representations that the brain invents to explain the sensory data. In other words,
only data are real, and the outside world as we see it is more imaginary than real.

25

Acknowledgments

The work is supported by DARPA XAI project N66001-17-2-4029; ARO project W911NF1810296; and ONR MURI
project N00014-16-1-2007; and Extreme Science and Engineering Discovery Environment (XSEDE) grant ASC170063.
We thank Prof. Stu Geman, Prof. Xianfeng (David) Gu, Prof. Yali Amit, Prof. Jun Zhang, and Prof. Chao Gao for
helpful discussions.

References
Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning. In International Confer-

ence on Machine Learning, pages 1–8.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial networks. In International
Conference on Machine Learning, pages 214–223.

Bell, A. J. and Sejnowski, T. J. (1997). The independent components of natural scenes are edge filters. Vision Research,
37(23):3327–3338.

Bengio, Y., Delalleau, O., Roux, N. L., Paiement, J.-F., Vincent, P., and Ouimet, M. (2004). Learning eigenfunctions
links spectral embedding and kernel pca. Neural Computation, 16(10):2197–2219.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of
the American Statistical Association, 112(518):859–877.

Breiman, L. (2017). Classification and regression trees. Routledge.

Dai, J., Lu, Y., and Wu, Y. N. (2014). Generative modeling of convolutional neural networks. In International
Conference on Learning Representations.

Dai, Z., Almahairi, A., Bachman, P., Hovy, E., and Courville, A. (2017). Calibrating energy-based generative adver-
sarial networks. In International Conference on Learning Representations.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em
algorithm. Journal of the Royal Statistical Society. Series B (methodological), pages 1–38.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers
for language understanding. In The Annual Conference of the North American Chapter of the Association for
Computational Linguistics, pages 4171–4186.

Dinh, L., Krueger, D., and Bengio, Y. (2014). Nice: Non-linear independent components estimation. arXiv preprint
arXiv:1410.8516.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density estimation using real nvp. In International Conference
on Learning Representations.

Dornhoff, L. L. (1972). Group Representation Theory: Modular Representation Theory.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics, pages 1–67.

Gao, R., Lu, Y., Zhou, J., Zhu, S.-C., and Wu, Y. N. (2018a). Learning generative convnets via multi-grid modeling
and sampling. In IEEE Conference on Computer Vision and Pattern Recognition, pages 9155–9164.

Gao, R., Xie, J., Zhu, S.-C., and Wu, Y. N. (2018b). Learning grid cells as vector representation of self-position
coupled with matrix representation of self-motion. In International Conference on Learning Representations.

Gao, R., Xie, J., Zhu, S.-C., and Wu, Y. N. (2018c). Learning vector representation of content and matrix representation
of change: Towards a representational model of v1. arXiv preprint arXiv:1902.03871.

26

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M., Sánchez-Lengeling, B., Sheberla, D.,
Aguilera-Iparraguirre, J., Hirzel, T. D., Adams, R. P., and Aspuru-Guzik, A. (2018). Automatic chemical design
using a data-driven continuous representation of molecules. ACS Central Science, 4(2):268–276.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y.
(2014). Generative adversarial nets. In Advances in Neural Information Processing Systems, pages 2672–2680.

Grathwohl, W., Chen, R. T., Betterncourt, J., Sutskever, I., and Duvenaud, D. (2019). Ffjord: Free-form continuous
dynamics for scalable reversible generative models. In International Conference on Learning Representations.

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., and Moser, E. I. (2005). Microstructure of a spatial map in the
entorhinal cortex. Nature, 436(7052):801.

Hamilton, W. L., Ying, R., and Leskovec, J. (2017). Representation learning on graphs: Methods and applications.
IEEE Data Engineering Bulletin, 40:52–74.

Han, T., Lu, Y., Zhu, S.-C., and Wu, Y. N. (2017). Alternating back-propagation for generator network. In The AAAI
Conference on Artificial Intelligence, volume 3, pages 1976–1984.

Han, T., Nijkamp, E., Fang, X., Hill, M., Zhu, S.-C., and Wu, Y. N. (2019). Divergence triangle for joint training of
generator model, energy-based model, and inference model. In IEEE Conference on Computer Vision and Pattern
Recognition.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation,
14(8):1771–1800.

Hinton, G. E. (2012). A practical guide to training restricted boltzmann machines. In Neural networks: Tricks of the
trade, pages 599–619. Springer.

Hinton, G. E., Dayan, P., Frey, B. J., and Neal, R. M. (1995). The ”wake-sleep” algorithm for unsupervised neural
networks. Science, 268(5214):1158–1161.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8):1735–1780.

Hubel, D. H. and Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. The Journal of
Physiology, 148(3):574–591.

Hyvärinen, A., Karhunen, J., and Oja, E. (2004). Independent component analysis, volume 46.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017). Image-to-image translation with conditional adversarial
networks. In IEEE Conference on Computer Vision and Pattern Recognition, pages 1125–1134.

Jin, L., Lazarow, J., and Tu, Z. (2017). Introspective classification with convolutional nets. In Advances in Neural
Information Processing Systems, pages 823–833.

Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K. (1999). An introduction to variational methods for
graphical models. Machine Learning, 37(2):183–233.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2017). Progressive growing of gans for improved quality, stability, and
variation. International Conference on Learning Representations.

Kim, T. and Bengio, Y. (2016). Deep directed generative models with energy-based probability estimation. ICLR
Workshop.

Kingma, D. P. and Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. In Advances in
Neural Information Processing Systems, pages 10215–10224.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational bayes. International Conference for Learning
Representations.

27

Kipf, T. N. and Welling, M. (2016). Semi-supervised classification with graph convolutional networks. In International
Conference on Learning Representations.

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer,
(8):30–37.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Systems, pages 1097–1105.

Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychome-
trika, 29(1):1–27.

Lafferty, J., McCallum, A., and Pereira, F. C. (2001). Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. In International Conference on Machine Learning, pages 282–289.

Lazarow, J., Jin, L., and Tu, Z. (2017). Introspective neural networks for generative modeling. In IEEE International
Conference on Computer Vision, pages 2774–2783.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition.
Proceedings of the IEEE, 86(11):2278–2324.

Lee, D. D. and Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In Advances in Neural Infor-
mation Processing Systems, pages 556–562.

Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009). Convolutional deep belief networks for scalable unsuper-
vised learning of hierarchical representations. In International Conference on Machine Learning, pages 609–616.

Lee, K., Xu, W., Fan, F., and Tu, Z. (2018). Wasserstein introspective neural networks. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 3702–3711.

Li, K.-C. (1991). Sliced inverse regression for dimension reduction. Journal of the American Statistical Association,
86(414):316–327.

Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learning face attributes in the wild. In International Conference
on Computer Vision.

Lu, Y., Zhu, S.-C., and Wu, Y. N. (2016). Learning FRAME models using CNN filters. In The AAAI Conference on
Artificial Intelligence.

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of Machine Learning Research,
9(Nov):2579–2605.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word representations in vector space.
ICLR workshop.

Mirza, M. and Osindero, S. (2014). Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.

Mnih, A. and Gregor, K. (2014). Neural variational inference and learning in belief networks. In International
Conference on Machine Learning, pages 1791–1799.

Neal, R. M. (2011). Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 2.

Ngiam, J., Chen, Z., Koh, P. W., and Ng, A. Y. (2011). Learning deep energy models. In International Conference on
Machine Learning, pages 1105–1112.

Nijkamp, E., Zhu, S.-C., and Wu, Y. N. (2019). On learning non-convergent short-run mcmc toward energy-based
model. arXiv preprint arXiv:1904.09770.

O’Keefe, J. (1979). A review of the hippocampal place cells. Progress in Neurobiology, 13(4):419–439.

28

Olshausen, B. A. and Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by v1?
Vision Research, 37(23):3311–3325.

Paccanaro, A. and Hinton, G. E. (2001). Learning distributed representations of concepts using linear relational
embedding. IEEE Transactions on Knowledge and Data Engineering, 13(2):232–244.

Pennington, J., Socher, R., and Manning, C. (2014). Glove: Global vectors for word representation. In Conference on
Empirical Methods in Natural Language Processing, pages 1532–1543.

Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning with deep convolutional gener-
ative adversarial networks. In International Conference on Learning Representations.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language un-
derstanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language understanding paper. pdf.

Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., and Lee, H. (2016). Generative adversarial text to image
synthesis. International Conference on Machine Learning.

Rezende, D. J. and Mohamed, S. (2015). Variational inference with normalizing flows. International Conference on
Machine Learning.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and approximate inference in deep
generative models. International Conference on Machine Learning.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science,
290(5500):2323–2326.

Rubin, D. B. and Thayer, D. T. (1982). Em algorithms for ml factor analysis. Psychometrika, 47(1):69–76.

Salakhutdinov, R. and Hinton, G. E. (2009). Deep boltzmann machines. In International Conference on Artificial
Intelligence and Statistics.

Sohn, K., Lee, H., and Yan, X. (2015). Learning structured output representation using deep conditional generative
models. In Advances in Neural Information Processing Systems, pages 3483–3491.

Sutton, R. S. and Barto, A. G. (1998). Introduction to reinforcement learning, volume 135. MIT press Cambridge.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series
B (Methodological), 58(1):267–288.

Tu, Z. (2007). Learning generative models via discriminative approaches. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 1–8.

Tyleček, R. and Šára, R. (2013). Spatial pattern templates for recognition of objects with regular structure. In German
Conference on Pattern Recognition, pages 364–374.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017).
Attention is all you need. In Advances in Neural Information Processing Systems, pages 5998–6008.

Wang, T.-C., Liu, M.-Y., Zhu, J.-Y., Liu, G., Tao, A., Kautz, J., and Catanzaro, B. (2018). Video-to-video synthesis.
Advances in Neural Information Processing Systems.

Wu, Y. N., Gao, R., Han, T., and Zhu, S.-C. (2019). A tale of three probabilistic families: Discriminative, descriptive
and generative models. Quarterly of Applied Mathematics, 77(2):423–465.

Xie, J., Gao, R., Zheng, Z., Zhu, S.-C., and Wu, Y. N. (2019a). Learning dynamic generator model by alternating
back-propagation through time. In The AAAI Conference on Artificial Intelligence.

29

Xie, J., Lu, Y., Gao, R., and Wu, Y. N. (2018a). Cooperative learning of energy-based model and latent variable model
via mcmc teaching. In The AAAI Conference on Artificial Intelligence.

Xie, J., Lu, Y., Gao, R., Zhu, S.-C., and Wu, Y. N. (2018b). Cooperative training of descriptor and generator networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence.

Xie, J., Lu, Y., Zhu, S.-C., and Wu, Y. N. (2016). A theory of generative convnet. In International Conference on
Machine Learning, pages 2635–2644.

Xie, J., Zheng, Z., Fang, X., Zhu, S.-C., and Wu, Y. N. (2019b). Multimodal conditional learning with fast thinking
policy-like model and slow thinking planner-like model. arXiv preprint arXiv:1902.02812.

Xie, J., Zheng, Z., Gao, R., Wang, W., Zhu, S.-C., and Wu, Y. N. (2018c). Learning descriptor networks for 3d shape
synthesis and analysis. In IEEE Conference on Computer Vision and Pattern Recognition, pages 8629–8638.

Xie, J., Zhu, S.-C., and Nian Wu, Y. (2017). Synthesizing dynamic patterns by spatial-temporal generative convnet.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 7093–7101.

Xing, X., Han, T., Gao, R., Zhu, S.-C., and Wu, Y. N. (2019). Unsupervised disentangling of appearance and geometry
by deformable generator network. In IEEE Conference on Computer Vision and Pattern Recognition, pages 10354–
10363.

Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., and Xiao, J. (2015). Lsun: Construction of a large-scale image
dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365.

Zee, A. (2016). Group theory in a nutshell for physicists. Princeton University Press.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K. (2008). Maximum entropy inverse reinforcement learning.
In The AAAI Conference on Artificial Intelligence.

30

