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Arbitrary Posterior Probabilities
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Abstract

Many vision tasks can be formulated as graph partition problems that minimize energy functions.

For such problems, the Gibbs sampler[9] provides general solution but is very slow, while other

methods, such as Ncut[24] and graph cuts[4], [22], are computationally effective but only work for

specific energy forms[17] and are not generally applicable. In this paper, we present a new infer-

ence algorithm that generalizes the Swendsen-Wang method[25] to arbitrary probabilities defined on

graph partitions. We begin by computing graph edge weights, based on local image features. Then

the algorithm iterates two steps. (i) Graph clustering: it forms connected components by cutting the

edges probabilistically based on their weights. (ii) Graph relabeling: it selects one connected compo-

nent and flips probabilistically, the coloring of all vertices in the component simultaneously. Thus

it realizes the split, merge, and re-grouping of a “chunk” of the graph, in contrast to Gibbs sampler

that flips a single vertex. We prove that this algorithm simulates ergodic and reversible Markov

chain jumps in the space of graph partitions and is applicable to arbitrary posterior probabilities

or energy functions defined on graphs. We demonstrate the algorithm on two typical problems in

computer vision - image segmentation and stereo vision. Experimentally we show that it is 100-400

times faster in CPU time than the classical Gibbs sampler and 20-40 times faster then the DDM-

CMC segmentation algorithm[27]. For stereo, we compare performance with graph cuts and belief

propagation. We also show that our algorithm can automatically infer generative models and obtain

satisfactory results (better than the graphic cuts or belief propagation) in the same amount of time.
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I. Introduction

Many computer vision tasks have a “what goes with what” component which can be

formulated as a graph partition (or coloring) problem. For example, segmentation and

grouping in perceptual organization, and correspondence in stereo and motion. The common

objective of these tasks is to partition various image elements, as vertices in an adjacency

graph, into a number of coherent visual structures so that a Bayesian posterior probability

or an energy function is optimized.

Under the formulation of graph partition, an increasing number of algorithms from com-

puter science and modern statistical physics have been brought to computer vision and be-

come very influential recently. The first prominent method is the graph spectral analysis[32],

such as the normalized cuts[24] and its variants for segmentation and grouping that mini-

mize discriminative energy functions. The second popular method is the minimum-cut[22]

and the graph cut[4] which map energy minimization problems to maximum flow problems

and solve them in low order polynomial time. The third method is the generalized belief

propagation on graphs[33], which is shown to minimize some approximate energy functions.

All three methods are computationally efficient, but they are limited to specific forms of en-

ergy functions and thus not generally applicable in visual inference. We shall address their

limitations in comparison to our method later in this section.

For graph partition problems, classic Markov chain Monte Carlo methods, such as Gibbs

sampler[9] or “heat bath” in physics, provide general solutions but experience very slow

convergence, especially when adjacent vertices in the graph are strongly coupled, i.e. the

coloring of the vertices are interlocked locally. Figure 2 illustrates such an example where the

Gibbs sampler, which flips the color of a single vertex at each step, has to wait exponentially

before changing the color of a set of coupled vertices. The speed problem of Gibbs sampler

was addressed by the well-celebrated Swendsen-Wang (SW) method[25], [30]. At each step,
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the SW algorithm clusters the coupled vertices into connected components each having

the same color, and then flips the color of each connected component jointly. For classic

Ising/Potts models[19], a new bounding chain technique[14] has been developed recently,

and can diagnose the convergence of SW to its invariant probability, i.e. exact sampling,

and furthermore the convergence speed (Markov chain mixing time) is polynomial on the

graph size n. But the SW method is only valid for Ising/Potts models since the cancelation

required in deriving the SW method is not observed in general probabilities or energies. Even

worse, SW slows down in the presence of an “external field” (i.e. data or likelihood). More

specifically, if one integrates the Potts model as prior probability with likelihood in Bayesian

inference, it could be very slow as the graph clustering step does not make use of the data.

We shall discuss the SW method and its properties in details in Section (III-B).

In this paper, we generalize SW to arbitrary posterior probabilities or energy functions

and derive a generic solution for graph partition. The basic ideas are summarized below.

(i) Initialization. Given an adjacency graph, we compute local discriminative probabilities

for each edge based on the external field and the prior. For computer vision, local image

features or statistical tests are used to obtain these edge weights. Then the algorithm iterates

the following two steps.

(ii) Graph clustering. Given a current partition (coloring), it removes all edges between

vertices of different colors. Then each of the remaining edges, which connects adjacent

vertices of the same color, is turned on/off according to its weight. If the discriminative

probabilities are informative, then the edges at object boundaries have a high chance to be

turned off. Thus it obtains a number of connected components (subgraphs) each having the

same color, and usually these connected components correspond to strongly coupled vertices

that stand for parts of objects in the image (see Figure 4). We define a “Swendsen-Wang

cut” for each connected component as the set of edges which connect this component with



4

its neighboring vertices of the same color. In other word, the edges in a Swendsen-Wang cut

are turned off probabilistically. These connected components can be regarded as samples

from an approximation of the posterior with a Potts model, and they will be accepted by

the posterior probability in the next step.

(iii) Graph flipping. It selects one (or multiple) connected component and flips, with a

probability driven by the posterior, the coloring of all vertices in the selected component(s)

simultaneously. Thus it realizes the split, merge, and re-grouping of a “chunk” of the graph,

in contrast to the Gibbs sampler that flips a single vertex. The flipping procedure can

automatically change the number of colors and thus is more general than the original SW

method that works for a fixed number of colors in the Potts model.

We shall show that the new algorithm simulates ergodic and reversible Markov chain

jumps in the finite space of all possible graph partitions. The algorithm is valid for sampling

arbitrary posterior probability or energy functions.

Our new algorithm mainly makes three contributions. Firstly, we generalize the SW

method from the perspective of Metropolis-Hastings method, and derive a simple and ana-

lytic formula for the acceptance probability in a reversible Metropolis-Hastings step. This

formula (see Theorem 2) is expressed in terms of the product of the discriminative proba-

bilities on the edges (often a very small number) in the Swendsen-Wang cuts. Secondly, we

compute the discriminative probabilities on edges from the input image (“external field” in a

physics term). We observe that empirically these discriminative probabilities make the con-

nected components more effective, in comparison to a uniform probability in the original SW

method. This is in a similar spirit to data-driven Markov chain Monte Carlo[27]. Thirdly,

we present various versions of the algorithm. One of the variants is a direct generalization of

the Gibbs sampler. It flips the coloring of a connected component according to a conditional

probability with a rectifying factor, and the flip is accepted with probability one.
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We demonstrate the algorithm on two typical problems in computer vision - image seg-

mentation and stereo vision. In image segmentation, we choose a generative image represen-

tation with three classes of image models. It works 100-400 times faster in CPU time than

the classic Gibbs sampler and obtains good results in 3-30 seconds in a PC. In the stereo

matching problem, we adopt the energy function used in graph cut[4] and the benchmark

in[23] for comparison. It obtains good results (better than belief propagation[26]) in 6-10

minutes on a 400x290 image, and is slower than graph cuts. The computing speed certainly

depends on the discriminative probabilities in the problem domain. For optimization prob-

lems, our method still uses simulated annealing, but at a much quicker schedule than the

Gibbs sampler (15 sweeps as opposed to 5000 sweeps) and we do not have to start with a

high initial temperature. The algorithm can therefore start with good initial solutions to

speed-up convergence.

We now compare our method with other graph partition algorithms in computer vision.

First, it is distinct from the graph spectral analysis[32], such as normalized cuts[24], [32].

We argue that the discriminative energies, used in Ncuts and many other discriminative

grouping and clustering algorithms[15], [13], [21], [8], have difficulties in expressing global

visual patterns, such as shading effects, perspective projection effects, contour closure etc.

Furthermore natural images contain very diverse visual structures which are “coherent” in

many different ways, there is no single discriminative criterion that is generally applicable to

correctly partition all the visual structures in images[8]. For example, a criterion that prefers

compact regions will break elongated curve patterns. Thus we need a generative and Bayesian

formulation incorporating a number of diverse and competing image models. Each family of

models explains how a pattern is generated and stands for a coherence criterion. For example,

seven families of models are used for texture, color, shading and clutter regions in image

segmentation[27]. Our algorithm uses the Ncut type discriminative probabilities on edges,
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but only for making proposals, which are accepted or rejected by the Bayesian posterior

probability that incorporates many families of image models and global prior knowledge.

Second, although the graph cut and minimum-cut algorithms[22], [17] are effective in

minimizing some energy functions, it is shown [17] that only very limited classes of energy

functions can be mapped into the maximum flow problems. For example, so far these

methods have not been applicable to generative models with multiple classes of image models.

Third, our method is an addition to the recent data-driven Markov chain Monte Carlo

(DDMCMC) algorithm for segmentation[27] and parsing[28] which solves Bayesian inference

by mixing a number of reversible jumps. The jumps are divided into two types. Type I

solves the “what is what” sub-tasks, such as model selection, switching, and fitting. The

DDMCMC algorithm computes discriminative models, such as color and texture clustering,

and expresses them in the form of non-parametric probabilities to drive these jumps. Type

II solves the “what goes with what” sub-tasks such as grouping, segmentation, and corre-

spondence. Our Swendsen-Wang cut algorithm in this paper improves the type II jumps

in both theoretical formulation and computational speed. It can speeds up the DDMCMC

algorithm[27] by 20-40 times for segmentation.

In this paper we shall focus on the type II reversible jumps in the graph partition space.

We omit discussion on the model spaces for type I jumps, which are referred to [27].

The paper is organized in the following. We present the Bayesian formulation for graph

partition in Section (II). Then we discuss the difficulties in sampling the graph partitions

and introduce the original SW algorithm in Section (III). Section (IV) presents the new

Swendsen-Wang cut algorithm and its variants. Then we show two groups of experiments in

Section (V) – image segmentation and stereo matching. Finally Section (VI) concludes the

paper with discussions on the advanced topics on extending and analyzing the Swendsen-

Wang cuts.
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II. Bayesian formulation of graph partition

A. Bayesian formulation

We consider an adjacency graph Go =< V,Eo >, where V = {v1, v2, ..., vN} is the set

of nodes that need to be partitioned, such as atoms, pixels, edge elements, image primi-

tives, or atomic regions with nearly constant intensities, and Eo is a set of edges connecting

neighboring nodes. An n-partition of the graph is denoted by

πn = (V1, V2, ...Vn), ∪n
i=1Vi = V, Vi ∩ Vj = ∅, ∀i �= j. (1)

Since visual structures are coherent in many different ways, each subset Vi, i = 1, 2, ..., n is

assigned a color ci which represents the model, usually consisting of a type (constant, spline,

etc) and some parameters. Our objective is to compute the following world representation

W from the input I,

W = (n, πn, c1, ..., cn) (2)

This becomes an optimization problem either maximizing the Bayesian posterior probability

or minimizing an energy in a solution space Ω,

W ∗ = arg max
W∈Ω

p(I|W )p(W ), or W ∗ = arg min
W∈Ω

E(W |I). (3)

We choose two typical vision problems as examples in this paper. We denote by Iv the

image attributes on vertex v, and I = IV the attributes for the set V .

The first example is image segmentation, as shown in Figure 1. Each vertex v is an

atomic region with nearly constant intensity, and Iv is its intensity. A partitioned subset Vi

corresponds to a coherent region Ri with model ci = (�i, θi) where �i is the type of image

model, and θi the model parameters. We adopt three types of simple image models and

a prior probability in Section (V-A). Usually, these models should be color, texture, and
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a. Input image b. atomic regions in Go c. segmentation

Fig. 1. Image segmentation as graph partition. a. Input image. b. Atomic regions by Canny edge detection

followed by edge tracing and contour closing, each being a vertex in the graph Go. c. Segmentation result.

shading, as implemented in DDMCMC[27]. Thus the likelihood for IVi
is p(IVi

; �i, θi), where

θi may have different dimensions for different types of models.

The second example is stereo matching. The graph Go is the pixel lattice, Iv = (Il
v, I

r
v) is

the left and right image intensity and ci is the disparity of Vi, discretized along the epipolar

line as ci ∈ {0, ..., dmax}. The energy function is formulated in Section (V-C).

In our recent work[2], we have applied the same SW-cuts algorithm to motion where

ci = (ui, vi) is the motion velocity, or even ci can be a vector that includes both motion and

image segmentation. Our algorithm has also been used for curve grouping.

B. Solution space and Markov chain jumps

In this subsection, we consider the structures of the solution space and the necessary

Markov chain design for optimization in this space. Then we present the place of graph

partition in this optimization.

For W in eqn. (2), we denote by Ωπn � πn the space of all possible n-partitions πn of V ,

Ω� � �i the set of types of image models, and Ωθi
� θi the model parameter space (family)

for type �i. Thus the solution space for W is

Ω = ∪N
n=1 {Ωπn × Ωn

� × Ωθ1 × · · · × Ωθn}. (4)
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The factorization of the space corresponds to the two types of moves necessary for exploring

the entire space.1

1. Type I is ”what is what” moves for selecting the model �i ∈ Ω� and fitting the model

parameters θi ∈ Ωθi
for Vi, i = 1, 2, ..., n. Model fitting is omitted in the stereo matching

experiment. We usually can quantize the model spaces so that they become finite.

2. Type II is “what goes with what” moves for grouping, segmentation and correspondence

in the partition space Ωπ = ∪|V |
n=1Ωπn , which is a finite space.

The two types of moves are tightly coupled, and we implement them by a number of

reversible jumps which simulate Markov chain searches in the space Ω. The Markov chain

starts with an initial solution Wo and is designed to have a unique invariant (stationary)

probability p(W |I). Suppose we denote the state probability of the Markov chain at time t

by pt(Wo,W ). A classic measure of convergence is the total variation,

||pt(Wo,W ) − p(W |I)||TV =
1

2

∑

W∈Ω

|pt(Wo,W ) − p(W |I)|. (5)

A measure of the speed of an algorithm A is the mixing rate, that is the minimum time for

the Markov chain to come close to the stationary probability for any Wo,

τA = max
Wo

min{t : ||pt(Wo,W ) − p(W |I)||TV ≤ ε}. (6)

Usually τA = τA(ε, |Go|) is a function of 1
ε

and the graph size |Go|, i.e. number of vertices

and edges. The algorithm A is said to be rapid mixing if τA is polynomial or logarithmic.

In this paper we shall only study the type II moves and omit the type I moves which have

been discussed in the DDMCMC algorithm[27].

1It is interesting to note that human brain mapping study[29] shows that the recognition task (type I) is handled

by a dorsal stream and the spatial vision (type II) is processed by a ventral stream.
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III. Gibbs sampler, Swendsen-Wang method, and their limitations

In this section we discuss the Gibbs sampler and the original Swendsen-Wang algorithm

for graph partition to set the background.

A. The difficulty of graph partition by Gibbs sampler

1/2 1/2

Fig. 2. Difficulty in sampling the Ising and Potts models.

The difficulty of sampling in the partition space Ωπ is well reflected in a simple Ising and

Potts model[19], which are sometimes used in vision as prior model. Figure 2 shows a string

of spins whose label (color) c can be +1 (up) and −1 (down). A Potts model may have

Q ≥ 3 colors, c ∈ {1, 2, ..., Q}. The Ising/Potts model is

p(πn) =
1

Z
exp{β ∑

<s,t>∈Eo

1(cs = ct)}, β > 0. (7)

where 1(cs = ct) = 1 if cs = ct for two adjacent vertices s, t otherwise it is zero. Obviously

the highest probability is achieved when all vertices have the same label. In a best visiting

scheme, suppose a single site update algorithm, like the Gibbs sampler, flips the −1 spins

at the two “cracks” in figure 2. The probability for flipping each spin from −1 to +1 is

po = 1/2. Thus to flip a string of k spins (k = 9 in Figure 2) from −1 to +1 successfully,

the expected number of steps is 1
(1/po)k = 2k. This is exponential waiting and is typical for

general graph partition! Intuitively it will be desirable to flip a big set of vertices that have

the same color at each step. Of course, we need to ensure that such moves still keep p(πn)

as its stationary probability. This is what the Swendsen-Wang method does.
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B. Swendsen-Wang on Potts models and theoretical results

There are many ways to interpret the SW algorithm, including random cluster model,

auxiliary variables[6] and slice sampling and decoupling[12]. In this paper, we interpret the

SW method as a Metropolis-Hastings step and our interpretation leads to generalizing it to

arbitrary probabilities in Section (IV).

V
0

state A state B

V
0

V
1

V
2

V
1

V
2

Fig. 3. SW algorithm flips the color of a set of vertices Vo in one step for the Ising/Potts models. The set

of edges marked with crosses is called the Swendsen-Wang cut.

Consider a Potts model in eqn. (7) on a 2D lattice. Figure 3 shows two partition states

πA and πB with πA = (Vo ∪ V1, V2, · · ·) and πB = (V1, Vo ∪ V2, · · ·), which differ by the labels

of the vertices Vo inside the center window.

The SW algorithm realizes a reversible move between πA and πB in a single step. From

state πA, the SW algorithm proceeds in the following way:

1. Any edge e =< s, t >∈ Eo, is removed if cs �= ct. If cs = ct, then e =< s, t > is turned

“on” with a probability qo = 1 − e−β otherwise it is turned “off”, i.e. removed. This yields

a number of connected components, each being a subset of vertices of the same color.

2. It randomly selects a connected component Vo of the resulting graph (see Figure 3 (left)).

The dark edges in V0 remain on, the other edges have been turned off.

3. It chooses a label c ∈ {1, , ..., Q} for Vo with uniform probability.

In the example of Figure 3, Vo change color from black to white and we obtain partition



12

state πB in Figure 3 (right). Reversely, at state πB, we will have a chance to select Vo and

flip it to black color and this return to πA.

In this paper, the Swendsen-Wang cuts at πA and πB are the sets of edges connecting Vo

to V1 and V2 respectively, marked by the crosses in Figure 3.

CA = C(Vo, V1) = {(s, t) : s ∈ Vo, t ∈ V1}, CB = C(Vo, V2) = {(s, t) : s ∈ Vo, t ∈ V2}. (8)

In state πA, there is a combinatorial number of ways to make V0 a connected component,

but in all cases, the edges in CA must have been cut probabilistically. Similarly in state πB,

edges in CB must be turned off in order for Vo to be a connected component.

We look at the moves between states πA and πB from the perspective of the Metropolis-

Hastings method[18]. Though it is computationally difficult to compute the proposal proba-

bilities q(πA → πB) and q(πB → πA), one can compute their ratio easily through cancelation.

q(πA → πB)

q(πB → πA)
=

(1 − qo)
|CA|

(1 − qo)|CB | = (1 − qo)
|CA|−|CB |. (9)

CA is the cardinality of set CA. Remarkably the probability ratio for p(πA)/p(πB) for the

Potts model is also decided by the Swendsen-Wang cuts

p(πA)

p(πB)
=

e−β|CB |

e−β|CA| = eβ(|CA|−|CB |) (10)

The acceptance probability for the move from πA to πB is,

α(πA → πB) = min(1,
q(πB → πA)

q(πA → πB)
· p(πB)

p(πA)
) = (

e−β

1 − qo

)|CA|−|CB | = 1 (11)

if we take qo = 1 − e−β, so the proposal from πA to πB is always accepted. So once Vo is

selected, its new color is picked at random without having to go through the Metropolis-

Hastings step due to the cancelation! As β ∝ 1
T

is the inverse of the “temperature” in the

Potts models, at lower temperature, qo → 1 and SW flips a larger patch each time.
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For Potts models in eqn. (7), Huber [14] developed a new bounding chain technique[14]

which can diagnose the convergence of SW, i.e. exact sampling or perfect sampling[20]. The

number of steps in reaching exact sampling is in the order of O(log |Eo|) for temperature far

below and far above the critical temperature. Using a path coupling technique, Cooper and

Frieze [5] have showed that the mixing time τ (see eqn. (6)) is polynomial[5] if each vertex in

graph Go is connected to O(1) number of neighbors, i.e. the connectivity of each vertex does

not grow with the size of V . This is usually observed in vision problems, such as the lattice.

The mixing time becomes exponential at a worst case when Go is fully connected[10]. Such

case may never occur in vision problems.

However the excitement of SW algorithm has been limited for the following reasons.

1. It is restricted to Ising and Potts models, while posterior probabilities in vision tasks are

of much more complex forms.

2. It becomes very slow even for the Potts models in the presence of external fields (data).

As qo is a constant, it does not utilize the input data in clustering the connected components.

3. It assumes the number of labels n is fixed. The Markov chain does not create new labels

in cases where n is unknown (in vision, usually the number of models is unknown).

In the next section, we overcome these limitations and extend SW to arbitrary probabili-

ties.

IV. Graph partition by Swendsen-Wang cuts

A. Discriminative probabilities on edges

Before running the reversible jumps, we augment the adjacency graph Go =< V,Eo >

with discriminative probabilities in an initial stage. Partition samples obtained using these

probabilities will be used in the next subsection as proposals for the full posterior probability.

For any vertex v ∈ V , we extract a number of features F (v) = (F1(v), F2(v), ..., Fa(v)),
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and for each edge e =< s, t >∈ Eo we assign a binary random variable µe ∈ {on, off}. µe

indicates whether the edge is turned on or off. Then we compute a discriminative probability

qe = q(µe = on|F (s), F (t)) based on local features F (s) and F (t).

Take the adjacency graph in Figure 1 as an example. For each atomic region (vertex in

Go), we compute a 15-bin intensity histogram h normalized to 1. For each edge e =< vi, vj >,

we define

qe = p(µe = on|hi, hj) = e−(KL(hi||hj)+KL(hj ||hi))T/2, (12)

where KL() is the Kullback-Leibler divergence between the two histograms and T is a

temperature factor. Usually qe should be close to zero for e on object boundary. Suppose

we turn on the edges independently according to qe, e ∈ Eo, we obtain a sparse graph

G =< V,E > with probability

q(E) =
∏

e∈E

qe

∏

e∈Eo\E
(1 − qe). (13)

T = 1 T = 2 T = 4 T = 8                                                

                                                

                                                

Fig. 4. Random clustering of the adjacency graph using independent discriminative models on edges. Each

uniform region is a connected component.
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Then G consists of a number connected components. Figure 4 shows some examples of

G for Go in Figure 1. Each region of uniform grey level is a connected component that

consists of a number of atomic regions. We show three random partitions sampled according

to q(E) for four temperatures T = 1, 2, 4, 8. At a reasonable temperature, various parts

of the cheetah are obtained, legs, body and tail, as connected components, which are then

proposed as candidates for partition in the reversible jumps.

This example shows that the discriminative models are good heuristics for partition. How-

ever, these partitions are limited by the local features. More complex posterior probabilities

with global generative models are needed to accept these proposals, and this is done next.

B. Swendsen-Wang cuts and its variants

V0

a. Go b. G c. CP

Fig. 5. Three stages of graphs in the algorithm. a) Adjacency graph Go, b. graph G for current partition

(coloring) π, c. connected components CP by turning off some edges in G.

The Swendsen-Wang cut algorithm engages three types of graphs shown in Figure 5. It

starts with an adjacency graph Go =< V,Eo > (Fig.5.a). At each time step we have a

partition π = (V1, ..., Vn) which assigns a color to each vertex cv = � for v ∈ V�, � = 1, 2, ..., n,

and we obtain a graph G(π) =< V,E(π) > (Fig.5.b) with E(π) = {e =< s, t >: cs = ct}.

Then each edge e ∈ E(π) is turned off with probability 1− qe independently, and we obtain

a sparse graph CP with a number of connected components.

Now we present a first version of the Swendsen-Wang cut algorithm.
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Swendsen-Wang Cut: SWC-1

Input: Go =< V,Eo >, qe,∀e ∈ Eo, and posterior p(W |I). Output: Samples W ∼ p(W |I).
1. Initialize a partition π by random clustering (see Fig. 4)

2. Repeat, for current state π = (V1, V2, ..., Vn),

3. For e ∈ E(π), turn µe = off with probability 1 − qe.

4. V� = (V�1, ..., V�n�
) is divided into n� connected components for � = 1, 2, ..., n.

5. Collect all the connected components in set CP = {V�i : � = 1, ..., n, i = 1, ..., n�}.
6. Select a connected component Vo ∈ CP with prob. q(Vo |CP ), say Vo ⊂ V�.

(Usually q(Vo |CP ) = 1
|CP | is uniform, Fig.6.a is an example of Vo in partition π = πA).

7. Propose to assign Vo a new label cVo
= �′ with a probability q(�′|Vo, π), thus obtain π′

(π′ = πB is in Fig.6.b if V0 is merged to an existing color V2,

or π′ = πC is in Fig.6.c if Vo is assigned a new color).

8. Accept the proposal with probability α(π → π′) defined in theorem 2.

The proposal probability q(l′|Vo, π) can be uniform, or better, dependent on the similarity

of Vo with Vl′ . At each step, model switching and fitting (type I jumps) are performed

deterministically or sampled from some proposal probabilities (see in later this section).

V1

x

x

x

x

x

x

V0

V2

x

x

x

x

xx

x
x

x
x

xV1

V0

V2

V1

V0

V2

a. A CP of state πA b. A CP of state πB c. A CP of state πC

Fig. 6. A reversible move between three partition states πA, πB , πC which differ only in the color of V0.

The vertices connected by thick edges form a connected component. The thin lines marked with crosses are

edges in the SW-cuts.

In the above algorithm, let Vo ⊆ V� in π, and Vo ⊆ V�′ in π′. The move π → π′ can realize

three types of moves depending on the choice of the new color of Vo. Thus the number of

color n will be decided automatically.

1. re-grouping: Vo ⊂ V� is split from V� and merged into an existing color V�′ . The number
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of colors n is unchanged. E.g. πA ↔ πB in Fig. 6. When V� and V�′ are adjacent, this is in

fact a discrete version of the boundary evolution, like region competition[34].

2. Splitting: Vo ⊂ V� is split into a new color �′ = n + 1. E.g. πA → πC in Fig. 6.

3. Merging: Vo = V� and is merged into an existing color. E.g. πC → πA in Fig. 6.

The second version of the algorithm differs only in the way it selects the set Vo. Instead

of sampling all the edges in a current partition, it starts from a single vertex (seed) v and

grows into a connected component Vo.

Swendsen-Wang Cuts: SWC-2

1. Repeat, for current state π = (V1, V2, ..., Vn),

2. Select a seed vertex v, say v ∈ V� in π. Set Vo ← {v}, C ← ∅,
3. Repeat until C ∩ C(Vo, V� \ Vo) = C(Vo, V� \ Vo),

4. For any e =< s, t >∈ C(Vo, V� \ Vo), s ∈ Vo, t ∈ V� \ Vo.

5. Turn µe = on with probability qe, else µe = off,

6. If µe = on, set Vo ← Vo ∪ {t}, else C ← C ∪ {e}.
7. Propose to assign Vo a new label �′ with prob. q(cVo

= �′|Vo, π).

8. Accept the move with probability α(π → π′) defined in theorem 2.

Now we compute the acceptance probability α(π → π′) in SWC-1 and SWC-2.

We start with computing the probability ratio for selecting Vo in π → π′ and π′ → π.

Theorem 1: Let π and π′ be a pair of reversible partition states which differ in the coloring

of Vo, with Vo ⊆ V� in π and Vo ⊆ V�′ in π′, then

q(Vo|π)

q(Vo|π′)
=

∏
e∈C(Vo,V�\Vo)(1 − qe)

∏
e∈C(Vo,V�′\Vo)(1 − qe)

. (14)

∏
e∈C(Vo,V�\Vo)(1 − qe) = 1 if V� \ Vo = ∅.

Proof: See Appendix A. This is the most important step in obtaining the acceptance

probability. It states the fact that although there are a combinatorial number of ways for

selecting Vo in π and π′, their probability ratio is simple due to cancellations.
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Theorem 2: In the above notation, the acceptance probability for move π → π′ is

α(π → π′) = min(1,

∏
e∈C(Vo,V�′\Vo)(1 − qe)

∏
e∈C(Vo,V�−Vo)(1 − qe)

· q(cVo = �|Vo, π
′)

q(cVo = �′|Vo, π)
· p(π′|I)

p(π|I) ). (15)

Proof: By Metropolis-Hastings method[18], the acceptance probability is,

α(π → π′) = min(1,
q(π′ → π)

q(π → π′)
· p(π′|I)

p(π|I) ), (16)

For the re-grouping case (see πA ↔ πB in Fig. 6), there is only one path moving between

the two states π and π′, i.e. selecting and flipping Vo. Therefore,

q(π′ → π)

q(π → π′)
=

q(Vo|π′)
q(Vo|π)

· q(cVo = �|Vo, π
′)

q(cVo = �′|Vo, π)
. (17)

The conclusion follows straight from theorem 1. For the splitting and merging case (see

πA ↔ πC in Fig. 6), there are two paths. We put the proof in Append B for clarity.

As the partition space Ωπ � π is finite, the Markov chain in SWC-1, 2 is then ergodic

following the observation that there is a non-zero probability for any node v ∈ V to be

chosen as Vo and assigned a new color. Then the Markov chain can move from a partition

to any other partition with non-zero probability in |V | steps.

To include the type I moves for model selecting and fitting, we augment the move from

two partitions π ↔ π′ to two states W ↔ W ′. In state W , the set V� ⊇ Vo has image model

θ� the set V�′ has image model θ�′ . In state W ′, Vo is split from V� and merged into V�′ . The

set V� \Vo has a new model θ′�, and the set V�′ ∪Vo has model θ′�′ , obtained by sampling from

proposals q(θ′�|IV�\Vo), q(θ
′
�′ |IV�′∪Vo) respectively. Then the acceptance probability is

α(W → W ′) = min(1,
q(θ�|IV�

)q(θ�′|IV�′ )

q(θ′�|IV�\Vo)q(θ
′
�′|IV�′∪Vo)

· q(π′ → π)

q(π → π′)
· p(W ′|I)

p(W |I) .

The dimensions of the model parameters are matched in the ratio. The proposal probabilities

q(θ|IV�
) for any set V� ∈ V are again a product of discriminative probabilities on the vertices.

They are computed in a bottom-up step through data clustering, see [27].
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C. SWC-3: generalized Gibbs sampler

Now we design the probability q(cVo = �′|Vo, π) to achieve acceptance probability 1. The

third version of our algorithm, named SWC-3, becomes a generalized Gibbs sampler.

Let π = (V1, V2, ..., Vn) be the current partition, and Vo ⊆ V� be a connected component

whose color cVo has n + 1 choices. That is, Vo can be merged with one of the following sets,

S1 = V1, S2 = V2, ..., Sl = V� \ V0, ..., Sn = Vn, Sn+1 = ∅. (18)

By assigning cVo = �′ ∈ {1, 2, ..., n + 1}, we have n + 1 possible partitions for π′ (n if

Vl\Vo = ∅, and we denote them by π1, π2, ..., πn+1 respectively. Vo is merged with Si in πi for

i = 1, 2, ..., n and π� = π. These partitions may have m = n − 1, n, n + 1 colors. We use m

for clarity of notation.

We denote the Swendsen-Wang cuts between Vo and Sj, j = 1, 2, ..., n + 1 by

Ci = C(Vo, Si), i = 1, 2, ..., n + 1, with C(Vo, ∅) = ∅, ∪n
i=1Ci = C(Vo, V \ Vo). (19)

The number of edges in these SW-cuts is fixed regardless the number of colors m. We denote

the weight for the n + 1 partitions by

ωi =
∏

e∈Cj

(1 − qe), i = 1, 2, ...,m. (20)

Theorem 3: Given the partition of V \ Vo, and let p(πi|I) be the posterior probability of

partition πi for i = 1, 2, ...,m, if we choose the new color or Vo by

q(cVo = i|Vp, π) =
ωip(πi|I)∑m

j=1 ωjp(πj|I) (21)

then the proposed move is accepted with probability one.

Proof: . For any two partitions π� and π�′ , we have the following acceptance probability,

from theorem 2,

α(π� → π�′) = min(1,
ω�′

ω�

· ω�p(π�|I)
ω�′p(π�′ |I) ·

p(π�′|I)
p(π�|I) ) = 1. (22)
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because the denominator in eq. 21 is the same for πl and πl′ .

Intuitively, once we pick up Vo, we merge Vo with Si according to the posterior probability

p(πi|I), i = 1, 2, ...,m modified by the SW-cut factor ωi =
∏

e∈Ci
(1 − qe) to ensure the

Markov chain follows the posterior. If Vo is always a single site, then Ci = ∅ and ωi = 1 for

i = 1, 2, ...,m, and this reduces to the Gibbs sampler. Now we get the third version of the

SWC algorithm

Swendsen-Wang Cuts: SWC-3

1. Repeat, for a current partition π = (V1, ..., Vn).

2. Select a candidate set Vo as in SWC-1 or SWC-2

3. Draw a random sample �′ with probability q(�′ = i|Vo, π) from (21)

4. Merge V0 to Si

In comparison, SWC-3 is computationally more costly as it has to evaluate m posteriors at

each step. Sometimes we can limit the number of color m to only the sets which are adjacent

to Vo. SWC-2 has a smaller computational cost than SWC-1 as it only tests a small number

of edges in the graph clustering step. In SWC-2 one can choose the initial seed vertex v ∈ V

according to the goodness of fit, to avoid picking large components every time.

V. Experiments – segmentation and stereo

In this section, we apply the SW-cut algorithms to two classical vision problems– image

segmentation and stereo matching.

For optimizing the posterior probability, one needs a simulated annealing procedure[16]

that raises the posterior probability to a certain power called temperature. This temperature

is slowly decreased according to a cooling schedule. The initial temperature Tmax is big, in

order to avoid being stuck in local minima, and then it is reduced it to Tmin in a given number

of sweeps (1 sweep= |V | steps). The initial temperature Tmax depends on the efficiency of

the algorithm. As Figure 8 shows empirically, the Gibbs sampler needs very high initial

temperature and decrease slowly (in 5000 sweeps) in order to reach good solutions. Any good
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initial solution Wo will be destroyed (randomized) at the high temperature. In comparison

the Swendsen-Wang cuts can walk fast at low temperature and we start with Tmax small,

usually Tmax < 20, and decrease fast (in 15 sweeps), and it can utilize good initial solutions.

The ending temperature Tmin is often in the range of [0.1, 1] for our experiments.

A. Experiment I: image segmentation

To reduce the size of the adjacency graph, we use a Canny edge detector and edge tracing

to divide the image into ”atomic regions” with almost constant intensities. Depending on

image size and texture, there are N ∈ [500, 1500] atomic regions, each being a vertex in Go.

The use of atomic regions helps reduce the computational time, but we should be aware of the

risk that we are not able to break them if they are wrong, especially some case of “leakage”

occurs and the atomic region becomes rather big. In more recent work[2], we overcome this

problem by hierarchic SW-cut method which works on multiple levels of adjacency graphs

where the vertices are of various granularities.

We adopt three simple image models and more sophisticated models can be easily added

as in [27]. Let x, y be the coordinates of a pixel.

The first model C1 assumes constant intensity with additive noise modeled by a non-

parametric histogram H.

J1(x, y; θ) = µ + η, η ∼ H, θ1 = (µ,H). (23)

The second model C2 assumes a linear function with additive noise H. A linear model:

J2(x, y; θ) = µ + ax + by + η, η ∼ H, θ2 = (µ, a, b,H). (24)

The third model C3 assumes a quadratic function with additive noise H,

J3(x, y; θ) = µ + ax + by + cx2 + dxy + ey2 + η, η ∼ H, θ3 = (µ, a, b, c, d, e,H). (25)
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Fig. 7. Image segmentation: input image, atomic regions and segmentation result.

The selection of model was studied in previous DDMCMC work [27]. Such models are

found to be useful for fitting smoothness regions with global shading effects. The texture is

modeled by the non-parametric histogram H, which in practice is represented by a vector
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of B-bins (H1, ...,HB) normalized to sum to 1. Let R be a region which has a model (�, θ).

Then the likelihood is

P (IR; �, θ) ∝ ∏

v∈R

H(Iv) =
B∏

j=1

Hnj

j = exp(−|R|entropy(H)). (26)

where nj is the number of pixels of R that fall into the jth bin of the histogram.

Like[27], we use the prior p(W ) to encourage large and connected regions. Let n be the

number of regions, each region may consist of one or many sub-regions. We denote these

connected components by r1, r2, ..., rm, m ≥ n. The prior is

p(W ) ∝ e−γne−γ′m
m∏

i=1

e−λArea(ri)
0.9

. (27)

We fix γ = 35, γ′ = 15 in our experiments.

The model parameters for the regions are computed deterministically at each step as the

best least square fit. This could be replaced by separate steps of model fitting and switching,

but this is beyond the purpose of our experiments. The segmentation results obtained from

SWC-1 are shown in Figures 1 and 7.

B. Computational speed and comparison

We compare the speed of our algorithm and Gibbs sampler in Figures 8 and 9. We

run the SWC-1 algorithm 5 times on the cheetah image in Figure 1, with two types of

initializations. One is random initialization which assigns a random color to each atomic

region independently with n = 5 colors in total. The other is a uniform initialization which

sets all atomic regions to the same color n = 1. It happens that the uniform initialization

has lower energy (− log p(W |I)) than the random initializations.

To achieve the same low energy level, the Gibbs sampler (upper two curves) in Fig. 8

has to start with a high temperature T = 200 and use a logarithmic annealing schedule to

T = 0.05 in 5000 sweeps, otherwise it remains stuck at a higher energy level. In contrast,
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the SWC-1 starts at temperature T = 20 and decreases to T = 0.05 in 15 sweeps. Figure 8

plots the energy for each run as a function of the CPU time in seconds.
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Fig. 8. Convergence comparison between SWC-1 and Gibbs sampler (upper curves) in CPU time (seconds).

(Left) The first 1,200 seconds. (Right) Zoomed-in view of the first 20 seconds. The SWC-1 runs 5 times for

both the random and uniform initializations.

The two upper curves are the Gibbs sampler with random and uniform initialization

respectively. As SWC-1 converges much faster, we plot a zoom-in view of the first 20 seconds.

We show 5 SWC-1 runs, for both the random and uniform initializations. The uniform

initialization has much lower energy to start with and the SWC-1 algorithm also converges

faster (in 3 seconds). In contrast, the Gibbs sampler cannot utilize the good initialization

because it has to raise the temperature high.

To study the effects of the discriminative probabilities qe on convergence speed, we compare

the performance of our algorithm with and without discriminative probabilities in Fig.9. We

run the SWC-1 algorithm 3 times with all edges having the constant probability, qe =

0.2, 0.4, 0.6 respectively (Note that the Gibbs sampler is equivalent to SWC with qe = 0).

The annealing schedules for these runs have to be slower, starting at higher temperature, to

obtain the same final energy. Sometimes the algorithm cannot reach the same low energy as

with discriminative models.
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Fig.9 displays the energy vs CPU time (in seconds) of the three runs and the SWC-1

on the airplane image shown in Fig.7. The energies of the three SWC runs with constant

edge probability qe = 0.2, 0.4, 0.6 are shown in dotted lines, all three runs start from a

uniform initialization. They are significantly slower than SWC-1. It is worth mentioning

that these SWC runs without discriminative probabilities are not equivalent with the original

SW algorithm because we work on a more general energy function, on which the original

SW cannot be applied.
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Fig. 9. (Left) Convergence comparison between SWC-1 (solid) and SWC-1 using constant edge probabilities

qe = 0.2, 0.4, 0.6 (dotted). (Right) Comparison of SWC-1 and SWC-3 for the second image in Figure 7. Both

plots are in CPU time. SWC-3 has more overhead at each step and is slower in this example.

Fig. 9.b compares SWC-1 and SWC-3. SWC-1 is more effective than SWC-3 because

of the computational overhead of each SWC-3 move, and that there is more data-driven

information used in the SWC-1 than in SWC-3, existent in the design of the q(l′|Vo, π).

Compared with the DDMCMC algorithm from [27], our algorithm can speed it up by

20-40 times in CPU time. Our model fitting and switching steps are quite simple, but we

observed that the full-featured model fitting and switching steps take much less time than

the split-merge steps which are the focus of our algorithm. By incorporating full-featured

model fitting and switching steps in our algorithm, it will remain 20-40 times faster than the

DDMCMC[27].
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C. Experiment II: comparison with Graph Cuts and Belief Propagation for stereo

In this section we compare the performance of the SW Cuts with Graph Cuts[4] and Loopy

Belief Propagation[33] on stereo matching using the benchmark in [23], [26].

Given a pair of stereo images I = (Il, Ir), we assign an integer disparity value (as color)

cv = dv for every pixel v in the left image. The adjacency graph Go is simply the lattice

with 4-nearest neighbor connections. The energy used in the benchmark[23], [26] is a Potts

model with external field,

E =
∑

v

D(dv, v) +
∑

<s,t>

βs,t1(ds �= dt) (28)

The external field (data) term measures the goodness of intensity match between the left

and right images for a disparity dv,

D(dv, v) = min{ min
dv−1/2≤x≤dv+1/2

|Il(v) − Ir(v − x)|, 50} (29)

a. Left image b. SWC-2 result c. Graph cuts result d. Manual (truth)

Fig. 10. Stereo matching for the Tsukuba sequence (first row) and the Sawtooth sequence (second row).

The coefficient in the prior term is made to be dependent on < s, t > (inhomogeneous

Potts model) βs,t = 20 if |Il(s) − Il(t)| > 8, otherwise βs,t = 40. This energy has some

shortcomings. (i). It is low level Markov random field without generative model fitting.
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For example, the slanted planes in Fig. 10 (second row) are broken into many pieces. (ii)

It does not treat half-occluded pixels explicitly and because of this, the ground truth have

much higher energy than what the algorithms output (see Fig.11). We are forced to use this

energy in order to compare with the graph cut (and BP) as this is the type of energy that

they can minimize. We compare the SWC-2 with the Graph Cuts implementations provided

in the Scharstein and Szelisky’s package [23] and Tappen’s extension to Belief Propagation

[26] available online.

For the stereo problem, we define discriminative probabilities on both vertices and edges

to get better empirical results.

On each vertex (pixel) v ∈ V we compute the vertex probability q(dv, v) ∝ e−D(dv ,v)

normalized to 1 for dv ∈ {0, ..., dmax}. It measures how likely pixel v has disparity dv based

on local information. We compute a marginal probability q(d) = 1
|V |

∑
v q(d, v) for each

disparity level d.

For each edge e =< s, t >, we define an edge probability for any d ∈ {0, ..., dmax},

qd
e = 1 − e

− 20βs,t
3(D(s,ds)+D(t,dt))+10 . (30)

Thus we have dmax + 1 probabilities on each edge e, one for each disparity level. At each

SWC-2 step, we first choose a disparity level d with probability q(d), and then we use qd
e as

the edge probability for clustering the connected component Vo.

We found that most of the energy costs are contributed by the boundary pixels (due to the

lack of half-occlusion treatment). Therefore, in SWC-2, a seed vertex v is chosen with equal

probability either from the boundary pixels or by sampling from a goodness of fit probability

q(dv, v)D(dv, v) with dv being the current assigned disparity at v. That is, we wish to choose

more often those pixels v whose assigned disparity level dv have a lower probability. Then

we grow the component Vo as in SWC-2 from the seed v and propose to flip its label. The
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new disparity level d (or color) for Vo is chosen according to a probability

q(d|Vo, π) ∝ e−
∑

v∈Vo
D(d,v)−0.7K

∑
<s,t>,s∈Vo

βs,t1(d�=dt). (31)

Fig. 11 compares the energy curves against CPU time in seconds for the SWC (two runs

with different annealing schedules), graph cuts[4], and belief propagation (two versions)[23],

[26] We initialized the system with an SWC-1 version working on atomic regions which

decreased the energy from about 5, 000, 000 to about 650, 000 in less than 30 seconds. Then

the SWC-2 version working on the pixel lattice provided the final result. The final energy

obtained with SWC-2 was within 1% of the final energy of the Graph Cuts algorithm for

the Tsukuba sequence and within less then 2% for the other sequences. All parameters were

kept the same in all experiments.
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Fig. 11. Performance comparison of SWC with Graph Cuts and Belief Propagation for the Tsukuba sequence.

The curves plot the energy over CPU time in seconds.

The energy level is not a good indicator of the quality of results as the ground truth results

have higher energy than all algorithms. The experiments show that the SWC reaches lower

energy than belief propagation but it is slower than Graph cuts.

If we release ourselves from the simple energy model in eqn.(28), and adopt generative

models with piecewise planar surfaces, we obtain a Bayesian posterior probability similar
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a. Left image b. SWC result c. Graph cuts d. Manual (truth)

Fig. 12. Using a Bayesian formulation with generative models fitting piecewise planar surfaces, our algorithm

obtains much better results for the same set of stereo images. The running time is also reduced to 5 minutes

in a PC.

to the segmentation problem using in experiment I. Our algorithm runs in 5 minutes and

obtains the much better results shown in Figure 12 which are closer to the ground truth. We

run the SWC-2 algorithm on the atomic regions and then run the boundary diffusion[34] for

a few steps to smooth the object boundary.

VI. Discussion

In this paper, we present a generic inference algorithm for sampling arbitrary probabilities

or energy functions on general graphs by extending the SW method from physics and the

Gibbs sampler (SWC-3). Our method extends the SW method from the Metropolis-Hastings

perspective and it is thus different from other interpretations in the literature[6], [12]. In fact,

there were some early attempts for applying SW to image analysis[12], [3] using a partial

decoupling concept.

The speed of the SW-cut method depends on the discriminative probabilities on the edges
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and vertices. Such probabilities also make a theoretical analysis of convergence difficult. In

ongoing projects, we are studying ways for bounding the SW-cut convergence with “external

field” (data) and for diagnosing exact sampling using recent advanced techniques. We are

also incorporating the SW-Cuts into the DDMCMC framework for image parsing.
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Apendix A. Proof of theorem 1

Although there is combinatorial number of ways for selecting Vo in the two partitions π

and π′, the proposal probabilities ratio q(Vo|π)
q(Vo|π′ is very simple due to cancellation. In what

follows, we compute this ratio for SWC-1. The same ratio can be derived for SWC-2 and

SWC-3 following the same steps.

Firstly, we calculate the probability q(Vo|π) for selecting Vo in a partition π = (V1, V2, ..., Vn).

Without loss of generality, we assume Vo ⊆ V�. At π, the edges between different colors are

removed and the set of remaining edges is denoted by

Eon(π) = Eo \ Eoff(π), Eoff(π) = ∪i�=jC(Vi, Vj). (32)

Each edge e ∈ Eon(π) is turned off (µe = off) with probability 1 − qe independently, and we

denote the edge variables by

U(π) = Uon(π) ∩ Uoff(π), with Uon(π) = {µe = on, e ∈ Eon(π)}, Uoff = {µe = off, e ∈ Eon(π)}. (33)

We denote the sets of edges that are turned on and off by U respectively,

Eon(π, U) = {e : e ∈ Eon(π), µe = on}, and Eoff(π, U) = {e : e ∈ Eon(π), µe = off}. (34)
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The probability of an event U(π) is simply

p(U(π)) =
∏

e∈Eon(pi,U)

qe ·
∏

e∈Eoff(π,U)

(1 − qe). (35)

Then each color Vi is broken into a number ni of connected components. For event

U = U(π), we denote the set of connected components by CP (π, U). Each set of connected

components CP (π) can be obtained by a combinatorial number of edge probabilities U , so

the probability of CP (π) is,

p(CP (π)) =
∑

U :CP (π,U)=CP (π)

p(U(π)). (36)

We are interested in the set of CP (π)’s which include Vo as a connected components,

Ω(Vo, π) = {CP (π) : Vo ∈ CP (π)}. (37)

Therefore the probability for choosing Vo at π is

q(Vo|π) =
∑

CP (π,U)∈Ω(Vo,π)

p(U(π))p(Vo|CP (π, U)). (38)

where p(Vo|CP (π, U)) could be arbitrary, say p(Vo|CP (π, U) = 1
|CP (π,U)| .

To summarize, all CP s in Ω(Vo, π) must observe one common property – the edges in the

SW-cut C(Vo, V� \ Vo) must be turned off, otherwise Vo is connected to other vertices in V�

and thus violate the premise that Vo is a connected component. So we have

C(Vo, V� \ Vo) ⊂ Eoff(π, U), ∀CP (π, U) ∈ Ω(Vo, π). (39)

Let

E−
off(π, U) = Eoff(π, U)\C(Vo, V� \ Vo), ∀CP (π, U) ∈ Ω(Vo, π). (40)

Therefore we can take the common factor out the summation,

q(Vo|π) =
∏

e∈C(Vo,V�\Vo)

(1− qe) ·
∑

CP (π,U)∈Ω(Vo,π)

1

|CP (π, U)| [
∏

e∈Eon(pi,U)

qe ·
∏

e∈E−
off

(π,U)

(1− qe)] (41)
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Secondly, we calculate the probability q(Vo|π′) for selecting Vo in a partition π′. Without

loss of generality, we assume Vo ⊆ V�′ . Following the same steps above, we have,

q(Vo|π′) =
∏

e∈C(Vo,V�′\Vo)

(1− qe) ·
∑

CP (π′,U ′)∈Ω(Vo,π′)

1

|CP (π′, U ′)| [
∏

e∈Eon(pi′,U ′)
qe ·

∏

e∈E−
off

(π′,U ′)

(1− qe)]

(42)

Since π and π′ are partitions at consecutive SWC-steps, and they differ only in the coloring

of Vo, we have the following observations.

For each CP (π, U) ∈ Ω(Vo, π), there is a corresponding CP (π′, U ′) ∈ Ω(Vo, π
′), such that

CP (π′, U ′) = CP (π, U). Furthermore, we have

Eon(π, U) = Eon(π
′, U ′), and E−

off(π, U) = E−
off(π′, U ′). (43)

That is, U and U ′ differs only in the SW-cuts. As the correspondence is one-to-one, we have

Ω(Vo, π) = Ω(Vo, π
′) (44)

Therefore we obtain the ratio by canceling the common probability in eqns.(41) and (42).

q(Vo|π)

q(Vo|π′)
=

∏
e∈C(Vo,V�\Vo)(1 − qe)

∏
e∈C(Vo,V�′\Vo)(1 − qe)

. (45)

In a special case, when qe = qo, ∀e ∈ Eo, we obtain the proposal ratio in equation (9) for

the original SW method.

Apendix B. Proof of theorem 2: the splitting and merging cases

For the re-grouping case where Vo ⊂ V� in π and Vo ⊂ V�′ in π′, the only way for moving

between π and π′ is to select Vo. But for the merging and splitting cases there might be two

paths illustrated in Fig. 13. Without loss of generality, we write π = (V1, V2, V3, ..., Vn) and

π′ = (V1+2, V3, V4, ..., Vn) with V1+2 = V 1 ∪ V2. The two paths for moving between π and π′

are respectively.
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Fig. 13. State πA has two subgraphs V1 and V2 which are merged in state πB . There are two paths between

πA and πB . One is to choose V0 = V1 and the other is to choose V0 = V2.

Path 1. Choose Vo = V1. In state π = πA, choose �′ = 2, i.e. merge Vo to V2, and reversely

in state π′ = πB, choose �′ = 1, i.e. split Vo from V2.

Path 2. Choose Vo = V2. In state π = πA, choose �′ = 1, i.e. merge Vo to V1, and reversely

in state π′ = πB, choose �′ = 2, i.e. split Vo from V1.

The proposal probability ratio is,

q(π′ → π)

q(π → π′)
=

q(Vo = V1|π′)q(cVo = 2|Vo, π
′) + q(Vo = V2|π′)q(cVo = 1|Vo, π

′)
q(Vo = V1|π)q(cVo = 1|Vo, π)) + q(Vo = V2|π)q(cVo = 2|Vo, π)

. (46)

In state π = πA, the SW-cut C(Vo, V� \ Vo) = ∅ for both paths, and in state π′ = πB the

cut is C(V�, V�′) = C(V1, V2) for both paths. Following theorem 1, the probability ratios for

choosing Vo = V1 and Vo = V2 are equal,

q(Vo = V1|π)

q(Vo = V1|π′)
=

1
∏

e∈C(V1,V2)(1 − q(e))
=

q(Vo = V2|π)

q(Vo = V2|π′)
. (47)

Once Vo is selected, either Vo = V1 or Vo = V2, then the remaining partition for both π

and π′ are the same, and is denoted by π(V \ Vo) = π′(V \ Vo). In proposing the new label

of Vo, we easily observe that

q(cVo = 2|Vo = V1, π
′)

q(cVo = 1|Vo = V2, π)
=

q(cVo = 1|Vo = V2, π
′)

q(cVo = 2|Vo = V1, π)
. (48)

Then the acceptance rate in theorem 2 follows from equations (47) and (48).


