Visual Inference by Markov Chain Monte Carlo Methods

Song-Chun Zhu

Joint work with Z. Tu, A. Barbu, F. Han, R. Maciuca, A. Chen, A.Yuille

USC, Computer Vision Seminar, 09-2003

Parsing an Image Into Its constituent Patterns

Questions

1. How do we coordinate many types of object models robustly ?
2. What is a good computing strategy for integrating "top-down" with "bottom-up"?
3. How do we compute globally optimal solutions, multiple solutions?

We need a theoretical foundation for answering these questions.

A Bayesian Formulation of Vision

Let I be an image and X be a semantic representation of the world.

$$
\mathrm{X}^{*}=\underset{\mathrm{X} \in \Omega}{\arg \max } \pi(\mathrm{X} \mid \mathrm{I})=\underset{\mathrm{X} \in \Omega}{\arg \max } \pi(\mathrm{I} \mid \mathrm{X}) \pi(\mathrm{X})
$$

In statistics, we sample from a posterior probability to preserve ambiguities.

$$
\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \ldots, \mathrm{X}_{\mathrm{k}}\right) \sim \pi(\mathrm{X} \mid \mathrm{I})
$$

The State Space

1. Ω has a large number of sub-spaces of varying dimensions.
2. Each sub-space is a product of some partition (coloring) spaces ---- what go with what?
$x \quad$ some object spaces ---- what are what?
3. The posterior has low entropy, thus the effective volume of the search space is relatively small !

Formulation of the Computational Problems

Searching the state space by Markov chain

Markov chain is a triplet $\operatorname{MC}=(\Omega, v, \mathrm{~K})$
$---\Omega$ is state space, each state is a solution,
$----v\left(x_{0}\right)$ is probability of initial state,
$\cdots---k(x, y)=k(y \mid x)$ is the transition probability.
Suppose a MC starts with x_{0}, after n steps, its state follows a probability,

$$
x_{n} \sim K^{n}\left(x_{0}, x\right)
$$

We wish it gets close to the target $\pi(\mathrm{x})$ as soon as possible.
A Theorem

$$
d_{T V}(t)=\frac{1}{2} \sum_{x \in \Omega}\left\|K^{n}\left(x_{0}, x\right)-\pi(x)\right\| \leq \sqrt{\frac{1-\pi\left(x_{0}\right)}{4 \pi\left(x_{0}\right)}} \lambda_{\text {slem }}^{n}
$$

$$
0<\lambda_{\text {slem }}<1 \quad \text { Is the second largest eigen value modulus of the transition matrix } K \text {. }
$$

Searching the state space by Markov chain

The MC kernel K corresponds to a transition graph G for discrete space Ω.

Two concepts:

1. The scope of a state x is a set $\Omega(x)=\{y: K(x, y)>0\}$
2. The capacity of an edge $\mathrm{e}=(\mathrm{x}, \mathrm{y})$ is $\varphi(\mathrm{e})=\pi(\mathrm{x}) \mathrm{K}(\mathrm{x}, \mathrm{y})=\pi(\mathrm{y}) \mathrm{K}(\mathrm{y}, \mathrm{x})$

Markov Jumps and their scopes

Each state x is connected to some other states by μ pairs of jumps

$$
J_{m}=\left(J_{m r}, J_{m}\right), \quad m=1,2, \ldots, \mu
$$

For example, death-birth, split-merge, model switching, grouping-ungrouping etc.

These jumps have their scopes at state x ,

$$
\begin{aligned}
& \Omega_{m r}(x)=\left\{y: \mathrm{K}_{\mathrm{mr}}(x, y)>0, y \neq x\right\} \\
& \Omega_{m l}(x)=\left\{y: \mathrm{K}_{\mathrm{ml}}(x, y)>0, y \neq x\right\}
\end{aligned}
$$

So x is connected to a set,

$$
\Omega(x)=\cup_{m=1}^{\mu}\left(\Omega_{m r} \cup \Omega_{m l}\right)
$$

Metropolized Gibbs sampler

Consider a pair of reversible jumps J_{m} between x and y .

Proposal according to the conditional probabilities --- like a Gibbs sampler

$$
\left.\begin{array}{ll}
\mathrm{Q}_{\mathrm{mr}}(x, y)=\frac{\pi(y)}{\sum_{y^{\prime} \in \Omega_{m r(x)}} \pi\left(y^{\prime}\right)}, & y \in \Omega_{m r}(x) ; \quad\left[\begin{array}{l}
\text { Proposal matrix } \mathrm{Q} \\
\mathrm{Q}_{\mathrm{ml}}(y, x)=\frac{\pi(x)}{\sum_{x^{\prime} \in \Omega_{m l(y)}} \pi\left(x^{\prime}\right)},
\end{array} \quad x \in \Omega_{m l}(y) ; \quad \mathrm{x}[0,0, \ldots, 0,0,0]\right.
\end{array}\right]
$$

Metropolized Gibbs sampler

$$
\mathrm{K}_{\mathrm{mr}}(\mathrm{x}, \mathrm{y})=\mathrm{Q}_{\mathrm{mr}}(\mathrm{y} \mid \mathrm{x}) \min \left(1, \frac{\mathrm{Q}_{\mathrm{ml}}(\mathrm{x} \mid \mathrm{y})}{\mathrm{Q}_{\mathrm{mr}}(\mathrm{y} \mid \mathrm{x})} \cdot \frac{\pi(\mathrm{y})}{\pi(\mathrm{x})}\right)
$$

The Metropolis step corrects the proposal probability ratio by the target probability ratio.
The target prob. ratio follows generative models
The proposal prob. ratio follows a factorized form by discriminative models

$$
\begin{aligned}
& \frac{\mathrm{Q}_{\mathrm{ml}}(\mathrm{x} \mid \mathrm{y} ; \mathrm{F}(\mathrm{I}))}{\mathrm{Q}_{\mathrm{mr}}(\mathrm{y} \mid \mathrm{x} ; \mathrm{F}(\mathrm{I}))} \cong \frac{\pi(\mathrm{y} \mid \mathrm{I})}{\pi(\mathrm{x} \mid \mathrm{I})} \\
& \text { Local image features in various model spaces }
\end{aligned}
$$

Data-Driven Methods in the object spaces

Within each jump scope, we replace the condition probability by discriminative models which are estimated locally with lower cost.

Example 1: Clustering in Color Space

Mean-shift clustering (Cheng, 1995, Meer et al 2001)
$q(\theta \mid I)=\sum_{i=1}^{K} \omega_{i} g\left(\theta-\theta_{i}\right)$

saliency maps

1
The brightness represents how likely a pixel belongs to a cluster.

Example 2: Object detection (label) by Boosting method

As the number of features and training examples become large enough, adaboost weakly converges to the log ratio of the posterior probability (Schapire et al).

$$
\ell=\operatorname{sign}\left(\mathrm{a}_{1} \mathrm{~h}_{1}(\mathrm{I})+\cdots+\mathrm{a}_{1} \mathrm{~h}_{1}(\mathrm{I})\right) \rightarrow \operatorname{sign}\left(\frac{\pi(\ell=+1 \mid \mathrm{I})}{\pi(\ell=-1 \mid \mathrm{I})}\right)
$$

More examples on detection

$$
K_{m r}(x, y)=\min \left(1, \frac{q_{m l}(x \mid y ; \mathrm{F}(\mathrm{I}))}{q_{m r}(y \mid x ; \mathrm{F}(\mathrm{I}))} \cdot \frac{\pi(y \mid \mathrm{I})}{\pi(x \mid \mathrm{I})}\right)
$$

It is the ratio of the discriminative proposal probabilities rectified by the ratio of the generative probabilities. When the discriminative models are good approximations the acceptance is close to one. Then the MC becomes very effective.

Struggles of Gibbs sampler with Ising / Potts models

$p(I)=\frac{1}{Z} \exp \left\{-\beta \sum_{\langle\mathrm{s}, \mathrm{t}\rangle} 1\left(\mathrm{I}_{\mathrm{s}}=\mathrm{I}_{\mathrm{t}}\right)\right\}=\frac{1}{Z} \prod_{\langle s, t\rangle} \exp \left\{-\beta \cdot 1\left(\mathrm{I}_{\mathrm{s}}=\mathrm{I}_{\mathrm{t}}\right)\right\}, \quad\langle\mathrm{s}, \mathrm{t}\rangle \in \mathrm{E}_{\mathrm{o}}$
For example, in a 1 D string of spins, suppose we use a Gibbs sampler to flip one spin at a time It has a $p=1 / 2$ probability for flipping the spin at the boundary. Flipping a string of length n will need on average

$$
\mathrm{t}=1 / \mathrm{p}^{\mathrm{n}}=2^{\mathrm{n}} \text { steps! }
$$

So the Gibbs sampler experiences exponential waiting time.

Sampling in the graph partition space

There are two types of subspaces: object spaces + partition spaces
The partition space is the set of all possible partition (coloring) of a graph (e.g. pixel lattice, edge maps, ...)

How do we sample a general posterior probability in the partition space?

Swendsen-Wang with Ising / Potts models

Swedsen-Wang (1987) is an extremely smart idea that flips a patch at a time. There are multiple interpretations. We explain it from the Metropolis-Hastings method.

Each edge in the lattice $\mathrm{e}=<\mathrm{s}, \mathrm{t}>$ is associated with a constant probability q . If s and t have different labels at the current state, e is turned off. If s and t have the same label, e is turned off with probability q.

Thus each object is broken into a number of connected components (subgraph).
A
\qquad

Consider the reversible moves between states A and B by Metroplis-Hastings:
the proposal probability ratio is:

$$
\frac{q(A \rightarrow B)}{q(B \rightarrow A)}=\frac{\left(1-q_{o}\right)^{\left|C\left(V_{0}, V_{1}\right)\right|}}{\left(1-q_{o}\right)^{\left|C\left(V_{0}, V_{2}\right)\right|}}=\left(1-q_{o}\right)^{\left|C\left(V_{0}, V_{1}\right)\right|-\left|C\left(V_{0}, V_{2}\right)\right|}
$$

the probability ratio of the two states is:

$$
\frac{p(A)}{p(B)}=\frac{\exp ^{-\beta \cdot\left|C\left(V_{0}, V_{2}\right)\right|}}{\exp ^{-\beta \cdot\left|C\left(V_{0}, V_{1}\right)\right|}}=\exp ^{\beta \cdot\left(\left|C\left(V_{0}, V_{1}\right)\right|-C\left(V_{0}, V_{2}\right) \mid\right)}
$$

USC, Computer Vision Seminar, 09-2003

SW with Ising / Potts models

The acceptance probability for the move from A to B is,
$\alpha(A \rightarrow B)=\min \left(1, \frac{q(B \rightarrow A)}{q(A \rightarrow B)} \cdot \frac{p(B)}{p(A)}\right)=\left(\frac{e^{-\beta}}{1-q_{o}}\right)^{\left|C\left(V_{o}, V_{1}\right)\right|-\left|C\left(V_{o}, V_{2}\right)\right|}=\frac{e^{-\beta}}{1-q_{o}}$

If we choose

$$
q_{o}=1-e^{-\beta}, \quad \beta \propto \frac{1}{T}
$$

Then the acceptance probability is always 1 .
At very high temperature, q_{0} is close to zero, the SW is reduced to Gibbs sampler.
At very low temperature, q_{0} is close to one, the SW can flip very large patch at each step.
Recently it is proven that SW mixes in polynomial time (Cooper and Frieze).

The Partition space for image segmentation

The Swendsen-Wang method was limited to Ising/Potts models on lattice, we generalized it to sampling general posterior probabilities on general graphs
(Barbu and Zhu, ICCV03)

input image

over-segmentation with atomic regions

Walking in the Partition Space

An probabilistic adjacency graph: $G_{0}=\left\langle V, E_{0}, Q>\right.$ each vertex v is a basic element: pixels, small-regions, edges, each link $e=<a, b>$ is associated with a probability or ratio for similarity

$$
\frac{\mathrm{q}\left(\mathrm{e}=\text { "on" }^{\mathrm{on}} \mid \mathrm{F}(\mathrm{I}(\mathrm{~s})), \mathrm{F}(\mathrm{I}(\mathrm{t}))\right)}{\mathrm{q}\left(\mathrm{e}=\text { "off" }^{\prime \prime} \mid \mathrm{F}(\mathrm{I}(\mathrm{~s})), \mathrm{F}(\mathrm{I}(\mathrm{t}))\right)}=\frac{\mathrm{q}_{\mathrm{e}}}{1-\mathrm{q}_{\mathrm{e}}}
$$

q_{e} can be obtained by supervised learning:
1). Konishi, Yuille et al 01
2). Adaboost by Shapire 00
3). Geisler, 00 .

Graph clustering

a. adjacency graph

b. current partition and labeling edges between different colors are removed

c. Graph clustering dark edges are turned "on", other edges are turned "off". We get some connected sub-graphs

USC, Computer Vision Seminar, 09-2003

Markov chain moves: Flipping a sub-graph

Markov chain moves: Flipping a sub-graph

$$
\alpha(A \rightarrow B)=\min \left(1, \frac{\Pi_{e \in C\left(V_{0}, V_{2}\right)}\left(1-q_{e}\right)}{\Pi_{e \in C\left(V_{0}, V_{1}\right)}\left(1-q_{e}\right)} \cdot \frac{p\left(l_{1} \mid V_{0}\right)}{p\left(l_{2} \mid V_{0}\right)} \cdot \frac{p(B)}{p(A)}\right)=1
$$

If we select the label probability as

$$
\begin{aligned}
& p\left(l_{1} \mid V_{0}\right)=\Pi_{e \in C\left(V_{0}, V_{1}\right)}\left(1-q_{e}\right) \cdot p\left(V_{1}\right) \\
& p\left(l_{2} \mid V_{0}\right)=\Pi_{e \in C\left(V_{0}, V_{2}\right)}\left(1-q_{e}\right) \cdot p\left(V_{2}\right)
\end{aligned}
$$

Another example on partition: Curve grouping

Sampling the partition spaces by Swendsen-Wang Cut

The basic idea is to enlarge the jump scopes by designing Composite Jumps

Searching with a torch

Searching with a long range RADAR

Computational cost / complexity

1. Markov chain mixing time
----- large scopes yields transition kernel $K(x, y)$ with large conductance and thus fast mixing.
2. Cost of computing proposal probabilities in a large scope.
[^0]
The Diffusion Components by PDEs

The Markov chains realized reversible jumps between sub-spaces of varying dimensions.
Within a subspace of fixed dimension, there are various diffusion processes expressed as partial differential equations.
the region competition for curve evolution (Zhu and Yuille, 96)

USC, Computer Vision Seminar, 09-2003

Experiment I: Color Image Segmentation

Experiment I: Color Image Segmentation

USC, Computer Vision Seminar, 09-2003

Experiment I: Color Image Segmentation

synthesis $1 \sim p\left(\mathrm{I} \mid \mathrm{W}^{*}\right)$

Grey Level Image Segmentation

synthesis $1 \sim p(1 \mid W *)$

The Berkeley Benchmark Study

(David Martin, 2001)

USC, Computer Vision Seminar, 09-2003

Experiment II: region + curves

a. Input image

b. Segmented texture regions

d. curve processes + bkgd region e. synthesis by curve models

Experiment III: Regions+ curve

Example IV: 3D reconstruction from a single image

Experiment IV: Regions+ curve +3 D reconstruction

Example on 3D reconstruction (Han and Zhu, 2003)

input image

3D reconstruction

Empirical Speed Comparison 1

Comparison in the object spaces

Empirical Speed Comparison 2

In the partition space: SW-cut vs Gibbs sampler.

[^1]
Empirical speed comparison: in seconds

Theoretical Speed Analysis I

A direct speed measure is the first-hitting time:
It is the number of steps for reaching a state x for the first time

$$
\tau_{n i t}(x)=\min \left\{n \geq 1: x_{n}=x\right\}
$$

Theorem:
The expected first hitting time for a $\mathrm{MC}=(v, \mathrm{~K}, \pi)$ is

$$
\mathrm{E}\left[\tau_{\text {mix }}(\mathrm{x})\right]=1+v_{-\mathrm{x}}^{\prime}\left(\mathrm{I}-\mathrm{K}_{-\mathrm{x}}\right)^{-1} 1
$$

where $1=(1,1, \ldots, 1)$, and $-x$ means the row and column for x are removed.

Theoretical Speed Analysis I

We can compute the first-hitting time explicitly for some simple case
(Maciuca and Zhu, 2003)

Theorem

Consider sampling a target probability $p(x)$ with a proposal probability $q(x)$ on space W.
For any state x, we have

$$
\frac{1}{\min (p(x), q(x))} \leq E\left[\tau_{h i t}(x)\right]=\frac{1}{p(x)(1-\lambda(x))} \leq \frac{1}{\min (p(x), q(x))} \cdot \frac{1}{1-d_{T V}(p, q)}
$$

where

$$
d_{T V}(p, q)=\frac{1}{2} \sum_{x \in \Omega}\|p(x)-q(x)\|
$$

Theoretical Analysis II

The $2^{\text {nd }}$ speed measure is the mixing time:
A Markov chain starts at state x 0 , and after $\mathrm{t}=\mathrm{n}$ steps, it follows a probability $\mathrm{K}^{\mathrm{t}}\left(\mathrm{x}_{0}, \mathrm{x}\right)$,
it is apart from the target probability p by a total variance distance

$$
d_{T V}(t)=\frac{1}{2} \sum_{x \in \Omega}\left\|K^{t}\left(x_{0}, x\right)-p(x)\right\|
$$

The Markov chain mixing time is defined as

$$
\tau_{m i x}(\varepsilon)=\max _{x_{o} \in \Omega} \min _{t}\left\{d_{T V}(t)<\varepsilon\right\}
$$

Theorem

$$
d_{T V}(t) \leq \sqrt{\frac{1-p\left(x_{0}\right)}{4 p\left(x_{0}\right)}} \lambda_{\text {slem }}^{t}
$$

$$
0<\lambda_{\text {slem }}<1 \quad \text { Is the second largest eigen value modulus of the transition matrix } K \text {. }
$$

Computing Strategies

1. Generative methods --- "Top-down",
--Markov chain Monte Carlo for jumps
-- PDEs for diffusion.
compute the posterior prob. ratios with full generative model over the entire image.
2. Discriminative methods --- "Bottom-up"
-- Data clustering, Adaboost,
compute the posterior prob. ratios in a factorized form within local image in separate vision cues/channels.

Discussion 1: Computing Strategies

We consider each bottom-up and top-down step as a "test"
Generative test: Accurate but slow
Discriminative test: Fast but biased

What is the best strategy for ordering these tests?
(Blanchard and D.Geman 03)

A test is characterized by its POWER and COST. Under some simple case, they showed that the best strategy is to order the test according to their power/cost ratio.

Different data ensemble may need different strategies ---"pathways"

Discussion 2: What is the structure of Object Space?

From coarse-to-fine scales, our perceptual models must experience quantum jumps over a serious of probability families.

How do we augment the probability models?

References

1. S. C. Zhu, R. Zhang, and Z. W. Tu "Integrating Top-down/Bottom-up for Object Recognition by DDMCMC", CVPR 2000
2. Z.W. Tu and S.C. Zhu, "Image Segmentation by DDMCMC", PAMI 2002.
3. Z.W. Tu and S.C. Zhu, "Parsing images into region and curve processes", ECCV 2002
4. Z.W. Tu, X.R. Chen, A.L Yuille, and S.C. Zhu. "Image parsing: segmentation, detection, and recognition", ICCV 2003.
5. A. Barbu and S.C. Zhu, "Graph partition by Swendsen-Wang cuf", ICCV 2003.
6. R. Maciuca and S.C. Zhu, "How do heuristics expedite Markov chain search?" SCTV 2003

[^0]: USC, Computer Vision Seminar, 09-2003

[^1]: USC, Computer Vision Seminar, 09-2003

