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Visual Inference by Markov Chain Monte Carlo Methods

Song-Chun  Zhu

Joint work with Z. Tu, A. Barbu, F. Han, R. Maciuca, A. Chen, A.Yuille
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Parsing an Image Into Its constituent  Patterns

input image                      point process                  curve process

a color region                      texture regions             objects
1. The task integrates conventional vision tasks:  

image segmentation, perceptual organization, object recognition, etc.
2. Many families of generative models compete to explain the image.
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Questions

1. How do we coordinate many types of object models robustly ?

2. What is a good computing strategy for integrating “top-down”
with “bottom-up”?

3. How do we compute globally optimal solutions, multiple solutions?

We need a theoretical foundation for answering these questions.
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Let I be an image and X be a semantic representation of the world.

A Bayesian Formulation of Vision

Search space:
π

)I|X(~XXX ),...,,( k21 π

In statistics, we sample from a posterior probability to preserve ambiguities.
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1. Ω has a large number of sub-spaces of varying dimensions.

The State Space

2. Each sub-space is a product of  
some partition (coloring) spaces ---- what go with what?

x      some object spaces ---- what are what?

iΩ

partition
spaces

1CΩ 1CΩ

2CΩ 2CΩ 2CΩ

3CΩ 3CΩ

object spaces

pΩ
pΩ

object particles

3.  The posterior has low entropy, thus the effective volume of the search space is relatively small !
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Formulation of the Computational Problems

Input
I

Design Strategy I

A Markov chain
drawing fair samples 

from the posterior
π(x)

x1, x2, …., xn ~ π(x) 

Design Strategy II

Solutions
))(ˆ||)((minarg xxKL ππ **

2
*
1 ,...,, Kxxx
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Searching the state space by Markov chain 

Markov chain is a triplet     MC=( Ω,  ν,  K)
---- Ω is state space, each state is a solution,
---- ν(xo) is probability of initial state,
---- k(x,y) =k(y|x) is the transition probability.
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A Theorem

10 << slemλ Is the second largest eigen value modulus of the transition matrix K.

Suppose a MC starts with xo, after n steps, its state follows a probability,
xn ~    Kn(xo, x) 

We wish it gets close to the target π(x) as soon as possible.
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Searching the state space by Markov chain

The MC kernel K corresponds to a transition graph G for discrete space Ω.  

x y

Two concepts:
1.  The scope of a state x is a set 

2.  The capacity of an edge e=(x,y) is   

}{ 0y)K(x,   :y)x( >=Ω

x)π(y)K(y,y)π(x)K(x,(e) ==ϕ
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Markov Jumps and their scopes

x

(x)1rΩ

(x)2Ω

(x)1Ω L

Each state x is  connected to some other states by µ pairs of  jumps
Jm=( Jmr,  Jml),     m=1,2,…, µ

For example,   death-birth,  split-merge, model switching, grouping-ungrouping etc.

These jumps have their scopes at state x,

}K: { mr xyyxyxmr ≠>=Ω ,0),( )(

}K: { ml xyyxyxml ≠>=Ω ,0),( )(

)()( 1 mlmrmx Ω∪Ω∪=Ω =
µ

So x is connected to a set,
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Metropolized Gibbs sampler

(y)mΩ L (x)mrΩ

x y
e

Consider a pair of reversible jumps Jm between x and y.

Proposal according to the conditional probabilities --- like a Gibbs sampler
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Proposal matrix Q

x 0, 0,…           00, 0,… 0
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Metropolized Gibbs sampler

)
π(x)
π(y)

x)|(yQ
y)|(xQx)min(1,|(yQy)(x,K

mr

ml
mrmr ⋅=

The Metropolis step corrects the proposal probability ratio by the target probability ratio.

I) |π(x
I)|π(y

F(I)) x;|(yQ
F(I)) y;|(xQ

mr

ml ≅

The target prob. ratio follows generative models
The proposal prob. ratio follows a factorized form by discriminative models

Local image features in various model spaces
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Data-Driven Methods in the object spaces

π

q

(x)mrΩ

Within each jump scope, we replace the condition probability by 
discriminative models which are estimated locally with lower cost.   
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Example 1: Clustering in Color Space

saliency maps     1              2            3             4   5            6
The brightness represents how likely a pixel belongs to a cluster.

Input

Mean-shift clustering (Cheng, 1995, Meer et al 2001)

∑
=

−=
K

1i
ii )θg(θωI)|q(θ

USC, Computer Vision Seminar, 09-2003

Example 2: Object detection (label) by Boosting method

As the number of features and training examples become large enough, adaboost
weakly converges to the log ratio of the posterior probability (Schapire et al).
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More examples on detection
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It is the ratio of the discriminative proposal probabilities rectified by the ratio of the
generative probabilities. When the discriminative models are good approximations

the acceptance is close to one. Then the MC becomes very effective.
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Struggles of Gibbs sampler with Ising / Potts models

1/2 1/2

For example, in a 1D string of spins, suppose we use a Gibbs sampler to flip one spin at a time
It has a p=½ probability for flipping the spin at the boundary. Flipping a string of length n will need
on average 

t = 1/pn =2n steps!                                

So the Gibbs sampler experiences exponential waiting time.

oE ts,},{}{ ∈><=⋅−=∑ =−= ∏
><><
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Sampling in the graph partition space

There are two types of subspaces: object spaces + partition spaces

The partition space is the set of all possible partition (coloring) of a graph
(e.g. pixel lattice, edge maps, …)

How do we sample a general posterior probability in the partition space?

USC, Computer Vision Seminar, 09-2003

Swendsen-Wang with Ising / Potts models

Swedsen-Wang (1987) is an extremely smart idea that flips a patch at a time. There are multiple
interpretations. We explain it from the Metropolis-Hastings method. 

Each edge in the lattice e=<s,t> is associated with a constant probability q.  
If s and t have different labels at the current state, e is turned off.
If s and t have the same label, e is turned off with probability q. 

Thus each object is broken into a number of connected components (subgraph). 
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SW with Ising / Potts models

Consider the reversible moves between states A and B by Metroplis-Hastings:
the proposal probability ratio is:

the probability ratio of the two states is:
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SW with Ising / Potts models
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The acceptance probability for the move from A to B is,

If we choose 

To eq 1,1 ∝−= − ββ

Then the acceptance probability is always 1.

At very high temperature, qo is close to zero, the SW is reduced to Gibbs sampler.
At very low temperature, qo is close to one, the SW can flip very large patch at each step.

Recently it is proven that SW mixes in polynomial time (Cooper and Frieze).
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The Partition space for image segmentation

input image over-segmentation
with atomic regions

The Swendsen-Wang method was limited to Ising/Potts models on lattice,  we
generalized it to sampling general posterior probabilities on general graphs

(Barbu and Zhu, ICCV03)
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Walking in the Partition Space

An probabilistic adjacency graph:  Go=<V, Eo, Q>
each vertex v is a basic element :  pixels, small-regions, edges, ….
each link  e=<a, b> is associated with a probability or ratio for similarity

e

e

q1
q

))F(I),F(I|off""q(e
))F(I),F(I|on""q(e

(t)(s)

(t)(s)

−
=

=
=

t
s qe qe can be obtained by     

supervised learning:

1). Konishi, Yuille et al 01
2). Adaboost by Shapire 00
3). Geisler, 00.
… …
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Graph clustering

a. adjacency graph             b. current partition and labeling   c.  Graph clustering
edges between different colors              dark edges are turned “on”, 

are removed                                   other edges are turned “off”. We 
get some connected sub-graphs
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Graph partition/clustering: 
sampling the discriminative model in the partition space

At various proposal probability scales
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Markov chain moves: Flipping a sub-graph

State A State B
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Markov chain moves: Flipping a sub-graph
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Another example on partition: Curve grouping

a.   state WA

pg1
A

pg2
A

pg1
B

pg2
B

c.   state WBb.   adjacency graph

cutA

cutB

d.   cut at state WA e.  connected components f.   cut at state WB
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Sampling the partition spaces by Swendsen-Wang Cut

. .x
y

x y
..

Computational cost / complexity

1. Markov chain mixing time
----- large scopes yields transition kernel K(x,y) with large conductance

and thus fast mixing.

2. Cost of computing proposal probabilities in a large scope.  

Searching with a torch            vs Searching with a long range RADAR

The basic idea is to enlarge the jump scopes by designing Composite Jumps
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The Diffusion Components by PDEs

(s)n)
)θ|y)p(I(x,log
)θ|y)p(I(x,logκ(s)(µ

dt
(s)vd

b

a r
r

⋅+⋅=

The Markov chains realized reversible jumps between sub-spaces of varying dimensions.

Within a subspace of fixed dimension, there are various diffusion processes expressed
as partial differential equations.

the region competition for curve evolution (Zhu and Yuille, 96)

Ra

Rb y(s))(x(s),(s)v =
r

Let v be a point on the boundary between two regions, its motion
is governed by the region-competition equation.

USC, Computer Vision Seminar, 09-2003

Experiment I: Color Image Segmentation

Input                          segment π∗ synthesis  I ~ p( I | W*)
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Input                          segment π∗ synthesis  I ~ p( I | W*)

Experiment I: Color Image Segmentation
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Input                          segment π∗ synthesis  I ~ p( I | W*)

Experiment I: Color Image Segmentation
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a. Input  image       b. segmented regions    c. synthesis  I ~ p( I | W*)
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Grey Level Image Segmentation

Input                          segment π∗ synthesis  I ~ p( I | W*)
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The Berkeley Benchmark Study

test images                     DDMCMC        manual segment

0.3082

0.5627

“error” 
measure

0.1083

(David Martin, 2001)
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input regions rW

synthesis

curves cW

synthesis c
synI cWby~ synthesis r

synI rWby~

group 1

Experiment II: Regions + Curves
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input

synthesis

curves cW

synthesis c
synI cWby~

regions rW

synthesis r
synI rWby~

group 1 group 2 group 3

Experiment II: region + curves
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a. Input image                           b. Segmented texture regions      c. synthesis by texture models

d. curve processes + bkgd region   e. synthesis by curve models

Computing Ambiguity in Visual Inference
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input regions rW

synthesis

curves cW

synthesis c
synI cWby~ synthesis r

synI rWby~

group 1 group 2

Experiment II: Regions + Curves
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Experiment III: Regions+ curve

input I region layer             curve & tree layer
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Solution 1:

Example IV:   3D reconstruction from a single image

(Han and Zhu, 2003)

Solution 2:
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Experiment IV: Regions+ curve + 3D reconstruction

Example on 3D reconstruction (Han and Zhu, 2003)

input image
3D reconstruction
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Input image Synthesized image

Faces, words, and regions Curves
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Input image Synthesized image

Faces, words, and regions Curves
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Comparison in the object spaces

Empirical Speed Comparison 1

Proposals by uniform prob.

Proposals by discriminative prob.
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Gibbs sampler
Gibbs sampler

Our method
Our method: 5 runs

First 50 sweeps1500 sweeps

Empirical Speed Comparison 2 

In the partition space: SW-cut vs Gibbs sampler.
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Empirical speed comparison: in seconds

7000 seconds                                       zoom-in view of the first 200 seconds
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Theoretical Speed Analysis I

A direct speed measure is the first-hitting time: 

It is the number of steps for reaching a state x for the first time 

}{ xxnx nhit =≥= :1min)(τ

Theorem:
The expected first hitting time for a MC=(ν, K, π) is

where 1=(1,1,….,1), and –x means the row and column for x are removed. 

1)K(Iν1(x)]E[ 1
x

'
xmixτ −

−− −+=
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Theoretical Speed Analysis I

We can compute the first-hitting time explicitly for some simple case
(Maciuca and Zhu, 2003)

Theorem

Consider sampling a target probability  p(x) with a proposal probability q(x) on space W.
For any state x, we have

),(1
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1)](
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Theoretical Analysis II 

The 2nd speed measure is the mixing time: 

}{ εετ <=
Ω∈

)(minmax)( tdTVtxmix
o

A Markov chain starts at state x0, and after t=n steps, it follows a probability Kt(x0, x),
it is apart from the target probability p by a total variance distance

∑
Ω∈

−=
x

t
TV xpxxKtd ||)(),(||

2
1)( 0

The Markov chain mixing time is defined as

Theorem
t
slemxp

xptdTV λ
)(4
)(1)(

0

0−
≤

10 << slemλ Is the second largest eigen value modulus of the transition matrix K.



27

USC, Computer Vision Seminar, 09-2003

Computing Strategies

1. Generative methods  --- “Top-down”,
--Markov chain Monte Carlo for jumps
-- PDEs for diffusion.

compute the posterior prob. ratios with full generative model
over the entire image.

2. Discriminative methods --- “Bottom-up”
-- Data clustering,  Adaboost, ….

compute the posterior prob. ratios in a factorized form within
local image in separate vision cues/channels.
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Discussion 1: Computing Strategies

What is the best strategy for ordering these tests? 

(Blanchard and D.Geman 03)

A test is characterized by its POWER and COST. Under some simple case, they showed
that the best strategy is to order the test according to their power/cost ratio.

We consider each bottom-up and top-down step as a “test”
Generative test:       Accurate but slow
Discriminative test:   Fast  but  biased

Different data ensemble may need different strategies ---”pathways”
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scale

sp
ar
sit
y

PCA
regime

local-PCA 
regime

Gibbs
regime

texture 
regime

sketch
regime

super-resolution
regime

Discussion 2: What is the structure of Object Space?

From coarse-to-fine scales, our perceptual models must experience 
quantum jumps over a serious of probability families.   

How do we augment the probability models?
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