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Exploring generative perspective of convolutional
neural networks by learning random field models∗

Yang Lu, Ruiqi Gao, Song-Chun Zhu, and Ying Nian Wu
†

This paper studies the convolutional neural network
(ConvNet or CNN) from a statistical modeling perspective.
The ConvNet has proven to be a very successful discrimi-
native learning machine. In this paper, we explore the gen-
erative perspective of the ConvNet. We propose to learn
Markov random field models called FRAME (Filters, Ran-
dom field, And Maximum Entropy) models using the highly
sophisticated filters pre-learned by the ConvNet on the big
ImageNet dataset. We show that the learned models can
generate realistic and rich object and texture patterns in
natural scenes. We explain that each learned model corre-
sponds to a new ConvNet unit at the layer above the layer
of filters employed by the model. We further show that it
is possible to learn a generative ConvNet model with a new
layer of multiple filters, and the learning algorithm admits
an EM interpretation with binary latent variables.

AMS 2000 subject classifications: Generative models,
Langevin dynamics, Markov random fields, Energy-based
models.

1. INTRODUCTION

In this section, we present the recent history of the con-
volutional neural network and explain its statistical ground-
ings in generalized linear model and Markov random field.
We also explain the objective of our work and the statistical
generative models that we shall present.

1.1 Recent history: ConvNet met ImageNet

The breakthrough made by the convolutional neural net-
work (ConvNet or CNN) [19, 21] on the ImageNet dataset [6]
in 2012 was a watershed event in machine learning that has
transformed several fields in artificial intelligence, such as
computer vision, speech recognition, natural language pro-
cessing, etc., as well as related industries. The neural net-
works in general and the ConvNets in particular were de-
veloped in the 1980s and 1990s respectively, but they had
to wait for the much improved computing power brought by
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GPUs and much bigger datasets such as ImageNet to fully
realize their potential.

The ImageNet dataset, first released in 2009, is a collec-
tion of more than 15 million natural images organized into
roughly 22,000 categories. The categories are taken from the
visually meaningful nouns in the WordNet, a comprehen-
sive database of English words. The images were collected
by querying the categories on the internet search engines
such as Google, and were manually examined by crowd-
sourcing workers from Amazon’s Mechanical Turk. Start-
ing from 2010, the ImageNet Large Scale Visual Recogni-
tion Challenge (ILSVRC) [29] has been held annually. In its
image classification task, which is to assign each image to
an object category, there are roughly 1.2 million training
images, 50,000 validation images, and 100,000 testing im-
ages, from a 1,000 category subset of the original ImageNet
dataset.

In ILSVRC 2012, the ConvNet [19] emerged as the run-
away winner of the image classification competition. The
winning network, now commonly dubbed as the AlexNet
(after the first name of the first author), has 60 million pa-
rameters and 650,000 hidden nodes. It consists of 5 convo-
lutional layers (some of them are followed by sub-sampling
and max-pooling layers) and 3 fully-connected layers. Since
then, ConvNets as well as other neural networks under the
banner of “deep learning” [1] have become widely adopted
for many tasks in artificial intelligence, such as those in com-
puter vision, speech recognition, natural language process-
ing, etc., and have achieved state of the art performances,
sometimes super-human performances, on these tasks.

One interesting phenomenon is that the features or the
non-linear filters learned by the ConvNets on the ImageNet
dataset have been shown to be highly effective for many
computer vision tasks. They usually outperform existing
handcrafted features by big margins. Clearly the ConvNets
have learned meaningful features that characterize the nat-
ural images such as those in ImageNet.

Despite its tremendous successes, the practice of ConvNet
is still very empirical. The ConvNet is designed empirically.
The learning is based on gradient descent algorithm on a
highly non-convex multi-modal objective function.

1.2 Objective: exploring generative
perspective of ConvNet

This paper is a case study of ConvNet trained by Ima-
geNet from a statistical modeling perspective. A ConvNet
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is a discriminative or predictive machine. It learns to pre-
dict the object category or class label of the input image.
More specifically, it learns a highly non-linear mapping (or
function, or classifier) where the input is the image and the
output is the category. Such a discriminative machine tells
us how to recognize a pattern from an image, such as how
to recognize a hummingbird or how to tell a hummingbird
apart from, say, a seagull. In contrast, the generative direc-
tion tells us what a hummingbird looks like by producing
sample images of hummingbirds. While the discriminative
direction is from image to category, the generative direction
is the opposite. The discriminative direction is operational,
and the generative direction is representational. One may
intuitively consider the generative direction as a matter of
imagination, a gift that was obviously possessed by a human
brain. See Fig. 4 for an illustration of the two directions.

While ConvNet has proven to be a powerful discrimi-
native machine, researchers have recently become increas-
ingly interested in the generative perspective of Con-
vNet. An interesting example is the Google deep dream
(http://deepdreamgenerator.com/), which generates inter-
estingly vivid images.

In this paper, we explore the generative perspective of
ConvNet more formally by defining formal statistical gener-
ative models based on ConvNet features pre-trained by Ima-
geNet, and learning these models by generating images from
the models. These models are defined on images, so they are
random field models. Adopting the metaphor of Google deep
dream, we let the random field models dream by generat-
ing images from the models. But unlike the Google deep
dream, we learn the models from real images by matching
the dreamed-up images to real images, i.e., by making the
dreams come true.

From a statistician’s perspective, generative models are
more natural representations of knowledge because they tell
us what the patterns look like. It is more interesting to find
statistical models to explain the observed images than to
predict the class labels of the images, especially because the
images of natural scenes contain such a bewildering vari-
ety of patterns [32]. In this paper, we shall show that our
random field models based on ConvNet features can gener-
ate realistic and rich object and texture patterns in natural
scenes.

We shall first learn generative models from images of
aligned objects. Fig. 1 shows 2 experiments. In each ex-
periment, the first row displays 4 of the training images.
The second row displays 4 of the images generated by the
learned model. The training images are collected from the
internet. For each category, the number of training images
is around 10. We shall also learn generative models from
texture images. Fig. 2 shows two experiments. Each experi-
ment is displayed by 3 images, where the first image is the
single training image, and the remaining 2 images are gen-
erated by the learned model. In addition, we shall also learn
generative models from images where the patterns are not
aligned.

Figure 1. Generating object patterns. For each category, the
first row displays 4 of the training images, and the second row
displays 4 of the images generated by the learned random

field model.

Figure 2. Generating texture patterns. For each category, the
first image is the single training image, and the next 2 are

images generated by the learned random field model.

The generative models help us understand knowledge rep-
resentation in ConvNet. They help us confirm that, collec-
tively, the ConvNet features pre-trained on ImageNet are
very expressive in describing the natural images. More im-
portantly, the generative models may eventually enable us to
learn from natural images or other types of data from scratch
in an unsupervised manner without requiring the class la-
bels or annotations of the input data. The acquisition of the
class labels or annotations can be time consuming and ex-
pensive. Guided by the likelihoods of the generative models,
the features can be learned by finding the best explanations
of the input data instead of finding the best predictions of
the output labels.

In this case study paper we shall restrict ourselves to
learning generative models from small sets of training im-
ages using the existing ConvNet features pre-trained on Im-
ageNet of labeled images. This is like acquiring new knowl-
edge from recent experiences based on the existing knowl-
edge accumulated from all the past experiences.

1.3 Statistical groundings on GLM and MRF

For statisticians, a feedforward neural network can be
viewed as a generalization of the generalized linear model
(GLM). A GLM, such as logistic regression, is characterized
by a composition of a linear combination or weighted sum of
the predictor variables and a one-dimensional non-linear link
function. A feedforward neural network or multi-layer per-
ceptron is a recursion of such a compositional scheme, where
each predictor variable itself is defined by a non-linear link
function of a linear combination or weighted sum of predic-
tor variables at the lower layer. The predictor variables at
the bottom layer are the raw input variables. In the termi-
nology of neural networks, each predictor variable at each
layer is called a unit, a node, a feature, or a filter. The neural
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Figure 3. (a) Filtering or convolution: applying a filter (3× 3) on an image (6× 6) to get a filtered image (6× 6, with proper
boundary handling) or feature map. Each pixel of the filtered image is computed by the weighted sum of the 3× 3 pixels of

the input image centered at this pixel. (b) Gabor filters (wavelets) at different orientations, and Difference of Gaussians (DoG)
filter (the rightmost one). The Gabor filters are sine and cosine waves multiplied by elongated Gaussian functions. The DoG
filter is the difference between two isotropic Gaussian functions of different scales. The filters can appear at different locations

and scales.

Figure 4. Convolutional neural networks consist of multiple layers of filtering and sub-sampling operations for bottom-up
feature extraction, resulting in multiple layers of feature maps and their sub-sampled versions. The top layer features are used

for classification via multinomial logistic regression. The discriminative direction is from image to category, whereas the
generative direction is from category to image. This illustration is adapted from [21].

network is able to learn multiple layers of features instead
of handcrafting them based on the domain knowledge.

The ConvNet is a variation of feedforward neural network
and is often deployed to analyze signals such as image data,
where the linear combinations or weighted sums are com-
puted locally around every pixel in a translation invariant
or “convolutional” manner. The weights of a local weighted
summation define a filter, and a local weighted sum is called
a filter response. See Fig. 3 (a) for an illustration of a linear
filter. A filter performs the same local summation operation
around each pixel, thus producing a filter response or a fea-
ture at each pixel. The filter responses or features extracted
by the same filter form a filtered image or feature map. At
each layer of ConvNet, there can be many filters, extracting
many maps of features. Each feature will then go through a
non-linear transformation, so the non-linear transformation
is applied element-wise on the feature maps. The feature
maps may also go through sub-sampling, e.g., we may keep
a feature every 2 pixels in both directions, so that the sizes of
the feature maps are reduced after sub-sampling. See Fig. 4
for an illustration of a ConvNet. Eventually, the features

at the top layer are used for predicting the category of the
input image using multinomial logistic regression.

Fig. 3 (b) displays two types of filters, namely, the Gabor
filters and the Difference of Gaussian (DoG) filters, that are
commonly used in image processing. The Gabor filters and
DoG filters are handcrafted, guided by the neuroscience ob-
servations on the primary visual cortex. In ConvNet, how-
ever, such filters are to be learned from the training data
such as ImageNet. It is interesting that the linear filters at
the bottom layer of the ConvNet trained on ImageNet re-
semble the Gabor filters and DoG filters [19].

While the GLM can be considered the statistical ground-
ing of ConvNet, the Markov random field (MRF) or equiv-
alently the Gibbs distribution [2, 11] can be considered the
statistical grounding of the generative perspective of Con-
vNet that we shall explore in this paper. An MRF or a
Gibbs distribution is a probability distribution defined on
image. The log probability density or the energy function
of a Gibbs distribution involves sum of functions defined on
cliques, which are sets of pixels that are neighbors of each
other. To connect to ConvNet, the clique functions can be
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defined by the ConvNet filters, and they can be learned from
the data by maximum likelihood.

1.4 Our work: FRAME models using
ConvNet filters

We propose to explore the generative perspective of
ConvNet by learning the FRAME (Filters, Random field,
And Maximum Entropy) models [44, 37] using the highly
sophicated filters pre-learned by ConvNet on the ImageNet
dataset. A FRAME model is a Markov random field model
that defines a probability distribution on the image space.
It is also an exponential family model whose log probabil-
ity density consists of compositions of linear filtering and
element-wise non-linear transformation. The model is gen-
erative in the sense that images can be generated from the
probability distribution defined by the model. The probabil-
ity distribution is the maximum entropy distribution that
reproduces the statistical properties of filter responses in
the observed images. Being of the maximum entropy, the
distribution is the most random distribution that matches
the observed statistical properties of filter responses, so that
images sampled from this distribution can be considered
typical images that share the statistical properties of the
observed images.

There are two versions of FRAME models in the litera-
ture. The original version is a stationary model developed for
modeling texture patterns [44], such as those in Fig. 2. The
more recent version is a non-stationary extension designed
to represent object patterns [37], such as those in Fig. 1.
Both versions of the FRAME models can be sparsified by
selecting a subset of filters from a given dictionary.

The filters used in the FRAME models are the oriented
and elongated Gabor filters at different scales, as well as
the isotropic Difference of Gaussian (DoG) filters of differ-
ent sizes, see Fig. 3 (b). These are linear filters that capture
simple local image features such as edges and blobs. With
the emergence of the more powerful non-linear filters learned
by ConvNet at various convolutional layers from ImageNet,
it is only natural to replace the linear filters in the origi-
nal FRAME models by the ConvNet filters in the hope of
learning more expressive models.

We use the Langevin dynamics [23] to sample from the
probability distribution defined by the model. Such a dy-
namics was first applied to the FRAME model by [41], and
the gradient descent part of the dynamics was interpreted
as the Gibbs Reaction And Diffusion Equations (GRADE).
When applied to the FRAME model with ConvNet filters,
the dynamics can be viewed as a recurrent generative form of
the model, where the reactions and diffusions are governed
by the ConvNet filters of positive and negative weights re-
spectively.

Incorporating ConvNet filters into the FRAME model
leads to a seamless meshing between the FRAME model
and the ConvNet model. The original FRAME model has an

energy function that consists of a layer of linear filtering fol-
lowed by a layer of element-wise non-linear transformations.
It is natural to follow the deep learning philosophy to ex-
pand them into alternative layers of linear filtering and non-
linear transformations to have a deep FRAME model that
directly corresponds to a ConvNet. More importantly, the
learned FRAME model using ConvNet filters corresponds to
a new ConvNet unit at the layer directly above the layer of
ConvNet filters employed by the FRAME model. In partic-
ular, the non-stationary FRAME that generates images like
those in Fig. 1 becomes a single ConvNet node at a specific
position where the object appears, whereas the stationary
FRAME that generates images like those in Fig. 2 becomes
a special type of convolutional unit. Therefore, the learned
FRAME model can be viewed as a generative version of a
ConvNet unit.

In addition to learning a single ConvNet unit, we can also
learn a generative model that involves a new layer of mul-
tiple convolutional units from non-aligned images, so that
each convolutional unit represents one type of local pattern.
We call the resulting model the generative ConvNet model.
It is a product of experts model [14], where each expert
models a mixture of presence and absence of a local pat-
tern. The rectified linear unit, which is the non-linear link
function commonly adopted in modern ConvNet [19], can
be justified as an approximation to the log-likelihood func-
tion of this mixture model. The learning algorithm admits
an interpretation in terms of the EM algorithm [5] with a
hard-decision E-step that detects the local patterns modeled
by the convolutional units.

By exploring the generative perspective of ConvNet, this
paper establishes the conceptual correspondence between
the generative FRAME model and the discriminative Con-
vNet, thus providing a formal generative foundation for
ConvNet. As mentioned above, such a foundation is much
needed because it may eventually lead to unsupervised
learning of ConvNet in a generative fashion without the need
for image labeling.

1.5 Related work on generative ConvNet

Recently there have been many interesting papers on vi-
sualizing ConvNet nodes, such as deconvolutional networks
[40], score maximization [30], and the recent artful work of
Google deep dream (http://deepdreamgenerator.com/) and
painting style [10]. Our work is different from these previ-
ous methods in that we learn rigorously defined generative
models from training images, and the learned models corre-
spond to new ConvNet units. This work is a continuation of
the recent work on generative ConvNet [3].

There have also been recent papers on generative models
based on supervised image generation [8], variational auto-
encoders [15, 18, 28, 26, 20, 12], and adversarial networks [7].
Each of these papers learns a top-down multi-layer model
for image generation, but the parameters of the top-down
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generation model are completely separated from the param-
eters of the bottom-up recognition model. Our work seeks to
learn a generative model based on the knowledge learned by
the bottom-up recognition model, i.e., the image generation
model and the image recognition model share the same set
of parameters.

The paper is an expanded version of a previous conference
paper [25]. Some of its contents have been reviewed by [35],
which also reviews related recent developments.

2. TECHNICAL BACKGROUND ON
CONVNET

This section reviews the technical background of Con-
vNet. We first explain that a linear filter is a local linear
model. We then explain that a ConvNet is a recursive com-
position of generalized linear models.

2.1 Filters: local linear models

To fix notation, let I(x) be an image defined on the
square (or rectangular) domain D, where x = (x1, x2) (a
two-dimensional vector) indexes the coordinates of pixels.
We can treat I(x) as a two-dimensional function defined on
D. We can also treat I as a vector if we fix an ordering for
the pixels.

A linear filter is just a local weighted sum of image in-
tensities around each pixel. Suppose we have a set of linear
filters {Fk, k = 1, ...,K}. We can apply each Fk to image I
to obtain a filtered image or feature map, denoted by Fk ∗ I,
which is of the same size as I and is also defined on D (with
proper handling of boundaries, such as padding zeros for
pixels outside the boundaries). Let [Fk ∗ I](y) be the filter
response or feature at position y. Then

[Fk ∗ I](y) =
∑
x∈S

wk,xI(y + x),(1)

where the weights or coefficients (wk,x, x ∈ S) define the
filter Fk, and S is the localized support of the filter centered
at the origin. See Fig. 3 (a) for an illustration, where S
is 3 × 3, and D is 6 × 6. In practice, both S and D can be
much larger. S can be different for different Fk. The filtering
operation is also said to be a convolution operation, where
(wk,x, x ∈ S) form the kernel function of the convolution.
Here “convolutional” means that the operations are shift-
invariant or translation-invariant.

Compared to the linear model in regression and GLM,
the image intensities play the role of input variables, and the
weight parameters wk,x play the role of coefficients. These
parameters are to be learned from the data.

2.2 ConvNet: GLMs on top of GLMs

A ConvNet is a composition of multiple layers of linear
filtering and element-wise non-linear transformations, as ex-

pressed by the following recursive formula:

[F
(l)
j ∗ I](y)(2)

= h

⎛
⎝Nl−1∑

k=1

∑
x∈Sl

w
(l,j)
k,x [F

(l−1)
k ∗ I](y + x) + bl,j

⎞
⎠ ,

where l ∈ {1, 2, ..., L} indexes the layer. {F (l)
j , j = 1, ..., Nl}

are the filters at layer l, and {F (l−1)
k , k = 1, ..., Nl−1} are the

filters at layer l−1. j and k are used to index filters at layers
l and l−1 respectively, and Nl and Nl−1 are the numbers of
filters at layers l and l−1 respectively. The filters are locally
supported, so the range of x in

∑
x is within a local support

Sl (such as a 7× 7 image patch). We define the image I to
be the feature map at the 0-th layer. The filter responses at
layer l are computed from the filter responses at layer l− 1,

by linear filtering defined by the weights w
(l,j)
k,x as well as

the bias term bl,j , followed by the non-linear transformation
h(), sometimes called rectification function.

Compared to GLM, the weight parameters w
(l,j)
k,x and the

bias term bl,j correspond to the coefficients and the intercept
of a GLM, and the features at layer l − 1 are the predictor
variables for computing the features at layer l. The non-
linear transform h() plays the role of the link function of a
GLM. Just as in GLM, the link function h() is specified, and
the weight and bias parameters are to be learned from the
data. Due to the recursive nature of equation (2), a ConvNet
can be considered GLMs on top of GLMs.

From the perspective of filters, {F (l)
j } are non-linear fil-

ters because we incorporate h() in the computation of the

filter responses. We call F
(l)
j ∗ I the filtered image or the

feature map of filter j at layer l. There are a total Nl fea-
ture maps in layer l, and j = 1, ..., Nl. In Fig. 4, the feature

maps are illustrated by the square shapes. Each [F
(l)
j ∗ I](x)

is called a feature extracted by a node or a unit at layer l.
The filtering operations are often followed by sub-

sampling and local-max pooling (e.g., I(x1, x2) ←
max(δ1,δ2)∈{0,1}2 I(2x1 + δ1, 2x2 + δ2)). See Fig. 4 for an il-
lustration of sub-sampling. After a number of layers with
sub-sampling, the filtered images or feature maps are re-
duced to 1 × 1. Beyond that point, the network becomes
fully connected between adjacent layers. These layers are
called fully connected layers, and the layers below are called
convolutional layers.

The features at the top layer are then used for classifica-
tion (e.g., does the image contain a hummingbird or a seagull
or a dog) via multinomial logistic regression. Specifically, let

the top layer filter responses or features be {F (L)
k ∗ I, k =

1, ..., NL}. Let c ∈ {0, 1, ..., C} be the category of image I,
then the score is

fc(I;w) =
∑
k

wc,k[F
(L)
k ∗ I] + bc,k,(3)

where wc,k and bc,k are the weights (coefficients) and bias

Generative ConvNet 519



(intercept) for computing the score of category c, and the
parameter w includes the category-specific wc,k and bc,k, as
well as the weight and bias parameters at all the layers be-
low, which are shared by all the categories. The conditional
probability of the category c given the image I is

p(c|I, w) = exp(fc(I;w))∑
c exp(fc(I;w))

.(4)

For identifiability, we may choose a base category, e.g., back-
ground, with c = 0, and define f0(I) = 0.

The estimation of the weight and bias parameters can
be accomplished by gradient ascent on the log-likelihood,
i.e., L(w) =

∑
(I,c) log p(c|I, w) over all the labeled exam-

ples {(I, c)}. For big data, we can divide the data into mini-
batches, so that at each step, we run gradient ascent based
on the log-likelihood of a randomly sampled mini-batch. The
gradient can be calculated by back-propagation, which is an
application of the chain rule on the recursive composite func-
tion L(w). The bottom layer filters of the ConvNet learned
from the ImageNet data resemble the Gabor and DoG filters
in Fig. 3 (b) [19].

3. FRAME MODELS BASED ON LINEAR
FILTERS

This section reviews the background on the FRAME
models based on linear filters. The FRAME models are a
class of Markov random field models or Gibbs distributions,
where the energy functions consist of non-linear transforma-
tions of linear filter responses.

3.1 Stationary FRAME

Again, let I be an image defined on a square (or rect-
angular) domain D. Let {Fk, k = 1, ...,K} be a bank of
linear filters, such as elongate and oriented Gabor filters at
different scales, as well as isotropic Difference of Gaussian
(DoG) filters of different sizes. Some examples of the filters
are shown in Fig. 3 (b). Let Fk ∗ I be the filtered image or
feature map, and [Fk ∗ I](x) be the filter response or feature
at position x (again x is a two-dimensional coordinate).

The original FRAME model [44] for texture patterns,
such as those in Fig. 2, is a stationary or spatially homo-
geneous Markov random field or Gibbs distribution of the
following form:

p(I;λ) =
1

Z(λ)
exp

[
K∑

k=1

∑
x∈D

λk ([Fk ∗ I](x))
]
,(5)

where λk() is a nonlinear function to be estimated from the
training images, λ = (λk(), k = 1, ...,K), and Z(λ) is the
normalizing constant to make p(I;λ) integrate to 1. In the
original paper of [44], each λk() is discretized and estimated

as a step function, i.e., λk(r) =
∑B

b=1 wk,bhb(r), where b ∈
{1, ..., B} indexes the equally spaced bins of discretization,

and hb(r) = 1 if r is in bin b, and 0 otherwise, i.e., h() =
(hb(), b = 1, ..., B) is a 1-hot indicator vector, and

∑
x h([Fk∗

I](x)) is the marginal histogram of the filter map Fk ∗ I.
The spatially pooled marginal histograms are the sufficient
statistics of model (5).

Model (5) is stationary because the function λk() does
not depend on position x. In model (5), the energy function
U(I;λ) = −

∑
k

∑
x λk([Fk ∗ I](x)) involves a layer of lin-

ear filtering by {Fk}, followed by a layer of element-wise
non-linear transformation by {λk()}. Repeating this pat-
tern recursively (while also adding local max pooling and
sub-sampling) will lead to a generative version of ConvNet.

3.2 Non-stationary FRAME

The non-stationary or spatially inhomogeneous FRAME
model for object patterns [37], such as those in Fig. 1, is of
the following form:

p(I;λ) =
1

Z(λ)
exp

[
K∑

k=1

∑
x∈D

λk,x([Fk ∗ I](x))
]
q(I),(6)

where the function λk,x() depends on position x, and λ =
(λk,x(), ∀k, x). Again Z(λ) is the normalizing constant. The
model is non-stationary because λk,x() depends on position
x. It is impractical to estimate λk,x() as a step function at
each x, so λk,x() is parametrized as a one-parameter function

λk,x(r) = wk,xh(r),(7)

where h() is a pre-specified rectification function, and w =
(wk,x, ∀k, x) are the unknown parameters to be estimated. In
the paper of [37], they use h(r) = |r| for full wave rectifica-
tion. One can also use rectified linear unit h(r) = max(0, r)
[19] for half wave rectification, which can be considered an
elaborate two-bin discretization. q(I) is a reference distribu-
tion, such as the Gaussian white noise model

q(I) =
1

(2πσ2)|D|/2 exp

[
− 1

2σ2
||I||2

]
,(8)

where |D| counts the number of pixels in the image domain
D.

In the original FRAME model (5), q(I) is assumed to be
a uniform measure. In model (6), we can also absorb q(I),
in particular, the 1

2σ2 ||I||2 term, into the energy function,
so that the model is again defined relative to a uniform
measure as in the original FRAME model (5). We make
q(I) explicit here because we shall specify the parameter σ2

instead of learning it, and use q(I) as the null model for
the background. In models (6) and (7), (wk,x, ∀x, k) can be
considered a second-layer linear filter on top of the first layer
filters {Fk} rectified by h().

Both models (5) and (6) can be sparsified. Model (5) can
be sparsified by selecting a small set of filters Fk using the
filter pursuit procedure [44]. Model (6) can be sparsified by
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selecting a small number of filters Fk and positions x, so that
only a small number of wk,x are non-zero. The sparsification
can be achieved by a shared matching pursuit method [37]
or a generative boosting method [38].

4. FRAME MODELS BASED ON CONVNET
FILTERS

Instead of using linear filters, we can use the filters at
various convolutional layers of a pre-learned ConvNet. We
call such a model the deep FRAME model. Suppose there
exists a bank of filters {Fk, k = 1, ...,K} (e.g., K = 512)
at a certain convolutional layer of a pre-learned ConvNet.
For an image I defined on the square image domain D, let
Fk ∗ I be the feature map of filter Fk, and let [Fk ∗ I](x)
be the filter response of I to Fk at position x (again x is
a two-dimensional coordinate). We assume that [Fk ∗ I](x)
is the response obtained after applying the rectified linear
transformation h(r) = max(0, r). [Fk ∗I](x) is defined recur-
sively according to equation (2) in Section 2. For notational
simplicity, we make the index of the layer, l, implicit.

Then the non-stationary deep FRAME model becomes

p(I;w) =
1

Z(w)
exp

[
K∑

k=1

∑
x∈D

wk,x[Fk ∗ I](x)
]
q(I),(9)

where q(I) is again the Gaussian white noise model (8), and
w = (wk,x, ∀k, x) are the unknown parameters to be learned
from the training data. Z(w) is the normalizing constant.
Model (9) shares the same form as model (6) with linear
filters, except that the rectification function h() in model (6)
is already absorbed in the ConvNet filers {Fk} in model (9)
with h(r) = max(0, r). We shall use model (9) to generate
object patterns such as those in Fig. 1.

The stationary FRAME model is of the following form:

p(I;w) =
1

Z(w)
exp

[
K∑

k=1

∑
x∈D

wk[Fk ∗ I](x)
]
q(I),(10)

which is almost the same as model (9) except that wk is the
same across x. w = (wk, ∀k). We shall use model (10) to
generate texture patterns such as those in Fig. 2.

Again, both models (9) and (10) can be sparsified, either
by forward selection such as filter pursuit [44] or generative
boosting [38], or by backward elimination.

5. LEARNING AND SAMPLING
ALGORITHMS

This section presents the algorithms for learning and sam-
pling from the FRAME models. Intuitively, the sampling
algorithm is to let the model dream, and the learning al-
gorithm is to update the model parameters by making the
dreams come true. The sampling algorithm is an inner loop
of the learning algorithm. That is, the model learns to dream
and dreams to learn.

5.1 Learning algorithm

The basic learning algorithm for object model estimates
the unknown parameters w from a set of aligned training
images {Ii, i = 1, ..., n} that come from the same object
category, where n is the total number of training images. In
the basic learning algorithm, the weight parameters w can
be estimated by maximizing the log-likelihood function

(11) L(w) =
1

n

n∑
i=1

log p(Ii;w),

where p(I;w) is defined by (9). L(w) is a concave function.
The first derivatives of L(w) are

(12)
∂L(w)

∂wk,x
=

1

n

n∑
i=1

[Fk ∗ Ii](x)− Ew ([Fk ∗ I](x)) ,

where Ew denotes the expectation with respect to p(I;w).
The expectation can be approximated by Monte Carlo in-
tegration. The second derivative of L(w) is the variance-
covariance matrix of ([Fk ∗ I](x), ∀k, x). w can be computed
by a stochastic gradient ascent algorithm [39]:

w
(t+1)
k,x = w

(t)
k,x + γ

[
1

n

n∑
i=1

[Fk ∗ Ii](x)(13)

− 1

ñ

ñ∑
i=1

[Fk ∗ Ĩi](x)
]
,

for every k ∈ {1, ...,K} and x ∈ D, where γ is the learn-
ing rate, and {Ĩi, i = 1, ..., ñ} are the synthesized images
sampled from p(I;w(t)) using MCMC. ñ is the total num-
ber of independent parallel Markov chains that sample from
p(I;w(t)). The learning rate γ can be made inversely pro-
portional to the observed variance of {[Fk ∗ Ii](x), ∀i}, as
well as being inversely proportional to the iteration t as in
stochastic approximation.

For learning stationary FRAME (10), usually n = 1, i.e.,
we observe one texture image, and we update the parameters
by

w
(t+1)
k = w

(t)
k +

γ

|D|

[
1

n

n∑
i=1

∑
x∈D

[Fk ∗ Ii](x)(14)

− 1

ñ

ñ∑
i=1

∑
x∈D

[Fk ∗ Ĩi](x)
]
,

for every k ∈ {1, ...,K}, where there is a spatial pooling
across positions x ∈ D.

5.2 Sampling algorithm

In order to sample from p(I;w) in (9), we adopt the
Langevin dynamics. Writing the energy function

(15) U(I, w) = −
K∑

k=1

∑
x∈D

wk,x[Fk ∗ I](x) +
1

2σ2
||I||2.
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The Langevin dynamics iterates

(16) Iτ+1 = Iτ − ε2

2
U ′(Iτ , w) + εZτ ,

where U ′(I, w) = ∂U(I, w)/∂I. This gradient can be com-
puted by back-propagation. In (16), ε is a small step size,
and Zτ ∼ N(0,1), independently across τ , where the bold
font 1 is the identify matrix, i.e., Zτ is a Gaussian white
noise image whose pixel values follow N(0, 1) independently.
Here we use τ to denote the time steps of the Langevin
sampling process, because t is used for the time steps of
the learning process. The Langevin sampling process is an
inner loop within the learning process. Between every two
consecutive updates of w in the learning process, we run a
finite number of iterations of the Langevin dynamics start-
ing from the images generated by the previous iteration of
the learning algorithm, a scheme called “warm start” in the
literature. The Langevin equation was also adopted by [41],
who called the corresponding gradient descent algorithm the
Gibbs reaction and diffusion equations (GRADE).

Algorithm 1 describes the details of the learning and
sampling algorithms for the non-stationary model (9). The
learning and sampling algorithms for the stationary model
(10) only involve minor modifications of Algorithm 1. Al-
gorithm 1 embodies the principle of “analysis by synthe-
sis,” i.e., we synthesize images by sampling from the current
model, and then update the model parameters based on the
difference between the synthesized images and the observed
images.

Algorithm 1 Learning and sampling algorithms

Require:
(1) training images {Ii, i = 1, ..., n}
(2) a filter bank {Fk, k = 1, ...,K}
(3) number of synthesized images ñ
(4) number of Langevin steps L
(5) number of learning iterations T

Ensure:
(1) estimated parameters w = (wk,x,∀k, x)
(2) synthesized images {Ĩi, i = 1, ..., ñ}

1: Calculate observed statistics:
Hobs

k,x ← 1
n

∑n
i=1[Fk ∗ Ii](x), ∀k, x.

2: Let t ← 0, initialize w
(0)
k,x ← 0,∀k, x.

3: Initialize Ĩi ← 0, for i = 1, ..., ñ.
4: repeat
5: For each i, run L steps of Langevin dynamics to update

Ĩi, i.e., starting from the current Ĩi, each step updates

Ĩi ← Ĩi − ε2

2
U ′(Ĩi, w

(t)) + εZ, where Z ∼ N(0,1).
6: Calculate synthesized statistics:

Hsyn
k,x ← 1

ñ

∑ñ
i=1[Fk ∗ Ĩi](x), ∀k, x.

7: Update w
(t+1)
k,x ← w

(t)
k,x + γ(Hobs

k,x −Hsyn
k,x ), ∀k, x.

8: Let t ← t+ 1
9: until t = T

From the MCMC perspective, Algorithm 1 runs non-
stationary parallel Markov chains that sample from a Gibbs
distribution with a changing energy landscape, like in sim-
ulated annealing or tempering [23, 22]. This may help the
chains to avoid the trapping of local modes. We can also use
“cold start” scheme by initializing Langevin dynamics from
white noise images in each learning iteration and allowing
the dynamics enough time to relax.

6. IMAGE GENERATION EXPERIMENTS

In our experiments, we use the filters of the ConvNet
learned by the VGG group [31] on the ImageNet dataset,
and we use the Matlab code of MatConvNet [33].

Experiment 1: generating object patterns. We
learn the non-stationary FRAME model (9) from images of
aligned objects. The images are collected from the internet.
For each category, the number of training images is around
10. We use ñ = 16 parallel chains for Langevin sampling.
The number of Langevin iterations between every two con-
secutive updates of the parameters is L = 100. Fig. 5 shows
some experiments using filters from the 3rd convolutional
layer of VGG ConvNet. For each experiment, the first row
displays 4 of the training images, and the second row dis-
plays 4 of the synthesized images generated by Algorithm 1.

Experiment 2: generating texture patterns. We
learn the stationary FRAME model (10) from images of
textures. Fig. 6 shows some experiments. Each experiment
is displayed in one row, where the first image is the training

Figure 5. Generating object patterns. For each category, the
first row displays 4 of the training images, and the second row

displays generated images.
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Figure 6. Generating texture patterns. For each category, the
first image is the training image, and the next 2 images are

generated images.

Figure 7. Generating hybrid object patterns. For each
experiment, the first row displays 4 of the training images,

and the second row displays generated images.

image, and the other 2 images are generated by the learning
algorithm.

Experiment 3: generating hybrid patterns. We
learn models (9) and (10) from images of mixed categories,
and generate hybrid patterns. Figs 7 and 8 display a few ex-
amples. The non-stationary model re-mixes local image pat-
terns from different images seamlessly, while the stationary
model re-mixes and re-shuffles local image patterns seam-
lessly.

We also learn models (9) from images of street scenes, and
generate new scenes that re-mix local patterns seamlessly.
Fig. 9 displays the 3 training images and 8 generated images.

7. GENERATIVE CONVNET UNITS

In this section, we explain that a learned FRAME model
based on ConvNet filters becomes a new ConvNet filter at
the layer above the layer of filters employed by the model.

Figure 8. Generating hybrid texture patterns. The first 2
images are training images, and the last 2 images are

generated images.

Figure 9. Generating scene patterns. The 3 images on the top
row are training images, and the images on the bottom 2

rows are generated images.

We also explain the origin of the rectified linear transforma-
tion as an approximation to a mixture model of the presence
and absence of the pattern modeled by the FRAME model.
We then consider the learning of the generative model that
involves a new layer of multiple filters to account for multi-
ple local patterns in the non-aligned training images.

7.1 FRAME models as ConvNet units

On top of the convolutional layer of filters {Fk, k =
1, ...,K}, we can build another layer of filters {Fj , j =
1, ..., J} (with F in bold font, and indexed by j), so that

(17) [Fj ∗ I](y) = h

⎛
⎝∑

k,x

w
(j)
k,x[Fk ∗ I](y + x) + bj

⎞
⎠ ,

where h() is a rectification function such as the rectified
linear unit h(r) = max(0, r). Equation (17) follows the re-
cursive equation (2) in Section 2. For notational simplicity,
we make the indices of layers, l and l − 1, implicit, and use
bold font F and non-bold F to denote the filters at the two
adjacent layers respectively. Also for simplicity, we ignore
the layers of local max pooling and sub-sampling.

Model (9) corresponds to a single filter in {Fj} at a par-
ticular position y (e.g., the origin y = 0) where we assume
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that the object appears. The weights (w
(j)
k,x) can be learned

by fitting model (9) using Algorithm 1, which enables us to
add a ConvNet node in a generative fashion.

The log-likelihood ratio of the object model p(I;w) in (9)
versus the background model q(I) is

(18) log
p(I;w)

q(I)
=

∑
k

∑
x

wk,x[Fk ∗ I](x)− logZ(w).

It can be used as a score for detecting the object versus the
background. If the score is below a threshold, no object is
detected, and the score is rectified to 0. The rectified linear
unit h() in Fj in (17) accounts for the fact that at any
position y, the object either appears or not. More formally,
consider a mixture model p(I) = αp(I;w) + (1 − α)q(I),
where α is the frequency that the object is activated, and
1− α is the frequency of background. Then

log
p(I)

q(I)
= log

[
1 + exp

(∑
k

∑
x

wk,x[Fk ∗ I](x)(19)

− logZ(w) + log
α

1− α

)]
+ log(1− α).

Now let us compare equation (19) to equation (17). We
can approximate the soft max function log(1 + er) by the
hard max function h(r) = max(0, r). Then we can identify
the bias term as b = log(α/(1 − α)) − logZ(w). Hence the
rectified linear unit models a mixture of “on” and “off” of
an object pattern.

7.2 Generative model with a new layer of
filters

Model (9) is used to model images where the objects are
aligned and are from the same category. For non-aligned
images that may consist of multiple local patterns, we can
extend model (9) to a convolutional version with multiple
filters

(20) p(I;w) =
1

Z(w)
exp

⎡
⎣ J∑
j=1

∑
x∈D

[Fj ∗ I](x)

⎤
⎦ q(I),

where {Fj} are defined by (17). This model is a product
of experts model [14], where each [Fj ∗ I](x) is an expert
about a mixture of an activation or inactivation of a local
pattern of type j at position x. We call model (20) with
(17) the generative ConvNet model. The model can also be
considered a dense version of the And-Or model [43], where
the binary switch of each expert corresponds to an Or-node,
and the product corresponds to an And-node.

The stationary model (10) corresponds to a special case
of generative ConvNet model (20) with (17), where there

is only one j, and [F ∗ I](x) =
∑K

k=1 wk[Fk ∗ I](x), which
is a special case of (17) without rectification. It is a 1 × 1

convolutional filter that combines lower layer filter responses
at the same position.

More importantly, due to the recursive nature of Con-
vNet, if the weight parameters wk of the stationary model
(10) are absorbed into the filters Fk by multiplying the
weight and bias parameters of each Fk by wk, then the sta-
tionary model becomes the generative ConvNet model (20)
except that the top-layer filters {Fj} are replaced by the
lower layer filters {Fk}. The learning of the stationary model
(10) is a simplified version of the learning of the generative
ConvNet model (20) where there is only one multiplicative
parameter wk for each filter Fk. The learning of the station-
ary model (10) is more unsupervised and more indicative of
the expressiveness of the ConvNet features than the learn-
ing of the non-stationary model (9) because the former does
not require alignment.

7.3 EM-like learning with latent switch
variables

Suppose we observe {Ii, i = 1, ..., n} from the gen-
erative ConvNet model (20) with (17). Let L(w) =
1
n

∑n
i=1 log p(Ii;w) be the log-likelihood where p(I;w) is de-

fined by (20) and (17), then

∂L(w)

∂w
(j)
k,x

=
1

n

n∑
i=1

∑
y∈D

δj,y(Ii)[Fk ∗ Ii](y + x)(21)

− Ew

⎡
⎣∑
y∈D

δj,y(I)[Fk ∗ I](y + x)

⎤
⎦ ,

where

(22) δj,y(I) = h′

⎛
⎝∑

k,x

w
(j)
k,x[Fk ∗ I](y + x) + bj

⎞
⎠

is a binary on/off detector of the local pattern of type j
at position y on image I, because for h(r) = max(0, r),
h′(r) = 0 if r ≤ 0, and h′(r) = 1 if r > 0. The gradi-
ent (21) admits an EM [5] interpretation which is typical in
unsupervised learning algorithms that involve latent vari-
ables. Specifically, δj,y() detects the local pattern of type j
modeled by Fj . This step can be considered a hard-decision
E-step. With the local patterns detected, the parameters of
Fj are then updated in a similar way as in (13), which can
be considered the M-step. That is, we learn Fj only from
image patches where we detect pattern j. Such a scheme was
used by [16] to learn codebooks of active basis models [34].

Model (20) with (17) defines a recursive scheme, where
the learning of higher layer filters {Fj} is based on the lower
layer filters {Fk}. We can use this recursive scheme to build
up the layers from scratch. We can start from the ground
layer of the raw image, and learn the first layer filters. Then
based on the first layer filters, we learn the second layer
filters, and so on.
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After building up the model layer by layer, we can con-
tinue to refine the parameters of all the layers simultane-
ously. We can also learn all the layers simultaneously from
scratch. In fact, the parameter w in model (20) can be in-
terpreted more broadly as multi-layer connection weights
that define all the layers of filters. The gradient of the log-
likelihood is

∂L(w)

∂w
=
1

n

n∑
i=1

J∑
j=1

∑
x∈D

∂

∂w
[Fj ∗ Ii](x)(23)

− Ew

⎡
⎣ J∑
j=1

∑
x∈D

∂

∂w
[Fj ∗ I](x)

⎤
⎦ ,

where ∂[Fj ∗ I](x)/∂w involves multiple layers of binary de-
tectors. The resulting algorithm also requires partial deriva-
tive ∂[Fj ∗ I](x)/∂I for Langevin sampling, which can be
considered a recurrent generative model driven by the bi-
nary switches at multiple layers. Both ∂[Fj ∗ I](x)/∂w and
∂[Fj ∗ I](x)/∂I are readily available via back-propagation.
See [13, 27] for earlier work along this direction. See also [3]
for generative gradient of ConvNet.

Finally, we can also learn a FRAME model based on the
features at the top layer,

(24) p(I;w) =
1

Z(w)
exp

[
K∑

k=1

wk[Fk ∗ I]
]
q(I),

where Fk is the k-th feature at the top layer, K is the total
number of features at this layer (e.g., K = 4,096), and wi

are the parameters, w = (wk, ∀k). Fk can still be viewed
as a filter whose filter map is 1 × 1. Suppose there are a
number of image categories, and suppose we learn a model
(24) for each image category with a category-specific w. Also
suppose we are given the prior frequency of each category. A
simple exercise of the Bayes rule then gives us the soft-max
classification rule for the posterior probability of category
given image, which is the discriminative ConvNet defined
by equation (4) in Section 2.

8. MORE IMAGE GENERATION
EXPERIMENT

Experiment 4: learning from non-aligned images.
We learn the generative ConvNet model (20) with (17).
Fig. 10 displays 3 experiments. In each row, the first image
is the training image, and the next 3 images are generated
by the learned model. In the first scenery experiment, we
learn 10 filters at the 4th convolutional layer (without lo-
cal max pooling), based on the pre-trained VGG filters at
the 3rd convolutional layer. The size of each Conv4 filter
to be learned is 11 × 11 × 256. In the sunflower and egret
experiments, we learn 20 filters of size 7 × 7 × 256 (with
local max pooling). Clearly these learned filters capture the

Figure 10. Learning without alignment. In each row, the first
image is the training image, and the next 3 images are

generated images.

Figure 11. Learning from non-aligned image patterns. The
first row displays 4 of the training images, and the second row

displays generated images.

local patterns and re-shuffle them seamlessly. Fig. 11 dis-
plays an experiment where we learn the model from a small
training set of non-aligned images. The first row displays
4 examples of training images and the second row displays
the generated images. We use the same parameter setting as
in the sunflower experiment. These experiments show that
it is possible to learn generative ConvNet model (20) from
non-aligned images.

9. LEARNING ALL LAYERS OF FILTERS

The method of learning a new layer of filters can be gen-
eralized to learning all layers of filters from scratch, without
relying on a pre-trained ConvNet. Specifically, define the
scoring function

f(I;w) =

K∑
k=1

∑
x∈D

wk,x([Fk ∗ I](x)),(25)

and define the probability distribution of the model
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p(I;w) =
1

Z(w)
exp [f(I;w)] q(I),(26)

where this time w collects the weight and bias terms that
define the filters at all the layers, instead of the weight and
bias terms only at the top layer. Then w can be updated by
gradient ascent. The gradient is

∂L(w)

∂w
=
1

n

n∑
i=1

∂

∂w
f(Ii;w)− Ew

[
∂

∂w
f(I;w)

]
,(27)

where again the expectation can be approximated by the
Monte Carlo samples obtained by the Langevin dynamics
which samples from p(I;w). Updating w according to the
above gradient will shift the density p(I;w) from the syn-
thesized images towards the observed images.

We learn a 5-layer non-stationary generative ConvNet
model from 1,000 face images randomly sampled from the
CelebA dataset [24]. Images are cropped at the center to
64 × 64. The first layer has 7 × 7 × 96 filters (i.e., 96 fil-
ters, and the size of each filter is 7 × 7) with stride of 3
pixels, the second layer has 5× 5× 128 filters with stride of
2 pixels, the third layer has 5 × 5 × 256 filters with stride
of 2 pixels, the fourth layer has 5 × 5 × 512 filters with
stride of 2 pixels, and the final layer is a fully connected
layer that outputs the value of f(I;w). In our learning al-
gorithm, the number of learning iterations is 300, and the
initial learning rate is 0.3. Learning rate is decayed logarith-
mically every 10 iterations. We continue to use the Langevin
dynamics to generate the synthesized images. Specifically,
within each iteration, for each training image, we obtain a
corresponding synthesized image by running the Langevin
dynamics from a constant image of the average intensity of
the training image, i.e., we adopt the “cold start” scheme for
Langevin sampling. We run 30 Langevin steps within each
learning iteration, and the step size of the Langevin dynam-
ics is 0.3. Fig. 12 shows random examples of the training
images and the synthesized images generated by the learned
model.

To monitor model fitting, we compute the means and
standard deviations of the scoring function f(I;w) (which
is log[p(I;w)/q(I)] + logZ(w), i.e., the log-likelihood ratio
up to a constant) on the 1,000 face images and 1,000 ran-
domly sampled natural images from 10 scene categories of
ImageNet dataset [6]. Table 1 displays the results. Clearly
the learned model puts higher probabilities on the face im-
ages than the random natural images. For the purpose of
classification, we need to learn a model of natural images,
in addition to the model of face images, and perform like-
lihood ratio test for classification. We shall investigate this
issue in our future work.

We then test the learned model quantitatively on the im-
age recovery task. On each testing image I, we randomly
place a squared mask M , which consists of all the masked
pixels. We then recover the masked pixels by sampling from
the conditional distribution p(IM | IM̄ , w) according to

Figure 12. Images synthesized by the model learned on the
CelebA dataset. The left panel displays random examples of
the training images and the right panel displays random

examples of the synthesized images generated by the learned
model.

Table 1. Means and standard deviations (×106) of the
scoring function f(I;w) on the 1,000 face images and 1,000

natural images

face images natural images

mean 6.35 4.59

std 0.75 1.20

the learned model p(I;w), where M̄ denotes the unmasked
pixels, and IM and IM̄ are the masked part and the un-
masked part of the image I respectively. The sampling of
p(IM | IM̄ , w) is again accomplished by the Langevin dy-
namics, which is the same as the Langevin dynamics that
samples from the full distribution p(I;w), except that we fix
the unmasked part IM̄ and only update the masked part IM
throughout the Langevin dynamics. In the learning stage, we
learn the model from the fully observed training images. To
specialize the learned model to this recovery task, we learn
p(IM | IM̄ , w) directly. That is, in the learning stage, we also
randomly place a mark M on each fully observed training
image I, and run Langevin dynamics by fixing IM̄ to obtain
the synthesized image. The parameters w are then updated
by gradient ascent according to (27).

After learning the model from 1,000 face images randomly
sampled from the CelebA dataset, we randomly sample an-
other 1,000 images for testing, and randomly place a mask
M on each testing image I. We then recover the masked
pixels by sampling from p(IM | IM̄ , w) using Langevin dy-
namics. In the training stage, we randomly place a 40× 40
mask on each training image. In the testing stage, we exper-
iment with two sizes of masks: 40 × 40 (M40) and 50 × 50
(M50). We compare our method with 8 different image re-
covery methods. MRF-�2 and MRF-�1 are based on Markov
random field prior models where the nearest neighbor po-
tential terms are �2 and �1 differences respectively. The rest
(Nan1 - 6) are interpolation based methods. Please refer
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Table 2. Image recovery results of different methods. The errors are measured by the average per-pixel differences between the
original images and the recovered images on the masked pixels. The smaller the better

Methods MRF-�2 MRF-�1 Nan1 Nan2 Nan3 Nan4 Nan5 Nan6 Ours

M40 0.1519 0.1507 0.1397 0.1363 0.3170 0.1366 0.1368 0.1397 0.1338

M50 0.1847 0.1841 0.1765 0.1690 0.3471 0.1671 0.1672 0.1765 0.1465

Figure 13. Image recovery. The first row displays the original
testing images, the second row shows the corresponding
masked testing images, and the third row displays the

recovered images based on the learned model.

to [9] for more details. We measure the recovery error by
the average of per-pixel differences between the original test-
ing images and the corresponding recovered images on the
masked pixels. Table 2 displays the numerical comparison
results. Fig. 13 displays some examples of image recovery.

10. CONCLUSION

In this paper, we learn the FRAME models based on
pre-trained ConvNet filters or features. Just as weighted
summations of three basic colors of Red, Green, and Blue
can generate any visible colors, the FRAME models that
are based on weighted summations of these features can
generate a wide variety of natural image patterns. The
learned FRAME models themselves become new ConvNet
units. We also show that it is possible to learn the multi-
layer FRAME model or the generative ConvNet model (20)
from scratch without relying on pre-trained ConvNet fil-
ters.

CODE AND DATA

The code, data, and more experimental results can
be found at http://www.stat.ucla.edu/∼yang.lu/project/
deepFrame/main.html.

APPENDIX A. MAXIMUM ENTROPY
JUSTIFICATION

The FRAME model (9) can be justified by the maximum
entropy or minimum divergence principle. Suppose the true
distribution that generates the observed images {Ii} is f(I).
Let w� solve the population version of the maximum likeli-
hood equation:

(28) Ew([Fk ∗ I](x)) = Ef ([Fk ∗ I](x)), ∀k, x.

Let Ω be the set of all the feasible distributions p that share

the statistical properties of f as captured by {Fk}:

(29) Ω = {p : Ep([Fk ∗ I](x)) = Ef ([Fk ∗ I](x)) ∀k, x}.

Then it can be shown that among all p ∈ Ω, p(I;w�) achieves
the minimum of KL(p||q), i.e., the Kullback-Leibler diver-
gence from p to q [4]. Thus p(I;w�) can be considered the
projection of q onto Ω, or the minimal modification of the
reference distribution q to match the statistical properties of
the true distribution f . In the special case where q is a uni-
form distribution, p(I;w�) achieves the maximum entropy
among all distributions in Ω. For Gaussian white noise q,

as mentioned before, we can absorb the ‖I‖2

2σ2 term into the
energy function as in (15), so model (9) can be written rela-
tive to a uniform measure with ‖I‖2 as an additional feature.
The maximum entropy interpretation thus still holds if we
opt to estimate σ2 from the data.

APPENDIX B. JULESZ ENSEMBLE
JUSTIFICATION

The learning algorithm seeks to match statistics of the
synthesized images to those of the observed images, as in-
dicated by (13) and (14), where the difference between the
observed statistics and the synthesized statistics drives the
update of the parameters. If the algorithm converges, and
if the number of the synthesized images M̃ is large in the
case of object patterns or if the image domain D is large in
the case of texture patterns, then the synthesized statistics
should match the observed statistics. Assume q(I) to be the
uniform distribution for now. We can consider the following
ensemble in the case of object patterns:

J =

{
(Ĩi, i = 1, ..., ñ) :(30)

1

ñ

ñ∑
i=1

[Fk ∗ Ĩi](x) =
1

n

n∑
i=1

[Fk ∗ Ii](x), ∀k, x
}
.

Consider the uniform distribution over J . Then as ñ → ∞,
the marginal distribution of any Ĩi is given by model (9)
with w being estimated by maximum likelihood. Conversely,
model (9) puts uniform distribution on J if Ĩi are indepen-
dent samples from model (9) and if ñ → ∞.

As for the texture model, we can take ñ = 1, but let the
image size go to ∞. First fix the square domain D. Then
embed it at the center of a larger square domain D. Consider
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the ensemble of images defined on D:

J =

{
Ĩ :

1

|D|
∑
x∈D

[Fk ∗ Ĩ](x)(31)

=
1

|D|
1

n

n∑
i=1

∑
x∈D

[Fk ∗ Ii](x), ∀k
}
.

Then under the uniform distribution on J , as |D| → ∞, the
distribution of Ĩ restricted to D is given by model (10). Con-
versely, model (10) defined on D puts uniform distribution
on J as |D| → ∞.

The ensemble J is called the Julesz ensemble by [36], be-
cause Julesz was the first to pose the question as to what
statistics define a texture pattern [17]. The averaging across
images in equation (30) enables re-mixing of the parts of the
observed images to generate new object images. The spatial
averaging in equation (31) enables re-shuffling of the local
patterns in the observed image to generate a new texture
image. That is, the averaging operations lead to exchange-
ability.

For object patterns, define the discrepancy

Δk,x =
1

ñ

ñ∑
i=1

[Fk ∗ Ĩi](x)−
1

n

n∑
i=1

[Fk ∗ Ii](x).(32)

One can sample from the uniform distribution on J in (30)
by running a simulated annealing algorithm that samples
from p(Ĩi, i = 1, ..., ñ) ∝ exp(−

∑
k,x Δ

2
k,x/T ) by Langevin

dynamics while gradually lowering the temperature T , or
simply by gradient descent as in [10] by assuming T = 0.
The sampling algorithm is very similar to Algorithm 1. One
can use a similar method to sample from the uniform distri-
bution over J in (31). Such a scheme was used by [42] for
texture synthesis.

In the above discussion, we assume q(I) to be the uniform
distribution. If q(I) is Gaussian, we only need to add the
feature ‖I‖2 to the pool of features to be matched. The
above results still hold.

The Julesz ensemble perspective connects statistics
matching and the FRAME models, thus providing another
justification for these models in addition to the maximum
entropy principle.
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