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Abstract Painting with Interactive Control of Perceptual
Entropy
MINGTIAN ZHAO and SONG-CHUN ZHU, University of California, Los Angeles and Lotus Hill
Institute

This article presents a framework for generating abstract art from photographs. The aesthetics of abstract art is largely at-
tributed to its greater perceptual ambiguity than photographs. According to psychological theories [Berlyne 1971], the ambiguity
tends to invoke moderate mental effort in the viewer for interpreting the underlying contents, and this process is usually accom-
panied by subtle aesthetic pleasure. We study this phenomenon through human experiments comparing the subjects’ interpre-
tations of abstract art and photographs, and quantitatively verify, the increased perceptual ambiguities in terms of recognition
accuracy and response time. Based on the studies, we measure the level of perceptual ambiguity using entropy, as it measures
uncertainty levels in information theory, and propose a painterly rendering method with interactive control of the ambiguity
levels. Given an input photograph, we first segment it into regions corresponding to different objects and parts in an interactive
manner and organize them into a hierarchical parse tree representation. Then we execute a painterly rendering process with im-
age obscuring operators to transfer the photograph into an abstract painting style with increased perceptual ambiguities in both
the scene and individual objects. Finally, using kernel density estimation and message-passing algorithms, we compute and con-
trol the ambiguity levels numerically to the desired levels, during which we may predict and control the viewer’s perceptual path
among the image contents by assigning different ambiguity levels to different objects. We have evaluated the rendering results
using a second set of human experiments, and verified that they achieve similar abstract effects to original abstract paintings.
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1. INTRODUCTION

Abstract artworks like Monet’s famous Wheatstack (Figure 1(a)) have a characteristic charm beyond
photographic and representational arts. In particular, observing and interpreting an abstract artwork,
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Fig. 1. Some abstract artworks. (a) Wheatstack (Thaw, Sunset), 1890–1891 by Claude Monet. (b) Le Mont Sainte-Victoire, 1902–
1904 by Paul Cézanne. (c) View of Collioure (The Bell Tower), 1905 by Henri Matisse. (d) Kairouan (III), 1914 by August Macke.
(e) A photograph with a similar scene to (b). (f) A photograph with a similar scene to (c).

in some sense, is like playing a guessing game with the artist, which typically has ambiguities and
causes confusion, but this experience is usually also interesting and rewarding.

This subtle beauty of abstract art has long been noted by both artists and psychologists. Wassily
Kandinsky (1866–1944), a Russian abstract painter, attributed the “fairy-tale power and splendor” of
Monet’s haystacks to the surprise and confusion caused by their indistinct painting style [Lindsay and
Vergo 1994, p.363]. Daniel Berlyne (1924–1976), a pioneer in theoretical and experimental psychology,
further explained this phenomenon with his theory of the motivational aspects of perception [Berlyne
1971, pp.61–114; Konečni 1978; Funch 1997, pp.26–33]. According to Berlyne, the process of observing
and interpreting aesthetic patterns in abstract art involves certain levels of perceptual ambiguity. To
resolve the ambiguity, the observer subconsciously puts in mental effort (e.g., continuous guesses until
reaching the correct answer [Kersten 1987]) that can lead to moderate changes in the arousal levels in
his/her nervous system, which in turn reward him/her with emotional pleasure.

The confusion and ambiguity of abstract art may exist in various forms, styles, and levels, as shown
by the examples in Figure 1. In many abstract artworks, such ambiguities are often achieved by

— preserving visual features in certain semantic dimensions (e.g., scene configuration, identity of
object/part, color/shape/texture characteristics), and

— freeing (e.g., spatially disarranging, obscuring, randomizing) the other dimensions.

While the former leaves clues for our visual perception, the latter usually poses challenges, for
example:

— In Monet’s wheatstack, Cézanne’s mountain and Matisse’s bell tower shown in Figures 1(a)
through 1(c), global structures of the scenes are mostly preserved in the sense that they are recog-
nizable, while the appearance and shapes of individual objects are obscured. In particular, the objects
in Figure 1(b) are obscured in different degrees, so the viewer usually recognizes the mountain first,
which further helps to recognize the trees and huts in the context. We call this sequential recogni-
tion effect (i.e., the viewer recognizes less obscured objects first, then understands the scene and other
objects with the help of contextual information) the perceptual path.
ACM Transactions on Applied Perception, Vol. 10, No. 1, Article 5, Publication date: February 2013.
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— In Macke’s Kairouan (III) shown in Figure 1(d), as well as in Picasso’s famous Guernica and
Violin and Guitar, the identifiability of individual objects/parts are well preserved, while the spatial
configurations of the scenes are disarranged.

— In some modern paintings, such as Pollock’s drip paintings, only some low-level colors and shapes
are preserved, while high-level semantic and geometric structures are randomized.

In this article, we focus on the style of Monet’s wheatstack and Cézanne’s mountain, which pre-
serves the scene structures while obscuring individual objects. We conducted human experiments to
study the different ambiguity levels between such abstract paintings and photographs. Based on the
experiments, we define and measure the level of perceptual ambiguity, and propose an abstract ren-
dering method using image obscuring operators such as color shift and shape deformation, in which we
can compute and interactively control the ambiguity levels and perceptual paths using kernel density
estimation and message-passing algorithms. Through a second set of human experiments, we verified
that our rendering results achieve similar abstract effects as original abstract paintings by artists.

The rest of this article is organized as follows. Section 1.1 summarizes related work on abstract art
in computer graphics, image analysis, and perception; Section 1.2 lists our contributions, and improve-
ments over our previous work [Zhao and Zhu 2010]. We report on our human experiments and analyze
the experimental results in Section 2. In Section 3, we introduce a numerical measure for perceptual
ambiguity, called perceptual entropy, which is defined on a hierarchical parse tree representation for
image content. We also explain how a parse tree is constructed using interactive image segmentation
and labeling methods. Then, in Section 4, we present the image-obscuring and painterly rendering
techniques to manipulate the perceptual entropy. To complete the system pipeline, in Section 5, we
show how the perceptual entropy is computed and adjusted, and how the perceptual path is predicted.
Section 6 illustrates our rendering results. In Sections 7 and 8 we present the second set of human
experiments, which verifies the rendering results. Finally, we conclude in Section 9 with discussion.

1.1 Related Work

Recently, in the computer graphics and image analysis communities, especially in the nonphotorealistic
rendering (NPR) area [Gooch and Gooch 2001; Strothotte and Schlechtweg 2002], there have been
continuing efforts to understand and render abstract artworks in different styles.

In computer graphics, Haeberli [1990] first proposed abstract image representations using brush
strokes. Image representation with brush strokes essentially abstracts images by modifying many
high-frequency details and only preserves relatively low-frequency surfaces and gentle gradients.
Later, the study on stroke-based rendering was further extended by many painterly rendering meth-
ods [Meier 1996; Litwinowicz 1997; Hertzmann 1998; Zeng et al. 2009] for better visual effects. To
achieve nonuniform abstraction across an image which is naturally performed by artists, DeCarlo and
Santella [2002] developed an approach for stylization and abstraction of photographs, which identi-
fies visually attractive elements utilizing eye-tracking data, and preserves more details of such areas
during rendering. Recently, automatic methods for image and video simplification or abstraction have
been developed [Orzan et al. 2007; Kyprianidis 2011; Olsen and Gooch 2011; Mould 2012]. The main
idea of these methods is to filter images to remove weak edges/ridges in relatively flat areas, which
human vision is not very sensitive to. For vector graphics, Mi et al. [2009] proposed a method for 2D
shape abstraction using part-based representations by identifying and preserving important parts.
Moreover, many specific styles of abstract art have also been widely studied and simulated, includ-
ing image mosaics [Finkelstein and Range 1998; Orchard and Kaplan 2008], drip-painting [Lee et al.
2006], cubism [Collomosse and Hall 2003], abstract texture synthesis by sampling [Morel et al. 2006],
emerging images [Mitra et al. 2009], and pixelation [Gerstner et al. 2012].
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On the image analysis aspect, Pollock’s famous drip paintings were analyzed using fractal math-
ematics [Mureika et al. 2005; Jones-Smith and Mathur 2006; Taylor et al. 2007]. Statistical and
computer vision methods have also been applied in analyzing and classifying paintings of various
styles [Wallraven et al. 2009; Hughes et al. 2010]. Recently, Rigau et al. [2008] proposed aesthetic
informational measures to evaluate artistic images based on information-theoretic principles. There
is also growing interests in the subtle effects of perceptual ambiguity in abstract art [Arnheim 1971;
Yevin 2006; Hertzmann 2010].

In the literature of perception and psychophysics, there are also studies on abstract images gen-
erated using artistic rendering techniques. Gooch et al. [2004] presented a study on human facial
illustrations, and showed that the rendered facial illustrations and caricatures are as effective in com-
municating complex facial information as photographs. Wallraven et al. [2007] also studied the effects
of artistic stylization in stylized facial expressions, using both real-world and computer-generated im-
ages. Redmond and Dingliana [2009] compared different NPR styles in the perception of abstracted
scenes, and observed that salient target objects can be effectively emphasized using NPR, given ap-
propriate scene context and level of stylization. Mandryk et al. [2011] evaluated and compared the
emotional responses to NPR images of different styles.

1.2 Our Contributions

Most of the above studies on rendering focused on relatively low-level image features (e.g., color, gra-
dient). A few methods also work in the perceptual space by dealing with visual saliency and atten-
tion [DeCarlo and Santella 2002]. In contrast, the creation and appreciation of abstract art entail the
manipulation of categorical recognition for scenes, objects, and parts where ambiguity and confusion
may occur. Our method for rendering abstract paintings is based on the hypothesis that they usually
have greater ambiguities for understanding than photographs, which is fundamentally different from
previous image abstraction methods. To achieve this, this article makes the following contributions:

— We introduce the image parsing method [Tu et al. 2005] to provide a hierarchical descriptor of
image contents for studying the mechanism of abstract art at the semantic level.

— We compare abstract art and photographs containing different categories of objects using human
experiments, and quantitatively measure the differences in recognition accuracy and response time
between them, which reflect their differences in perceptual ambiguity.

— In the frameworks of Bayesian statistics and information theory, we define a numerical measure
of the levels of perceptual ambiguities, called perceptual entropy, and develop algorithms to compute
the entropy for images and predict their most likely perceptual paths.

— We propose a painterly rendering method for generating abstract painting images from pho-
tographs, in which we have interactive control of the ambiguity levels and perceptual paths.

This article extends our previous work on abstract painting [Zhao and Zhu 2010]. Compared with the
previous study, this article presents additional or improved methods and results in two main aspects:

— Improved models and algorithms to compute the entropies over hierarchical image structures, for
simulating human visual perception better. These include a logistic-regression-based distance metric
between image regions using color, shape, and texture features (in Section 5.1); a more accurate ap-
proximate of the joint perceptual entropy according to the most probable parse tree configurations (in
Section 5.2); and a sequential algorithm for predicting the most likely perceptual path among image
regions (in Section 5.4).
ACM Transactions on Applied Perception, Vol. 10, No. 1, Article 5, Publication date: February 2013.
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Table I. List of Scene and Object Categories In this Article (which distribute widely over common
categories usually appearing in paintings)

7 Scene Categories 42 Object Categories
close-up abstract background big mammal bike bird
indoor bridge building bus/car/train butterfly/insect

landscape chimney clothing/fabrics door/window face/skin
portrait fish flag/sign flower fruit
seascape furniture/bench glass/porcelain grass/straw/reed ground/earth/pavement
skyline hair house/pavilion human kite/balloon

streetscape lamp/light leaf mountain pillar/pole
road/street/alley rock/stone/reef sand/shore ship/boat
sky/cloud/glow small mammal snow/frost statue
sun/moon/star tower/lighthouse tree/trunk/twig umbrella

wall/roof water/spindrift
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Fig. 2. Example image patch pairs of abstract paintings of different object categories and their corresponding photographs used
in our human experiments. The dog belongs to the small mammal category.

— More comprehensive human experiments. These include more extensive experiments and anal-
yses on the effects of perceptual ambiguity reflected in recognition accuracy and response time (in
Sections 2 and 7); and an additional experiment on the effect of perceptual paths (in Section 8).

2. HUMAN EXPERIMENTS ON THE LEVELS OF PERCEPTUAL AMBIGUITY: PART ONE

We use human experiments to compare the mental effort in interpreting abstract art images and
photographs, so as to verify our hypothesis that abstract art images should generally have greater
ambiguity levels than photographs, which may be reflected by lower recognition accuracy and longer
response times.

We collected 123 abstract art images from works of well-known artists and divided them into dif-
ferent scene and object categories. Table I shows the list of categories we use in this article, some of
which do not exist in the 123 images but frequently appear in other paintings. We manually pair these
images up with 123 photographs collected using Web search engines, which match the abstract art
images in both categories and contents well. Figure 2 includes some example image patches from the
matched pairs.

These images are then presented to 20 human subjects (voluntary college and graduate students of
art, science, and engineering majors) within a limited time span (one minute per image) on a 17-inch
color monitor. During the experiment, these images are depaired and presented in random order, and
each image is seen by a subject only once. Following our pre-experiment instructions, as soon as the
subject feels that he/she recognizes the foreground object (highlighted with a bounding box) in the
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Fig. 3. Object category confusion matrices obtained in our experiments for abstract paintings (left) and photographs (right).
The horizontal axis for reported categories and the vertical axis for true categories. The darkness of the each grid is proportional
to its corresponding frequency of the subjects’ reports. The rightmost column of each matrix stands for either the “none of these
categories” report or failed attempts at recognition within the limited time span (one minute per image).

center of the image, he/she hits the keyboard. Then the image disappears, and the response time is
recorded. The subject is immediately asked to choose one of the categories in Table I provided on the
screen or report “none of these categories.”

Recognition Accuracy. The recognition accuracy can be visually reflected by the confusion matrices
summarizing reported vs. true interpretations, as shown in Figure 3, in which the horizontal axes of
the matrices stand for reported categories and the vertical axes stand for true categories, so the diag-
onal elements correspond to correct recognition results. The rightmost column of each matrix stands
for either the “none of these categories” report, or failed attempts at recognition within the limited
time span (one minute per image). The matrix for abstract art is more scattered with weaker diagonal
elements, and has a darker rightmost column. This means the subjects generally have lower recog-
nition accuracy for abstract art than for photographs. Meanwhile, even for abstract art, the diagonal
elements are still darker than other grids in each row, which means that the images are usually still
recognizable with effort, otherwise they may become meaningless and inaesthetic like purely flat or
noise images.

Response Time. For abstract art images, we expect greater mental effort by the human subjects,
reflected by their longer response times for recognition. Figure 4 displays a few box plots of the recorded
response times for object recognition in abstract paintings and photographs, in which six categories
are included as examples (corresponding to the image pairs displayed in Figure 2). These plots show
greater average response times for abstract paintings than that for photographs. But we also notice
that not all significance levels are high, as confirmed by paired one-sided t-tests shown in Table II.
The negative t-score for the bird is due to the extreme outlier of 28 seconds in the photograph sample
(not shown in Figure 4). If we remove that pair, we get t-score = 1.4648 and p-value = 0.08012. This
confirms the significance of the difference in mental effort.

3. IMAGE UNDERSTANDING AND PERCEPTUAL AMBIGUITY IN A COMPUTATIONAL PERSPECTIVE

From a computational perspective, vision is an ill-posed problem. It is widely acknowledged in the
human and computer vision communities that the imaging process loses lots of information about the
3D world, and thus we cannot restore the contents uniquely from an image. Instead, visual perception
is achieved by computing the most probable interpretations of the observed images. When a dominant
interpretation with significantly larger probability than all the other interpretations does not exist, the
image causes perceptual ambiguity. Thanks to the artists’ exquisite skills, good abstract artworks usu-
ally have carefully calculated (but implicitly calculated in terms of numerical computing) probabilities
for competing interpretations in order for the viewers to enjoy the guessing game with the artists.
ACM Transactions on Applied Perception, Vol. 10, No. 1, Article 5, Publication date: February 2013.
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Fig. 4. Box plots of response time for object recognition in abstract paintings and photographs. Three outliers greater than 11s
are not shown (photograph of bird: 28s, abstract painting of door: 14.8s, and abstract painting of dog: 21.1s).

Table II. Paired One-Sided t-Tests Comparing the Response Time for Object
Recognition in Abstract Paintings and Photographs, Corresponding to

Figure 4
bird door dog flowers buildings tower

t-score −0.3775 2.0045 2.524 4.2201 2.4147 1.995
p-value 0.645 0.02974 0.01033 0.0002318 0.013 0.03029

seascape

sailboat

sea buildings trees sky

sail hull human

Fig. 5. A seascape image (left), Courtesy of pdphoto.org. and its example parse tree (right).

To quantitatively measure the level of ambiguity, we can compute the information (Shannon) entropy
of the probabilities of all interpretations [Cover and Thomas 2006], and define

ambiguity level = entropy(probabilities of intepretations).

Therefore, to proceed, we need a representation for the interpretation of image content.

3.1 Parse Tree and Entropy

We adopt the parse tree introduced by Tu et al. [2005] for computer vision from computational linguis-
tics. Similar to parse trees for English sentences, a parse tree for image representation is a hierarchi-
cal decomposition. It has a root node corresponding to the entire scene of the image, which has a few
children/descendent nodes corresponding to the constituent objects and parts. As shown in Figure 5,
the photograph is a seascape scene (i.e., the label of the root node of the parse tree), which is then de-
composed into five objects/regions: sailboat, sea, buildings, trees, and sky. The sailboat node is futher
decomposed into three children: sail, hull, and human on board. In general, we view a parse tree as
a directed acyclic graph (DAG) G = 〈V, E〉, whose vertices V represent the nodes, and directed edges
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E represent the parent→child links in the parse tree. Each node i ∈ V is associated with its category
label �i (e.g., a category in Table I) and visual features Ai (e.g., shape, color, and texture).

To model perceptual ambiguity with the parse tree representation, we make two assumptions.

Assumption 1. The main cause of perceptual ambiguity is due to the obscured objects, rather than
unclear parse tree structures (i.e., we do not study the abstract style, as shown in Figure 1(d)).

Assumption 2. For understanding abstract art in the sense of recognizing the contents, we only care
about computing the category labels, ignoring visual features specific to object instances (e.g., we do
not have to describe whether a human is tall or short).

Hence, we simplify the parse tree to a vector representation of the category labels of its nodes,
L = (�1, �2, . . . , �K), where the labels for a correct interpretation should (i) correspond well to the
image; and (ii) be compatible to each other, for example, a boat rather than a bus is compatible with
the sea surface. Under the Bayesian framework, in computer vision and pattern recognition it is a
standard practice to compute the maximum a posteriori (MAP) estimate, L̂MAP = arg maxL p(L|I), as
the best interpretation of image I. But the MAP estimate only captures the major mode or peak of
the posterior probabilities p(L|I), and cannot tell how much better this best interpretation is than the
other interpretations, which influences the ambiguity, and thus our mental efforts in visual perception.

Compared with MAP, the perceptual entropy defined by

H(L)|I =
∑
L

−p(L|I) log p(L|I)

describes the uncertainty/ambiguity associated with the posterior possibilities. It is worth mentioning
that H(L)|I differs from the conditional entropy [Cover and Thomas 2006]

H(L|I) =
∑

I

p(I)H(L)|I =
∑
L,I

−p(L, I) log p(L|I),

in the way that H(L)|I only deals with a specific image and thus does not sum over I. For the ab-
stract paintings we study here, with p(L|I) often having more than one local maxima (i.e., multimodal-
ity) corresponding to multiple competing interpretations [Yevin 2006], we expect H(L)|I to be signifi-
cantly greater than the close-to-zero ambiguities of photographs, but still much lower than the upper
bound log |�L|, where |�L| is the volume of the space of L (i.e., number of all possible category label
combinations).

3.2 Constructing the Parse Tree

Given an input photograph, as automatic image parsing is not a solved problem in general, we use an
interactive program to construct the parse tree in three steps.

Step 1. Image Segmentation. We first segment the given image into regions corresponding to different
objects. To achieve this, we adopt a scribble-based interactive segmentation algorithm [Lombaert et al.
2005]. Using this method, each time we draw foreground and background scribbles, we can segment the
image into two parts. We continue with this procedure to further segment each part until every object
is separated from its neighboring regions, or a resolution limit is reached (i.e., we are not interested in
even smaller objects or parts). With the number of nodes K < 15 for most images, the segmentation is
usually completed within several minutes.

Step 2. Hierarchical Organization. Using the recursive foreground-background segmentation scheme
above, we obtain a binary tree in which each non-leaf node corresponds to a region we have already
segmented into two parts. However, some nodes might not correspond to individual semantic objects
(e.g., a node containing parts of two different objects), and sometimes an object is mistakenly divided
ACM Transactions on Applied Perception, Vol. 10, No. 1, Article 5, Publication date: February 2013.
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hue shift chroma shift shape
deformation

painterly
rendering

multiple
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Fig. 6. An illustration of the image obscuration and painterly rendering operators.

into multiple branches in the binary tree. In order to obtain a meaningful hierarchy conforming to the
image semantics, we delete and merge nodes to form a multiway tree in an interactive manner on the
software interface.

Step 3. Category Labeling. We manually label the categories of all nodes in the parse tree (scene
category for the root node and object category for the other nodes). This ground-truth parse tree with
all category labels is helpful for later computing the ambiguity level. But the category labeling step is
optional. Even without the manually selected category labels, our method can still compute the ambi-
guity level, possibly with slightly lower accuracy. The usage of ground-truth labels will be explained in
Section 5.1.

4. OBSCURATION AND RENDERING

During rendering, our method allows interactive control of perceptual entropy by sliding a bar on the
software interface, and the system obscures and abstracts the image accordingly. Different objects are
allowed to have different entropy levels, which makes some areas of the image easier to understand
than the others, leading to the perceptual path effect further as mentioned in Section 1. We will discuss
this effect further in Section 5.4. In the rendering process, the parse tree, including the segmentation
map, is the central representation. It preserves the configuration of the scene and allows us to propa-
gate the contextual information between nodes in order to estimate the ambiguity levels.

The main task of the rendering engine is to transfer the visual appearance of an input photograph
into an abstract painting style. According to vision research [Marr 1982], color, shape, and texture are
the key features of an image for visual perception. Therefore, we transfer the visual appearance using
two groups of image processing operators: (i) image obscuration, which processes the color and shape
of the input image; and (ii) painterly rendering, which processes the texture. Figure 6 illustrates these
operators.

Image Obscuration. We first transfer the input image into the CIELCH color space, whose three
channels are lightness, chroma, and hue, respectively. It is a cylindrical form of the perceptually uni-
form CIELAB color space. To obscure the color information of the image, random noises are added to
the hue and the color tone. The noise follows a truncated Gaussian distribution whose standard devi-
ation is positively related to the desired ambiguity level. Since paintings are usually more saturated
than photographs, a positive shift also related to the ambiguity level (e.g., following a Gamma distri-
bution with its location parameter proportional to the ambiguity level) is added to the chroma channel
to increase the saturation. To obscure the shape information, an image region is warped using a thin
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plate spline (TPS) transformation [Barrodale et al. 1993] with its boundary pixels as control points.
The offsets of these boundary points are randomly sampled (2D Gaussian, truncated) whose average
distance is related to the specified ambiguity level. To ensure smoothness for the warped image, a
diagonal regularization term is added to the kernel matrix of the TPS transformation.

Painterly Rendering. For the texture appearance of paintings, we adopt our earlier work on stroke-
based painterly rendering [Zeng et al. 2009; Zhao and Zhu 2010]. The layout and attributes of the
brush strokes are controlled by stochastic stroke processes [Zhao and Zhu 2011], whose parameters
are related to the desired ambiguity level. The entire rendering scheme can be viewed as a top-down,
hierarchical data-generating process. In a stochastic way, the rendering parameters are generated
according to the desired ambiguity levels, and they further generate the painting image. Using the
above stochastic operations on color, shape, and texture, we expect that the final ambiguity level of the
rendered abstract painting should be significantly larger than the original photograph, and we will
verify this through computation and human experiment.

5. COMPUTATION AND INTERACTIVE CONTROL OF PERCEPTUAL ENTROPY

We compute the actual ambiguity level of the rendered image and compare it with the desired value, in
order to ensure that we have achieved the expected effects. Otherwise, the image should be re-rendered
with (automatically) adjusted parameters.

Since visual perception involves both direct object recognition using visual features and indirect
recognition using contextual information [Oliva and Torralba 2007], we compute p(L|I) using a method
that accounts for both aspects. The probability of the category labels in the parse tree can be factorized
according to

p(L|I) = 1
Z

∏
i∈V

φi(�i)
∏

〈i, j〉∈E
ψi j(�i, � j) = 1

Z

∏
i∈V

p(�i|Ii)
∏

〈i, j〉∈E
f̃ (�i, � j)

in which we assume each node is only correlated with its parent and children (i.e., the Markov
property).

— The unary term φi(�i) = p(�i|Ii) is the posterior probability of object recognition for image region
Ii without the context (we call it local evidence). We compute this using a nonparametric model with a
large human annotated dataset from LHI [Yao et al. 2007]. Details are explained in the next section.

— The binary term ψi j(�i, � j) = f̃ (�i, � j) models the contextual relations in terms of prior/empirical
pairwise frequencies between parent-child nodes. We approximate these frequencies by counting num-
bers of parent-child pairs with corresponding categories on the human labeled parse trees in the LHI
dataset.

5.1 Local Evidence

The computation of p(�i|Ii) is achieved using kernel density estimation [Duda et al. 2000], with a
sample of approximately N = 25,000 kernels (probabilistic voters) from the LHI image dataset. Each
voter 〈Jn, �n〉 has its image region Jn and category label �n. Figure 7 displays a few example voters.

With the voters, the local evidence is computed with

p(�i|Ii) ∝
∑

n

exp{−λD(Ii, Jn)}1(�i = �n),

ACM Transactions on Applied Perception, Vol. 10, No. 1, Article 5, Publication date: February 2013.
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bike bird buildings bus deer dog

fish human lamp lighthouse mountain tree

Fig. 7. Example probabilistic voters from the LHI image dataset for computing the local evidence for object recognition.

in which 1(·) is the indicator function, and λ is a rate parameter controlling the overall entropy level.
The logistic distance function

D(Ii, Jn) = 1
1 + exp{−β0 − ∑

j β j‖hj(Ii) − hj(Jn)‖2}
measures the dissimilarity between two image regions, in which each hj extracts a feature statistic in
color, shape, or texture channels of the image regions:

— For color, hj is a normalized 2D hue-chroma histogram with 32 blocks (8 sectors for hue and 4
levels for chroma).

— For shape, hj is a normalized 2D spatial histogram of image region boundary pixels with 82 = 64
blocks, assuming rough alignment according to the bounding box of each image region.

— For texture, hj are normalized histograms of sine and cosine Gabor filter responses over the image
region (2 types, 4 directions, 3 scales, and 16 bins each).

The βs are precomputed using logistic regression by setting D(Jn1 , Jn2 ) = 1(�n1 �= �n2 ) for pairs of voters.
Since the number of pairs

(N
2

)
is huge, we randomly take a small sample of 50,000 pairs for regression.

The motivation of using a logistic distance is that it is difficult to define a reasonable metric distance
function between categories, for example, it is unclear whether “flower” is closer to “building” or “furni-
ture”. Instead, we usually only care about the two states of the distance function: (i) zero for the same
category and (ii) nonzero otherwise.

As we mentioned before, if the ground-truth categories are manually labeled for the parse tree, we
can compute p(�i|Ii) more accurately by including the original image region Iori

i from the input photo-
graph in the group of voters. Usually, when the desired ambiguity level is not too high, the rendered
image region should still be quite similar to the original one in terms of D(Ii, Iori

i ), then the original im-
age region will have a heavy voting weight and bring significant information gain [Cover and Thomas
2006] to p(�i|Ii).

Figure 8 illustrates the idea of this voting scheme for computing the local evidence performed in the
space spanned by color, shape, and texture features.

5.2 Contextual Information Propagation and Entropy Approximation

Even with all unary terms p(�i|Ii) and binary terms f̃ (�i, � j) available, it is still infeasible to compute
p(L|I) for H(L|I), since the space of L is usually too huge to explore. For example, if there are K = 10
nodes of 40 possible categories, the space volume of L is |�L| = 40K ≈ 1016.

Fortunately, the parse tree is a singly connected network, and we can compute the most probable
joint configurations of its category labels efficiently using max-product message passing [Sy 1993].
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Fig. 8. Illustation of our voting algorithm for the local evidence in the space spanned by color, shape, and texture features.

Using Sy’s algorithm, a user-specified number of the most probable configurations can be derived in the
descendent order of their probabilities. During this process, both the local evidence and compatibility
terms are considered, and messages are propagated between connected nodes in an iterative way to
update local beliefs.

With the probabilities p(L|I) of the top-M (M 
 |�L|) most probable joint configurations, we can
approximate the entropy using

Ĥ(L)|I =
∑

top-M

−q(L|I) log q(L|I),

in which q(L|I) are renormalized from p(L|I) over the top-M configurations according to

q(L|I) = p(L|I)∑
top-M p(L|I)

.

This approximation essentially drops all the rest configurations after the top-M, which is reasonable,
since usually only very few configurations are possible due to the compatibility terms (e.g., a bus cannot
be part of a tree), and when we try to understand an abstract artwork, we can quickly eliminate
configurations with too low probabilities at early stages, and the ambiguity is only caused by those
with relatively high probabilities among the top-M. In practice, the choice of M is a balance between
computational precision and cost. According to our experiments, for K = 10 nodes, M = 100 ∼ 1000
should work fairly well.

5.3 Normalized Perceptual Entropy

For different images, the number of nodes and the space volume |�L| of L may vary. In order to have a
common measure of the ambiguity level, we use a normalized version of perceptual entropy defined as

H̃(L)|I = Ĥ(L)|I
log M

∈ [0, 1].

This number is then compared to the desired ambiguity level which the user specified before rendering.
According to the comparison, we determine whether the rendered painting image has the desired

ambiguity level (e.g., the difference between the computed and desired ambiguities is within ε = 10%).
If it does not, the painting is re-rendered with adjusted parameters according to a negative feedback
mechanism. Suppose the desired ambiguity level is H̃∗

0, and after the first rendering, the computed
ambiguity is H̃1 (normalized perceptual entropy), we will adjust the rendering parameters according
ACM Transactions on Applied Perception, Vol. 10, No. 1, Article 5, Publication date: February 2013.



Abstract Painting with Interactive Control of Perceptual Entropy • 5:13
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(d) Perceptual Path A
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(e) Perceptual Path B

Fig. 9. A streetscape photograph (courtesy of public-domain-image.com) and its two abstract paintings rendered by setting
different ambiguity levels for different objects, to simulate the perceptual path effect. Zoom to 400% to view details. Their
predicted different perceptual paths using the algorithm described in Section 5.4 are displayed in (d) and (e), respectively. The
numbers indicate the sequences of the nodes in the paths. The arrows indicate the propagation of contextual information (red:
bottom-up; blue: top-down).

to a virtual desired ambiguity level H̃∗
1 and redo the rendering, in which

H̃∗
1 =

{
(H̃∗

0)2/H̃1, if H̃1 > H̃∗
0 + ε,

1 − (1 − H̃∗
0)2/(1 − H̃1) if H̃1 < H̃∗

0 − ε.

If necessary, we continue to compute H̃2, H̃∗
2, H̃3, H̃∗

3, . . . , H̃t, H̃∗
t , . . . and repeat the rendering until H̃t

is close to H̃∗
0. Due to the randomness involved in the process, the convergence of H̃ is not guaranteed.

But in practice, with a relatively generous difference threshold ε (e.g., 10% to 20%), we can usually get
close to the desired level within a few iterations.

5.4 Perceptual Paths

Image understanding can be achieved through various top-down and bottom-up computing processes
[Han and Zhu 2009], during which the viewer recognizes the image contents in an order with the
propagation of contextual information. For example, in Figure 1(b), the mount is usually recognized in
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the first place, which further helps the recognition of the highly abstracted trees and huts in the front.
In this article, we call it the perceptual path effect, and control the path/order by assigning different
ambiguity levels to different objects, letting the viewer recognize less obscured objects before more
heavily obscured ones, as illustrated in Figure 9. In Figure 9(b) we set lower ambiguity level to the
street than to the buildings, while for Figure 9(c) we set the levels in the opposite way. We can predict
the perceptual paths as shown in Figures 9(d) and 9(e) by simulating a greedy information propagation
process. We first identify the node with the lowest ambiguity level and take its most probable label as
our interpretation. Then we propagate this information to the other nodes and identify the one with
the lowest ambiguity among them. This process continues until we have reached all the nodes. Here is
the detailed algorithm:

(1) We represent a perceptual path as a sequence of the nodes in the parse tree, denoted by S.
(2) According to our previous work [Zhao and Zhu 2010], we are able to compute the marginal probabil-

ities p(�i|I) and entropies H(�i)|I of the nodes given the whole image (with contextual information),
using sum-product belief propagation [Yedidia et al. 2001]. The first recognized node is

s1 = arg min
i∈V

H(�i)|I
with the lowest entropy, and we push s1 into S.

(3) We fix the category label of node s1 to

�∗
s1

= arg max
�s1

p(�s1 |I),

which essentially sets the entropy of �s1 to zero. Then with this new information, we redo the belief
propagation for the rest nodes to compute their probabilities p1(�i|I) and entropies H1(�i)|I.

(4) We compute the second recognized node s2 and its label �∗
s2

in similar ways to steps (2) and (3),

s2 = arg min
i∈V\s1

H1(�i)|I and �∗
s2

= arg max
�s2

p1(�s2 |I),

and push s2 into S.
(5) We continue the steps above to sequentially figure out the labels of the other nodes,

s2, �
∗
s2

→ p2,H2 → s3, �
∗
s3

→ p3,H3 → · · · → sK, �∗
sK

,

until we have reached all the nodes. Now we have obtained the whole sequence S.

During the process of fixing the nodes’ category labels �i in a sequence, the number of unknown labels
decreases, and thus the perceptual entropy of the parse tree decreases. The entropy reaches zero when
all labels are fixed. Actually, the above algorithm starting from the lowest marginal entropies is a
greedy method to minimize the overall ambiguity eliminated by fixing labels

E(S) =
K∑

i=1

Hi−1(�si )|I

with H0(�i)|I = H(�i)|I. In contrast, if the sequence S starts from nodes with high entropies, E(S) tends
to be higher. Considering that the elimination of ambiguity is associated with the mental effort to make
decisions, the greedy process described above minimizes the effort in interpreting the image.

6. RENDERING RESULTS

Using the pipeline introduced above, we have rendered many abstract painting images from pho-
tographs collected from Web search engines.
ACM Transactions on Applied Perception, Vol. 10, No. 1, Article 5, Publication date: February 2013.
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(a)
∼ ∼ ∼H ≈ 0.25 (b) H ≈ 0.5 (c) H ≈ 0.75

Fig. 10. Three abstract paintings of different ambiguity levels rendered using our method, corresponding to the example in
Figure 5. Zoom to 600% to view details.

(a) Photograph
∼H ≈ 0 (b) Painting H ≈ 0.25 (c) Painting H ≈ 0.75

∼ ∼

Fig. 11. A photograph of UCLA Royce Hall, and two corresponding abstract paintings of different ambiguity levels rendered
using our method. Zoom to 600% to view details.

Figure 10 displays three abstract paintings corresponding to the example in Figure 5, with H̃ at ap-
proximately 0.25, 0.5, and 0.75, respectively. We can see that as the ambiguity level increases, the color
and shape in the images become more heavily obscured, making both the sailboat and the background
objects more difficult to recognize. Note that your perception of the three paintings should have al-
ready been affected by seeing the source photograph beforehand. In fact, knowing the image contents
may also make it difficult for an artist to assess the ambiguity level during the creation of abstract
art. Being able to numerically compute the perceptual entropy in object recognition, our program is
helpful.

Figure 11 displays a photograph of UCLA Royce Hall, and its two corresponding abstract paintings
rendered using our method, with H̃ at approximately 0.25 and 0.75, respectively. For this example,
we have segmented the image into five objects: sky, building, trees, grass, and road. Note that in both
paintings, the road is almost impossible to recognize without the context.

The exampled displayed in Figure 12 includes many object categories: sky, mountain, sand, water
surface, human, bench, and so on. Most of these objects are heavily obscured, but the rendered paint-
ings for this landscape are still clear enough for appreciation.

Figure 13 shows a few more abstract paintings rendered using our method, whose ambiguity levels
are between 0.25 and 0.75 for all examples according to our computation.

7. HUMAN EXPERIMENTS ON THE LEVELS OF PERCEPTUAL AMBIGUITY: PART TWO

In addition to the rendering pipeline and entropy computing method introduced above, we would like
to further verify that the rendered abstract paintings do have our expected ambiguity effects, similar
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(a) Photograph
∼ ∼ ∼H ≈ 0 (b) Painting H ≈ 0.25 (c) Painting H ≈ 0.75

Fig. 12. Promenade Morecambe (photograph courtesy of Tom Curtis / FreeDigitalPhotos.net). Zoom to 600% to view details.

Fig. 13. More abstract paintings rendered using our method. Zoom to 600% to view details.

to original paintings. We do this with another set of human experiments, comparing our rendered
paintings with their source photographs. The computed ambiguity levels of these rendered abstract
paintings are between 0.25 and 0.75.

Most experimental settings remain the same as in Section 2. We selected approximately 100 pho-
tographs, and have them segmented and their parse trees constructed manually. Then we render them
into abstract paintings at different, desired ambiguity levels, and ask 15 human subjects (from the 20
in Section 2) to recognize the objects (highlighted using bounding boxes) in these images. The recogni-
tion accuracy and speed of the subjects are recorded.

Recognition Accuracy. Figure 14 displays the confusion matrices for object recognition in our ren-
dered abstract paintings and corresponding source photographs. Still, the horizontal and vertical axes
stand for reported and true categories, respectively. The two matrices show that subjects generally
have lower recognition accuracy for our rendered paintings than photographs. Comparing these ma-
trices to those in Figure 3, we can see our rendered images have similar ambiguity effects against
photographs, to those of original paintings by artists, with diagonal elements still having the highest
frequencies in most cases.

Response Time. Figure 15 displays a few box plots of the recorded response time for object recogni-
tion in our rendered abstract paintings and their corresponding photographs, in which five categories
are included as examples. Its corresponding t-test results are shown in Table III. We can see similar
statistics in response time to those in Figure 4 and Table II.
ACM Transactions on Applied Perception, Vol. 10, No. 1, Article 5, Publication date: February 2013.
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Fig. 14. Object category confusion matrices for our rendered abstract paintings (left) and their original photographs (right).
The horizontal axis stands for reported categories and the vertical axis stands for true categories. The darkness of each grid is
proportional to its corresponding frequency in the subjects’ reports. The rightmost column of each matrix stands for either the
“none of these categories” report, or failed attempts at recognition within the limited time span (one minute per image).
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Fig. 15. Box plots of response time for object recognition in rendered abstract paintings and corresponding source photographs.
Two outliers greater than 11s are not shown (rendered painting of rock/stone/reef: 11.8s, and photograph of flowers: 15.3s).

Table III. Paired One-Sided t-Tests (comparing the response time for
object recognition in rendered paintings and their source photographs,

corresponding to Figure 15)
rock/stone/reef ship/boat dog flowers buildings

t-score 3.91 2.532 4.2238 2.0427 2.5585
p-value 0.0007852 0.01197 0.0004252 0.03019 0.01137

8. HUMAN EXPERIMENTS ON THE EFFECT OF PERCEPTUAL PATHS

Besides the global ambiguities of images, we also use human experiments to verify the effect of per-
ceptual paths introduced in Section 5.4. The perceptual paths have higher dimensions than perceptual
entropies and are more difficult to observe. In the literature of perception, researchers have used eye-
tracking techniques to study the paths of viewers’ attentions across images [DeCarlo and Santella
2002], but this is not suitable for our case, since attention and semantic understanding are very differ-
ent phases in vision [Marr 1982].

As a simplified investigation, we set up a verbal experiment to extract the rough order in which
objects in an image are recognized. We select 12 human subjects, and randomly divide them into two
groups of 6 people. Figures 9(b) and 9(c) are presented to the two groups, respectively, on a 23-inch
color monitor. Each subject views the presented image 10 times in limited time spans with increasing
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Fig. 16. Human experiments on the effect of perceptual paths of our rendered abstract paintings. (a) and (c) correspond to
Figure 9(b), and (b) and (d) correspond to Figure 9(c). In (a) and (b), each dot represents an instance of a subject for the first time
correctly reporting a recognized object during the corresponding time span. In (c) and (d), each percentage represents the rate
of consistent reports to the pairwise order between corresponding row and column objects in the predicted perceptual path.

lengths (0.1s, 0.2s, 0.5s, 1s, 2s, 5s, 10s, 20s, 30s, and 60s). After each time span, the image disappears
and the subject is asked to describe the scene and objects he/she recognizes in free language. During
the process, the subject is instructed to try his/her best to revise previous reports with additional
or corrected information. The subject is also allowed to describe his/her recognition before the image
disappears if a time span is long enough (e.g., 30s or 60s).

We focus on the six main objects in the picture: buildings, street, windows, poles, cars, and humans.
Raw results of this experiment are visualized in Figure 16(a) and 16(b), in which each dot represents an
instance of a subject for the first time correctly reporting an object during the corresponding time span.
In the reports, words with similar meanings to the ground truth are considered valid (e.g., pedestrians
and humans). Due to perceptual ambiguities, some objects are not correctly recognized and reported,
so the number of dots in each row may be less than the number of subjects. In the two plots, we can
see clearly different patterns. In general, “buildings” and “windows” are recognized significantly later
in Figure 16(a) than in Figure 16(b), which matches Figures 9(d) and 9(e), and the object “cars” is more
difficult to recognize correctly in Figure 16(b), expectedly due to weaker contextual information from
the “street” node.

To look at the perceptual paths of individual subjects, in Figures 16(c) and 16(d), we summarize the
consistency between their reports and our predictions. In these two plots, each percentage represents
the rate of consistent reports to the pairwise order between corresponding row and column objects
in the predicted perceptual path. Due to unidentifiability, pairs recognized and reported during the
same time span are considered half consistent and half inconsistent. Considering 50% as a baseline,
12/15 of the results in Figure 16(c), and 11/15 in Figure 16(d), are positive (greater than or equal to
the baseline). There are two strongly inconsistent (0%) pairs in Figure 16(d): (i) poles vs. cars and (ii)
windows vs. cars. The former is understandable, since they are adjacent in the recognition sequence
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and their pairwise order is weak. The latter objects are in different branches of the parse tree. It is
possible that after recognizing “buildings,” the bottom-up process prevails over the top-down processes
for exploring other regions of the image, instead of looking into details within the region. The pursuit
criterion in Section 5.4 needs improvement to address this issue.

Although this experiment cannot directly capture the propagation/flow of contextual information
shown in Figure 9 from inside the minds of the subjects, the orders of object recognition reflected
by Figure 16 mostly agree with the predicted paths, which partially supports our explanation of the
perceptual path effect.

9. DISCUSSIONS AND CONCLUSION

In this article we have presented both human and computerized studies on a type of abstract art
which obscures the shapes and/or appearances of objects in images, and preserves global scene struc-
tures. Our studies are based on the hypothesis that abstract arts usually have higher ambiguity levels
than photographs and representational arts, which differs fundamentally from most previous work
on abstract art in NPR, image analysis, and perception. After verifying this hypothesis using human
experiments, we defined the perceptual entropy as a numerical measure for the level of perceptual am-
biguity, and proposed a method for the rendering of abstract paintings that is capable of controlling the
entropy to the user’s desired levels. By assigning different ambiguity levels to different image regions,
we may predict and thus roughly control the perceptual paths in whose orders viewers are most likely
to understand the image content. We have also examined the ambiguity levels and perceptual paths of
our rendered abstract paintings using human experiments, and showed that they have achieved our
expected effects.

The methods described in this article still have several limitations.

— The cognitive processes involved in our visual perception are certainly much more complex than
the parse tree model and bottom-up/top-down computing that we have studied in this article. Semantic
understanding and the perceptual path should be determined not only by the categories and ambigu-
ities of image contents, but also other factors such as object saliency which affects visual attention in
early vision.

— Simplifying the parse tree into a vector of object category labels only works for limited abstract
art styles. In many images the segmentation and/or the semantic grouping are also perceptually am-
biguous. To address this problem, more general image parsing methods could be utilized to consider
different parse tree structures.

For future work, there are a few directions in which we may further explore the proposed framework.

— To make our method more general, it is necessary to conduct further human and computerized
studies on more abstract art styles, including those freeing image information not only in the object
level, but also in the scene level to the high end (e.g., Picasso’s paintings), or in the local statistics level
to the low end (e.g., Pollock’s paintings).

— On the rendering aspect, our current method can be improved by integrating with better
semantics-based painterly rendering algorithms for frequently-depicted object categories in paintings,
and more artistic ways of image obscuration (e.g., feature exaggeration [Gooch et al. 2004]).

— We look forward to better algorithms for predicting the perceptual paths, for example, by con-
sidering bottom-up and top-down processes differently with certain priorities in belief propagation, or
having different weights for image regions of different sizes and saliency levels.

— We may use the rendered abstract art as testing images to study human perception and attention
mechanisms [Gooch et al. 2004; Wallraven et al. 2007; Redmond and Dingliana 2009], for example, by
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extending the human experiments presented in this article, or by other techniques such as recording
the eye saccades and fixations.
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