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Video Stylization: Painterly Rendering and
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Abstract—We present an interactive video stylization system for transforming
an input video into a painterly animation. The system consists of two phases:
a content extraction phase to obtain semantic objects, i.e. recognized content,
in a video and establish dense feature correspondences; and a painterly
rendering phase to select, place and propagate brush strokes for stylized
animations based on the semantic content and object motions derived from
the first phase. Compared with the previous work, the proposed method has
the following three advantages: Firstly, we propose a two-pass rendering
strategy and brush strokes with mixed colors in order to render expressive
visual effects. Secondly, the brush strokes are warped according to global
object deformations, so that the strokes appear to be naturally attached to
the object surfaces. Thirdly, we propose a deferred rendering and backward
completion method to draw brush strokes on emerging regions, and simulate a
damped system to reduce stroke scintillation effect. Moreover, we discuss the
GPU-based implementation of our system, which is demonstrated to greatly
improve the efficiency of producing stylized videos. In experiments, we verify
this system by applying it to a number of video clips to produce expressive
oil-painting animations and compare with the state-of-the-arts approaches.

Index Terms—Video Stylization; Painterly Animation; Digital Art; Temporal
Coherency; GPU Processing

1 INTRODUCTION

This paper proposes an interactive system for producing
painterly animation from video clips. Fig.1 shows an example
produced by our system. Although similar oil-painting effects
can be generated manually by the paint-on-glass technique,
such animation production is not only laborious, but also
requires considerable artistic skills. For example, it took over
two years for artists to manually produce the 22-minute Oscar-
winning animation Old Man and the Sea. In comparison,
our interactive system allows an amateur player to produce
painterly animations from real-life video clips with far less
time and efforts.
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In the following, we review the related work for painterly
rendering and video stylization in literation, and overview our
method accordingly.

Fig. 1. An example of painterly animation in oil-painting
style (the lower frames) from the original movie (the upper
frames). For better viewing, please see original PDF file in high
resolution (400%).

(I) Painterly rendering of a single image. In order to
render expressive and vivid painterly styles, the essential prob-
lem is to extract useful image contents, which will guide the
selection and placement of brush strokes to embody the artist’s
intention and abstraction [18], [21]. For example, Collomosse
and Hall used image salience (contrast) [9] and Santella and
DeCarlo used eye-tracking data [31] to determine the placing,
ordering of brush strokes; Hertmann proposed curved strokes
for rendering impressive oil painting style by tracing strong
edges or boundaries [13]; Particles and regions on 3D surfaces
were extracted to guide stroke placement in [28] and [20],
respectively.

The proposed rendering method is inspired by the painting
procedure of artists, in which different stroke styles and
placement patterns are applied to different object categories
in a scene. For example, the brush styles for wood, water,
and rock are distinct from each other in oil paintings. Inspired
by the semantic-driven rendering systems [35], [16], in our
method, we first categorize objects according to their surface
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materials and correspondingly construct a dictionary of diverse
brush examples by artists. These brushes exhibit rich texture,
shape and thickness, in contrast to those used in the literature.
Then we select and place these brush strokes according to
image semantic contents. To simulate painting procedure of
human artists, we propose a novel two-pass rendering strategy:
a base-pass using generic brushes followed by a second pass
using category-specific brush strokes. The first pass renders the
base color for a region. The strokes in the second pass add
object details, such as textures, structures and tactile feelings.

The painterly rendering style we aim to achieve is the
popular oil-painting effect. In fact, it is not a sharp boundary
to define the oil-painting style in the research of image
and video rendering. Compared to daily pictures and other
rendering effects, we consider the desirable style having the
following characteristics that are consistent with the previous
works [13], [35], [23]: (i) more rich and expressive colors;
(ii) the salient structures and shapes are emphasized while
some homogeneous textures are abstracted; (iii) The identity
of image is preserved after rendering. Fig.2 compares our
rendering effects with other state-of-the-art painterly animation
algorithms in [11] and [33].

(II) Video stylization. There are two different categories
of methods that have achieved remarkable success. The first
category extracts image primitives (e.g. regions or edges)
from input video clips, and directly stylizes and animates
them without using brush strokes. The representative examples
include [19], which abstracted the videos as space-time volume
data; the roto-curves, contours and silhouettes were utilized
in [2], [1], [17], respectively; Wang et. al. and Bousseau
et al. transformed the object regions into cartoon style [33]
and watercolor style [5], respectively. Winnemoller et al.
abstracted regions and boundaries by modifying the contrast
of luminance and color opponency [34]. Collomosse et al.
stylized spatiotemporal “video objects” by 3D segmentation
[10]. The other category is stroke-based painterly animation,
which artistically expresses object appearance and structure
using exquisite physics-based or example-based brush strokes
[28][24][14][16]. The proposed system belongs to this cat-
egory, and it aims at generating expressive animations with
painterly brushes.

For stroke-based painterly animation, the essential problems
are to stick the brush strokes on object surfaces and to
maintain their temporal coherence in the video. This is a
nontrivial task for both human artists and the computer aided
systems. Litwinowicz et al. first introduced the brush strokes
propagation with computed optical flow [24]; Hertzmann et
al. extended Litwinowcz’ approach by making brush attributes
adjustable based on the properties of the input video [14]; Hays
et al. further arranged brush strokes in motion layers, and the
motion information was also obtained by computing optical
flow [11].

Despite the impressive results, the existing methods still
leave behind some challenging issues to solve: (1) sometimes
strokes drift away from objects during temporal propagation.
This is also called the “shower door” effect [28], and (2)
scintillation (or flickering) of strokes. The two problems
become even more serious when using a large number of

strokes (e.g. more than 2000) to render a dynamic scene, such
as the scene shown in Fig.1. In our system, we present several
techniques to reduce these artifacts. Firstly, we tightly stick
the brush strokes to the object by transforming and warping
the brush strokes in consistent with the object motion and
deformation, i.e. the local stroke transformation conforms to
the object global transformation. We use two types of robust
and distinctive features inside each object to establish dense
temporal feature correspondence for both textural and texture-
less regions between frames of an input video. We adopt a TPS
(thin-plate-spline) transformation to describe object deforma-
tion. Then the strokes are propagated temporally according
to the feature correspondences and warped smoothly by the
TPS transformation. Secondly, we strategically reduce the
scintillation effects by the following methods. (1) We confine
the brush strokes inside each segmented region to prevent
flickering along region boundaries. (2) Since the scintillation
is often caused by adding strokes suddenly during brush stroke
propagation, we propose a deferred rendering and backward
completion strategy for adding new strokes. When a new area
emerges, the system defers its rendering and leaves the area
unpainted until it grows to certain size. Then new strokes are
added and propagated back to fill the gaps in the previous
frames. (3) A damped system is built to stabilize all the strokes
in space and time. We simulate the system by attaching springs
between brush strokes, and minimize the energy of the system
by adjusting the rendered strokes so as to enforce coherent
motion.

Interactive 
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Space-time

Video Cutout

Dense Feature 

Correspondence

Brush Selection and 

Placement

Temporal Brush 

Propagation

Damped System for 

Brush Deflickering

(I)Content Extraction (II)Painterly Rendering

Fig. 3. Key steps in our two phased painterly animation
system.

In summary, our system consists of two phases. As shown
in Fig. 3, Phase I: Video Content Extraction and Phase II:
Painterly Rendering. The contributions of our method are
as follows. Firstly, we propose a novel two-pass rendering
strategy and brush strokes with mixed colors, to simulate
the painting procedure of human artists for expressive visual
effects. Secondly, for sticking the brush strokes naturally to the
object surface during object motion, we present an effective
algorithm of matching robust and distinctive features over
frames. Lastly, we reduce the scintillation effects by several
techniques: (i) confinement of the strokes inside each object;
(ii) the deferred rendering and backward completion of new
strokes, and (iii) a damped system to stabilize strokes in space
and time. The user interface is shown in Fig. 4. Note that a
preliminary version of this work was introduced in [23].

In the rest of the paper, we introduce the video content
extraction step in Section 2, and the painterly rendering pro-
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Fig. 2. Comparison of different painterly animation effects. (a) The rendering results of [Hays et al. 2004] (left), [Wang et al.
2004] (middle), and [Winnemoller et al. 2006]. (b) Our rendering results with clean boundaries, richer colors and diverse brush
shapes and height fields. For better viewing, please see original PDF file in high resolution (400%).

Fig. 4. The user interface for the video content extraction and stylization. The right panel shows the semantic labeling for the
scene, objects, and parts. The left panel shows the segmentation, sketch, and computed orientation field. These mentioned
components will be introduced later on.

cedure in Section 3. The GPU-based implementation for our
system is discussed in Section 4. We show the experimental
results in Section 5, and conclude this paper in Section 6.

2 INTERACTIVE VIDEO CONTENT EXTRACTION

2.1 Interactive image labeling

The objective of image labeling is to segment each keyframe
into a set of regions with semantic (categorical) labels, called
semantic regions. These labels will guide the selection of brush
style and stroke placement.

Let I be a keyframe from an input video. Our goal is to
segment I into K disjoint “semantic regions” Ri for i =
1, ...,K. These semantic regions correspond to different types
of recognized objects, such as sky, faces, trees. Fig.5 shows a
set of segmented typical semantic regions in a keyframe. The
semantic regions are the basic operating units in our system,
since the strokes and feature correspondences are all confined
to the regions. The selection of brush style is also guided by
the semantic labels.

leaf/bush

sky

face/skin

cloth

building

Fig. 5. Segment a keyframe into several regions simulta-
neously with user scribbles; these regions are consequently
classified into twelve categories. Face and hands can be
further decomposed according to their different motions.
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To segment a keyframe I, a user simply draws a few
scribbles in each region Ri using different colors, as shown
in Fig.5. Then we adopt the α-expansion algorithm [6] to
segment the image simultaneously into K regions.

The segmentation energy is defined with a pixel-based
graphical representation that incorporates the color model Dv

and pairwise spatial model Vu,v , as

EL =
∑
v

Dv(lv) +
∑

{u,v}∈N

Vu,v(lu, lv), (1)

where N is the set of interacting (adjacent) pairs of pixels, and
a pixel v can be assigned a multiple possible label, lv ∈ L.
The color model Dv is defined as a multi-Guassian function
in the Luv-space and the spatial model Vu,v is a Euclidean
distance over the image domain. Please refer [6] for details.

We perform a sequence of binary two-way cuts to approx-
imately solve this multi-labeling problem, and the procedure
is described as follows,

1) Manually place scribbles of multiple labels, L, in the
image, implying different motion and material proper-
ties;

2) Assign an initial label for each pixel based on placed
scribbles, and obtain an initial labeling energy;

3) Loop for each label α ∈ L
a) Find an optimal α-expansion move, which leads

cuts to partition α label from all other labels;
b) Decline the move if there is no energy decreases;

4) Segment the image with the final labeling;
5) Allow users to refine the segmentation by adding new

scribbles.

After the segmentation, each region Ri is assigned a se-
mantic label ℓi corresponding to twelve material categories.
A recently proposed method, namely “texton boost[32]”, is
employed for image classification. In fact, as the regions are
already well segmented, the classification becomes easier and
we can achieve more accurate results than [32].

We annotate 474 images for 12 categories shown in Table 1.
Then we learn a strong classifier with various discriminative
features, including texton filters, HSV color histogram and
Histogram of Gradient using the boosting framework [32]. For
a segmented frame of size 720 × 480, it takes about 3 ∼
5 seconds for region classification. We provide friendly user
interface to correct classification errors if there any, which can
be found in the attached video.

TABLE 1
Twelve material classes of semantic regions.

mountain water rock/building leaf/bush/grass
face/skin hair/fur flower/fruit sky/cloud

cloth trunk/twig abstract background wood/plastic

For each input video in our experiments, we segment and
label the first frame, and then propagate the segments through
the video until a new keyframe is specified by user.

2.2 Space-time video cutout

In the literature of video processing, the video cutout al-
gorithms is extensively studied for classifying pixels into
foreground and background in space-time volumes [33], [12].
In our system, we adopt an interactive video segmentation
algorithm using localized classifiers [3].

Given a labeled keyframe, a group of local classifiers
are constructed around the boundaries of semantic regions,
which are then propagated onto successive frames to segment
the objects in space-time volumes. Each classifier adaptively
integrates multiple local features such as color, edge, and on-
line learned shape prior. In the proposed system, we iteratively
segment each semantic object by treating all surrounding
regions as the background. In practice, the salient objects (e.g.,
people) in videos need to be elaborately segmented, while the
segmentation for other scene objects (e.g., trees, buildings)
can be fast obtained by subtracting the objects have been
segmented.

Our interface allows user to supervise the cutout process
and specify the keyframes according to the segmentation
results. The algorithm usually achieves good results even for
difficult examples with enough user assistance. However, in
some cases, which we consider as “failure” since too much
user correction is needed. For example, the scene includes
highly dynamic textured objects (e.g., fountains, fire, and
heavy rains), or drastic object interactions. Please refer more
details and analysis to [3].

In our experiments, the cutout is propagated automatically
for every τ = 10 ∼ 20 frames depending on the complexity
of motion. Then a new key frame is specified, and the user
draw new scribbles to continue the cutout process.

The video cutout component will confine the brush strokes
inside each segmented region to effectively reduce flickering
along region boundaries, as illustrated in the attached video.

2.3 Key feature extraction and correspondences

One may view the video cutout as a coarse correspondence
between regions in adjacent frames. Our next task is to
establish finer correspondence at the feature level within each
segmented region. Then the feature correspondence is used to
propagate the brush strokes over frames.

A vast variety of image features (key points, patches)
have been developed in recent years, and a consensus is
that we should track different features in different types of
regions [22], [25]. For each segmented region Ri, we compute
two types of features. They are complementary to each other
and provide dense matches for correspondence.

• The SIFT-like feature [26] is suitable for textured areas;
they are illustrated by the red dots in Fig.6 (a) and (b)
and described by a histogram of image gradients in the
neighborhood of a keypoint denoted as hs. The features
are quantized into 72 bins (see Fig.6 (c)).

• The MSER (Maximally Stable Extremal Region) feature
[27] is a good descriptor for textureless areas. They are
symbolized as ellipse-like shapes (see Fig.6 (a) and (b))
and are described by color histograms in Luv space (see
Fig.6 (d)) collected from the pixels within the ellipse
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Fig. 6. Discriminative features extracted from texture regions
(a) and textureless regions (b). (c) a gradient histogram of a
SIFT feature, and (d) the color histogram for a MSER feature.
(e) a trajectory of a tracked feature.

denoted as hc. The three axes are quantized in 17, 45
and 40 bins for the L, u, v dimensions, respectively.

These two types of features are discriminant against viewing
angles, scales, and illumination transformations. Their invari-
ant properties make the tracker robust and thus drive the brush
strokes to propagate stably in our system.

Suppose a semantic region Ri has Mi feature points at
frame t denoted by

Xi = {Xm = (Am, hm),m = 1, . . . ,Mi}

where Am represents its geometric attributes (location and
scale), and hm is the appearance histogram (hc for MSER
features and hs for SIFT features). In the next frame t + 1,
suppose we detect Ni features in the corresponding region,
and we denote them by

Yi = {Yn = (An, hn), n = 1, . . . , Ni}.

We define a similarity measure of two matched features as
follows

D(Xm, Yn) = αd(Am, An) +KL(hm||hn), ifXm → Yn

(2)
where d(Am, An) is a quadratic distance between their ge-
ometric attributes, and KL(hm||hn) is the Kullback-Leibler
divergence to measure appearance variations. We assign a
constant penalty β for the remaining unmatched points. Note
that the distance between different types of features is set to ∞.
α is a tuning parameter to account for matching deformation
and β is co-related with occlusions in the video. In our
experiments, α and β are set empirically according to our
previous work on graph matching [22]: α = 0.35 for non-
rigid motion and α = 0.85 for affine motion, and β = 0.05.

The tracking problem now becomes finding an optimal
bijective mapping Φt,i : Xi → Yi by minimizing the global

matching cost

Φ∗
t,i = argmin

Φt

∑
Xm∈Xi,Yn∈Yi

D(Xm, Yn). (3)

This can be interpreted as the optimal assignment problem on
a bipartite graph. We adopt the Hungarian Marriage algorithm
(also referred to as the Kuhn- Munkres algorithm) [15] to solve
this optimization problem.

We argue that the proposed feature correspondence with
video cutout method is more effective in propagating the
strokes than utilizing optical flows introduced in [11], [5],
[14] for three reasons: (1) the number of features in each
frame is much smaller than the number of pixels, and they are
more reliable for computing their correspondences than using
optical flows; (2) our features are extracted from both texture
and textureless areas; while the optical flow estimation is often
difficult in flat regions; and (3) the region boundaries eliminate
many cross-region feature mismatches. A comparison of our
approach to a method using optical flows is shown in Fig. 7.

Fig. 8. (a) Brush examples of brush strokes; the generic
brushes (in the left top cell) and the class-specific brushes.
(b) Two alpha maps of brushes, where the darker pixels have
higher opacity values. (c) Two height maps of brushes, where
the darker color indicates higher thickness.

3 THE PAINTERLY RENDERING

Based on the video content extraction in Phase I, the next step
stylizes a video into a painterly animation with three modules,
allowing user interactions.

1) Keyframe brush stroke placement according to the re-
gion semantic label and an orientation field within each
region.

2) Temporal brush stroke propagation guided by dense
feature correspondence.

3) Brush stroke stabilization by a damped system.

3.1 Brush-based Rendering

There are two important components for rendering keyframes:
a semantic-driven brush selection and a brush placement
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Fig. 7. Comparison of correspondence establishing. In three sequential cartoon frames, we exhibit the correspondence with
SIFT features (indicated by spots) and MSER features (indicated by ellipses) in the top row, and the correspondence with optical
flows in the bottom row. The yellow spots and the incorrect correspondence are marked by the red crosses.

Fig. 9. Brush stroke placement guided by the orientation field. Given a source image as shown in (a), we first compute the
strong edges and boundaries in (b), where the user is allowed to place some oriented scribbles (blue curves) to manipulate the
field. The computed orientation fields without using user scribbles and with scribbles are comparably shown in (c) and (d). With
the orientation, the system performs two-pass rendering. (e) shows placing generic brush strokes at the first pass rendering. (f)
shows the result of the first pass rendering. (g) shows the final result after the second pass rendering.

guided by region orientation field. For enhancing rendering
efficiency, the system allows a user to specify keyframes, e.g.
every 10 ∼ 20 frames. The selection of keyframes relies on
the object motions. In practice, we can set the keyframes
for rendering by roughly estimating the motions of objects
beforehand.

Inspired by the previous work [14], [35], we use over 800
exemplar strokes to enrich the painterly rendering styles. These
strokes were manually produced by several artists, who were
asked to draw strokes for 12 material classes as shown in Table
1. Each class forms a brush dictionary ∆ℓi , five of which are
illustrated in Fig.8 (a).

Each brush B = (ℓ,Λ,C, α,H, {ci}) is characterized by
a label ℓ for its material class, the image lattice Λ, its color
map C, alpha map α, height map H, and a number of control
points {ci}. In Fig.8 (a), the original colors of the strokes
are set to green, and in the rendering process the brush color
is substituted by the color of the pixel where the brush is
placed. The height map and alpha map are created by the
artists with the drawing software Corel Painter. As shown in
Fig.8 (b) and (c), the height map is used to indicate the texture
thickness, and the alpha map models the opacity of a brush
stroke. The control points are the key points on the backbone
of the brushes and around their boundaries (see Fig.12).

The proposed brush-based rendering method differs our

previous work[35] in two aspects: (1) We adopt a two-pass
rendering strategy to enhance the painterly effect; (2) We
enrich brush strokes with mixed colors to improve color
contrast of individual strokes and simulate a real brush stroke
appearance.

(I) The two-pass rendering We paint each semantic
region Ri with two passes. The first pass applies some generic
brush strokes (the top-left cell in Fig.8 (a)), which are often
flat and semi-transparent. The generic brushes are from a
shared dictionary ∆g to paint all categories of materials. This
pass is inspired by human artists who first use large brush
strokes to put on base colors for a region. In our algorithm,
we abstract unimportant details in textural areas and introduce
new colors to enhance contrast in flat areas. On top of the first-
pass rendering, the second pass is a semantic-driven rendering
process. It places category-specific brush strokes to render
different types of object surfaces of diverse textures, opacities,
and height fields. According to the semantic label ℓi, the
system selects strokes from the corresponding brush dictionary
∆ℓi . Some results of the two-pass rendering can be found in
Fig.11.

Given a region to be painted, in both the passes the system
places brush strokes according to an orientation field of the
region. To compute the orientation field Θi(x, y) at pixel (x, y)
in region Ri at a keyframe, we first detect the “sketches”
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(a)

(b) (c) (d)

Fig. 10. Painting by colorful brushes. (a) The brushes (left) have rich color distributions plotted in the RGB space (right). A brush
in the dictionary can change its color distribution (from top to bottom) in order to fit the corresponding color in the input image.
(b) The source image with a highlighted region (in the red box). (c) A result with normal brushes and the corresponding hue
distribution. (d) A result with colorful brushes and the hue distribution.

inside Ri. These “sketches” are strong edges and bars as
shown in Fig.9 (b). For the pixels on the interior sketches
or on the boundary owned by the region, Θi(x, y) is set to
be the orientation of the edge or boundary. Note that the
boundaries owned by other regions that occlude Ri should
not affect the orientation field of Ri. Then we run a diffusion
process [8] to fill orientation of the rest of the pixels and
obtain a smooth flow field (see Fig.9 (c) and (d)). Note that
the diffusion process can be interfered by user interactions,
i.e. a user may draw additional scribbles in the region so as to
change the orientation flow (as Fig.9 (b) shows). The manually
placed scribbles are treated as the strong edges in the diffusion
process. In Fig.9, we compare the orientation fields without
using user scribbles and using scribbles in (c) and (d). It can be
seen that the user scribbles are able to regulate the orientation
field more smoothly in the existence of cluttered edges. It is
the same procedure to calculate the orientation field ΘBj for
a brush Bj .

To place a brush stroke onto a small region r, the system
finds the most suitable brush stroke by matching the orienta-
tion fields ΘBj and Θr.

B∗ = argminM(ΘB,Θr), (4)

where the similarity measure M(·, ·) for orientation fields is
defined as the KL-divergence of the two orientation histogram
over all pixels.

To enhance the rendering efficiency and diversity, for each
unpainted area, the system randomly selects a small subset
(5 ∼ 8) of candidate brushes from the dictionary ∆ℓi , and
then finds the best match and paints it. The number of selected
brushes is set empirically according to the painting effect we
designed. In Fig.9 (e) and (f), we show some intermediate
results of placing brush strokes; the final result is in (g). Our
interface allows a user to refine some of the brush strokes
after the rendering. The operations include adding, removing,

and editing brush strokes (i.e. rotating and translating). More
results of two-pass rendering can be found in Fig.11.

(II) Brush strokes with mixed colors We mix warm
colors (e.g. yellow, orange) with cold colors (e.g. blue, purple)
in order to simulate the real appearance of brush strokes and
enhance their color contrast. Fig.10 illustrates a colorful brush
with color map transformation. Intuitively, when a brush is
placed in the image from which it picks the image color, its
color map must be transformed coherently so that the local
neighborhood in the color-map is preserved, and so is the
relative brightness between pixels.

In Fig.10 we present an example of painting with colorful
brush strokes. In (c) and (d) we show the hue distributions of
the painted images. We compare the rendering result to that
using strokes without color enhancement. It can be observed
that the rendering effect is more vivid and artistic using strokes
with color enhancement.

Unlike the original brushes with a single color, e.g. green,
each mixed-color brush from our dictionary B includes an
additional color map on all pixels, C = Qs. These colors
are clustered by using Gaussian mixture models (GMMs) of
k components. We empirically set k = 2 ∼ 5 based on the
observation that artists usually mix a few dominant colors into
a stroke for vivid effects1.

The dominant colors (component) {q1, q2, . . . , qk} of the
brush (e.g. green and orange in Fig. 10 (a)) are the mean
colors of the GMMs. Let z1 be the image color at the
position where the brush B being placed, we can randomly
select colors {z2, z3, . . . , zk} around z1 in RGB space. Then
the transformed color map Zt of the brush can be obtained
by the transformation from Q = Qs ∪ {q1, q2, . . . , qk} into
Z = Zt ∪ {z1, z2, . . . , zk}. This transform can be analytically
solved by an LLE algorithm [30] in the following steps.

1. http://en.wikipedia.org/wiki/Oil painting
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Fig. 11. Examples of two-pass brush-based rendering: original
images (left column), results of the first pass rendering (middle
column), and results of the second pass rendering (right col-
umn).

(1) Compute the nearest neighbors Ni for each color qi ∈ Q
in RGB color space.

(2) Compute the reconstruction weights wij of the neighbors
that minimize the error of reconstructing qi.

W ∗ = argmin
∑
i

|qi −
∑

qj∈Ni

wijqj |, (5)

subject to the constraints,
∑

qj∈Ni
wij = 1.

(3) Compute the embedded colors Z that best preserve
the local manifold structure represented by the reconstruction
weights.

Z∗ = argmin
∑
i

|zi −
∑

zj∈Ni

wijzj |, (6)

subject to the constraint of initial color mapping,
{q1, q2, . . . , qk} → {z1, z2, . . . , zk}. Fig.10 (a) illustrates a
colorful brush with a color map transformation.

We briefly summarize the brush-based rendering method for
keyframes in Algorithm 1.

3.2 Temporal brush propagation

After rendering a keyframe, the system propagates the brush
strokes to the following frames. It also removes some strokes
that cover disappearing regions and introduces new ones
for emerging regions. We propose a deferred rendering and
backward completion strategy for adding new brush strokes
in the propagation process in order to reduce the stroke
scintillation artifact. Note that new brush strokes are added
only at keyframes and propagated backward to fill unpainted
regions in the previous frames.

Brush stroke propagation For a semantic region Ri at
frame t, we have a number of feature points Xi = {Xij}
for j = 1, 2, ...,Mi. We have computed the matching matrix
Φ(t, i) which maps these feature points to a set of points
Yi = {Yij} in the next frame. To propagate the brush
strokes, the image lattice under the strokes may be distorted

Algorithm 1: Two-pass rendering procedure.
Input: An unpainted semantic region Ri; generic brush

dictionary ∆g and specific brush dictionary ∆ℓi .
Output: A stylized region covered by brush strokes

1) Compute orientation field Θi(x, y) for each pixel in Ri

2) Pass 1: Repeat loop: paint Ri with ∆g

a) Randomly select a cluster of unpainted pixels r.
b) Obtain the orientation field Θr.
c) Find the most suitable generic brush by matching

orientation fields.
d) Render the selected brush on r.
e) Mark all pixels covered by this brush as painted.

3) Pass 2: Repeat loop: paint Ri with ∆ℓi

a) Randomly select a small number of brush strokes
as candidates from ∆ℓi .

b) Randomly select a cluster of unpainted pixels r.
c) Obtain the orientation field Θr.
d) Find the most suitable brush from candidates by

matching orientation fields.
e) Render the selected brush on r.
f) Mark all pixels covered by this brush as painted.

4) Remind user to check and refine the painting result.

according to the corresponding features, as shown in Fig. 12.
The warping of the image domain is accounted by the Thin-
Plate Spline (TPS) model [4]. That is, pixels at image features
{Xij} are directly mapped to their correspondence positions
{Yij}, and the non-feature pixels are warped to minimize the
TPS smoothness constraint energy.

Although the underlying lattice is elastic, our brush strokes
are treated as rigid to preserve the brush textures. If deforming
strokes, it may cause undesirable artifact on its texture and
height field. As Fig.12 shows, each brush has a number of
control points, {ci}. We fit an affine transformation between
the two sets of correspondence features, and then transform
the associated brush stroke.

Fig. 12. Propagating a brush stroke between frames. The
lattice for the semantic region undergoes a plastic deformation
following the tracked feature points with a TPS transform, while
the stroke is rigid and follows an affine transform. The red dots
are control points of the stroke.

Some brush strokes become smaller during the propagation
in the video because of occlusion. We eliminate a stroke if its
size is under a threshold. In addition, strokes propagated out
of the region boundary are also eliminated.

Deferred rendering and backward completion When
a new semantic region emerges, or an existing region grows
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larger, new brush strokes are introduced to cover the new
area. To fill small seams between brush strokes, we simply
perturb the size and location of the neighboring strokes. If
the uncovered area is larger than a certain threshold, the
system will not paint it immediately until a new keyframe
is specified. For such large unpainted regions, new brush
strokes are automatically rendered at the new keyframe by
the keyframe rendering algorithm. Then these strokes are
transformed backward frame-by-frame so as to fill all the
corresponding gaps till the previous keyframe. In addition, the
newly added strokes are put underneath the existing ones. This
process is illustrated in Fig.13. This deferred rendering and
backward completion process can reduce scintillation effects
and other unwanted visual artifacts by avoiding frequent brush
stroke changes.

3.3 A damped system for de-flickering

Once the brush strokes are rendered for all the frames in a
video, we attach springs in between the strokes adjacent in
space and time to simulate a damped system, as shown in
Fig.14. By minimizing the energy of this system, the strokes
are adjusted by an iterative algorithm to remove flickering
effects.

For the i-th stroke at frame t, we denote Ai,t as its geometric
attributes, including its central point and size. Ai,t is a variable
and it is initialized to Ao

i,t, which is its original state obtained
from the rendering step. The energy function of the damped
system has three terms weighted by two parameters λ1 and
λ2,

Edamp = Edata + λ1Esmooth 1 + λ2Esmooth 2, (7)

The first term urges that the strokes should stick to their
initial positions,

Edata =
∑
i,t

(Ai,t −Ao
i,t)

2. (8)

Intuitively, this is like attaching a spring between a brush
stroke and its initial location so that it does not deviate too
far.

Fig. 14. The damped brush stroke system for de-flickering,
where the springs are attached between strokes adjacent in
space and time.

The second term enforces a smoothness constraint in time,
i.e. the strokes should move smoothly,

Esmooth 1 =
∑
i,t

(Ai,t+1 − 2Ai,t +Ai,t−1)
2. (9)

The third term imposes a smoothness constraint between adja-
cent strokes in space and time. Let Ni,t denote the neighbors
of stroke i at frame t. For an adjacent stroke j ∈ Ni,t, their
difference δAi,j,t = Ai,t − Aj,t of relative distance and sizes
should remain stable in time.

Esmooth 2=
∑
i,t

∑
j∈Ni,t

(δAi,j,t − δAi,j,t−1)
2. (10)

The energy Edamp is in a quadratic form, even though the
neighbors of each brush stroke may change over time. It
can be solved using the Levenbergy-Marquardt algorithm
[29] iteratively. The effectiveness of the damped system is
demonstrated in the experiments.

In experiments, we set λ1 = 2.8 and λ2 = 1.1 according to
the object motions and interactions in the video. For some
videos including extremely drastic motions and intrackable
regions, we can increase the weights of the two smooth terms
to further enhance the de-fleckering.

4 PARALLEL IMPLEMENTATION WITH GPU
The key limitation of many video stylization systems is the
low processing efficiency, basically caused by painting a large
number of brush strokes in the video. We propose a parallel
implementation using GPU programming to solve this problem
and make the system applicable. The benefit of using the
parallel implementation is demonstrated in the experiments.

Our implementation uses the NVIDIA CUDA framework in
which C functions can be executed multiple times by multiple
threads, on multiple processors. We use a NVIDIA GeForce
GTX 265 video card, which has 32 multiprocessors, each with
4 cores. It is thus able to run 32× 4 = 128 threads at once.

In the following, we will discuss the architectures and
working flows for stylizing videos with two steps, based on
the rendering strategy introduced above: (i) painting brushes
in the keyframes and (ii) propagating brushes over frames.

4.1 GPU-based Rendering on Keyframes

Given a keyframe to be painted, the segmented regions are
processed in parallel by a number (i.e. 32) of GPU processors.
In practice, the number of processors for one region is decided
by the pixel number in the region, namely the number of brush
strokes to be painted.

Based on the two-pass rendering strategy for keyframes
(summarized in Algorithm 1), we propose the parallel version
of this algorithm that can be split into 2 parts: host and GPU
processing, as shown in Fig. 15. In the host, the image data
of the keyframe is created and partitioned into a number of
semantic regions according to the content extraction phase (
referred to Section. 2), and the orientation fields for all regions
are calculated as well. Then we transfer the data from the host
into the GPU for parallel implementation. It worth mentioning
that the original image and the orientation fields are stored in
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Fig. 13. Deferred rendering and backward completion. When a new area appears (see the top row), the system defers the
rendering and lets the area unpainted until to a keyframe (highlighted by the red box), where four new brush strokes are placed
and then propagated back to fill the gaps in the previous frames.

Host GPU

Calculate orientation

fields for regions

Select brushes

from dictionary

Transfer data to

GPU Memory

Generate queue of

class-specific brushes
Second pass rendering

Generate queue of

generic brushes
First pass rendering

Transfer results

to host

Format results

Terminate processing

Partition input image

into regions

Fig. 15. Host and GPU processing for parallel rendering on a
keyframe.

the shared memory of the GPU, which all the processors can
access. The two-pass rendering is then performed. There are
two steps for the first pass rendering.

Step 1: Generate a queue of brushes to be painted. For
each pixel in the region, the most suitable brush is decided by
matching the orientation fields of the image and the brush, (in
Equation 4). Then we collect a queue of brushes to be painted
for the region, where the brushes are ranked by the matching
score. Since the generation of the queue is processed serially,

we execute it in the Host part. In practice, it is not necessary
to place brushes for all the pixels, while we only constrain
each pixel covered by at least one brush.

Step 2: Utilize GPU processors for brush-based rendering in
the GPU part, based on the generated queue of brushes in Step
1. We first dispatch the brushes in the queue into a number
of GPU processors, as illustrated in Fig 16, and then each
processor is able to control 4 threads of brush painting. The
associations of the GPU processors with the brushes should
be recorded for the temporal brush propagating.

Image

Thread

(0,0)

Region 0

Thread

(0,1)

Thread

(0,2)

Thread

(0,3)

Thread

(1,0)

Thread

(1,1)

Thread

(1,2)

Thread

(1,3)

GPU(0)

(a)

GPU(1)

(b)

Fig. 16. Illustration of painting brushes by multiple threads, on
multiple processors. (a) A queue of brushes (i.e. the ellipses)
to be painted is assigned to multiple GPU processors. (b) In
region 0 of the image, one GPU processor control a number of
threads of painting (i.e. the dark rectangles).



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 11

The rendering for second pass is very similar with the first
pass, and the only difference is to select brushes to generate
the queue according to region semantics.

4.2 GPU-based Rendering with Brush Propagation

Our system propagates the brush strokes from one painted
keyframe to the following sequential frames. We consider
the sequential frames between two keyframes as a period of
rendering. There are two steps, as discussed in Section 3.2,
(i) painting the brushes according to the object deformations
and (ii) deferred rendering and backward completion for new
emerging areas.

Step A. For each region to be painted, we first update
the attributes of brushes in the queue that are generated in
the keyframe rendering. Each brush is transformed based
on the TPS model computed by feature correspondences, as
illustrated in Fig. 12 and its attribute (image lattice, color
map, alpha map, etc.) is updated accordingly. In addition,
the brushes are eliminated, namely marked for no further
rendering, which are transformed out of the region or smaller
than a threshold. Then we adopt the GPU to paint the brushes
according to the associations between the brushes and the GPU
processors, which is also kept in the rendering.

Step B. For new birth areas, we perform the strategy of
deferred rendering, as illustrated in Fig. 13, that is, we stop
rendering them until a new keyframe is specified. Thus, we
use the algorithm for keyframe rendering (described in the
previous subsection) to paint brush strokes on these areas
of the new keyframe and then propagated back to paint the
brushes in the previous frames. The processing of backward
propagation is exactly the same as Step A.

5 EXPERIMENTAL RESULTS

We apply our system to several video clips and compare
the visual effects with the other state-of-the-art stylization
methods. These video sequences include non-rigid human
motion, camera motion, and large scene rotation and shifting.
Fig.17 shows a few frames of painterly animations produced
by our system. The results are presented in our supplementary
material, in which we also show the contributions of each
module of the system by comparing the rendered results with
and without the modules: two pass brush rendering, deferred
rendering and backward completion, video cutout, and damped
system for deflickering, etc.

(I) A lady walk sequence shot with a hand-held camera.
This video includes non-rigid human motion and camera
motion (i.e. shifting and scaling). In the animation, some
flat areas (e.g. the sky) are enriched with new colors by the
base-pass rendering. The impressive result by the mixed color
brushes can be found on the stylized trees and leaves. The
different materials (e.g. the clothes, face, and building) are well
expressed by the diverse brushes. Due to the robust feature
correspondence, we find the brush strokes are basically stuck
with the lady as well as the background.

(II) Two sequences from the movie “The Lord of the
Rings”. One clip includes multi-layer motion and large scale
view changes. The strokes are confined in the segmented

Fig. 17. A few sample frames from the animations generated
by our system; The original frame and stylized results are
shown in each cell. (Please view in high resolution (800%) in
Acrobat reader).

objects (e.g. the rocks, wall, water etc.) in the video, and thus
the boundary scintillation is removed. The advantage of the
damped system can be found for the water animation, where
the brush strokes move smoothly and consistently. For the
other clip, it includes large scene rotation that leads to drastic
emergence and disappearance of regions. The benefit of the
deferred rendering and backward completion is demonstrated.
The flickering of the newly adding strokes are effectively
removed and we find visual satisfaction on the appearing
regions. The results based on these two sequences proposed
by Hays et al.[11] are proposed for comparison.

(III) A cartoon sequence with a climbing boy, in which most
of the areas are textureless. This animation exhibits impressive
and artistic effect by the depth of field, different object
materials, and the enhancement of color diversity. Compared
with the method using optical flow for propagating brush
strokes [11], we show that the space-time segmentation and
the feature-based correspondence stick the brush strokes more
stably and tightly.

(IV) The Lena girl sequence from [33]. Compared with
other clips, this video is more challenging due to drastic
motion and lower resolution. Since the girl is very small
in the video, we treat her as a whole object in the content
extraction phase, which causes a few jittering effects of the
brush strokes. That could be improved by further segmenting
the girl according to the different motions.

In order to produce these animations, a user can specify a
keyframe out of every 10 ∼ 20 frames, and there are about
3500 ∼ 4800 brush strokes in each keyframe. We carry out the
experiments on a PC with 3.6GHz Duo-CPU, 8GB memory
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and a NVIDIA GeForce GTX 265 video card. In the painterly
rendering phase, our video sequences are resized into the size
of 1280× 720 for processing.
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with GPU 

Fig. 18. Time expense for brush-based image rendering.
The vertical axis and horizontal axis represent, respectively,
the time consumption (in seconds) and the image sizes. The
dashed curve and the real curve indicate the results with CPU
and GPU, respectively.

To well demonstrate the efficiency improvement of the
GPU-based parallel implementation, we design an experiment
to render with a series of parsed images of different sizes,
and compare with the traditional CPU performing. As Fig. 18
shows, the efficiency is increased by 10 times on average with
the GPU-based implementation. Note that the improvement
becomes more significant with images of larger size. Table 2
summarizes the overall system performance including three
key phases, namely content extracting (parsing), rendering,
and user refining, as well as the comparisons of using CPU
or GPU for rendering.

In addition, we present a quantitative evaluation for the
damped system discussed in Section 3.3. In the lady walk
sequence, we randomly select 5 brush strokes, and visualize
their trajectories and relative displacements before and after
the deflickering process, as shown in Fig. 19. The benefit of
visual satisfaction can be clearly demonstrated in the attached
video.

6 CONCLUSION

In this paper, we propose an interactive system for painterly
animation. The system consists of two phases: a content
extraction phase to obtain semantic objects in a video and
establish dense feature correspondences; and a painterly ren-
dering phase to select, place and propagate brush strokes for
stylized animations based on the semantic content and object
motions derived from the first phase. We apply our system
to several video clips and achieve very vivid and expressive
stylized results.

The limitation of our method is as follows: The TPS trans-
form for the stroke propagation and the smoothness energy
between the stokes assumes that the underlying motion is
continuous and smooth. This is not always true for stochastic
and drastic motions, such as dancing fires and breaking waves.
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Fig. 19. Evaluation of the deflickering algorithm. (a) shows
the trajectories of five brush strokes in the cloth of the lady
sequence before (red) and after (blue) the deflickering process.
(b) shows the displacements of the five brush strokes with
the color curves; the results before and after the deflickering
process are shown in the left and the right, respectively, where
the horizontal axis is time, and the vertical axis is distance in
pixel.

These drastic events need other models after the segmentation
process. The current representation also has problems in
representing transparent objects, such as steam and wedding
veils.
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