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Abstract—This paper presents a hierarchical and composition-
al scene layout (i.e., spatial configuration) representation and a
method of learning reconfigurable model for scene categorization.
Three types of shape primitives (i.e., triangle, parallelogram and
trapezoid), called “tans”, are used to tile scene image lattice
in a hierarchical and compositional way, and a directed acyclic
And-Or graph (AOG) is proposed to organize the overcomplete
dictionary of tan instances placed in image lattice, exploring a
very large number of scene layouts. With certain “off-the-shelf”
appearance features used for grounding terminal-nodes (i.e., tan
instances) in the AOG, a scene layout is represented by the
globally optimal parse tree learned via a dynamic programming
algorithm from the AOG, which we call tangram model. Then,
a scene category is represented by a mixture of tangram models
discovered with an exemplar-based clustering method. On basis
of the tangram model, we address scene categorization in two
aspects: (i) Building a “tangram bank” representation for linear
classifiers, which utilizes a collection of tangram models learned
from all categories, and (ii) Building a tangram matching kernel
for kernel-based classification, which accounts for all hidden
spatial configurations in the AOG. In experiments, our methods
are evaluated on three scene datasets for both the configuration-
level and semantic-level scene categorization, and outperform the
spatial pyramid model consistently.

Index Terms—Tangram Model, Scene Layout, And-Or Graph,
Dynamic Programming, Scene Categorization.

I. INTRODUCTION

A. Motivation and objective

Recent psychological experiments have shown that human
visual system can recognize categories of scene images (such
as streets, bedrooms) in a single glance (often less than 80ms)
by exploiting the spatial layout [1], [2], [3], [4], and human
can memorize thousands of scene configurations in an effective
and compact way [5]. Generally, a scene consists of visual
constituents (e.g., surfaces and objects) arranged in a mean-
ingful and reconfigurable spatial layout. From the perspective
of scene modeling, one may ask what representation facilitates
scene categorization based on spatial layout? In the literature
of scene categorization by computer vision, most work [6], [7],
[8], [9] adopt a predefined and fixed spatial pyramid which is
a quad-tree like representation for scene layouts (see Fig. 1
(a)), and then rely on rich appearance features for improving
performance.
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Fig. 1. (a) Illustration of a 3-layer spatial pyramid, which is a quad-tree like
scene layout representation. (b) Illustration of our tangram model on scene
layout representation. In the tangram model, we represent scene layout by an
explicit template composed of a small number of tan instances (i.e., tangram
template), for capturing meaningful spatial layout and appearance (we use
different color to illustrate the appearance models for diverse visual patterns
of tan instances, such as texture, flatness and shading surfaces). The tangram
template is collapsed from a reconfigurable parse tree, which is adaptive to
the configuration of different scene layouts. In this paper, we propose a DP
algorithm to seek the globally optimal tangram model, from the configuration
space defined based on an And-Or graph of tan instances. See Sec. I-A for
details. (Best viewed in color)

In this paper, we address the issue above by leveraging a
hierarchical and compositional model for representing scene
layouts. Our method is motivated by recent progress made in
object modeling, for which compositional hierarchical models
[10], [11], [12] have shown increasing significance such as
the deformable part-based model [13] and the stochastic And-
Or templates [14]. The success lies in that they are capable
of learning reconfigurable representation to account for both
structural and appearance variations.

The proposed model on scene layout representation has
a very intuitive explanation analogous to “tangram”, which
is an ancient invention from China. Literally, the tangram
is called “seven boards of skill” which can form a large
number of object shapes by arranging seven boards (so-called
“tans”) in different spatial layouts. We use three types of shape
primitives (i.e., triangle, parallelogram including rectangle,
and trapezoid) to tile scene image lattice which play roles
analogous to the roles of tans in tangram, so we call our scene
model tangram model. It often consists of a small number of
tan instances of different shape types partitioning the scene
image lattice.

Our tangram model has two characteristics as follows:
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(i) Compactness. It entails a sparse representation on image
lattice to capture meaningful scene layouts. As illustrated
in the bottom-right corner of Fig. 1 (b), our tangram
model for a highway scene consists of five tan instances,
which can capture the scene configuration in a compact
yet meaningful way. Note that we introduce triangle in
our tan types to gain sparser representation on the object
or surface boundaries in scene images. Meanwhile, we
currently do not use different types of curve shapes
because (1) we need to keep our tans simple and generic,
and (2) we focus on the scene categorization task rather
than pixel-level scene labeling or region-level parsing.

(ii) Reconfigurability. To account for various scene categories
and large intra-class variations of spatial layouts (i.e.,
sub-categories), it entails adaptivity in representation and
selectivity in learning. Our tangram model is learned from
the quantized configuration space of scene layout by a
dynamic programming algorithm. Hence, it is adaptive
to different scene layouts (see another example of our
tangram model for a coast scene layout in the bottom-
left corner of Fig. 1 (b)).

B. Method overview

In this paper, the learning of our tangram model consists of
five components as follows, which are also our main contri-
butions to the field of scene representation and categorization.

(i) Hierarchical and compositional quantization on the
configuration space of scene layouts. For a given scene image
lattice, we first generate a variety of tans (i.e., shape primitives)
with different scales through recursive shape composition, and
then enumerate all valid instances of the tans by placing them
at different locations. Thus, we can construct an overcomplete
dictionary of tan instances (as the “parts” of decomposing
scene layouts, see Fig. 3 for illustration) for “quantizing” the
configuration space of scene layouts. We organize all the tan
instances into an And-Or graph (AOG) structure by exploiting
their compositional relationships, as illustrated in Fig. 4. There
are three types of nodes in our AOG: (1) An AND-node rep-
resents the decomposition of a sub-lattice into two child ones,
(2) An OR-node represents alternative ways of decomposing
the same sub-lattice (which can terminate directly to the tan
instance or use one of different decompositions represented by
AND-nodes), and (3) A terminal-node represents a tan instance
which links to image data in practice. Through traversing the
AOG from the root OR-node, we obtain a reconfigurable parse
tree from the AOG. As shown in Fig. 1 (b), the parse tree is
a binary tree composed of non-terminal pass-by nodes and
terminal leaf nodes. See Sec. II for details.

(ii) Learning a tangram template from roughly aligned
scene images by a dynamic programming algorithm. In
corporation with certain “off-the-shelf” feature to describe the
appearance of image data for a tan instance, we present a
tangram template to model the scene layout explicitly (see
Sec. III-A and III-B for details). Suppose a set of roughly
aligned scene images are given (i.e., images which share
similar scene layout). we present a generative formulation
of learning tangram template under information projection

principle [15] and propose a dynamic programming (DP)
algorithm for seeking the globally optimal parse tree in the
AOG. Through collapsing the parse tree onto image lattice,
we obtain the tangram template. The DP algorithm consists
of two successive steps: (1) A bottom-up step computes the
information gains (i.e. the log-likelihood ratio defined in Sec.
IV-A) for the nodes of the AOG and determines the optimal
state for each OR-node based on maximization of information
gain. (2) A top-down step retrieves the globally optimal parse
tree in the AOG, according to the optimal states of encountered
OR-nodes. See Sec. IV-A and IV-B for details.

(iii) Learning multiple tangram templates from non-
aligned scene images by combining an exemplar-based
clustering method and the DP algorithm stated above.
The assumption above of having roughly aligned scene images
usually fails to hold in practice due to the well-known large
structural variations of a semantic-level scene category, which
often consists of an unknown number of configuration-level
sub-categories. E.g., a street scene category can have different
configurations caused by distinct photographing angles. We
address this issue with two steps: (1) Assigning the hidden
sub-category labels for each training scene image based on
an unsupervised exemplar-based clustering method, i.e. the
affinity propagation algorithm [16]. (2) After that, we learn
a tangram template for each cluster according to the DP
algorithm mentioned in (ii). The details are given in Sec. IV-C.

(iv) Building a tangram bank representation for scene
categorization by using the learned tangram templates as
configuration “filters”. Given a training dataset with a variety
of scene categories (i.e., the semantic-level scene category
labels are given), we first learn multiple tangram templates for
each scene category using methods stated in (iii), and collect
all the learned tangram templates to form a “tangram bank”
of representative scene configurations, each of which works
as a configuration “filter”. Then, we present a new tangram
bank representation for a scene image, which is composed
of the tangram template scores (i.e., the “filter responses”)
on this image. Based on the proposed tangram bank image
representation, we employ linear classifiers (i.e., SVM and
Logistic regression) for scene categorization. The details are
given in Sec. III-D.

(v) Building a tangram matching kernel for scene
categorization. Besides the generative learning of tangram
templates mentioned in (ii) an (iii), we propose a matching
kernel [17], [6] based on tangram model, called tangram
matching kernel, for discriminative kernel-based classification.
It takes into account all the hidden spatial configurations
in our tangram AOG, and thus leverages more flexible and
richer configuration cues than the spatial pyramid to facilitate
discrimination. See details in Sec. V.

In experiments, we build a new scene dataset (called
SceneConfig 33), which consists of 33 different configuration
classes distributed in 10 semantic categories, for facilitating
evaluation of our learning method on scene configurations.
We also test our method on two public scene datasets (i.e.,
Scene 15 [6] and MIT Indoor [7]). The experimental results
on these three datasets show advantage of the proposed
tangram model for scene representation and categorization:



FOR PROOFREADING: IEEE TRANSACTIONS ON IMAGE PROCESSING 3

(1) With much less dimensionality, our tangram bank repre-
sentation shows significant performance gain w.r.t. traditional
spatial pyramid “bag of visual words” (BOW) scene represen-
tation [6], for both of the configuration-level and semantic-
level scene categorizations. Moreover, it even outperforms the
spatial pyramid model with high-level appearance features
such as the Object Bank (OB) representation [9]. (2) In cor-
poration with a kernel SVM classifier, our tangram matching
kernels can achieve superior scene classification performance
than spatial pyramid matching [6] consistently.

C. Related work

The scene representation and analysis is one of the most
fundamental topics in computer vision, making for many
important applications such as scene recognition and parsing
[3], [18], [6], [9], [19], object detection [13], [20], [21], image
classification [6], [8], [22], image matching and registration
[23], [24]. In literature, there are mainly two complementary
views about the mechanisms (routes) utilized in recognizing
the scene category: (1) object-centered methods, which first
recognize the objects involved in the image and then infer the
scene category based on the knowledge of the object contents;
(2) scene-centered methods, which identify the scene category
by directly using “scene-centered” visual cues such as global
perceptual property and spatial layout, instead of recognizing
its object contents first. The scene-centered methods either
directly utilize the holistic low-level features such as global
color and texture histogram [25], the spectrum information
or induce the scene-level intermediate representation of per-
ceptual dimensions such as naturalness, roughness, etc. [3] to
facilitate scene recognition. More recently, the object-centered
methods appear to become dominant. They take advantage
of certain object-level intermediate representation for scene
recognition (e.g., the occurrence frequency of object semantic
concepts from local image patches [26] or the orderless
image representation (e.g., “bag of visual words” model) with
generative topic models such as probabilistic Latent Semantic
Analysis (pLSA) [27] [28], Latent Dirichlet Analysis (LDA)
[18]) for scene categories. Besides, to leverage the spatial
distribution information of the localized appearance features
for boosting recognition performance further, other high-level
semantic information is also investigated in scene represen-
tation [9]. In addition, recent scene recognition systems [6],
[29], [8] usually divide the image lattice into sub-windows or
spatial pyramid to leverage the spatial distribution information
of the localized appearance features for boosting recognition
performance.

Contrary to the object-centered methods which treat objects
as the atoms in scene recognition, there are psychological and
behavioral research work [30] shown that recognizing the se-
mantic category of most real world scenes at a glance does not
need to identify the objects in a scene at first but can be directly
perceived from the scene configuration, which involves the
spatial layout of contours [3], [31], the arrangement of basic
geometrical forms such as simple Geons clusters [32], and
the spatial organization of atomic regions or color blobs with
particular size and aspect ratio [33] [34], etc. This motivates

us to exploit an explicit model for representing the scene
configurations. Our tangram model is related to the hybrid
image template (HiT) [15], which learns explicit templates
for object recognition, but differs from it in two aspects:
(1) The primitives. Instead of using the sketch features for
representing object shape [35], we propose an overcomplete
dictionary of shape primitives to build the tangram like scene
layout representation. (2) The learning algorithm. In [15], the
HiT is learned by a greedy shared matching pursuit algorithm
[36], while our tangram model adopts DP algorithm to achieve
the globally optimal configuration. Besides, a very recent
work [37] presented a reconfigurable “bag of words” (RBoW)
model for scene recognition, which leverages semantically
meaningful configuration cues via a latent part-based model.

Very recently, there are some work [38], [39], [40] showing
enormous success on the scene categorization task (espe-
cially on the MIT Indoor dataset), by using a collection
of automatically discovered local HOG templates or part-
based models to better leverage appearance cues. However,
in our paper we focus on modeling reconfigurable structure
of scene category, which learn a series of global templates at
the configuration level. Although we only use standard SIFT
BOW as appearance feature, the observations from these work
and our paper are complementary that the classification per-
formance can be improved by cooperating better appearance
model with a predefined spatial pyramid or learning better
configuration with simple appearance feature. To further boost
the performance, the two aspects could be integrated in future
work.

Our preliminary work has been published in [41], and
extended in this paper as follows: (i) We propose a method
of learning multiple tangram models from non-aligned scene
images, by combining the affinity propagation clustering algo-
rithm [16] and the DP algorithm. By collecting all the learned
templates from different categories, we build a tangram bank
representation of scene images to improve the classification
performance significantly. (ii) We present a new formulation
(i.e. SOFT MAX OR) on the tangram matching kernel, which
includes the MAX OR and MEAN OR ones in [41] as its two
extreme cases. The classification performance is also enhanced
accordingly. (iii) We provide more detailed experimental eval-
uations and analysis on the proposed methods.

D. Paper organization
The rest of this paper is organized as follows: In Sec. II, we

elaborate a compositional tan dictionary as well as associated
AOG, and the reconfigurable parse tree for quantizing the
configuration space of scene layout. In Sec. III, we present a
generative formulation of learning tangram template, and build
a tangram bank representation for scene images. In Sec. IV, we
introduce a DP algorithm to learn the globally optimal parse
tree from roughly aligned scene images, and then propose
a clustering-based method for discovering multiple tangram
templates from non-aligned scene images. After that, a tan-
gram matching kernel is presented for discriminative learning
and classification in Sec. V. Finally, we evaluate our tangram
model by a series of experiments in Sec. VI, and then conclude
this paper in Sec. VII.
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Fig. 2. Illustration on tiling the image lattice by shape primitives. (a)
triangular tiling of image lattice for a 4× 4 grid; (b) four types of primitives
(i.e., triangular tiles) used in this paper. (Best viewed in color)

II. THE RECONFIGURABLE TANGRAM MODEL

A. The tan dictionary

1) Tiling the image lattice by shape primitives: Let Λ
denote the image lattice, and we partition Λ into a grid of
nc = nw × nh cells. For each cell of the grid, it is further
decomposed into two triangular tiles in two alternative ways
(in diagonal or back-diagonal direction). Fig. 2 illustrates the
tiling of image lattice for a 4×4 grid as well as these four
types of triangular primitives. To achieve the compactness and
reconfigurablity discussed in Sec. I-A, it asks for an over-
complete dictionary of shape primitives with a variety of shape
types, scales and locations on Λ. In this paper, a tan is defined
as a connected polygon composed of several non-overlapping
triangular tiles, and its size is defined by the number of its
triangular constituents (i.e., how many triangular tiles it is
composed of, and the maximum value the size can take is
2nc). Compared to the rectangular primitives, the elementary
primitives of triangular tiles are capable of composing the tans
with more shape types (e.g., trapezoid, parallelogram) and thus
lead to more flexible quantization on scene configuration.

2) A layered tan dictionary: The tan dictionary is a layered
collection of tans with various sizes. The layer index, denoted
by l, of a tan is defined by its size. In this paper, the term
of “layer” is used only to imply the relative size of a tan
w.r.t. that of the smallest triangular primitives, not the actual
layer (or depth) of a tan in the AOG built later on. Given the
image lattice Λ with nc cells, a tan dictionary, denoted by
∆, is defined as the union of L (e.g., L = 2nc in the case
of using triangular primitives) subsets: ∆ =

⋃L
l=1 ∆(l), where

∆(l) denotes the subset of tans at the lth layer. For ∆(l), it
consists of Nl tans. That is ∆(l) = {B(l,i) | i = 1, 2, · · · , Nl}.
Besides, one tan can produce a series of different instantiations
(called tan instances) through placing it onto different valid
positions in the cell grid of Λ. For each tan B(l,i), we denote
its instances by {B(l,i,j) | j = 1, 2, · · · , J(l,i)}, where each
tan instance B(l,i,j) is associated with domain Λ(l,i,j) ⊆ Λ.

For example, Fig. 3 illustrate a 32-layer tan dictionary. We
can see that there are four types of triangular primitives as the
tans in the 1st layer, and the most top (i.e., 32nd) layer has
only one tan (also the instance) such that Λ(32,1,1) = Λ. In
addition, it is shown on the top-right corner of Fig. 3 that the
tan B(8,18) has 6 instances with different translated positions
on the cell grid of image lattice. The tans define conceptual
shape of polygonal ones, and the instances, linking to the
image data, are their instantiations when placed on Λ.
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Fig. 3. Illustration on a 32-layer tan dictionary for the 4× 4 tiling grid. It
consists of 166 tans in total, with 889 instances placed on different locations
on the grid of image lattice Λ. We show only one instance for each tan for
clarity. In the upper-right corner, it illustrates the tan B(8,18) has 6 instances
with different translated positions on the cell grid of image lattice. (Best
viewed in color and magnification)

B. Organizing the tan dictionary into AOG

Although the taxonomy of tan dictionary has been elab-
orated so far, there are still two problems to be addressed:
(1) The tans with large size tend to become exponentially
innumerable if any number of k-way composition is allowed
for decomposing a sub-lattice, which may prohibit a dictionary
with potentially great number of layers for covering shape
variations on larger image domain. (2) The tans in this layered
dictionary are defined independently with each other, without
consideration of the compositionality among them. Motivated
by the image grammar model [11], we propose a method of
recursive shape composition to construct the tan dictionary,
which is organized into an associated AOG.

Similar to the relationship between a tan and its tan in-
stances as discussed in Sec. II-A, there are two isomorphic
AOGs built (denoted by Υ∆ and Υ

′

∆) in this paper, which
correspond to the tans and their instances in ∆ respectively.
The AOG Υ∆ retains all the compositional relationship of
canonical shapes as shown in Fig. 3, while the other AOG
Υ

′

∆ makes copies of these shapes at all valid translations like
the upper-right inset of Fig. 3.

1) The And-Or graph of tans: The AOG Υ∆ is defined
as a hierarchical directed acyclic graph to describe the com-
positional relationship among the tans in ∆. Meanwhile, the
AND-node represents the composition from a set of tans to a
larger one (e.g. composing two triangular tiles to a square tan
shown in Fig. 4), and the OR-node indicates the alternative
ways on shape composition (e.g. the two different ways of
composing two triangular tiles to a square tan in Fig. 4).

As illustrated in Fig. 4 (a), one tan can be alternatively
generated by different way of composing two child ones at
the lower layers. Consequently, it leads to an And-Or unit for
each tan B(l,i): {vT

(l,i), v
OR
(l,i), {v

AND
(l,i),o}

O(l,i)

o=1 }, where vT
(l,i), v

OR
(l,i)

and vAND
(l,i),o denote terminal-node, OR-node and AND-node,

respectively. The terminal-node vT
(l,i) is namely B(l,i). The

AND-node vAND
(l,i),o represents that B(l,i) can be composed by

two child tans at layers below. The OR-node vOR
(l,i) represents

that B(l,i) can either directly terminate into vT
(l,i) or further

be decomposed into two child tans, in one of O(l,i) different
ways. Thus, the AOG Υ∆ is constituted by And-Or units, to
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organize the tans generated in ∆, as illustrated in Fig. 4 (a).
2) Constructing the tan dictionary by recursive shape com-

position: In this paper, we employ two successive steps to
construct the tan dictionary ∆ as well as associated AOG:

(i) generating the tans through recursive composition in a
bottom-up manner, from which an AOG Υ∆ is simulta-
neously built to retain their compositional relationships;

(ii) generating tan instances with another AOG Υ
′

∆ by tracing
Υ∆ in a top-down manner.

For constructing ∆, the quantity of tans at each layer should
be controlled as an intermediate number, to achieve trade off
between the representative ability on shape variation and the
computational tractability. Additionally, because the top-layer
tan in ∆ amounts to Λ exactly, the size of Λ is considered
as an upper-bound constraint of the tans generated (also the
number of layers for ∆) so that their instances could be within
Λ. Thus, starting from the 1st layer (i.e. ∆(1) shown in Fig.
3), a valid tan is generated by composing the ones at layers
below with all of the following three rules satisfied:

(i) we relax the valid tans to be one of three shape types:
triangle, trapezoid and parallelogram. It accounts for non-
rectangular shape of regions appeared in complex scene
configurations, while avoiding combinatorial explosion at
higher layers.

(ii) The size of each tan in the AOG should not be larger
than that of Λ (i.e. 2nc).

(iii) By allowing deep hierarchical structure in building Υ∆,
we only apply the binary production rule to keep the
graph structure tractable.

Actually, the top-layer tan B(L,1) defines the root node for
Υ∆. This suggests a post-processing operation to prune the
tans which are not involved in the path of composing it to the
end. Moreover, there could be no valid tans available at some
layers in ∆, due to that it cannot find any two tans at layers
below to compose a valid one according to the compositional
rules. E.g., for a 32-layer tan dictionary, there is no tan
available obtained at the layers of l ∈ {{11, 13, 14, 17} ∪
[19, 23] ∪ [25, 31]}, which are ignored and thus not shown
in Fig. 3.

When Υ∆ is built, a top-down step is triggered to generate
the tan instances. At first, we place the top-layer tan B(L,1) on
Λ, from which only one instance B(L,1,1)

1 is created in the top
layer of ∆. Then, an isomorphic AOG Υ

′

∆, whose root node
is imitated from that of Υ∆, is built to organize all the tan
instances in ∆. By iterations, the tan instances at lower layers
are top-down generated through the following procedures:

(i) Given a tan instance B(l,i,j), we retrieve the child tans
(denoted by B(l1,i1) and B(l2,i2)) of B(l,i) for each AND-
node vAND

(l,i),o (o ∈ {1, 2, · · · , O(l,i)}) in Υ∆;
(ii) Then, we generate the tan instances B(l1,i1,j1) and

B(l2,i2,j2), by placing B(l1,i1) and B(l2,i2) onto Λ(l,i,j)

such that Λ(l,i,j) = Λ(l1,i1,j1) ∪ Λ(l2,i2,j2).
(iii) A new And-Or unit of B(l,i,j) is built for the AOG Υ

′

∆,
by replicating the counterpart of B(l,i) in Υ∆.

1B(L,1,1) has the same size as B(L,1) such that Λ(L,1,1) = Λ.

This process recursively runs over the tan instances, starting
from the Lth layer to the 1st one in Υ

′

∆. As illustrated in Fig.
3, one tan in Υ∆ can produce multiple instances in the same
layer of Υ

′

∆, at the locations of different grid coordinates
on Λ. Besides, due to the correspondence between a tan
and their instances, there is also an And-Or unit associated
with each tan instance in Υ

′

∆, which inherits all the And-
Or compositionalities from corresponding tan from Υ∆. Fig.
4 (b) illustrates a small portion of Υ

′

∆. We can see that the
OR-nodes A and B are generated by copying the common
one, which is shown in the top of Fig. 4 (a), from Υ∆ but
with different positions in the image lattice. Given a particular
image lattice (e.g., 2× 2 or 4× 4 grid), the tan dictionary and
associated AOG are automatically built, without any manual
manipulation, based on the rules mentioned above.

C. The reconfigurable parse tree for quantizing spatial con-
figuration

In this paper, the tangram model is defined via a recon-
figurable parse tree in Υ

′

∆, to quantize spatial configuration
of scene layout. The parse tree, denoted by Pt, is a binary
tree composed of a set of non-terminal pass-by nodes V Pt

N

and a set of terminal leaf nodes V Pt
T . It can be regarded as a

derivative of the AOG Υ
′

∆, through selecting a unique child
node for each OR-node. In fact, we can generate a parse tree
via a recursive parsing process from the root node of AOG.

For convenience, we first introduce a state variable (denoted
by ω(l,i,j) ∈ {0, 1, 2, · · · , O(l,i,j)}) to indicate the selection of
child node for the OR-node vOr

(l,i,j) of Υ
′

∆. To be consistent
with the notations in Sec. II-B1, O(l,i,j) denotes the number of
different ways of composing B(l,i,j) from child tan instances.
ω(l,i,j) taking the value of 1 ≤ o ≤ O(l,i,j) represents that
B(l,i,j) is decomposed into two child tan instances according
to the AND-node vAND

(l,i,j),o, while ω(l,i,j) = 0 implies the
selection of its terminal node vT

(l,i,j) and the decomposition
process will stop. Then we define a recursive operation,

TABLE I
MAIN NOTATIONS USED IN THE TANGRAM MODEL

Notation Meaning
Λ image lattice
∆ tan dictionary

B(l,i) the ith tan in the lth layer of ∆

B(l,i,j) the jth instance for B(l,i)

Λ(l,i,j) the image domain associated with B(l,i,j)

Υ∆ the AOG of tans
vT
(l,i)

the terminal-node for B(l,i)

vOR
(l,i)

the OR-node for B(l,i)

vAND
(l,i),o

the oth AND-node for B(l,i)

Υ
′
∆ the AOG of tan instances

vT
(l,i,j)

the terminal-node for B(l,i,j)

vOR
(l,i,j)

the OR-node for B(l,i,j)

vAND
(l,i,j),o

the oth AND-node for B(l,i,j)

ω(l,i,j) the state variable of vOR
(l,i,j)

Pt parse tree
V Pt
N the set of non-terminal pass-by nodes in Pt
V Pt
T the set of terminal leaf nodes in Pt
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… …
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A B

Fig. 4. Illustration on organizing tan dictionary into And-Or graph. (a) the AOG of tans (i.e., Υ∆); (b) the AOG of tan instances (i.e., Υ
′
∆). Υ∆ is built in

a bottom-up manner to retain all the compositional relationship among the tans in ∆. After that, Υ
′
∆ can be generated for tan instances by tracing Υ∆ in a

top-down manner. We only show a small portion of structure on the AOGs for clarity. (Best viewed in color and magnification)

denoted by PARSE(B(l,i,j); Υ
′

∆), to parse B(l,i,j) given the
value of ω(l,i,j):

(i) Starting from the OR-node vOr
(l,i,j), select one of the child

nodes (i.e., vAND
(l,i,j),o or vT

(l,i,j)) according to ω(l,i,j);
(ii) If an AND-node vAND

(l,i,j),o (i.e., o = ω(l,i,j) 6= 0) is
selected, join B(l,i,j) into V Pt

N and call PARSE() to each
of its child tans;

(iii) If reaching the terminal node vT
(l,i,j) (i.e., ω(l,i,j) = 0),

join B(l,i,j) into V Pt
T and stop traveling further in Υ

′

∆.

By applying PARSE() from the top-layer tan instance in
∆, a parse tree Pt can be generated from Υ

′

∆ according to
the state variable values at its encountered OR-nodes. In Pt,
the pass-by nodes specify intermediate splitting process in the
hierarchy, while the leaf nodes partition the image lattice to
form a spatial configuration. Fig. 1 (b) illustrate two examples
of parse trees for different scene configurations. In table I, we
summarize main notations used in our tangram model.

Rather than the fixed layout used in the spatial pyramid, the
parse tree of tangram model is “reconfigurable”, in the sense
that it can provide a compact representation adaptive to diverse
spatial configurations of scene layout. Based on its associated
AOG, the tan dictionary actually defines a “quantization space”
on continuously variable spatial configuration for representing
scene layouts. Through inducing the OR-nodes and reusing the
tans in shape composition, the tangram AOG can represent an
exponentially increasing number of spatial configurations w.r.t.
the cardinality of tan dictionary.

III. THE TANGRAM TEMPLATES FOR SCENE
REPRESENTATION

A. The tangram template

On basis of the tan dictionary and reconfigurable parse tree
of AOG introduced in Sec. II, we present the tangram template
for explicitly modeling a scene layout. Given a parse tree Pt,
we define a tangram template, denoted by Tgm, as a set of
non-overlapping tan instances specified by the leaf nodes of

Pt:

Tgm = {(Bk,Λk, ρk) | k = 1, 2, · · · ,K}, (1)
ΛTgm = ∪Kk=1Λk ⊆ Λ and Λi ∩ Λj = ∅ (∀i 6= j),

where each selected tan instance Bk, associated with domain
Λk and an appearance model ρk, corresponds to a leaf node
of Pt. Here the subscript k is a linear index of tan instance to
replace the triple-tuple index (l, i, j) used in Sec. II for nota-
tion simplicity. K denotes the total number of tan instances in
Tgm. As shown in Fig. 1 (b), the tangram template explicitly
represents scene configuration as well as the appearance for
each tan through the collapse of a parse tree.

B. Appearance model for a tan instance

For a tan instance Bk, we represent its appearance pattern
by a parametric prototype model hk. Let IΛk

and H(IΛk
)

denote the image patch on Λk and a feature mapping function
on IΛk

, respectively. Generally, it can be any type of “off-
the-shelf” visual feature as the appearance descriptor for Bk,
e.g. HOG [42], Gist [3] or SIFT BOW features [43], [18],
[6]. Furthermore, we define the appearance model’s feature
response rk for Bk. It maps original appearance descriptor
feature H(IΛk

) to a bounded scalar value, which would obtain
a large value when H(IΛk

) is “close” to hk. For vector-wise
appearance features such as SIFT BOW used in this paper,
we can compute responses by employing any valid similarity
measurement between H and corresponding prototype model
hk. In this case, hk is a vector with the same dimension as H .
In this paper, we adopt the histogram intersection kernel (HIK)
[44], [45], which is an effective but simple measurement for
histogram features. That is

rk =

B∑
b=1

min[H(b)(IΛk
), h

(b)
k ], (2)

where H(b) and B refer to the value of the bth bin and the
dimension of H respectively.
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C. A generative log-linear model of tangram template

Based on the information projection theory [15], we present
a generative model on the tangram template in this subsection.
Let f(I) and q(I) denote the underlying probability distri-
bution of a target scene layout category and the background
model of natural image statistics, respectively. For tangram
template Tgm, we define a generative probabilistic model of
scene image, denoted by p(I; Tgm). Then, a model space
Ωp(Tgm) can be given by

Ωp(Tgm) = { p(I; Tgm) |Ep[rk] = Ef [rk],∀k }, (3)

where Ep[rk] = Ef [rk] accounts for that the expectation
of feature response on each selected tan instance subjects
to match the empirical statistics. According to the maximum
entropy principle [46], p(I; Tgm) is suggested to be the one
closest to q(I) by means of KL-divergence (denoted by
KL(· || ·)) [15]:

p̂ = arg minp∈Ωp(Tgm)KL(p || q) (4)

= arg minp∈Ωp(Tgm)Ep[log p(I;Tgm)
q(I) ].

Besides, considering the non-overlapping tan instances in Tgm
[15], a factorized log-linear model is obtained as follow

p̂(I; Tgm) = q(I)

K∏
k=1

[
1

zk
exp (λkrk)], (5)

where λk and zk refer to the parameters of weight and
normalizing factor for Bk respectively. Meanwhile, thanks to
the factorization assumption, zk can be computed by using a
one-dimensional marginal distribution q(rk) as shown below:

zk = Eq[exp (λkrk)] =

∫
rk

exp (λkrk)q(rk). (6)

D. Building a tangram bank representation on scene image

In this subsection, we present a new representation of scene
image, called tangram bank (TBank) representation, based on
a collection of tangram templates each of which works as a
“filter” of scene configuration. Let D denote a set of tangram
templates {Tgm(t) | t = 1, 2, · · · , T }. For each tangram
template (i.e., the configuration “filter”) in D, we compute
its score of image I as a configuration “filter response”:

φt(I; Tgm(t)) = log p(I; Tgm(t))
q(I) (7)

=
∑

Bk∈V Pt
T

(λ
(t)
k r

(t)
k − log z

(t)
k ), ∀ t = 1, 2, · · · , T ,

where λ
(t)
k , z(t)

k and r
(t)
k are respectively the model pa-

rameters and appearance feature response for the kth tan
instance (K(t) = |V Pt

T | in total) selected in Tgm(t). Thus,
based on the scores of tangram templates in D, we build
a T -dimensional TBank representation on I: Φ(I; D) =
[φ1(I; Tgm(t)), φ2(I; Tgm(t)), · · · , φT (I; Tgm(t))]T.

As illustrated in Fig. 5, the “tangram bank” D actually
defines a new feature space by using a series of tangram
templates as representative scene configurations. In this fea-
ture space, each dimension of resultant TBank representation
corresponds to the similarity between image I and a tangram

tangram bank

the tangram bank (TBank) 

image representation

...

...

original image

compute tangram 

template score
s
c
o
re

 v
a
lu

e

Fig. 5. Illustration on building the tangram bank representation of a scene
image (Best viewed in color).

template in D. Thus, any scene image can be projected into
such feature representation according to Equ. (7), which is
more semantically meaningful and compact than original low-
level BOW representation. On basis of this TBank representa-
tion, we simply adopt a linear classifier (e.g., SVM or logistic
regression) for scene categorization in our experiments.

Besides, we find that the tangram template defined in Equ.
(1) is no more than a flat structure, which only includes
the tan instances of terminal leaf nodes in a parse tree.
According to the observation that it is preferable to use a
multi-layered spatial representation [6], we can alternatively
build a multi-layered tangram template through including the
tan instances of non-terminal pass-by nodes besides the leaf
ones. Accordingly, the scoring function φt(I; Tgm(t)) in Equ.
(7) is redefined as follow2:

φt(I; Tgm(t)) =
∑

Bk∈V Pt
T

⋃
V Pt
N

(λ
(t)
k r

(t)
k − log z

(t)
k ). (8)

IV. LEARNING THE TANGRAM TEMPLATES

A. Learning by maximizing information gain

In this subsection, similar to [15], we use roughly aligned
training images to learn a tangram template, as explicit mod-
eling of scene layout. Let D+ = {I+

1 , I
+
2 , · · · , I

+
N} denote a

set of N positive images, which are assumed sampled from
the target distribution f(I), for the scene layout category to
be learned. Besides, we characterize the background model
q(I) by an image set D− = {I−1 , I

−
2 , · · · , I

−
M}, which

consists of all the training images collected from various
scene categories in practice. Our objective is learning a model
p(I; Tgm) of tangram template Tgm from D+, to approach
f(I) starting from q(I). To simplify notation as in Sec. III-C,
let Hk = H(IΛk

;ψk) for Bk. We denote its appearance
descriptors on D+ and D− by {H+

k,n}Nn=1 and {H−k,m}Mm=1,
respectively. Likewise, corresponding feature responses are
respectively abbreviated by {r+

k,n}Nn=1 and {r−k,m}Mm=1.
Similar to [36], [15], we define a regularized information

gain as the learning objective of the tangram template Tgm:

IG(Tgm) = KL(f || q)−KL(f || p̂)−M(Tgm) (9)

=
∑K
k=1{λkEf [rk]− log zk − 1

2βλk
2} − αK,

where [KL(f || q)−KL(f || p̂)] is an information-theoretical
measurement on the improvement of the learned model
p̂(I; Tgm) approaching f(I) relative to q(I). M(Tgm) =∑K
k=1

1
2βλk

2 +αK refers to the regularization term on model

2In Equ. (1) and (5), K = |V Pt
T |+|V

Pt
N | for multi-layered tangram template.
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complexity, in which β and α denote the trade-off parameters
on shrinking the weight λk and punishing large number of
tan instances selected in Pt, respectively. Thus, learning the
optimal tangram template, denoted by Tgm∗, (as well as corre-
sponding model parameters λ∗k and z∗k) from D+ is achieved
by maximizing its information gain IG(Tgm). Intuitively, it
implies how many bits can be saved for coding the positive
images of D+ by using the learned model of tangram template
instead of the natural image statistics.

As in [36], [15], the positive images, which share similar
target scene configuration to be learned, in D+ are assumed
roughly aligned up to a certain of variations. Thus, we estimate
the prototype parameter hk of the appearance model for each
candidate tan instance Bk by simply averaging the feature
descriptors Hk over all the positive images from D+: h∗k =
1
N

∑N
n=1H

+
k,n. Then, we estimate λk and zk for Bk. Through

solving ∂IG
∂λk

= 0, the optimum values are given by

(λ∗k, z
∗
k) : Ef [rk]− Ep̂[rk] = βλk. (10)

In practice, we calculate the empirical expectation Ef [rk] by
the mean response value on positive images. That is Ef [rk] ≈
1
N

∑N
n=1 r

+
k,n. The term of Ep̂[rk] is approximately calculated

by using the feature responses on D−:

Ep̂[rk] = Eq[
1
zk

exp (λkrk)rk] (11)

≈ 1
M

∑M
m=1[ 1

zk
exp (λkr

−
k,m)r−k,m].

Likewise, the normalization factor zk can be estimated by
approximating Equ. (6) with all M background examples:

zk ≈
1

M

M∑
m=1

exp (λkr
−
k,m). (12)

Noting that we only need to approximate the one-dimensional
marginal distribution in Equ. (6), it is feasible to use a
number of samples in D− for parameter estimation, which
actually correspond to all the image examples collected from
different scene categories in our experiments. By replacing
Equ. (12) into (11), we can derive a monotonic function of
λk for estimating Ep̂[rk] but the Equ. (10) cannot be solved
analytically. On the implementation of Equ. (10), it can be
solved by Newton method or the line search [36], [15].

Thus, we obtain the information gain for Bk as follow

gk = max(λ∗kEf [rk]− log z∗k −
1

2
βλ∗k

2 − α, 0), (13)

where max(·, 0) implies that the tan instances giving negative
information gain values would be not involved in Tgm∗. After
that, a DP algorithm, which will be introduced in Sec. IV-B,
is called to find Tgm∗ over the solution space of parse trees.

B. The DP algorithm on learning a tangram template

The recursive And-Or structure with deep hierarchy is able
to represent a huge space of spatial configurations on scene
layout, each of which is specified by a parse tree instantiated
from the AOG. Although an exponential number of parse
trees (as well as tangram templates) need to be considered
in the solution space, the direct acyclic characteristic of AOG

Algorithm 1: The DP Algorithm for Searching Globally
Optimal Parse Tree of Tangram Template

Input: AOG Υ
′

∆, information gain on terminal-nodes:
{gvT

(l,i,j)
| ∀ l, i, j}

Output: the optimal parse tree Pt∗

1 Step I: bottom-up propagating information gain:
2 foreach l = 1 to L do
3 foreach i = 1 to Nl and j = 1 to J(l,i) do
4 foreach AND-node o = 1 to O(l,i) do
5 Let gvAND

(l,i,j),o
=

∑
u∈Ch(vAND

(l,i,j),o
) gu;

6 end
7 Let gvOR

(l,i,j)
= maxu∈Ch(vOR

(l,i,j)
) gu,

8 and ω∗(l,i,j) → Υ
′

∆;
9 end

10 end
11 Step II: top-down parsing from the root node of Υ

′

∆:
12 PARSE(B(L,1,1); Υ

′

∆ ).

makes the globally optimal solution can be efficiently searched
through a DP algorithm.

For a node v in Υ
′

∆, let gv and Ch(v) denote its information
gain and the set of child nodes, respectively. Before starting
the DP algorithm, we assume the gain of each terminal-node
is computed by Equ. (13). Then, in this DP algorithm, it
propagates their gains to AND-nodes (by the sum operation:
gvAND =

∑
u∈Ch(vAND) gu) and OR-nodes (by the max oper-

ation: gvOR = maxu∈Ch(vOR) gu, with recording the optimal
state ω∗ of vOR at the same time) through a bottom-up step.
After that, the globally optimal parse tree Pt∗, which is defined
as the one with maximum information gain value at the root
node, can be top-down retrieved according to the optimal states
of encountered OR-nodes by calling the parsing operation
PARSE() on the top-layer tan instance. We summarize the
proposed DP algorithm in Alg. 1.

C. learning multiple tangram templates for scene configura-
tion discovery

So far, we have focuses on the problem of learning a single
tangram template of scene configuration from a set of roughly
aligned images. However, the assumption above of having
roughly aligned scene images usually fails to hold in practice
due to the well-known large structural variations of a semantic-
level scene category, i.e., which often consists of an unknown
number of configuration-level sub-categories. For instance, the
images belonging to the street scene can be photographed
from various views. It motivates us to learn multiple tangram
templates for a scene category, each of which corresponds to
a representative scene configuration explaining out a potential
cluster of training images.

Among all the training images, we assume there exist a
small portion of representative ones, called the exemplars,
corresponding to underlying typical scene configurations.
Moreover, the exemplars potentially define the “centers” of
non-overlapping clusters, each of which involves a subset of
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training images. We consider the similarity between a pair of
images, and define an N × N affinity matrix S, where the
element S(i, j) denotes the affinity of the ith training image
w.r.t. the cluster with the jth one as its exemplar. Based on
the generative formulation in Sec. III-C, a tangram template
Tgm(i,j) can be learned for the ith training image, by using
the jth one as its reference image for appearance prototypes.
Specifically, we first use the ith training image as the unique
positive sample, and set the prototype parameter of each
candidate tan instance by corresponding appearance descriptor
of the jth image. Then, for each pair of training images (i, j),
we learn the optimal tangram template Tgm∗(i,j) according to
the DP algorithm presented in Sec. IV-B, and the information
gain IG(Tgm∗(i,j)) is used as the value of S(i, j). Intuitively,
IG(Tgm∗(i,j)) measures the similarity of the ith training image
w.r.t. the jth one as an exemplar of tangram template. Thus, we
can construct S by learning the tangram template as mentioned
above for every pair of training images.

Given the affinity matrix S of all training images, an
exemplar-based affinity propagation clustering algorithm [16]
is applied to discover the exemplars as well as the clusters.
After that, we can learn one tangram template for each of the
clusters through the following two steps:
(i) Let the training images belonging to this cluster compose

a set of positive samples D+ as defined in Sec. IV-A;
(ii) Learn the optimal tangram template according to the

method described in Sec. IV-A and IV-B.

V. THE TANGRAM MATCHING KERNEL

Besides the generative formulation of learning tangram
model in Sec. IV, we present a tangram matching kernel
(TMK) for discriminative learning in this section, by taking
into account all the hidden spatial configurations in our
tangram AOG. Given a pair of images, we first compute

Algorithm 2: The Algorithm on Computing TMK

Input: images X and Y , AOG Υ
′

∆

Output: the TMK value TMK(X,Y )
1 foreach l = 1 to L do
2 foreach i = 1 to Nl and j = 1 to J(l,i) do
3 Compute svT

(l,i,j)
by the HIK on the histogram

features of X and Y for B(l,i,j);
4 foreach AND-node o = 1 to O(l,i) do
5 Compute svAND

(l,i,j),o
by Equ. (14);

6 end
7 if l = 1 then
8 svOR

(l,i,j)
= svT

(l,i,j)
,

9 end
10 else
11 Compute svOR

(l,i,j)
by Equ. (15);

12 end
13 end
14 end
15 TMK(X,Y ) = svOR

(L,1,1)
.

the matching score svT for each terminal-node in Υ
′

∆ as
the intersection value between the histogram features (i.e.
the matched features on this tan instance) according to the
histogram intersection function as in Equ. (2). Then, the
matched features are bottom-up accumulated from the 1st layer
to the top one: the matching score of an AND-node vAND is
computed by accumulating the ones of its child tan instances,
plus the weighted increment of the intersection value which
corresponds to the matched features newly found for relaxing
the spatial constraint imposed by the AND-node. That is

svAND =
∑
uOR

suOR +
1

l
(svT −

∑
uT

suT), (14)

where uOR ∈ Ch(vAND) and uT ∈ Ch
′
(vAND) respectively

denote the OR-node and the terminal one of a child tan
instance for vAND. Similar to the spatial pyramid matching
(SPM) [6], we simply set the weight of matched features
newly found by 1

l , which is inverse to the layer index of vAND,
implying that the features matched in larger tan instances are
more penalized due to the relaxation of spatial constraints.
For an OR-node vOR, the matching score svOR is obtained as
follows: if corresponding tan instance lies in the first layer,
we directly set it by that of terminal-node (i.e., svOR = svT ),
otherwise we use a SOFT MAX OR operation to calculate
svOR by:

svOR =
∑

uAND∈Ch(vOR)

(πuAND · suAND), (15)

where uAND ∈ Ch(vOR) denotes one of the child AND-nodes
for vOR and πuAND =

exp (γsuAND )∑
u′∈Ch(vOR) exp (γsu′ )

is the weight of
soft-max function to fuse the matching values obtained by
different child AND-nodes for the OR-node vOR. Meanwhile,
γ is a predefined tuning parameter to adjust the degree of
“soft” maximization over candidate child AND-nodes. When
γ becomes larger, it tends to give more weights to the AND-
nodes with higher matching values, which subjects to the prior
that the partial matching of two images on a tan is preferable
to choose the way of partition with the most matched features
newly found. Finally, the value of TMK for these two images
is returned by the matching score of root OR-node in Υ

′

∆.
We summarize the computing process of our TMK in Alg. 2.
Based on the proposed TMK, any kernel-based classifier can
be applied to perform scene categorization.

If we set γ by its extreme values (i.e., ∞ and 0), the
MAX OR and MEAN OR TMKs proposed in our previous
work [41] can be deduced as follows: If γ = ∞, we
obtain the MAX OR TMK via a max operation over candidate
child AND-nodes (i.e., svOR = maxuAND∈Ch(vOR) suAND ). If
γ = 0, the MEAN OR TMK will be obtained by averaging
the matching values of all child AND-nodes (i.e., svOR =

1
|Ch(vOR)|

∑
uAND suAND ). Intuitively, the MAX OR TMK adap-

tively searches a tangram parse tree with the most accumulated
matched features between two images, while the MEAN OR
TMK is the most smooth TMK by means of averaging the
matching values found w.r.t. different spatial constraints for
the OR-nodes. Note that the proposed TMK cannot guarantee
the positive-semi-definiteness and hence does not satisfy the
Mercer’s condition. However, as shown in Sec. VI-C, it can be
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Fig. 6. Illustration of all the 33 scene configuration classes for the SceneConfig 33 dataset (see Sec. VI-A). We show one example image for each
configuration class. The caption below each example image corresponds to its configuration class.

flawlessly used as a kernel for SVMs in practice and improves
the performance consistently on scene categorization task.

VI. EXPERIMENTS

In experiments, we first create a new image dataset on a
variety of configurations of scene layout, and then construct a
series of experimental evaluations on our tangram model for
scene categorization.

A. The scene configuration dataset

In the literature of scene recognition, previous image
datasets [3], [18], [6], [7] are mainly contributed to sematic-
level categorization tasks, and thus do not have configuration-
level ground-truth annotation information. To facilitate our
investigation of learning configuration-level scene represen-
tation via the proposed tangram model, we build a new scene
dataset3 (called SceneConfig 33 in this paper) by selecting
images from the MIT 8-class scene dataset [3], MIT Indoor
dataset and the LHI scene dataset [47]. It contains 10 semantic
categories in total, consisting of 6 outdoor scene categories
(coast, highway, mountain, open country, street, city view) and
4 indoor ones (bedroom, store, meeting room, corridor). For
each semantic category, there are 120 to 250 images manually
divided into 3 to 4 different configuration sub-categories (33
in total). Fig. 6 illustrates example images of all the 33
configuration classes for our SceneConfig 33 dataset.

B. Scene categorization based on the configuration bank rep-
resentation

On basis of the learned tangram templates in Sec. IV, we
apply the proposed TBank representation in Sec. III-D to
scene categorization task, and compare it with the widely-used
spatial pyramid representation in literature. In this subsection,
we first test our method on the SceneConfig 33 dataset
for configuration-level classification, and then evaluate the
semantic-level classification performance on SceneConfig 33
as well as two public scene datasets (i.e., Scene 15 [6] and
MIT Indoor [7]) in scene categorization literature.

3http://www.stat.ucla.edu/ junzhu/dataset/SceneConfig 33.zip.

1) Experimental setup: To be consistent with [6] for com-
parison, we adopt the same densely sampled SIFT BOW
feature in our experiments. Concretely, the SIFT features
[43] are extracted from densely sampled 16 × 16 patches,
in a grid with the step size of 8 pixels. Then, we randomly
sample 100, 000 patches from training images, and construct
a codebook with 200 visual words by using standard K-
means clustering algorithm on their SIFT feature descriptors
[6]. After that, a L1-normalized histogram of visual word
frequency is computed for each tan instance, which is the
BOW feature as the appearance descriptor of tan instance in
Sec. III-B. According to Sec. III-D, we test the both cases
of flat tangram template and multi-layered tangram template
(abbreviated by fTgm and mTgm in following discussion) for
our TBank representation.

Based on the proposed TBank representation of scene
images, we use “one-vs-rest” classifiers for multi-class dis-
crimination. Specifically, we train a binary linear support
vector machine (SVM) or logistic regression (LR) classifier
for each class individually, and then the class label of testing
image is predicted as the one with the highest confident value
output by corresponding classifier. We implement these linear
classifiers by LIBLINEAR code package [48]. Following the
scene categorization literature [3], [18], [6], [7], [9], the
classification performance is measured by the average of per-
class classification rates, which can be calculated as the mean
value over the diagonal elements of resultant confusion matrix.

2) Evaluation on configuration-level scene categorization:
In this experiment, we run 10 rounds of experiments with
different random splits of training and testing images on
SceneConfig 33 dataset. For each round, we randomly select
15 images from each configuration class for training and use
the rest ones for testing. At first, we test the classification per-
formance for the case of directly using the tangram template
scores for classification. For each configuration class, we learn
one tangram template from training images based on the DP
algorithm in Sec. IV-B. Thus, the class label of testing image is
simply identified as the one with maximum tangram template
score according to Equ. (7). As shown in Fig. 8, we can see
that the learned tangram templates consistently outperform
the fixed-structure SP BOW representation, for both of two
different granularity levels of image lattice (i.e. 2 × 2 and
4 × 4 grids). Fig. 7 illustrates some top-ranked true positive
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Fig. 7. Illustration of binary classification results based on tangram template scores (SceneConfig 33). Each row corresponds to a target scene configuration
class to be learned. The caption on top of each image in panels (b) and (c) refers to its ground-truth configuration class, and the number below the image
is the score of learned tangram template obtained for binary classification. (a) top-ranked true positive testing images; (b) top-ranked false positive testing
images; (c) image examples from the testing set, which are sampled with roughly equal distance in descending order of tangram template scores. The goal is
to visualize which images/classes are near and far away from the target scene configuration learned. (See Sec. VI-B2)

and false positive image examples by binary classification
based on tangram template scores. We find that the tangram
templates learned by our method can effectively capture visu-
ally meaningful spatial layout for different configuration-level
scene categories.

After that, we investigate the classification performance of
our TBank representation based on learned tangram templates.
Given the tangram templates learned for all the configuration
categories (33 in total), we build the TBank representation
of scene images according to Sec. III-D for configuration-
level classification. Fig. 8 shows that it can obtain superior
accuracy than the case discussed above, in which we perform
scene classification via maximization on the tangram template
scores. This implies that the proposed TBank representation
can provide useful information to make for scene recogni-
tion by considering the tangram template scores of other
configurations. Moreover, from table II we can see that it
achieves much higher classification performance than the high-
dimensional SP BOW representation (i.e., the performance
gain is 6.6 − 8.4%) even with a fraction of dimension, i.e.
only 33 dimension for TBank w.r.t. 1,000 (2 × 2 grid) or
4, 200 (4×4 grid) dimension for SP BOW. It accounts for that
our TBank representation based on learned tangram templates
can provide higher-level information than original SIFT BOW
features through effective knowledge abstraction of jointly
capturing meaningful configuration and appearance cues.

3) Evaluation on semantic-level scene categorization: Be-
sides the configuration-level scene categorization, we further
apply our method to semantic-level categorization, which is

one of the most concerned task in scene recognition literature.
Rather than training only one tangram template for each class
as in Sec. VI-B2, we first learn multiple tangram templates
for each semantic-level scene category according to the scene
configuration discovery method in Sec. IV-C. Then, the tan-
gram bank is constructed by collecting all the learned tangram
templates from different categories, and corresponding TBank
representation of scene images can be obtained according to
Sec. III-D for semantic-level scene categorization.

As mentioned in Sec. VI-A, the 33 configuration classes
in SceneConfig 33 are collected from 10 different semantic
categories, each of which consists of 3 or 4 manually divided
configuration classes. Similar to Sec. VI-B2, we run 10-
round experiments with different random splits of training
and testing images. For each round, we randomly select 50
image examples from each semantic-level scene category for
training and use the rest ones for testing. To construct the
tangram bank, we learn 8 tangram templates for each semantic
category, and thus it will produce an 80-dimensional TBank
representation for each image (i.e., T = 8 × 10 = 80).
As shown in table III, our TBank representation can obtain
consistent performance gain (5.2 − 6.0%) of semantic-level
scene categorization w.r.t. the SP BOW representation in each
combination of image lattice granularity (i.e., 2 × 2 or 4 × 4
grid) and classifier type (i.e., SVM or LR).

For deeper analysis of our method, we further investigate
the clustering-based scene configuration discovery method
based on the information gain of learned tangram templates
as similarity measurement, which is an intermediate step of
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(a) (b)
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Fig. 8. Performance comparison for configuration-level scene categorization
on the SceneConfig 33 dataset (see Sec. VI-B2). (a) fTgm, (b) mTgm. (Best
viewed in color)

TABLE II
CLASSIFICATION RATES (%) FOR CONFIGURATION-LEVEL SCENE

CATEGORIZATION (SceneConfig 33)
2×2 grid 4×4 grid

SVM LR SVM LR
SP BOW [6] 55.0± 1.0 57.2± 1.2 56.2± 0.9 59.4± 0.8
TBank fTgm 62.6± 1.0 65.3± 0.7 64.2± 1.2 65.9± 1.6
TBank mTgm 61.6± 0.9 64.5± 0.9 64.6± 1.0 66.0± 1.1

TABLE III
CLASSIFICATION RATES (%) FOR SEMANTIC-LEVEL SCENE

CATEGORIZATION (SceneConfig 33)
2×2 grid 4×4 grid

SVM LR SVM LR
SP BOW [6] 78.4± 0.9 79.1± 1.0 78.7± 1.4 79.5± 1.1
TBank fTgm 83.8± 0.9 84.4± 0.9 83.4± 0.9 83.4± 0.9
TBank mTgm 84.4± 1.0 84.6± 0.9 84.4± 0.7 84.7± 0.9

building the TBank representation for semantic-level scene
categorization. Concretely, we use the exemplar-based clus-
tering method described in Sec. IV-C on the training images
to learn the same number of scene configurations as the
manually divided ones for each semantic-level scene category,
and then compute the empirical purity and conditional entropy
of clustering results, which are the common evaluation criteria
used in unsupervised object category discovery literature [49],
[50], [51]. Let X and Y denote the sets of ground-truth
class labels and the resultant cluster labels, respectively. As
described in [50], the purity is defined defined as the mean of
the maximum class probabilities of X given Y . That is

Purity(X|Y) =
∑
y∈Y

p(y) max
x∈X

p(x|y), (16)

where p(y) and p(x|y) represent the prior distribution of
cluster label y and the conditional probability of ground-truth
label x given y respectively. In practice, we can only compute
the frequency estimation of p(y) and p(x|y) from the observed
samples used in clustering, and thus obtain the empirical purity
on a given set of images as the clustering quality metric. In this
experiment, the manual annotation of scene configurations is
used to determine the ground-truth class label for each image
of SceneConfig 33. Besides purity, we can use the conditional
entropy of X given Y to assess the clustering result. As defined
in 17, it measures the average uncertainty of X if the value
of Y is known [50].

Entropy(X|Y) =
∑
y∈Y

∑
x∈X

p(x|y) log
1

p(x|y)
. (17)

(%)

(a)  2 x 2 grid

Purity Conditional Entropy

(%)

(b)  4 x 4 grid

Fig. 9. Analysis on the exemplar-based clustering method for scene
configuration discovery. We compare the quality of unsupervised clustering
results obtained by three different similarity measurements (i.e., fTgm, mTgm,
SP BOW). The fTgm and mTgm on horizontal axis correspond to the
similarity measurements based on pair-wise information gain of flat tangram
template and the multi-layered one respectively. SP BOW indicates the
similarity measurement based on spatial pyramid BOW representation. All
of them use the same affinity propagation clustering algorithm [16] to obtain
the results. For performance evaluation, the empirical purity and conditional
entropy are adopted, and we show their mean value and standard deviation
of 10-round experiments with randomly selected training images by using an
error bar plot. Please see Sec. VI-B3 for details. (a) and (b) show the results
of 2× 2 grid and 4× 4 grid respectively.

Please refer to [50] for detailed description about purity and
conditional entropy. Intuitively, the quality of unsupervised
category discovery will be better as the purity is higher or
the conditional entropy is smaller.

Fig. 9 shows the average empirical purity and conditional
entropy of clustering results on SceneConfig 33 dataset. We
can see that our methods (i.e., fTgm and mTgm) consistently
outperform the SP BOW. The purity of our methods is higher
than that of SP BOW by 5.7 − 7.6%. The conditional en-
tropy shows similar tendency of performance superiority as
the purity measurement. This experiment shows our tangram
model can produce more applausive clusters w.r.t. the manual
annotation than the SP BOW representation, and validates the
effectiveness of the exemplar-based clustering algorithm for
learning multiple scene configurations from a single semantic-
level category. Besides, Fig. 10 compares the histograms of
intra-class and inter-class information gain values for some
semantic categories, which are obtained from two images of
same configuration class and different classes respectively. We
can see that the intra-class information gain has a heavy tail
distribution than the inter-class one, implying its effectiveness
as similarity measurement used for the exemplar-based clus-
tering algorithm.

Moreover, We give a quantitative analysis on the semantic-
level classification performance w.r.t. the number of tangram
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opencountry street store bedroom

Intra-class similarity                                         Inter-class similarity

Fig. 10. Analysis on the information gain of learned tangram templates as similarity measurement used in exemplar-based clustering. The horizontal axis
represents the information gain, and the vertical axis represents normalized histogram value. The intra-class similarity and inter-class one correspond to the
pair-wise information gain obtained from two images of same configuration class and different classes, respectively. Please see Sec. IV-C for the details of
our exemplar-based learning algorithm. (best viewed in color)

TABLE IV
CLASSIFICATION RATES (%) FOR SEMANTIC-LEVEL SCENE

CATEGORIZATION (Scene 15)
2×2 grid 4×4 grid

SVM LR SVM LR
SP BOW [6] 73.5± 0.8 75.0± 0.6 74.5± 0.6 75.8± 0.7
TBank fTgm 79.8± 0.6 80.2± 0.7 79.7± 0.5 80.3± 0.6
TBank mTgm 80.0± 0.7 80.3± 0.6 80.8± 0.7 81.1± 0.7

TABLE V
CLASSIFICATION RATES (%) FOR SEMANTIC-LEVEL SCENE

CATEGORIZATION (MIT Indoor)
2×2 grid 4×4 grid

SVM LR SVM LR
SP BOW [6] 28.5 31.4 30.8 32.4
TBank fTgm 34.9 37.3 35.8 37.9
TBank mTgm 36.3 38.5 36.9 39.7

templates learned per semantic category, and compare our
clustering-based TBank representation to that based on manual
scene configuration annotation. As shown in Fig. 11 (a), the
classification accuracy generally increases as more tangram
templates used for constructing the TBank representation (i.e.,
T becomes larger). However, the performance improvement
tends to be saturated when T achieves a certain intermediate
number, and continued increase on the dimension of TBank
does not result in notable performance improvement further.
Particularly, the performance gain on the use of 8 templates
w.r.t. only one per category is 4.4 − 6.2%, validating the
effectiveness of discovering multiple tangram templates for
semantic-level scene categorization. Compared to the TBank
representation built from manually annotated configurations
(see the green-circle and purple-triangle markers), our method
also obtains superior accuracy consistently when the number
of clusters per category is more than 3. Above observations
demonstrate that the proposed method in Sec. IV-C can
effectively learn a variety of informative tangram templates
for each category, leading to a discriminative and compact
TBank representation for semantic-level scene categorization.

Besides SceneConfig 33, we further test the semantic-level
classification performance of our method on two benchmark
scene datasets (i.e., Scene 15 and MIT Indoor). The exper-
imental settings are listed as follows:

• Scene 15: This dataset consists of 15 different semantic
scene categories involving outdoor natural scenes (e.g.,
coast, mountain and street) and indoor ones (e.g., bed-
room, office room). It contains 4485 images in total, with

a varying number of images from 200 to 400 per category.
Following [6], we repeat 10 rounds of experiments with
different randomly selected training and testing images.
For each round, there are 100 images per class used
for training and the remaining ones for testing. For this
dataset, we learn 20 tangram templates for each class,
leading to a 300-dimensional TBank representation for
each image (i.e., T = 20× 15 = 300).

• MIT Indoor: It contains 15,620 images in total, which
are distributed into 67 indoor scene categories. We use
the same training images (80 samples per class) and
testing ones (20 samples per class) in [7].4 The number
of tangram templates learned per class is set by 7, and
thus we obtain a 469-dimensional TBank representation
for each image(i.e., T = 7× 67 = 469).

Tables IV and V list the classification rates for Scene 15
and MIT Indoor, respectively. As shown in table IV, our
TBank representation outperforms SP BOW by 5.3−6.5% for
Scene 15 dataset. For more challenging MIT Indoor dataset,
the performance gain increases to 6.1 − 7.8% as shown in
table V. As shown in table VI, the dimension of our TBank
representation is much less than that of SP BOW. Besides, the
Fig. 11 (b) and (c) illustrates the curves of classification perfor-
mance w.r.t. the number of tangram templates learned per cat-
egory for Scene 15 and MIT Indoor respectively. They show
similar observations of variation trend as SceneConfig 33 in
Fig. 11 (a), indicating good generalizability of our TBank
representation based on the exemplar-based clustering method.
Besides, in table VII we also compare it with other scene
representations (i.e., Gist [3] and OB [9]) in literature. All
these feature representations are tested with the linear LR
classifier. We can see that our method even outperforms the
spatial pyramid model with high-level features, e.g. the object
detectors’ responses in OB representation [9], which validates
the significance and advantage of leveraging configuration
cues for scene recognition.

C. Scene categorization by tangram matching kernel

Besides the methods of generatively learned tangram tem-
plates for the TBank representation in Sec. III and IV, we

4This dataset as well as the list of training and testing samples can be
downloaded from http://web.mit.edu/torralba/www/indoor.html.
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Fig. 11. The effect of the number of tangram templates learned per class for our TBank representation (see Sec. VI-B3). The horizontal axis indicates the
number of tangram templates learned per category, and the vertical axis represents the classification rate (%). (a), (b) and (c) correspond to the results of
SceneConfig 33, Scene 15 and MIT Indoor, respectively. We show four cases of different combination of scene image lattice and classifier type from left
to right: 2×2 grid with SVM, 2×2 grid with LR, 4×4 grid with SVM, and 4×4 grid with LR. The curves with blue diamond markers and red square ones
correspond to fTgm and mTgm, respectively. In (a), the results based on manually annotated 33 scene configurations are also shown and compared with those
via exemplar-based clustering. The green circles and purple triangles correspond to fTgm and mTgm, respectively. (best viewed in color and magnification)

TABLE VI
COMPARISON ON THE DIMENSION OF REPRESENTATION (THE

DIMENSIONS OF OUR TANGRAM BANK REPRESENTATION ARE EQUAL FOR
THE TWO CASES OF fTgm AND mTgm.)

2×2 grid 4×4 grid
SP BOW TBank SP BOW TBank

Scene 15 1000 300 4200 300
MIT Indoor 1000 469 4200 469

TABLE VII
CLASSIFICATION RATE (%) COMPARISON OF OUR TBANK WITH OTHER

SCENE REPRESENTATIONS IN LITERATURE (WITH LR CLASSIFIER)

SP BOW [6] Gist [3] OB [9] TBank
fTgm mTgm

Scene 15 75.8 71.8 80.9 80.3 81.1
MIT Indoor 32.4 23.5 37.6 37.9 39.7

evaluate the TMK proposed in Sec. V on the Scene 15 and
MIT Indoor datasets, and compare it with other methods in
scene categorization literature. We adopt the same appearance
feature and experimental settings as in Sec. VI-B3. In this
experiment, the “one-vs-rest” criterion is used for multi-class
classification, and each binary classifier is trained via a kernel
SVM with the implementation of LIBSVM code package [52].

At first, we analyze the effect of parameter γ used in
the SOFT MAX OR TMK, and draw a comparison with its
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(a) Scene_15 (b) MIT_Indoor

Fig. 12. Illustration on classification performance vs. the value of parameter
γ (see Sec. VI-C). The horizontal axis indicates the value of γ, and vertical
axis represents the classification rate (%). For each panel, we show the results
of 2×2 and 4×4 grids by green and blue curves respectively. (a) Scene 15,
(b) MIT Indoor. (best viewed in color and magnification)

extreme cases (i.e., MEAN OR and MAX OR TMKs). As
shown in Fig. 12, we can find that there exists an intermediate
number as the optimal value of γ for achieving the highest
classification performance, which is superior to either the
MEAN OR or MAX OR TMK. It implies that the optimum
matching kernel based on the tangram model should be in an
intermediate degree of smoothness to “marginalize” the parse
trees corresponding to various spatial configurations.

Besides, the MEAN OR and MAX OR TMKs define t-
wo different kinds of image similarity measurement: The
MEAN OR TMK is the most smooth one among the family of
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TABLE VIII
CLASSIFICATION RATES (%) FOR TMKS

Scene 15 MIT Indoor
2×2 4×4 2×2 4×4

SPM [6] 79.2± 0.5 81.2± 0.4 37.5 38.8
SOFT MAX OR TMK 81.5± 0.4 81.8± 0.5 40.6 42.9

MEAN OR TMK 81.3± 0.5 81.5± 0.5 39.6 41.8
MAX OR TMK 81.1± 0.4 81.7± 0.5 38.5 42.3

The composite TMK 81.7± 0.5 81.8± 0.4 43.2 43.9
RBoW [37] 78.6± 0.7 37.93

DPM+GIST-color+SP [54] N/A 43.1
CENTRIST [29] 83.88± 0.76 36.88

OB [9] 80.9 37.6
MM-Scene [55] N/A 28.1

ScSPM [8] 80.28± 0.93 N/A
[7] N/A 26

all possible TMKs, which indicates to “average” the matching
measurements over all the parse trees of AOG. On the contrary,
the MAX OR TMK only consider the parse tree of spatial
configuration giving the highest matching similarity between
two images, out of all possible parse trees generated by
the AOG. Thus, these two kinds of TMKs correspond to
diverse underlying feature spaces and have distinct properties
for classification. According to the kernel combination theory
[53], we propose to use a product composite kernel based on
the MEAN OR and MAX OR TMKs to boost classification
performance further.

In table VIII, we show the classification rates of differ-
ent TMKs on the Scene 15 and MIT Indoor datasets, and
compare it with the spatial pyramid counterpart (i.e. SPM
kernel [6]) as well as previous methods in scene categorization
literature. As shown in table VIII, our TMKs can obtain
superior classification performance than SPM in both 2 × 2
and 4×4 grids of image lattice, which supports our motivation
that using richer configuration cues as well as inducing the
OR-nodes would make for scene recognition. Particularly, we
observe that our method outperforms SPM in a large margin
(i.e., performance improvement of 4.1% for SOFT MAX OR
TMK and 5.1% for the composite TMK) on MIT Indoor
dataset. It may be caused by the fact that the indoor scene
categories involve more complicated configuration variations
than natural outdoor scenes, asking for a more sophisticated
way to explore scene layouts as our tangram model does.

VII. CONCLUSION

Exploring scene layouts is a challenging task and also very
important for scene categorization. In this paper, we present a
reconfigurable tangram model for scene layout representation,
and propose a method of learning a mixture of tangram models
for representing scene category by combing an exemplar-
based clustering method and a DP algorithm. The proposed
tangram model goes beyond the traditional quad-tree like
decomposition methods which explore scene layouts in a
predefined and fixed manner. On basis of the tangram model,
two methods are proposed to address scene categorization:
building a configuration bank representation of scene images
for linear classification, and building a tangram matching
kernel for kernel-based classification. The experimental results
show that our methods consistently outperform the widely
used spatial pyramid representation on three scene datasets

(i.e., a 33-category scene configuration dataset, an 15-category
scene dataset [6] and a 67-category indoor scene dataset [7]).
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