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Abstract

People are adept at perceiving interactions from movements of simple shapes, but the underlying

mechanism remains unknown. Previous studies have often used object movements defined by experi-

menters. The present study used aerial videos recorded by drones in a real-life environment to gener-

ate decontextualized motion stimuli. Motion trajectories of displayed elements were the only visual

input. We measured human judgments of interactiveness between two moving elements and the

dynamic change in such judgments over time. A hierarchical model was developed to account for

human performance in this task. The model represents interactivity using latent variables and learns

the distribution of critical movement features that signal potential interactivity. The model provides a

good fit to human judgments and can also be generalized to the original Heider–Simmel animations

(1944). The model can also synthesize decontextualized animations with a controlled degree of inter-

activeness, providing a viable tool for studying animacy and social perception.
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1. Introduction

People are adept at perceiving goal-directed action and inferring social interaction

from movements of simple objects. In their pioneering work, Heider and Simmel (1944)

presented video clips showing three simple geometrical shapes moving around and asked

human observers to describe what they saw. Almost all observers described the object

movements in an anthropomorphic way, reporting a reliable impression of animacy and

meaningful social interactions among the geometric shapes displayed in the decontextu-

alized animation. Their results were replicated in other studies using similar videos for

both human adults (Oatley & Yuill, 1985; Rim�e, Boulanger, Laubin, Richir, & Stroo-

bants, 1985) and preschoolers as young as 5 years old (Springer, Meier, & Berry,

1996).

To study what visual information drives the perception of interaction, Berry, Misovich,

Kean, and Baron (1992) generated new Heider–Simmel animations with either the struc-

tural aspect or dynamic aspect disrupted. They found that the motion patterns mainly

determined the anthropomorphic description of videos. Later studies (Dittrich & Lea,

1994; Gao, Newman, & Scholl, 2009; Gao, McCarthy, & Scholl, 2010; Scholl & Tre-

moulet, 2000; Tremoulet & Feldman, 2000, 2006) used more controlled stimuli and sys-

tematically examined what factors can impact the perception of goal-directed actions in a

decontextualized animation. These findings provided converging evidence that the percep-

tion of human-like interactions relies on some critical low-level motion cues, such as

speed and motion direction. However, it remains unclear how the human visual system

combines motion cues from different objects to infer interpersonal interactivity in the

absence of any context cues.

To address this fundamental question, Baker, Saxe, and Tenenbaum (2009) developed

a Bayesian model to reason about the intentions of an agent when moving in maze-like

environments of the sort used by Heider and Simmel (1944). Other studies (Baker, 2012;

Baker, Goodman, & Tenenbaum, 2008; Baker, Saxe, & Tenenbaum, 2011; Sadilek &

Kautz, 2012; Ullman, Baker, Macindoe, Evans, Goodman, & Tenenbaum, 2009) devel-

oped similar models that could be generalized to situations with multiple agents and dif-

ferent contexts. These modeling studies illustrate the potential fruitfulness of using a

Bayesian approach as a principled framework for modeling human interaction shown in

decontextualized animations. However, these models have been limited to experimenter-

defined movements and by computational constraints imposed by the modelers for partic-

ular application domains.

In daily life, humans rarely observe Heider–Simmel-type animations. Although exam-

ining inferences about human interactions in videos of daily-life activities would be eco-

logically natural, challenges arise. Human interactions are usually accompanied by rich

context information, such as language, body gestures, moving trajectories of multiple

agents, and backgrounds in the environment. Hence, the complexity of information may

make it difficult to pin down what critical characteristics in the input determine human

judgments.
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To address this problem, we used aerial video and employed advanced computer vision

algorithms to generate experimental stimuli that were rigorously controlled but rooted in

real-life situations. As an example, imagine that you are watching a surveillance video

recorded by a drone from a bird’s eye view, as shown in Fig. 1. In such aerial videos,

changes in human body postures can barely be seen, and the primary visual cues are the

noisy movement trajectories of each person in the scene. This situation is analogous to

the experimental stimuli used in Heider and Simmel animations, but the trajectories of

each entity are directly based on real-life human movements. Another advantage of using

aerial videos is that they provide a window to examine whether a model trained with

real-life motions can generalize its learned knowledge to interpret decontextualized move-

ments of geometric shapes, without prior exposures. Such generalizability emulates

humans’ irresistible and automatic impressions when viewing the Heider–Simmel anima-

tions for the first time. If the generalization is successful, the cues used by the model in

learning can shed light on the mechanisms underlying the human ability to recover the

causal and social structure of the world from the visual inputs.

In the present study, we aimed to use real-life aerial videos to generate Heider–Sim-

mel-type decontextualized animations and to assess how human judgments of interactivity

emerge over time. We employed decontextualized animations generated from the aerial

videos to measure how well humans make online judgments about interpersonal interac-

tions and to gauge what visual cues determine the dynamic changes in human judgments.

To account for human performance, we developed a hierarchical model with hidden lay-

ers. The model aimed to learn the representations of critical movement patterns that sig-

nal potential interactivity between agents. Furthermore, we assessed whether the learning

component in the model can be generalized to the original animations used by Heider

and Simmel (1944).

Fig. 1. Stimulus illustration. (Left) An example frame of an aerial video recorded by a drone. Two people

were being tracked (framed by red and green boxes). (Right) A sample frame of an experimental trial. The

two people being tracked in the aerial video are presented as two dots, one in red and one in green, against a

black background. A video demonstration can be viewed on the project website: http://www.stat.ucla.edu/~tia

nmin.shu/HeiderSimmel/CogSci17.
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2. Computational model

We designed a hierarchical model with three layers. As shown in Fig. 2, the first layer

(the X layer) estimates spatiotemporal motion patterns within a short period of time. The

second layer (the S layer) captures the involvement of various motion fields at different

stages of interactivity over a long period by temporally decomposing interactivity into

multiple latent subinteractions. The last layer (the Y layer) indicates the presence or

absence of interactivity between two agents.

The inputs to the model are motion trajectories of two agents, denoted as

Ca ¼ fxtagt¼0;...;T , a = 1, 2. The position of agent a (a = 1, 2) at time t is xta ¼ ðx; yÞ.
The total length of the trajectory is T. Using the input of motion trajectories, we can

readily compute the velocity sequence of agent a (a = 1, 2), i.e., Va ¼ fvtagt¼1;...;T , where

vta ¼ xta � xt�1
a .

To capture the interactivity between two agents based on the observed trajectories of

movements, the model builds on two basic components. (a) Interactivity between two

agents can be represented by a sequence of latent motion fields, each capturing the rela-

tive motion between the two agents who perform meaningful social interactions. (b)

Latent motion fields can vary over time, capturing the behavioral change of the agents

over a long period of time. The details for quantifying the two key components are

presented in the next two subsections.

2.1. Conditional interactive fields

As illustrated in Fig. 3, we use conditional interactive fields (CIFs) to represent how

an agent moves with respect to a reference agent. This is analogous to the force fields in

physics, where the objects interact with each other through invisible fields (e.g., gravity).

To derive the CIFs, we randomly select an agent to be the reference agent, and then

Fig. 2. Illustration of the hierarchical generative model. The solid nodes are observations of motion trajecto-

ries of two agents, and the remaining nodes are latent variables constituting the symbolic representation of

an interaction; that is, the original trajectories are coded as a sequence of subinteractions S and interaction

labels Y.
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model the partner agent’s movement by estimating a vector field of the relative motion

conditioned on a specific distribution of the reference agent’s motion.

To ensure that the fields are orientation invariant, we perform a coordinate transforma-

tion, as Fig. 3 illustrates. At each time point t, the transformed position of the reference

agent is always located at (0, 0), and its transformed velocity direction is always pointed

to the norm of the upward vertical direction. Consequently, the position and velocity of

the second agent after the transformation, i.e., ~C ¼ f~xtgt¼0;...;T and ~V ¼ f~vtgt¼1;...;T , can

be used to model the relative motion.

A subinteraction s corresponds to interactivity in a relatively short time sharing consistent

motion patterns, for example, approaching, walking together, standing together. The model

can infer its CIF using a potential function Uð~xt; ~vt; vt1Þ, where the first two variables

ð~xt; ~vtÞ are used to model the relative motion as defined in the last paragraph and vt1 is the
reference agent’s motion. The potential function is defined to yield the lowest potential

value if the motion pattern fits the characteristics of s the best. In this way, the model con-

siders the agents more likely to be interactive if the agents are moving in a specific way that

can minimize the potential energy with respect to certain potential fields.

2.2. Temporal parsing by latent subinteractions

We assume that a long interactive sequence can be decomposed into several distinct

subinteractions each with a different CIF. For example, when observing that two people

walk toward each other, shake hands, and walk together, this long sequence can be seg-

mented into three distinct subinteractions. We represent meaningful interactivity as a

sequence of latent subinteractions S = {sk}k=1,. . .,K, where a latent subinteraction determi-

nes the category of the CIF involved in a time interval T k ¼ ft : t1k � t � t2kg, such that

st = sk, 8t 2 T k. sk is the subinteraction label in the k-th interval representing the consis-

tent interactivity of two agents in the relatively short interval. Fig. 4 illustrates the tempo-

ral parsing.

In each interval k, we define an interaction label yk 2 f0; 1g to indicate the absence or

presence of interactivity between the two agents. The interaction labels also constitute a

(0,0)

(0,0)

Coordinate
Transformation

=
Ref. Agent
Condition Interactive Field

+

Fig. 3. Illustration of a conditional interactive field: after a coordinate transformation with respect to the

reference agent, we model the expected relative motion pattern ~xt and ~vt conditioned on the reference agent’s

motion.
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sequence Y ¼ fytgt¼1;...;T . We have yt ¼ yk, 8t 2 T k, where yk denotes the interaction

label in an interval T k.

3. Model formulation

Given the input of motion trajectories Γ as defined in the above section, the model

infers the posterior distribution of the latent variables S and Y using a Bayesian frame-

work,

pðS;Y jCÞ / PðCjS;YÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
likelihood

� PðSjYÞ|fflfflffl{zfflfflffl}
sub int: prior

� PðYÞ|ffl{zffl}
int: prior

: ð1Þ

The likelihood assesses how well the motion fields represented as a set of subinterac-

tions CIFs can account for relative motion observed in the video input, the spatial density

of the relative position, and the observed motion of the reference agent:

pðCjS; YÞ ¼
YK
k¼1

Y
t2T k

pð~vt; ~xt; vt1jst ¼ sk; y
t ¼ ykÞ; ð2Þ

where the individual likelihood terms are defined by potential functions:

log pð~vt; ~xt; vt1jst ¼ sk; y
t ¼ ykÞ / �Uð~xt; ~vt; vt1jsk; ykÞ: ð3Þ

Here, we assume that the potential function depends on the latent variables sk and yk to

account for the variability in the motion patterns of different subinteractions and to differ-

entiate interactive motion from non-interactive motion. Equation 3 also ensures that the

expected interactive motion trajectories will move in the direction that minimizes the

+ + +CIFs

Traj.
X

Y

Fig. 4. Temporal parsing by S (middle). The top demonstrates the change of conditional interactive fields

(CIF) in subinteractions as the interaction proceeds. The bottom indicates the change of interactive behaviors

in terms of motion trajectories. The colored bars in the middle depict the types of the subinteractions.
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potential energy. The Appendix A provides details of the exact definition of the potential

function.

We model the prior term of subinteractions P(S|Y) using two independent components,

(a) the duration of each subinteraction and (b) the transition probability between two

consecutive subinteractions, as follows:

pðSjYÞ ¼
YK
k¼1

pðjT kjjsk; ykÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
duration

YK
k¼2

pðskjsk�1; ykÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
transition

: ð4Þ

When yk = 1, the two terms follow a log-normal distribution and a categorical distribu-

tion, respectively; when yk = 0, uniform distributions are used for the two terms instead.

Finally, we use a Bernoulli distribution to model the prior term of interactions P(Y),

pðYÞ ¼
YK
k¼1

Y
t2T k

pðyt ¼ ykÞ ¼
YK
k¼1

Y
t2T k

qy
tð1� qÞ1�yt : ð5Þ

The details of model implementation regarding inference and learning is included in

Appendix B and C sections.

4. Model simulation results

We trained the model using two sets of training data, the UCLA aerial event dataset

(Shu, Xie, Rothrock, Todorovic, & Zhu, 2015), and the Heider–Simmel animation dataset.

4.1. Training with aerial videos

In the UCLA aerial event dataset collected by Shu et al. (2015), about 20 people per-

formed some group activities in two scenes (a park or a parking lot), such as group tour-

ing, queuing in front of a vending machine, or playing Frisbee. People’s trajectories and

their activities are manually annotated. The dataset is available at http://www.stat.ucla.ed

u/tianmin.shu/AerialVideo/AerialVideo.html.

One advantage of using aerial videos to generate decontextualized animations is that

the technique provides sufficient training stimuli to enable the learning of representations

of critical movement patterns that signal potential interactivity between agents. We

selected training videos including interactivity from the database, so that the two agents

always interact with each other in all training stimuli. Thus, for any training video,

yt ¼ 1, ∀t = 1, . . ., T. During the training phase, we excluded the examples used in

human experiments. In total, there were 131 training instances.

In the implementation, we manually define the maximum number of subinteraction cat-

egories to be 15 in our full model (i.e., jSj ¼ 15), which is over-complete for our
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training data according to learning (low frequency in the tail of Fig. 5). With simulated

annealing (Kirkpatrick, Gelatt, & Vecchi, 1983), Gibbs sampling converges within 20

sweeps (where a sweep is defined as all the latent subinteraction labels being updated

once). The frequencies of the top 15 CIFs are highly unbalanced. In fact, the top 10 CIFs

account for 83.8% of the subinteractions in the training data. The first row of Fig. 6 pro-

vides a visualization of the top 5 CIFs. Each of the top CIFs indicates some different

behavioral patterns in the aerial videos. For example, the No.1 CIF signals the approach-

ing behavior that one agent moves toward a reference agent. Interestingly, the converging

point of the approaching is not at the center of the location of the reference agent.

Instead, the agent heads toward the future location of the reference agent (above-the-
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Fig. 5. The frequencies of learned conditional interactive fields (CIFs) with the training data generated from

aerial videos (top) and the Heider–Simmel movie (bottom). The numbers on the x axis indicate the IDs of

CIFs, ranked according to the occurrence frequency in the training data.
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Fig. 6. Interactive fields of the top five frequent conditional interactive fields (CIFs) learned from aerial

videos (top) and Heider–Simmel movie (bottom), respectively. In each field, the reference agent (red dot) is

at the center of a field; that is, (0, 0), moving toward north; the arrows represent the mean relative motion at

different locations and the intensities of the arrows indicate the relative spatial density, which increases from

light to dark. We observed a few critical CIFs that signal common interactions from the two simulation

results. For instance, in aerial videos, we observed (i) approaching, for example, CIF 1, and (ii) walking in

parallel, or following, for example, the lower part of CIF 2. The Heider–Simmel animation revealed addi-

tional patterns such as (i) orbiting, for example, CIF 1, and (ii) leaving, for example, CIF 4, (iii) walking-by,

for example, CIF 5.
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center position in the flow figure), implying that the fundamental characteristic of human

interactions is being predictive.

4.2. Training with Heider–Simmel videos

The second dataset was created from the original Heider–Simmel animation (i.e., two

triangles and one circle). We extracted the trajectories of the three shapes and thus

obtained three pairs of two-agent interactions. We truncated the movie into short clips

(about 10 s) to generate a total of 27 videos. The same algorithm was used to train the

model with 15 types of CIFs.

The most frequent five CIFs are visualized in the second row of Fig. 6. Clearly, the

richer behavior in the Heider–Simmel animation yielded a variety of CIFs with distinct

patterns compared to the CIFs learned from aerial videos. For example, the top CIF indi-

cates that one agent moves around the reference agent, a common movement pattern

observed in Heider–Simmel animations. The second CIF signals a “run away” movement

to avoid the reference agent. The frequencies of CIFs are also more distributed in this

dataset, as shown in Fig. 5.

4.3. Generalization: Training with aerial videos and testing with Heider–Simmel videos

We tested how well the model trained with the aerial videos (jSj ¼ 15) can be gener-

alized to a different dataset, the Heider–Simmel animations. This generalization test aims

to examine if the critical movement patterns learned from real-life situations can account

for perceived interactiveness in laboratory stimuli. Fig. 7 shows the model simulation

results for a few Heider–Simmel videos. We notice that the interactiveness ratings pre-

dicted by the model vary over time. Such variability is consistent with subjective impres-

sions that the Heider–Simmel animations elicit different degrees of animacy and

interactivity at different time points. In addition, most clips in Heider–Simmel animations

are rated by the model as having a high probability of being interactive (i.e., mostly

Fig. 7. (Top) Examples of moving trajectories of selected objects in the Heider–Simmel animation dataset.

One object is plotted in red and the other one is plotted in green. The intensity of colors increases with time

lapse, with darker color representing more recent coordinates. (Bottom) Corresponding online predictions on

the example Heider–Simmel videos by our full model (jSj ¼ 15) trained on aerial videos over time (in

seconds).
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above 0.5), consistent with human observers’ impression about the highly animate and

interactive behaviors conveyed in the animations. Also, the model was able to give con-

tinuous online predictions based on the relative speeds and spatial locations of the two

objects. For example, when the two objects approach each other or follow each other, the

model yields higher interactive ratings.

The qualitative analysis of the model performance suggests that the model trained with

aerial videos shows a certain degree of generalization to the Heider–Simmel animations.

However, unsurprisingly, objects in aerial videos share different characteristics of motion

patterns from the motions involved in Heider–Simmel animations (as illustrated in the

training results of CIFs in Fig. 6). For example, orbiting behavior barely occurs in the

aerial video dataset, and accordingly the model yields relatively low interactiveness pre-

dictions when observing such behavior, which is relatively common in the Heider–Sim-

mel animations. In the next section, we will report human experiments that can

quantitatively assess how well the model can account for human performance.

5. Experiment 1

5.1. Stimuli

Twenty-four interactive stimuli were generated from different pairs of human interac-

tions in aerial videos. We selected two people interacting with each other in each aerial

video. We then generated the decontextualized animations by depicting the two people as

dots with different colors. The dots’ coordinates were first extracted from the aerial

videos by human annotators. Note that the two dots were first recentered to localize the

midpoint at the center of the screen in the first frame. The coordinates were temporally

smoothed by averaging across the adjacent five frames.

Twenty-four non-interactive stimuli were generated by interchanging motion trajecto-

ries of two people selected from two irrelevant interactive videos (e.g., the motion of one

dot in video 1 recombined with the motion of a dot in video 2). The starting distances

between two dots in non-interactive stimuli were kept the same as in the corresponding

interactive stimuli.

The duration of stimuli varied from 239 frames to 500 frames (mean frame = 404),

corresponding to 15.9 to 33.3 s, with a recording refresh rate of 15 frames per second.

The diameters of dots were 1° of visual angle. One dot was displayed in red (1.8 cd/m2)

and the other in green (30 cd/m2) on a black background (0 cd/m2). Among the 48 pairs

of stimuli, four pairs of actions (two interactive and two non-interactive) were used as

practice.

5.2. Participants

Thirty-three participants (Mage = 20.4; 18 female) were enrolled from the subject pool

at the Department of Psychology, University of California, Los Angeles (UCLA). They
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were compensated with course credit. All participants had normal or corrected-to-normal

vision.

5.3. Procedures

Participants were seated 35 cm in front of a screen, which had a resolution of

1,024 9 768 and a 60 Hz refresh rate. First, participants were given a cover story:

“Imagine that you are working for a company to infer whether two people carry out a

social interaction based on their body locations measured by GPS signals. Based on the

GPS signal, we generated two dots to indicate the location of the two people being

tracked.” The task was to determine when the two dots were interacting with each other

and when they were not. Participants were asked to make continuous responses across the

entire duration of the stimuli. They were to press and hold the left-arrow or right-arrow

button for interactive or non-interactive moments, respectively, and to press and hold the

down-arrow button if they were unsure. If no button was pressed for more than one

second, participants received a 500 Hz beep as a warning.

Participants were presented with four trials of practice at the beginning of the session

to familiarize them with the task. Next, 44 trials of test stimuli were presented. The order

of trials was randomized for each participant. No feedback was presented on any of the

trials. The experiment lasted for about 30 min in total.

5.4. Results

Interactive, unsure, and non-interactive responses were coded as 1, 0.5, and 0,

respectively. Frames with no responses were removed from the comparison. Human

responses are shown in Fig. 8. A paired-sample t-test revealed that the average ratings of
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Non-interactive
actions

Non-interactive

Not sure

Interactive
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Fig. 8. Mean ratings of the interactive versus non-interactive actions in the experiment 1. Error bars indicate

�1 SEM.
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non-interactive actions (M = 0.34, SD = 0.13) were significantly lower than interactive

actions (M = 0.75, SD = 0.13), t(32) = 13.29, p < .001. This finding indicates that human

observers are able to discriminate interactivity based on decontextualized animations gen-

erated from the real-life aerial videos.

To compare the model predictions with human continuous judgments, we computed

the average human ratings and ran the model to simulate online predictions of subinterac-

tion and interaction labels on the testing videos (excluding the ones in the validation set).

Specifically, we used Eq. B3 to compute the probability of two agents being interactive

with each other at any time point t. The model simulation used the hyper-parameters

q = 10�11 and r0 = 1.26.

Table 1 summarizes the Pearson correlation coefficient r and root-mean-square error

(RMSE) between the model predictions and the human ratings using aerial videos as

training data. We compared our hierarchical model with two baseline models: (a) hidden

Markov model, where the latent variables st and yt only depend on their preceding vari-

ables st�1 and yt�1; (b) a model with only one type of subinteraction. Both models

yielded poorer fits to human judgments (i.e., lower correlation and higher RMSE) than

the hierarchical model. In addition, we changed the number of sub-interaction categories

to examine how sensitive our model is to this parameter. The results clearly show that (a)

only using one type of subinteraction provides reasonably good results, r = .855, and (b)

by increasing the number of subinteractions jSj, the fits to human ratings were further

improved until reaching a plateau with a sufficiently large number of subinteractions.

Fig. 9 shows results for a few videos, with both model predictions and human ratings.

The model predictions accounted for human ratings quite well in most cases. However,

the model predictions were slightly higher than the average human ratings, which may be

due to the lack of negative examples in the training phase. We also observed high stan-

dard deviations in human responses, indicating large variability of the online prediction

task for every single frame in a dynamic animation. In general, the difference between

our model’s predictions and human responses is seldom larger than one standard devia-

tion relative to human responses.

We also used the model trained from the Heider–Simmel animation and tested it on

the stimuli generated from the aerial videos. This procedure yielded a correlation of

0.640 and RMSE of 0.227. The reduced fit for this simulation indicates the discrepancy

between moving patterns of the two types of training datasets. The CIFs learned from

one dataset may be limited in generalization to the other dataset.

Table 1

The quantitative results of all methods in Experiment 1 using aerial videos as training data

Method Hidden Markov Model One-Interaction

Hierarchical Model

jSj ¼ 5 jSj ¼ 10 jSj ¼ 15

r .739 .855 .882 .911 .921

RMSE 0.277 0.165 0.158 0.139 0.134
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6. Experiment 2

One advantage of developing a generative model is that it enables the synthesis of new

videos by Eqs. B4 and B5, based on randomly sampled initial positions of the two agents

(x01, x
0
2) and the first subinteraction s1. By setting the interaction labels to be 1 or 0, the

synthesized stimuli can be controlled to vary the degree of interactiveness. In Experiment

2, we aimed to use the model to synthesize new animations and see if interactiveness can

be accurately perceived by human observers.

We used the model trained on aerial videos to synthesize 10 interactive and 10 non-

interactive animation clips. Seventeen participants were enrolled from the subject pool at

UCLA. The procedure of Experiment 2 was similar to that of Experiment 1. The 20 syn-

thesized videos were presented to human observers in random orders. The task was to

press one of the two buttons at the end of the action to judge if the two dots were inter-

acting or not.

The interactiveness between the two agents in the synthesized videos was judged accu-

rately by human observers, with the average ratings of the synthesized non-interactive

actions (M = 0.15, SD = 0.15) significantly lower than the synthesized interactive actions

(M = 0.85, SD = 0.20), t(16) = 14.00, p < .001. The model prediction of a whole video

is set to be the average predictions of Eq. B3. The correlation between model predictions

and average human responses was high, 0.94. The results suggested that humans reliably

perceived interactiveness from the synthesized stimuli and were sensitive to model-

controlled degree of interactivity.

7. Discussion

In this paper, we examined human perception of social interactions using decontextual-

ized animations based on movement trajectories recorded in aerial videos of a real-life

environment, as well as Heider–Simmel-type animations. The proposed hierarchical

model built on two key components: CIFs of subinteractions, and temporal parsing of

interactivity. The model fits human judgments of interactiveness well, and it suggests

potential mechanisms underlying our understanding of meaningful human interactions.

Human interactions can be decomposed into subinteractions such as approaching, walking

in parallel, or standing still in close proximity. Based on the transition probabilities and

Fig. 9. Comparison of online predictions by our full model trained on aerial videos (jSj ¼ 15) (orange) and

humans (blue) over time (in seconds) on testing aerial videos. The shaded areas show the standard deviations

of human responses at each moment.
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the duration of subcomponents, humans are able to make inferences about how likely the

two people are interacting.

Our study indicates that rapid judgments on human interactivity can be elicited by the

detection of critical visual features such as CIFs, without the involvement of a high-level

reasoning system. The fairly fast, automatic, irresistible, and highly stimulus-driven

impressions about animacy and interactivity are largely perceptual in nature. This result

is consistent with the literature on causal perception (Peng, Thurman, & Lu, 2017; Scholl

& Tremoulet, 2000) and biological motion perception (Johansson, 1973; Su, van Boxtel,

& Lu, 2016; Thurman & Lu, 2013, 2014; van Boxtel & Lu, 2011, 2012). Hence, the

detection of interactivity between agents is likely to be processed as in the proposed

model without the explicit modeling of intention and goals. This process is efficient, but

not sufficient to address questions such as why and how the interactions are carried out

between the agents. When these questions are important for a particular task in the social

context, the reasoning system and the theory-of-mind system will be called upon after the

perception of interactivity has been signaled. Future work should focus on the interplay

between the two general systems involved in perception and in inference of human inter-

actions.

The model provides a general framework and can be extended to include hidden

intentions and goals. By modifying the potential function in the model, the computa-

tional framework can be applied to more sophisticated recognition and understanding

of social behavioral patterns. While previous work has focused on actions of individu-

als based on detecting local spatial-temporal features embedded in videos (Doll�ar,
Rabaud, Cottrell, & Belongie, 2005), the current work can deal with multi-agent inter-

actions. Understanding the relation between agents could facilitate the recognition of

individual behaviors by putting single actions into meaningful social contexts. The pre-

sent model could be further improved to enhance its flexibility and broaden its appli-

cations. The parametric linear design of CIFs provides computational efficiency, and

temporally parsing an interaction into multiple subinteractions enhances the linearity in

each subinteraction. However, this design may not be as flexible as non-parametric or

non-linear models, such as a Gaussian process. In addition, the current model is only

based on visual motion cues. The model could be enhanced by incorporating a cogni-

tive mechanism (e.g., a theory-of-mind framework) to enable explicit inference of

intentions.
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Appendix A: Formulation

We define the potential function in Eq. 3 as

Uð~vt; ~xt; vt1jst ¼ sk; y
t ¼ ykÞ ¼ w>

sk;yk
/ð~xt; ~vt; vt1Þ þ bsk;yk ; ðA1Þ

where /ð~xt; ~vt; vt1Þ ¼ ½~xt>; ~vt>; vt>1 ; ~xt
>
~vt; k~xtk; k~vtk; kvt1k�

>
is the motion feature vector

used to characterize the potential field, wsk;yk and bsk;yk are coefficients of the potential

function learned for the specific latent variables sk and yk. There are certainly other ways

to specify the potential function taking more motion patterns into account, such as accel-

eration, environment around the agents, and other possible factors of interest.

Appendix B: Inference and prediction

The model infers the current status of latent variables and produces an online predic-
tion of future trajectories. Inference and prediction are performed for each time point
from 1 to T sequentially (rather than offline prediction, which gives the labels after
watching the entire video).

We denote trajectories from 0 to t as Γ0:t, and the subinteractions from 1 to t � 1 as
S1:t�1. Without loss of generality, we assume there are K subinteractions in S1:t�1 with
T K being the last interval and st�1 = sK. We first infer st under the assumption of interac-
tion (i.e., yt ¼ 1) by maximizing

pðstjC0:t; S1:t�1; y
tÞ / pð~vt; ~xt; vt1jst; ytÞpðstjS1:t�1; y

tÞ; ðB1Þ

where,

pðstjS1:t�1; y
tÞ ¼ pðs� jT kj þ 1jst ¼ st�1; ytÞ if st ¼ st�1

pðs� 1jst; ytÞpðstjst�1Þ otherwise

�
ðB2Þ
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Then the posterior probability of yt ¼ 1 given st 2 S is defined as

pðytjst;C0:t; S1:t�1Þ / pðstjC0:t; S1:t�1; y
tÞpðytÞ; ðB3Þ

This computation makes it possible to perform the following inferences and online pre-
diction: (a) we maximize Eq. B1 to obtain the optimal st; (b) we use Eq. B3 to compute
the posterior probability of two agents being interactive at t under the CIF of st as an
approximation of the judgment of interaction/non-interaction provided by human obser-
vers; (c) the model can synthesize new trajectories using the following computation,

stþ1 � pðstþ1jS1:t; ytþ1Þ; ðB4Þ

xtþ1
1 ; xtþ1

2 � pð~xtþ1; ~vtþ1; vtþ1
1 jstþ1; ytþ1Þ; ðB5Þ

where ~vtþ1, ~xtþ1, and vtþ1
1 are given by xt1, xtþ1

1 , xt2 and xtþ1
2 . By setting yt+1 = 1 or

yt+1 = 0 in Eqs. B4 and B5, we may synthesize interactive or non-interactive motion

trajectories respectively.

Appendix C: Learning

To train the model, we used Gibbs sampling to find the S that maximizes the joint
probability P(Y, S, Γ). The implementation details are summarized below:

• Step 0: To initialize S, we first construct a feature vector for each time t (see the

Appendix A). K-means clustering is then conducted to obtain the initial {st}, which
also gives us the subinteraction parsing S after merging the same consecutive st.

• Step 1: At each time point t of every training video, we update its subinteraction

label st by

st � pðCjS�t [ fstg; YÞpðS�t [ fstgjYÞ; ðC1Þ

where S�t is the subinteraction temporal parsing excluding time t, and S�t∪{s
t} is a new

subinteraction sequence after adding the subinteraction at t. Note that Y is always fixed in

the procedure; thus, we do not need p(Y) term for sampling purpose.

• Step 2: If S does not change anymore, go to next step; otherwise, repeat step 1.

• Step 3: Since we do not include the non-interactive videos in the training set, we

selected 22 videos in the first human experiment (a mixture of interactive and non-

interactive videos) as a validation set to estimate coefficients of the potential func-

tions under y = 0 by maximizing the correlation between the model prediction of

Eq. B3 and the average human responses in the validation set. To simplify the

search, we assume all potential functions under y = 0 share the same coefficients

across all latent subinteractions.
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