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Abstract—In this paper, we present an attribute grammar for solving two coupled tasks: i) parsing an 2D image into semantic regions;
and ii) recovering the 3D scene structures of all regions. The proposed grammar consists of a set of production rules, each describing
a kind of spatial relation between planar surfaces in 3D scenes. These relations are directly encoded with a hierarchical parse graph
representation where each graph node indicates a planar surface or a composite surface. Different from other stochastic image
grammars, the proposed grammar augments each node (or production rule) with a set of attribute variables to depict scene-level global
geometry, e.g. camera focal length, or local geometry, e.g. surface normal, contact lines between surfaces. These geometric attributes
impose constraints between a node and its off-springs in the parse graph. Under a probabilistic framework, we develop a Markov chain
Monte Carlo method to construct a parse graph that optimizes the 2D image recognition the 3D scene reconstruction simultaneously.
We evaluated our method on both public benchmarks and newly collected datasets . Experiments demonstrate that the proposed
method is capable of achieving state-of-the-art 2D semantic region segmentation and single-view 3D scene reconstruction .

Index Terms—3D Scene Reconstruction, Scene Parsing, Attribute Grammar.
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1 INTRODUCTION

The goal of computer vision, as coined by Marr [32], is to compute
what and where, which correspond to the tasks of recognition and
reconstruction respectively. The former is often posed as parsing
an image in a hierarchical representation, e.g., from sketches,
semantic regions, objects, to scene categories. The latter recovers
3D scene structures, including camera parameters [55], surface
normals and depth [21], and local Manhattan world [6]. While
the recognition and reconstruction problems are usually addressed
separately or sequentially in the literature, it is mutually beneficial
to solve them jointly in a tightly coupled framework for two
reasons.

• 2D image parsing is capable of providing semantic con-
textual knowledge for pruning the uncertainties during
3D modelling. For example, if two neighbor pixels are
classified the same label (e.g. building), it is likely that
they are projections of the same 3D plane. In addition,
semantic region labels, e.g. building or groundplane, often
provide strong prior on surface normal.

• 3D reconstruction can provide additional geometric infor-
mation to boost recognition. In the literature, there have
been a number of efforts that utilizes geometry to help
region segmentation [31], [16], objection detection [21],
visual tracking [39] or event classification [49], etc.

To couple the two tasks, we propose an attribute grammar as a uni-
fied representation, which augments levels of geometric attributes
(e.g., camera parameters, vanish points, surface normal etc.) to the
nodes in the parse graph. Thus the recognition and reconstruction
tasks are solved in a joint parsing process simultaneously. Fig. 1
shows a typical parsing result with seven planar surfaces plus a
sky region and a high-quality 3D scene model.
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Fig. 1. A typical result of our approach. (a) Input image overlaid with
detected parallel lines; (b) surface normal map where each color indi-
cates a unique normal orientation; (c) synthesized images from a novel
viewpoint; and (d) depth map (darker is closer).

1.1 Overview of our approach

We consider outdoor urban scenes that may contain multiple local
Manhattan worlds (LMW) or ’mixture Manhattan world’ [45],
where, for example, buildings are composed of multiple planar
surfaces and touch the ground on contact lines. In contrast to
the widely used Manhattan world assumption [6], this paper
considers a more general scenario that, the adjacent surfaces of
a building may not be orthogonal to each other (see the main
building in Fig. 1). Curved surfaces are approximated by piecewise
linear splines. The surface is further decomposed into super-pixels
and edge elements. These representational units can be naturally
organized in a hierarchical parse graph with the root node being
the scene and terminal nodes being the edges and super-pixels.
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Fig. 2. Parsing an image using attribute grammar. Left : global geometric attributes are associated with the root node (scene) of the parse graph,
including focal length of camera, and Cartesian Coordination System defined by Manhattan frames. Right : parse graph augmented with local
geometric attributes, such as surface normals and vanishing points (VPs) associated with a surface, or multiple vanishing points for a building.
R1, ..., R5 are the five grammar rules for scene decomposition.

Fig. 2 illustrates a parse graph.
Different from the widely studied appearance attributes of

scenes in the vision literature [48] [49] [56], our interest is in the
geometric attributes for all the nodes in the parse graph. An edge
segment has its associated vanishing point, and a super-pixel has
a surface normal, a planar facet of a building has two vanishing
points and a surface normal, and a building has 3 vanishing points,
and finally the whole scene shares a set of camera parameters
(focal length etc.). We amount these geometric attributes to the
parse graph as is shown in Fig. 2. In this attribute parse graph,
attributes of a node can be inherited by its offspring, and thus
impose geometric constraints in the hierarchy. These constraints
are expressed as additional energy terms in the parsing algorithm
so as to maintain consistency in the hierarchy. Consequently,
the parsing and reconstruction problems are solved in a tightly
coupled manner. This attribute parse graph is different from, and
can be integrated with, other scene parsing problems, e.g., fine-
grained scene classification [48] that uses appearance attributes
”cast sky”, ”yellow field” etc.

To construct the attribute parse graph, we define an attribute
grammar which is a 5-tuple: G = (VT ,VN , S,R, P ). The set
of terminal nodes VT include surface fragments or superpixels,
the non-terminal nodes VN include planar surfaces, composite
surfaces, building block and Manhattan world, the root node S
is the scene, and R is the set of production rules, and P is the
probability associated with the rules. Each node a ∈ VT (or A ∈
VN ) is associated with set of geometric attributes.

We observe that a few production rules (or compositions)
are capable of explaining most of the outdoor urban scenes. We
construct 5 production rules which are quite generic for urban
scenes. Each ruleA→ A1, · · · , Ak represents a certain spatial ar-
rangement between the children surfaces A1, ..., Ak, and imposes
constraints on the attributes of X(A) and X(A1), ..., X(Ak).

These composition rules compete with each other to interpret

the input image in a recursive way, which results in a parse graph
as a valid interpretation of the scene. The parse graph includes
both appearance models for 2D segmentation and geometric
models for 3D reconstruction.

We formulate the inference of attribute parse graph from a sin-
gle image in a probabilistic framework. The state space is the set of
all possible attribute parse graphs with large structural variations.
To efficiently sample this complex state space, we adopt the Data-
Driven Markov Chain Monte Carlo paradigm [47]. In particular,
our inference method starts with an initial parse graph constructed
by a greedy method, and then simulates a Markov Chain in the
state space by a set of diffusion-jump dynamics [2]. During the
initialization stage, we utilize a heuristic search procedure for
camera calibration, and introduce a belief propagation method
to obtain region labelling which leads to an initial parse graph.
During the following sampling stage, we introduce five dynamics
that are paired with each other to exploit the joint solution space
periodically, which can guarantee nearly global convergence [47].

A short version of this work appeared in CVPR’2014 [31] and
we extend it in both modelling and inference. In modelling, [31]
uses geometric attributes to impose hard constraints that switch
on or off the corresponding probability models, whereas this work
uses both semantic and geometric attributes to impose soft con-
straints to define a set of calibrated energies models, resulting in
a more flexible model. In inference, this work introduces a stage-
wise MCMC sampling method which is more effective than [31]
in terms of accuracies and convergences. Moreover, we collect
and annotate a new image dataset of 950 images, and evaluate
both methods on it. Results show that the newly proposed method
achieved much better performance in terms of convergences and
reconstruction/labelling accuracies.
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1.2 Related Works

Our work is closely related to the following four research streams
in computer vision.

Semantic scene labelling has been widely studied to deal with
appearance variations, low-resolution and semantic ambiguities.
A popular choice is the Conditional Random Fields [27] model
that describes qualitative contextual relations between region seg-
ments. Such relations are proved to be helpful in the recognition
of outdoor objects. Choi et al. [5] further studied a 2D context
model to guide detectors and produced a semantically coherent
interpretation for the given image. Felzenszwalb and Vekser [10]
applied the dynamic programming method for pixel labelling of
2D scenes with simple ”tiered” structure. These methods formu-
late scene labelling as a pixel-wise labelling problem which how-
ever ignores the hierarchical and recursive composition relations
between regions. In contrast, our method models semantic regions
using a hierarchical parse graph which can be used to understand
the input image at different levels, from pixels to regions to scene
layout.

Single-View 3D modelling has been extensively studied in
previous literature. Han and Zhu [16] studied a generative model
for reconstructing objects and plants from a single-view. Hoiem et
al. [20] explored rich geometric features and context information
to recognize normal orientation labels of 2D regions, and Heitz
et al.[18] further proposed to recognize geometric surface labels
and semantic labels simultaneously in a supervised way. Gupta et
al. [13] considered 3D objects as blocks and inferred their 3D
properties such as occlusion, exclusion and stability. However,
these methods were built on the classification of 2D segmentation,
and thus did not directly reconstruct 3D or infer depth values.
Mobahi et al. [33] reconstructed a single view by extracting low
rank textures on building faade. Saxena et al. [42] and Haene et
al. [15] ever studied a fully supervised model to build mappings
between informative features and depth values. Schwing et al. [44]
presented an exact inference method ( i.e. branch-and-bound) for
single-view indoor scene reconstruction. Pero et al. formulated the
3D reconstruction of room in a Bayesian framework and proposed
a sampling method for inference [36], [37], [38]. Ladicky et
al. [26] proposed a discriminatingly trained boosting method for
estimating surface normal.

The above mentioned methods tried to recover global 3D
scene without an explicit representation of camera model and 3D
geometric structures. In contrast, our method jointly formulates
2D region labelling problem and 3D reconstruction problem with
an attribute grammar model and explores the joint solution by
constructing an optimal hierarchical parse graph representation.
The obtained graph not only directly encodes high-quality 3D
scene model but also provides interpretable decompositions of the
input image in both 2D and 3D that are helpful to solving higher
level perception problems, e.g. object activity recognition.

Joint Recognition and Reconstruction has been investigated
for a number of computer vision tasks. Haene et al. [15]
presented a continuous-discrete formulation for jointly solving
scene reconstruction and labelling of images of multiple views.
Ladicky et al. [25] proposed to train a depth-wise classifier for
each class, used to predict semantic classes and depth maps for a
single image. Their method requires groundtruth depth maps for
training. Carbral et al. [3] tried to recover planar-wise 3D scene
model from panorama images of office areas, which extended the
previous works by Xiao et al. [50].

The other studies include jointly solving object recognition and
object modelling. Haene et al. [14] proposed to learn 3D shape
priors from surface normals which has been proved to be very
successful. Hejrati et al. [19] proposed to synthesize 2D object
instances from 3D models and used the instances to help solve
object recognition task. Schwing et al. [43] introduced a method
for recovering 3D room layout and objects simultaneously. Xiao
et al. presented a supervised method for localizing 3D cubois in
2D images [52] . They also introduced a benchmark [51] for joint
Structure-from-Motion and Object Labelling. Payet and Todorovic
[34] proposed a joint model to recognize objects and estimate
scene shape. Zhang et al. [54] proposed to reconstruct a room
using Panoramic images by exploiting both object parsing (e.g.
table detection) and scene geometry (e.g. vanishing points).

Moreover, joint formulation has also been applied for si-
multaneous tracking and reconstruction [24] [53], joint object
recognition and reconstruction [1] [29], floor-plan layout esti-
mation [30] and video reconstruction [24]. Our work follows
the same methodology and contributes an attribute grammar for
joint image labelling and scene reconstruction. The developed
techniques can be applied to the above mentioned joint tasks as
well.

Scene grammar. Koutsourakis et al. [23] proposed a shape
grammar to reconstruct building faades. The proposed model fo-
cused on rectifying faade images but not recovering 3D geometry.
Han and Zhu [17], Zhao and Zhu [56] and Pero et al. [35] built
generative scene grammar models to model the compositionality
of Manhattan structures in the indoor scenes. Furukawa et al. [11]
studied the reconstruction of Manhattan scenes from stereo inputs.
In contrast, we relax the Manhattan assumption and generalize
the scene grammar model to handle more complex and cluttered
outdoor environment. We contribute a hierarchical representation
for urban scene modelling and augment it with both semantic and
geometric attributes.

In comparison with the literature, the paper makes the follow-
ing contributions:

1) We present a grammatical model with geometric at-
tributes that tightly couples the image parsing and 3D
scene reconstruction tasks.

2) We develop a stage-wise sampling inference method that
is capable of exploiting the constrained space efficiently.

3) In experiments on both public datasets and our self-
collected datasets, our method achieves considerably bet-
ter performances than the existing methods in terms of
both 2D parsing and 3D reconstruction.

1.3 Paper Organization
The rest of this paper is organized as follows. We will intro-
duce a hierarchical scene representation in Section 2, present
a probabilistic scene grammar model in Section 3, and discuss
the inference algorithm in Section 4. We report the experiment
results in Section 5, and conclude this paper with a discussion in
Section 6.

2 REPRESENTATION: ATTRIBUTE HIERARCHY

Given an input image, our goals include: i) recovering the scene
geometry structure, ii) partitioning the scene into planar surfaces
and iii) reconstructing the planar-wise 3D scene model. These
goals can be unified as solving the optimal parse graph with
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Fig. 3. Calculation of surface normal. A planar region often contains
two sets of orthogonal parallel lines converging at two vanishing points
(x1, y1) and (x2, y2), respectively. f is the camera focal length. Thus
the surface normal is the cross-product of the two Manhattan axes
(x1, y1, f) and (x2, y2, f) in the camera coordinate (taking camera
position O as origin).

geometric and semantic attributes. In this section, we overview
the hierarchical entities of outdoor scene and their attributes.

Camera Parameter We assume that there is no distortion, no
skew, and that the principle point coincides with the image center.
Thus we need to estimate camera focal length f and camera
viewing directions. The viewing directions can be described by
Manhattan frames since we consider Manhattan type urban scenes.
We subtract principle point from the coordinate of each pixel to
facilitate representation.

2.1 Geometry Attributes from Edge Statistics

In man-made scenes, texture gradients and edges are not arbitrarily
oriented, but reflect camera orientations with respect to the scene
and surface layout in 3D space. Hence, we can extract the
geometric attributes from edge statistics.

2.1.1 Attributes of Edges and Parallel Lines

In the pinhole camera model, a family of parallel lines, i.e. sharing
the same 3D direction, in the 3D space project to straight edges
that all point to the same point on the image plane, i.e. the
vanishing point. Thus each line segment in the image has two
geometric attributes:

• A vanishing point (xi, yi) in the image plane to which an
edge points to. This can be directly obtained by clustering
oriented edges based on their directions in 2D image plane.

• A 3D direction θ = (xi, yi, f) of edges or parallel lines in
the 3D scene space where f is the camera focal length. As
Fig. 3 illustrates, it follows from perspective geometry the
ray from the camera positionO to (xi, yi) is parallel to the
families of parallel lines as well. Therefore, its direction is
the unit vector by normalizing the triple vector (xi, yi, f).

2.1.2 Attributes of Local Manhattan World

Outdoor urban scene often contains a mixture of local Manhattan
worlds [6]. Each local Manhattan world is a block of well aligned
buildings with three sets of orthogonal parallel lines. Each set
of parallel lines has a vanishing point (xi, yi) and 3D direction
θ = (xi, yi, f). We refer to the rays from camera origin O
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Fig. 4. Illustration of hierarchical entities in the attribute planar repre-
sentation and their associated geometric attributes. Each representation
entity is also entitled with a semantic attribute, i.e. the object categories
(e.g., building, sky etc.) it corresponds to.

to the vanishing points as the Manhattan axes. Thus each local
Manhattan world has the following geometric attributes:

• A Manhattan frame with three orthogonal Manhattan axes
{(x1, y1, f), (x2, y2, f), (x3, y3, f)}.

• An estimated focal length f following [4]

f2 = −(xi, yi) · (xj , yj), i 6= j ∈ {1, 2, 3}. (1)

This follows the orthogonal condition that

(xi, yi, f) · (xj , yj , f) = 0. (2)

It is worth noting that this estimated focal length will be
propagated to the scene node in the attribute parse graph. The
equation (xi, yi) ·(xj , yj) = (xk, yk) ·(xj , yj) poses consistency
conditions among the attributes of Manhattan axes.

2.2 Attribute Planar Representation
In parallel to the edges, lines/parallel lines, and Manhattan struc-
tures, the region-based hierarchy comprises of three representa-
tions: surface fragments, planar surfaces, and composite surfaces.
Fig. 4 summarizes the attribute planar representation.

We augment every hierarchical entity with both semantic
attributes and geometric attributes. The semantic attribute of an
entity, e.g. planar surface, is simply its semantic category. In this
work, we consider a few semantic categories for outdoor scenes,
including ”building”, ”tree”, ”ground”, ”sky” and ”other”. A
composite surface might include two or more than two categories.
Geometric attributes are used to describe the spatial properties of
the hierarchy, which will be introduced in the rest of this section.

2.2.1 Geometric Attributes of Surface Fragment
We assume that each super-pixel in images is the projection of a
surface fragment in space. A super-pixel is a small region of pixels
that are connected and share similar appearance features, and often
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have the same semantic label. Since these super-pixels often cor-
respond to regions in buildings or marked road/highways/ground,
which have edges or texture gradients, from which we can extract
short edges and estimate which vanishing points they belong to.

As Fig. 3 illustrates, each super-pixel has two geometric
attributes:

• Two vanishing points: {(x1, y1), (x2, y2)} and thus two
Manhattan axes {v1 = (x1, y1, f), v2 = (x2, y2, f)}.

• A surface normal direction which is the cross-product of
the two Manhattan axes n = (x1, y1, f)× (x2, y2, f).

For each superpixel, we extract its vanishing points and surface
normal from local edge statistics, which might not be necessarily
accurate. To improve robustness against noises, these statistics will
be pooled together in bottom-up process and propagated to other
nodes in the attribute parse graph. For a super-pixel that does
not contain sufficient number of edges, its surface normal will be
inferred from surrounding scene context, i.e. top-down process in
the parse graph.

2.2.2 Geometric Attributes of Planar Surface
We group spatially connected super-pixels into planar surfaces
based on two types of features. i) Appearance features. We extract
color and texture features to train a supervised classifier and
assign a region to a few categories, e.g. ’building’, ’tree’,’ etc. ii)
Geometry features. Superpixels in the same planar region should
share the same surface normal. Both features are used in the
iterative parsing process to form planar surfaces.

Each planar surface has three geometric attributes

• Two vanishing points: {(x1, y1), (x2, y2)} and thus two
Manhattan axes {(x1, y1, f), (x2, y2, f)};

• Normal direction. As aforementioned, surface normal is
simply the cross-product of the two Manhattan axes.

• A contact line and thus its 3D relative depth. The surface
plane will intersect with other planes and form the contact
lines. For example, Fig. 4 shows three planar surfaces of
the building and their ground contact boundaries which
can be approximated by straight lines respectively.

The contact lines may be occluded (e.g. between a building
faade and the ground) or blurred (line between two surfaces of
the building). Fortunately this can be solved by calculating the
intersection line between adjacent surface planes, which usually
points to one of the Manhattan axes associated with the surface
planes. These geometric attributes are sufficient to reconstruct a
planar-wise 3D scene model [21].

2.2.3 Geometric Attributes of Composite Surface
A composite surface consists of several planar surfaces that are
physically connected. These surfaces might not belong to the
same Manhattan frame. A composite surface has set of geometric
attributes that pose consistency constraints between its children
nodes in the parse graph. Its geometric attributes include:

• All vanishing points and surface normal of its planar
surfaces.

• Contact lines between adjacent surfaces.
• A linear spline fit of the contact lines with the ground.

As planar surfaces, e.g. building facade, are usually occluded
by foreground objects, e.g. vehicles and trees, and their boundaries
to the ground plane are often partially visible. In Section 4 we shall
introduce a robust method for estimating contact splines under
these severe occlusions.

2.3 Geometric Attributes of Scene
The whole scene will pool over the geometric attributes from its
components. As it is shown in Fig. 2, the root node S has the
following geometric attributes.

• Camera parameters are shared by all nodes in the parse
graph. Note that our model can be extended to reason other
camera parameters, including skew, and optical center etc.

• m Manhattan frames {(xij , yij , f), i = 1, 2, ...,m, j =
1, 2, 3.} for each local Manhattan world.

These global geometric attributes are used to constrain the
geometric attributes of the entities in the parse graph. For example,
the number of possible normal directions for planar surfaces are
determined by the number of Manhattan axes detected for the
global scene. In contrast, the past methods [22] [21] usually fix
the number of surface normal orientations during inference.

3 PROBABILISTIC SCENE GRAMMAR

In this section, we introduce a probabilistic treatment of the
proposed attribute scene grammar.

3.1 Attribute Scene Grammar
Attribute grammar was firstly proposed by Han et al. in [17]. We
extend it to model hierarchical scene representations in both 2D
images and 3D scene space.

An attribute grammar is specified by a 5-tuple: G =
(VN ,VT , S,R, P ), where VN is a set of non-terminal nodes, VT
is a set of terminal nodes, S is the root node for the whole scene,
R is a set of production rules for spatial relationships, and P is a
probability for the grammar.

These production rules can be recursively applied to generate
a hierarchical representation of the input scene, namely Parse
Graph. A parse graph is a valid interpretation of the input 2D
image and the desired 3D scene. A grammar generates a large set
of valid parse graphs for one given image of the scene.

Terminal Nodes We partition the input image into a set of
superpixels and use them as terminal nodes. Each superpixel is the
projection of a surface fragment in space. We denote all terminal
nodes as VT = {a,X(a)}, where X(a) denotes a set of attribute
variables.

Non-Terminal Nodes are sequentially produced by merging
terminal nodes or other non-terminals with grammar rules. Each
node represents a planar surface or composite surface in space.
There is one root node for the whole scene, i.e. S, and five
production rules. Every non-terminal node in parse graph can be
decomposed into children nodes or grouped with other nodes to
form parent nodes by applying the above grammar rules.

We denote all non-terminal nodes as VN =
{(S,X(S)), (A,X(A))} where S denotes the root node
for the whole scene, A non-terminal node and X(A) the
attributes of A. Fig. 5 illustrates these five rules and Fig. 2 shows
one parse graph that is capable of generating the input image.

Global and Local Attributes Each node is associated with a
number of attributes, which are either globally or locally defined.

Global attributes are defined for the root node S and inherited
by all graph nodes. X(S) includes i) a list of possible categories
(e.g.,’building’) that appear in the input image, denoted as C;
ii) geometric attributes, including the camera focal length f and
Manhattan frames detected in the input image. Formally, we have
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X(S) = (f,m, {Mi}, C), i = 1, ..,m. As aforementioned, each
Manhattan frame Mi contains three orthogonal axes.

Local attributes are defined over properties of intermediate
nodes, e.g. surface normal. These attributes are usually inherited
from the global attributes and thus should be consistently assigned.
Fig. 2 illustrates global geometric attributes in the left panel and
local geometric attributes in the right panel. Semantic attributes
are not included in the figure. Both global or local attributes are
used to impose constraints to obtain valid parse graphs.
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Fig. 5. Illustration of the five grammar rules each of which is associated
with a set of geometric attributes that imposes constraints over graph
nodes and their offsprings. Layout rule: a children planar surface is
supporting other n children entities; siding rule: two children planar
surfaces of the same label are spatially connected ; affinity rule: two
children planar surfaces have the same appearance; mesh rule: multiple
children surfaces appear in a 2D mesh structure; instance rule: links a
children terminal node and its image representation.

3.2 Probabilistic Formulation for 3D Scene Parsing
We utilize a hierarchical parse graph to explicitly encode the
attribute hierarchy (introduced in Section 2) for joint recognition
and reconstruction purposes. In particular, terminal nodes are able
to form planar configuration in imaging plane or surface normal
map of the input image; the parse graph with geometric attributes
can be used to derive a full 3D scene model for reconstruction
purpose.

Formally, let G denote the parse graph to solve,A all attributes
in G. Given an input image I, we compute a world scene interpre-
tation W in a joint solution space

W = (A,G) (3)

The optimal solution W ∗ can be obtained by maximizing a
posterior probability (MAP):

P (W |I) ∝ exp{−|VN | − λgraE(I,G,A)} (4)

where |VN | indicates the number of non-terminal nodes. We use
the first item to encourage compact parse graphs. λgra is a weight
constant .

The energy E(I,G,A) is defined over the hierarchy of G,
indicating how well G can generate the input image I. Let r(A)
indicates the grammar rule used at A. We have,

E(I,G,A) =
∑
A∈VN

βr(A)E
t(I, X(A)|r(A)) (5)

where r(A) ∈ [1..5] indicates the grammar rule associated with
A, βr(A) is a weight constant that is dependent on r(A). The
energy termEt(I, X(A)|r(A)) is associated with the nonterminal
node A and conditioned on the corresponding grammar rule r(A).

TABLE 1
Definitions of Grammar rules and their geometric attributes.

Rules Notations Geometric Attributes
R1: layout A→ (A0, A1, . . . , Am) X(A) =

(f,m,Mi, θ0, θij ,~lk, C)

R2: Siding A→ (A1, A2) X(A) = (θi,Mi,~lk, c)
R3: Affinity A→ (A1, A2) X(A) = (θ,M, c)
R4: Mesh A→ (A1, A2, . . .) X(A) = (θ,M, v1, v2, c)
R5:Instance A→ a X(A) = (θ,M)

Table 1 summarizes the definitions, e.g., geometric attributes,
of all grammar rules. In the rest of this subection, we introduce
the definitions of five grammar rules.

3.2.1 Grammar Rule R1: Layout

The Layout rule R1 : A → (A0, A1, . . . , An) states that a
planar surface A0 is supporting n entities. In this work we assume
that all stuffs (objects, building, etc) in the scene are standing
on ground. A0 indicates the ground region in images (e.g. grass,
road, side walk etc.), and A1, . . . , An indicates the n children
surfaces or composite surfaces produced by other grammar rules.
Fig. 5 illustrates the use of R1, which merges two building
blocks/surfaces and the ground. The rule R1 is used to generate
the root node S.

The geometric attributes of S include both global attributes
and local attributes defined over its children nodes. The former
includes, a list of possible categories, camera focal length f and
m Manhattan frames. Each Manhattan frame includes three axes
in space that are orthogonal to each other. The later includes the
normal directions of children surfaces, e.g., θ0 for A0, and the
contact lines between A0 and each of the m entities, denoted as
~lk . Formally, we have X(S) = (f,m,Mi, θ0, θij ,~lk, C), i, k =
1, . . . , n, where θij represents one of the normal orientations in
the ith children node, C a list of category labels.

We use continuous splines ~lk to represent contact boundaries
between A0 and {Ak}s, which are assumed to be piece-wise lin-
ear. Fig. 6 illustrates four typical scenes where contact splines are
highlighted in red. A piece-wise linear spline consists of several
control points and straight lines between them. Each straight line
corresponds to the contact boundary of a planar region. In urban
images, a contact line is usually parallel to one of the parallels
families falling in the support region. This gives rise to a useful
observation: if we can detect local edges in the given planar region
and cluster these edges to parallel families, the direction of a
contact line can be simply determined. With this observation, we
will develop an effective search algorithm for discovering contact
splines in Section 4.

We define the energy function forR1 from two aspects. Firstly,
the normal direction of the surface A0 and other children surfaces
should be as distinct as possible. This is different from the previous
works [13] [22] which assume orthogonality between connected
surfaces. Secondly, contact lines are likely to go through VPs that
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have edges falling in Ak. Thus, we have,

Et(I, X(A)|R1) =
∑
i,j

Dcos(θ0, θij) + λlay
∑
l∈~lk

minDcos(l, v)

∀v ∈ M,M ∈ X(Ak) (6)

where l indexes the line segment in the spline~lk, M the Manhattan
world in X(Ak), Dcos the cosine distance between two directions
or two straight lines in 3D space. Note that v indicates one of the
Manhattan axes in the Manhattan world associated with Ak.

3.2.2 Grammar Rule R2: Siding
The siding rule R2 : A → (A1, A2) states that two planar
surfaces or composite surfaces of the same label are spatially con-
nected in the scene. The parent node A is a composite surface and
the children nodes A1, A2 could be planar surfaces of composite
surfaces. It requires that children surfaces share the same semantic
label (e.g. building) but have different normal orientations. These
surfaces are usually, but not necessarily, orthogonal with each
other.

The attributes of R2 include X(A) = {(θi,Mi),~lk, c}, where
θi is normal direction of the children surface Ai, i = 1, or 2,
Mi the Manhattan frame associated with Ai, ~lk the contact line
between children surfaces, and ci the semantic label.

The energy function for R2 is derived from two aspects.
Firstly, two siding surfaces should have as distinct normal as
possible, which is the case in most of the urban images. Secondly,
the contact line of A is likely to point to the vertical VP, denoted
as v0, as illustrates Fig. 5 illustrates. Formally, we have,

Et(I, X(A)|R2) =
∑
i6=j

Dcos(θi, θj) + λsid
∑
k

Dcos(~lk, v0) (7)

where λsid is a weight constant. Taking the production rule
R2 : A → (A1, A2) as example, the energy in Eq. (7) shall
be minimized if A1 and A2 are orthogonal and they are split by a
ray in image starting from the vertical VP.

Note that the semantic attributes c are used as hard-constraints:
a graph node of R2 is only valid when the two children surfaces
A1 and A2 share the same label.

Fig. 6. Illustration of piece-wise linear spline model for the contact
boundaries of composite surfaces that comprise of groundplane and
buildings. Each spline consists of several control points and the straight
lines between these points. Note that each straight line correlates with
one planar region in the composite surface.

3.2.3 Grammar Rule R3: Affinity
The affinity rule R3 : A → (A1, A2) states that two planar
surfaces have similar appearance and thus should belong to the
same planar surface. The children surfaces A1 and A2 should
be spatially connected in 3D scene. In practice, since they could
be disjoint in image due to occlusions, we allow the grouping

of disjoint regions by this rule if they have high affinity in
appearance. The attributes of A are defined as X(A) = (θ,M, c)
where θ is the normal direction , M the related Manhattan frame,
and c the semantic label, which are shared by the two children
surfaces.

The grammar rule R3 requires that the children surfaces A1

and A2 should have the same surface normal. Thus, the geometric
attributes serve as hard constraints and we only utilize the appear-
ance information to define the energy function Et(I, X(A)|R3).

The energy function for R3 include both unary terms and pair-
wise terms, all of which are defined over superpixel partition of
the parent surface A. Let s and t index two neighbor superpixels,
cs the semantic label of superpixel s. We have,

Et(I, X(A)|R3) =
∑
s

φs(cs) + λaff
∑
s,t

1(cs = ct) (8)

where φs(cs) returns the negative class likelihood ratio, and 1() is
an indicator function. Like [46], we estimate φs(cs) by applying
a non-parametric nearest neighbor estimator over training data.
The second term is defined as a Potts/Ising model to encourage
homogeneousness of labelling.

We estimate surface normal based on edge statistics, as in-
troduced in Section 2. However, if an image region does not
contain any local edges, there is no cue to tell its normal direction
directly, and we need to infer its normal from the scene context.
In Section 4, we shall introduce a robust inference method to deal
with these uncertainties.

3.2.4 Grammar Rule R4: Mesh
The mesh rule R4 : A → (A1, A2, A3, ...) states that multiple
surfaces are arranged in a mesh structure. Children surfaces
should be spatially connected to each other and share the same
normal direction. In perspective geometry, a mesh structure in
image plane can be described by two orthogonal VPs. Formally,
the attributes of A include: X(A) = (θ,M, v1, v2, c), where
v1 = (x1, y1, f), v2 = (x2, y2, f) are the coordinates of two
VPs, θ = v1 × v2 is the normal direction of A, c the semantic
label. The children surfaces share the same normal direction θ
with A.

The energy function for R4 is defined over edge statistics. As
Fig. 6 illustrates, straight edges in a mesh region usually merge
at two VPs. Let E(A) denote the set of local edges in A, and
lj = (xj , yj , ~dj) ∈ E an edge at the position (xj , yj) with the
orientation ~dj . Let vi denote the image coordinate of the VP vi.
If an edge lj points to vi, we have (xj , yj) + λmes

j
~dj = vi. Thus,

we define Et(I, X(A)|R5) as:

Et(I, X(A)|R4) =
∑

lj∈E(A)

min
i,λmes

j

‖vi − (xj , yj)− λmes
j
~dj‖2 (9)

where i = 1, 2. This least square energy term is minimized while
all edges in the mesh region exactly point to one of the two VPs,
i.e. v1 or v2.

3.2.5 Grammar Rule R5: Instance
An instance rule R5 : A → a instantiates a terminal node,
i.e. a superpixel or a surface fragment, to image representations,
including both texture appearances and edge segments. Fig. 5
illustrates how the grammar rule R5 links a non-terminal node to
two image representations: histogram of oriented gradient (HoG)
and straight edge map.
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The potential Et(I, X(A)|R5) is defined over two aspects: i)
the appearance of individual pixels in the region of A should be
homogeneous; ii) the directions of local straight edges should be
consistent with the Manhattan frame assigned or inherited from
the parent nodes of A. Let Ii and Ii denote two neighbor pixels in
region A, we have:

Et(I, X(A)|R5) =
∑
i,k

g(Ii, Ik) + λins
∑

l∈E(A)

minDcos(l, v)

∀v ∈ M,M ∈ X(A) (10)

where g(Ii, Ik) returns the negative confidences of two pixels
being homogeneous, λins is a weight constant. The model g(Ii, Ik)
is directly estimated by the superpixel partition method [40] with
both HoG features and edge features. The second term is used
to encourage that all edges in A should be parallel to one of the
Manhattan axes in X(A).

Fig. 2 shows an exemplar parse graph generated by the
proposed grammar. Each grammar rule describes a kind of spatial
relationship, e.g., R1 for supporting, R2 for being co-block, R3

and R4 for being co-planar. These simple rules are capable of
producing a large number of tree-structure representations whereas
only a portion of them are valid. It is worth noting that the tree
structures are augmented to be parse graphs by linking nodes in the
same layer that are spatially connected. This graph representation
encodes both 2D appearance and 3D geometric properties of the
hierarchical scene entities (as introduced in Section 2).

4 INFERENCE

Our inference algorithm aims to construct an optimal parse graph
by sequentially applying the grammar rules to maximize a pos-
terior P (W |I). This task is challenging because: a) the optimal
parse graph does not have a pre-defined structure; b) the attribute
constraints over attribute hierarchy are of high-order.

We develop a stage-wise method to solve the optimal parse
graph, which includes three major stages. Firstly, we introduce
an efficient algorithm to calculate camera parameters, i.e. the
geometric attributes of the root node S and fix the parameters A
throughout inference. Note that the semantic attributes of S (i.e.,
category labels) are manually set. Secondly, we solve the region
labelling to optimization by minimizing the energy function of
Eq. (8), w.r.t superpixel labels cs. Eq. (8) is a typical MRF type
energy function that consists of a unary term and a regularization
term of Potts/Ising prior. It can be efficiently solved by the loopy
belief propagation (LBP) method [9]. We use the results of region
labelling to initialize the desired parse graph. Finally, we introduce
a data-driven Monte Carlo Markov Chain (DDMCMC) method to
sample the posterior probability P (I|W ).

Algorithm 1 summarizes the proposed inference algorithm.
It includes two bottom-up computation steps and an iterative
sampling step that simulates the Markov Chain with a set of
dynamics. The first two steps are used to narrow the search space
and thus speed up the sampling procedure. We introduce these
steps in the rest of this section.

4.1 Bottom-up Computation: Calibration by Heuristic
Search
We develop a stochastic heuristic search procedure to solve the
optimal camera focal length and Manhattan frames. We first utilize
the hough transform based voting method by Li et al. [28] to

detect families of parallel lines and their associated vanishing
points (VPs). Next, we apply Eq. (1) over every pair of parallel
families to estimate the camera focal length, by assuming they
are orthogonal to each other. Let S denote the number of pairs
of parallel families. We associate a binary variable to every pair,
denoted as di ∈ [0, 1]. di = 1 if the ith pair of families is
orthogonal otherwise di = 0. Thus, we can solve camera focal
length by minimizing the following objective:

min
f̂ ,{di}

1

S

S∑
i=1

‖difi − f̂‖ (11)

where fi is the estimation of the camera focal length from the
ith pair of parallel families (by assuming they are orthogonal and
applying Eq. (1)), f̂ denotes the estimation of the camera foal
length.

To optimize Eq. (11), we introduce a heuristic search proce-
dure. It starts with initializing at random {di} followed by two
iterative steps. Step 1: estimate focal length fi from the ith pair if
di = 1 and average over all estimations to get f̂ ; Step-2: assign di
to be 1 with the probability of 1/{1 + exp(|fi − f̂ |)}. We iterate
these two steps until convergence.

4.2 Bottom-up Computation: Belief Propagation for Re-
gion labelling
The goal of this step is to assign every superpixel of the input im-
age to one of the five semantic labels, including ’sky’, ’building’,
’ground’, ’trees’ and ’other’. This is equal to estimate the optimal
superpixel label assignment so as to minimize the energy function
of Eq. (8) w.r.t. the superpixel labels cs.

We estimate the unary term in Eq. (8) as follows. Each su-
perpixel is described using 20 different features, including shape,
location, texture, color and appearance [46]. We first extract these
features for training images and store with their class labels. Next,
we associate a semantic label with a training superpixel if 50%
or more of the superpixel overlaps with the ground truth segment
mask of that label. In the following, we compute class likelihood
ratio for each superpixel in the testing image, using the nearest
neighor estimator [46]. Last, the labelling of a testing image is
obtained by simply assigning each superpixel to the class that
maximizes the likelihood.

We use the efficient loopy belief propagation algorithm by
Felzenszwalb et al. [9] to finalize the labelling. We consider the
min-sum algorithm that works by passing messages around the
graph defined by the connected grid of superpixels. Each message
is a vector of dimension given by the number of possible labels,
5 in this work. Since the smoothing term ϕ<s,t,> is semi-metric,
the propagation algorithm can converge in O(|C|NT ) time where
|C| is the number of labels, N is the number of superpixels, and T
is the number of iterations. Each iteration of the message updates
is very fast since we only have |C| = 5 candidate labels. We fix
the maximal iteration number to be 10.

4.3 Iterative MCMC sampling
Following the computations of camera calibration and region
labelling, we design a data-driven Markov Chain Monte Carlo
sampling algorithm (DDMCMC) [47] to search for the optimal
parse graph. It starts with an initial parse graph that includes one
root node and a set of terminal nodes, as illustrated in Fig. 7
(a) . In the following, we further merge neighbor terminal nodes
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Algorithm 1 Building Parse Graph via attribute Grammar .
1: Input: Single Image I;
2: Partition I into superpixels;
3: Bottom-up: calibration by heuristic search (Section 4.1);
4: Bottom-up: region labelling by belief propagation method

(Section 4.2);
5: Initialize the parse graph G ;
6: Iterate until convergence,

- Randomly select one of the five MCMC dynamics
- Make dynamic proposals accordingly to reconfigure

the current parse graph;
- Accept the change with a probability

(a) (b)

(c)

S

a1 a2 ...

A

A1 A2 A3

A

A1 A2

A3B

Fig. 7. Diffusion and jump dynamics. (a) initial status of parse graph that
includes a root node and terminal nodes; (b) jump dynamic: birth (from
left-hand to right-hand) or death ( from right-hand to left-hand) of non-
terminal nodes; (c) diffusion dynamic: regrouping superpixels.

or superpixels that have the same semantic label to obtain non-
terminal nodes of the grammar rule R3. This step is greedily
conducted and the resulted parse graph will be refined by the later
iterative steps.

In the following, we reconfigure the graph by a set of Markov
Chain Monte Carlo (MCMC) dynamics. These dynamics are either
jump moves, e.g. creating new graph nodes or deleting graph
nodes, or diffusion moves, e.g. changing node attributes. Diffusion
dynamics move the solution in a subspace of fixed dimensions
whereas jump dynamics walk between subspaces of varying di-
mensions. These dynamics are paired to make the solution status
reversible, i.e. creating nodes paired with deleting nodes, changing
attributes paired with itself. These stochastic dynamics are able to
guarantee convergence to the target distribution p(W |I).

Formally, a dynamic is proposed to drive the solution status
from W to W ′, and the new solution is accepted with probability,
following the Metropolis-Hastings strategy [47] . The acceptance
probability is defined as,

α(W →W ′) = min(1,
P (W ′|I)Q(W →W ′)

P (W |I)Q(W ′ →W )
) (12)

where Q(W ′ →W ) is the proposal probability.
We adopt five types of MCMC dynamics that are used at

random with probabilities. The dynamics 1 and 2 are jump moves
and other dynamics are diffusion moves.

Dynamics 1-2: birth/death of nonterminal nodes are used to
create or delete a nonterminal node and thus transition the current

parse graph G into a new graph G′ as illustrated in Fig. 7.
The proposals for creating a nonterminal node was made by

first selecting at random one of the four grammars, R1, ..., or R4.
Next, for the selected grammar rule, we obtain a list of candidates
that are plausible according to the predefined constraints. Taking
R2 as example, two children nodes should i) have different
normals; ii) be spatially connected and iii) be assigned to the same
semantic label. Each candidate in this list is represented by its
energy. Let Bki denote the ith candidate for the grammar rule Rk,
its energy is Et(I, X(Bki )|Rk). The list is as follows,

Lb = {Bki , Et(I, X(Bki )|Rk), i = 1, 2, ...} (13)

The proposal probability for selecting Bki is calculated from the
weighted list,

Q(W →W ′) = 1− Et(I, X(Bki )|Rk)∑
j E

t(I, X(Bkj )|Rk)
(14)

Similarly, we obtain another set of candidate nodes to delete
based on their energies,

Ld = {Dk
i , E

t(I, X(Dk
i )|Rk), i = 1, 2, ...} (15)

The proposal probabilities for deleting the node Dk
i is calculated

as follows:

Q(W →W ′) =
Et(I, X(Dk

i )|Rk)∑
j E

t(I, X(Dk
j )|Rk)

(16)

Dynamics 3-4: Merge/split regions are used to re-label the
superpixels around the boundaries between different semantic
regions (e.g. ’sky’ and ’building’). These jumps are used together
to polish the image labelling by the bottom-up computation in
subsection 4.2. Fig. 7 (c) illustrates one typical example.

We obtain the list of candidate proposals for the merge/split
dynamics as follows. Firstly, we take the superpixels on the
boundaries of two neighbor regions as graph nodes. These su-
perpixels are usually with big ambiguities and the discriminative
methods [9] do not necessarily work well. Secondly, we link all
neighbor nodes to form an adjacent graph, and measure the links
between adjacent nodes with appearance similarities. Thirdly, we
sample the edge status of ’on’ or ’off’ based on edge similarities to
obtain connected components (CCP). We select one of the CCPs
and change its semantic label to get a new solution state W ′. This
procedure is similar to that used by Barbu et al. [2] for graph
labelling task. Let CCPki denote the ith CCP, h(CCPki |W ) denote
its label confidence in the solution W , the list of proposals is
denoted as follows,

Lm = {CCPki , h(CCPki |W ), h(CCPki |W ′), i = 1, 2, ..., } (17)

The proposal probability for selecting the ith candidate is defined
as follows:

Q(W →W ′) =
h(CCPki |W ′)/h(CCPki |W )∑
j h(CCPkj |W ′)/h(CCPkj |W )

(18)

Dynamic 5: Switching Geometric Attributes We design two
diffusion dynamics to change the geometric attributes of graph
nodes. As aforementioned, the geometric attributes of the root
node, including camera focal length and Manhattan frames, are
calculated and fixed throughout the inference. The geometric at-
tributes of nonterminal nodes mainly include their respect normals
and contact splines.
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Switching Normal θ. In local Manhattan world, every normal
direction corresponds to a Manhattan axe or a family of parallel
lines. To determine the normal of a surface region, we simply de-
termine for every edge in this region its vanishing point of parallel
familiy [28] and accumulate all assignments to find two mostly
used orthogonal VPs. These two VPs can be used to determine
surface normal. Fig. 3 illustrates the geometric relations between
surface normal and local edge statistic. Since edge direcitons
include many noises, we use the estimated surface normal to
initialize the geometric attirbutes of graph nodes at the beginning
and refine it in the probabilistic framework. In particular, during
inference, we select at random one of the planar surfaces and
change its normal randomly. We set the proposal probability to
be constant so the acceptance probability is simply based on the
posterior probability ratio.

Estimating Contact Spline ~l. This dynamic is used to greedily
estimate the contact spline for each composite surface. We take
the grammar rule R1: A → (A0, A1, A2, ..., An) for instance to
introduce our method for estimating contact spline. As aforemen-
tioned, a contact spline consists of control points and straight lines
between them, representing the boundary between the children
surface Ai and the supporting surface A0. Our method is based
on the following observation: a contact line of A is likely to go
through one of the VPs associated with A.

Let V denote the set of vanishing points (VPs), Ei the set of
edges with two end points: < lis, l

i
t >∈ Ei in the children surface

Ai . Let Bi denote the set of boundary points and bij ∈ Bi the
point coordinate. Let vi denote the VP that the contact line <
ci−1, ci > points to. Our goal is to infer n+1 control points {ci},
and search for the associated VP for each of the n contact lines,
denoted as vi. Such two goals can be achieved by minimizing the
following function:

min
{ci,vi}

∑
i,j,k

Dist(ci−1, ci, vi) + λbdDist(ci−1, ci, bij) (19)

+λedDist(lis, l
i
t, v

i)

s.t. vi ∈ V, bij ∈ Bi, < lis, l
i
s >∈ Ei

where the function Dist(ci−1, ci, vi) returns the minimal distance
between the point vi and the line < ci−1, ci >. λbd and λed are
two constants. Eq. (19) minimizes the following three types of
distances.

1) Dist(ci−1, ci, vi) , the distance between the desired con-
tact line and its associated VP;

2) Dist(ci−1, ci, bij), the distance between the desired con-
tact line and each of the boundary points, used to min-
imize the errors of fitting the boundary pixels with the
solved spline;

3) Dist(lis, l
i
t, vi), the distance between an edge segment in

Ai and the desired VP vi.
In general, Eq. (19) is a NP-hard optimization problem. Fortu-

nately, the feasible space is not huge and thus even an exhaustive
search method is computationally acceptable. In order to deal with
outliers and noises, we use the RANSAC technique to search for
the approximate solution. We always greedily solve the optimal
contact spline, in order to reduce the computational complexity of
our inference. Fig. 6 shows four exemplar results of our approach.
It is worthy noting the ground boundaries could be partially
occluded or even fully occluded by objects (e.g. vehicles) or stuffs
(tree). The proposed method can predict the correct contact lines
because edge statistics from surfaces are used for reasoning.

5 EXPERIMENTS

In this section, we apply the proposed algorithm to recover 3D
model from single-view, and evaluate it in both qualitative and
quantitative ways.

5.1 Evaluation Protocols
Datasets. We use four datasets for evaluations. The first one is
the CMU dataset collected by Hoiem et al. [22] and we use a
subset of 100 images provided by Gupta et al. [13]. Annotations
of occlusion boundaries and surface normals are provided. The
surfaces are labelled with three main classes: ’ground’, ’sky’
and ’vertical’, and the ’vertical’ class is further divided into five
subclasses: ’left’, ’center’, ’right’, ’porous’, and ’solid’. There are
only three possible orientations for vertical surfaces. Note that
our method associates normal orientations with Manhattan frames
and a scene of local Manhattan world might have more than three
frames. To utilize these datasets, we arrange the discovered surface
normals from left-hand to centroid to right-hand and link them the
labels of ’left’, ’center’ and ’right’. We used the first 50 images
for training and the rest for testing as [13].

We further collect three datasets from different sources and
manually annotates VPs, region labels and surface normal ori-
entations. The first dataset LMW-A consists of 50 images from
the collections in [22], and there are 4.6 VPs per image on
average. The second dataset LMW-B consists of 50 images from
the dataset of EurasianCities in [7] with 4.2 VPs per image on
average. The third one LMW-C consists of 950 images selected
from the PASCAL VOC [8] and Labelme projects [41]. There are
3.5 VPs per image on average. These three datasets are used for
testing only and our model is trained on the CMU dataset.

Model Training We utilize an empirical study of log-likelihood
over training samples to estimate the optimal parameters in the
model p(W |I), including the λs, βs and the kernel widths used
for the exponential functions. For each of these parameters we
empirically quantize its possible values, e.g. 0.1, 0.3, ..., 1 for β1.
Our goal is to select the optimal value for each parameter, i.e. the
optimal parameter configuration. For a training image, with every
possible parameter configuration, we need to simulate a parse
graph that is unknown from the provided surface normal map.
To do so, in Algorithm 1, we did not call the step 4 for region
labelling, and only use the dynamics 1-2 (birth/death of non-
terminal nodes) and dynamic 5 (switching geometric attributes).
This revised Algorithm 1 usually converges within a hundred of
iterations (with dozens of graph nodes). We calculate the log likeli-
hood log p(W |I) after convergence. Thus, we select the parameter
configuration that achieves the maximum log-likelihood. Similar
simulation based maximum likelihood estimation (MLE) method
has been used in previous works [47] [56].

Since the parse graph is unknown, for each possible parameter
configuration we apply the inference method with in Section 4 to
simulate a parse graph from the groundtruth surface normal map.

Implementation of Algorithm 1 We resize images so the
maximal dimension is 500 pixels and use the method by Ren et
al. [40] to partition each image into 200-300 superpixels. We set
the maximal iteration numbers to be 2000. It costs 5-6 minutes
for Algorithm 1 to converge on a Dell Workstation (i7-4770
CPU@3.4GHZ with 16GB memory).

Baselines We compare our method to two previous methods:
i) the geometric parsing method by Hoiem et al. [22], ii) the
method by Gupta et al. in [13]. Both methods can recover the
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Fig. 8. Focal length estimation. (a) Input image overlaid with parallel
families of edges (colored); (b) focal length estimated by orthogonal
pairs of VPs; (c) focal length estimated by non-orthogonal pairs of VPs.
The true focal length is 500 (red dotted lines).

three main geometric classes and the five vertical subclasses. We
use the default parameters in their source codes.

We further implement three variants of the proposed method in
order to evaluate the effects of individual grammar rules. i) Ours-
I, that uses grammar rules R1 (layout), R2(siding), R4(mesh),
and R5 (instance) to explore geometric relationships between
lines/edges, e.g. orthogonality or co-linear. ii) Ours-II, that uses
grammar rules R3 (affinity) and R5 (instance)to explore appear-
ance affinity between regions/superpixels. iii) Ours-III, that uses
all grammar rules. All these implementations have to include R5
to get likelihood. In addition, we include the region labelling re-
sults of the Belief Propagation algorithm for comparisons, denoted
as BP.

5.2 Results
Camera Calibration We first demonstrate how the orthogonality
conditions of parallel families can be used to estimate camera
focal length, as introduced in Section 4.1. We use the image
shown in Fig. 8(a), where one vertical VP and four horizontal VPs
are detected. Fig. 8(b) plots the estimated focal length (vertical
direction) by solving Eq. (1) on four orthogonal pairs of VPs, i.e.
the vertical VP and each of the four horizontal VPs. Fig. 8(c) plots
the focal length estimated from non-orthogonal pairs of horizontal
VPs by solving Eq. (1). The true focal length is 500 for this image,
plotted as red dotted lines in both figures.

We can observe that i) in Fig. 8(b), the estimated focal
lengths are roughly same (low variance) and the average focal
length 510 is quite close to the true value (high accuracy); ii) in
Fig. 8(c), in contrast, the estimations are with large variance, and
most of them are not close to the true value. Therefore, we can
jointly estimate focal length and orthogonality conditions between
parallel families. To do so, we use the heuristic search method (see
Section 4.1) to minimize Eq. (11).

Qualitative Evaluations Fig. 9 visualizes how Algorithm 1
converges over iterations. There are three main stages, stage-1:
camera calibration, stage-2: region labelling and stage-3: iterative
MCMC sampling. In the first row of Fig. 9, we plot the input
image, and the surface normal maps obtained by the stage-2 and
stage-3 (after 100 iterations) of Algorithm 1. In the second row we
plot three surface normal maps after 300, 500 and 1000 iterations.
The figures are overlaid with contact splines when applicable. We
can observe that surface normal maps are continuously refined
by the iterative MCMC sampling algorithm. In the third row of
Fig. 9 we plot the convergence curve of Algorithm 1, i.e., energy
E(I,G,A) w.r.t iterations. Note that we only plot the energie in
the Stage-3. We also plot the convergence curve of the previous
method [31]. In order to make side-by-side comparisons, we scale
the two curves so that they start from the same energy. We can
observe that Algorithm. 1 converges after 1000 iterations which

Input Image Stage-2 Stage-3: iteration100
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Fig. 9. Convergence of Algorithm 1. Row-1: input image, surface normal
maps obtained by stage-2 and stage 3 (after 100 iterations. Row-2:
three results obtained during stage 3 after 300, 500 and 1000 iterations.
Each color indicates a unique normal orientation. Row-3: energy over
iterations, i.e. convergence curve.

is a lot faster than [31]. The reasons are two folds: i) the bottom-
up computation step for region labelling in Algorithm 1 provides
a good initialization to the MCMC sampling process; and ii)
the newly introduced five dynamics are more effective than the
dynamics used in [31].

Fig. 10 shows some exemplar results of Ours-III on the CMU
dataset [22]. In each cell, we plot (a) the input image overlaid
with families of parallel lines, where each color indicates one
family; (b) the layout partition where each color indicates one
planar surface with unique normal; (c) the estimated depth map
where darker pixels indicate being closer to the camera and vice
versa; (d-e) the synthesized images from novel viewpoints; (f) the
depth map estimated by [22]; and (g) the parse graphs created
during inference. In Fig. 10 (g) we only show the top levels of
the parse graph where each colored rectangle corresponds to one
planar surface in subfigure (b) with the same color. Our results are
promising considering that only a single viewpoint of the scene is
available. Taking the first example for instance, since the far-right
building region in purple is occluded by vehicles and trees, none
of the previous methods can tell where is the contact line between
this facade and the ground. Our approach, however, is able to infer
the contact line from the edge statistics extracted from this region.
In particular, parallel lines in this region suggest the contact line
is likely to go through the VP in green. The estimated contact line
in (c) is very accurate.

In addition, one can observe that the image in the second
row of Fig. 10 follows the typical Manhattan World assumption,
while other images only follow the Mixture Manhattan World
assumption as they contain more than 2 horizonal VPs or the
horizontal VPs are not orthogonal with each other. For the second
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Fig. 10. Exemplar results on CMU dataset. (a) Input image overlaid with
families of parallel lines; (b) surface normal map; (c) estimated depth
map; (d-e) newly synthesized views;(f) depth map by Hoiem et al. [22];
(g) estimated parse graph where the colored rectangles correspond with
the semantic region in subfigures (b).

image, both [22] and our method can produce reasonable depth
maps. For the other images, however, [22] tends to assign the
same depth to the surfaces of ’vertical’, whereas our method
can still produce high-quality depth maps. These exemplar results
well demonstrate how geometric attributes propagate through the
hierarchical parse graph to help create accurate 3D models.

Fig. 11 and Fig. 12 show results of our method on the datasets
LMW-A and LMW-B, respectively, and compare to the method
by Hoiem et al. [22] . In each cell, we show (a) input image
overlaid with parallel families; (b) superpixel partition overlaid
with VPs; (c) surface normal map by our method; (d) depth map
by our method; (e-g) three novel viewpoint synthesized; and (h)
depthmap by [22]. All these images do not satisfy the Manhattan
assumption . From the comparisons between (d) and (h), we can
observe that our method is capable of creating better 3D models.

Fig.13 show exemplar results of our method on the dataset
LMW-C. While the recovered 3D scene models are consider-
ably accurate, these results demonstrate a few drawbacks of the
proposed method. Firstly, our current model does not deal with
foreground objects, e.g. vehicle in the first image, pedestrian in
the second image; Secondly, our method cannot work well for
structure-less regions, e.g. tree or plants in the third and the fourth
images, that do not include rick geometric regularizations. Thirdly,
our method assumes surface regions to be planar-wise which might
not be true, e.g. the image in the second row of Fig.13.

We further apply the proposed method Ours-III over a few
indoor images and show a few exemplar results in Fig. 14. We

Fig. 13. Results on the LMW-C dataset. Column-1: input image; Column-
2: surface normal map; Column-3: newly synthesized view .

Fig. 14. Results on indoor images. Column-1: input image; Column-2:
surface normal map; Column-3: newly synthesized view. The images
are collected for DARPA MSEE project.

plot the input images, layout segmentation and newly synthesized
views in columns from left-hand to right-hand. For these scenes,
we consider three categories: floor, ceiling, and wall. Other im-
plementation details remain the same as Ours-III. From these
results, we can observe that the recovered layout segmentations
are very accurate even when there are clutters in front of the
scene entities, e.g. walls are occluded by sofas (first image) or
tables ( third image). The obtained 3D models, however, can
be further improved by reconstructing foreground objects, e.g.
persons, tables, pillars etc.

Quantitative Results We report the numerical comparisons
of the various methods in term of normal orientation estimation
and region labelling. For normal orientation estimation, we use
the metric of accuracy, i.e., percentage of pixels that have the
correct normal orientation label, and average accuracies over
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Fig. 11. Exemplar results on LMW-A dataset. For each cell, we show (a) input image overlaid with families of parallel lines; (b) superpixel partition
overlaid with vanishing points; (c) obtained surface normal map; (d) estimated depth map; (e-g) newly synthesized views; (h) depth map by Hoiem
et al. [22] .

(e) (f) (g) (h)(a) (b) (c) (d)

(e) (f) (g) (h)(a) (b) (c) (d)

Fig. 12. Results on the LMW-B dataset. For each cell, we show (a) input image overlaid with families of parallel lines; (b) superpixel partition overlaid
with vanishing points; (c) obtained surface normal map; (d) estimated depth map; (e-g) newly synthesized views; (h) depth map by Hoiem et al. [22]
.

test images. On the estimation of main geometric classes, i.e.,
’ground’,’vertical’, and ’sky’, both our method and the baselines
can achieve 0.98 accuracy or more in term of normal orientation.
Therefore, we focus on the vertical subclasses, like [13]. We
discard the superpixels belonging to ground and sky and evaluate
the performance of all methods.

Table 2 reports the numerical comparisons on four datasets.
From the results, we can observe the following. Firstly, the
proposed Ours-III clearly outperforms other baseline methods
on all the four datasets. Taking the CMU dataset for instance,
the method by Gupta et al. [13] has an average performance of
73.72%, whereas ours performs at 79.53%. On the other three
datasets that have accurate normal orientation annotations, the
improvements by our method are even more. As stated by Gupta
et al. [13], it is hard to improve vertical subclass performance.
Our method, however, can improve these two baselines with
large margins. Secondly, Ours-III clearly outperforms other two

variants, i.e., Ours-I and Ours-II that use less types of grammar
rules. These comparisons justify the effectiveness of the proposed
joint inference framework. Thirdly, Ours-III has good margins
over our previous method [31]. Although [31] follows the same
methodology, this work polish the modelling and inference (see
Section 1.2) that improve the final results further.

Table 3 reports the region labelling performance on the four
datasets. We use the best spatial support metric as [13], which
first estimates the best overlap score of each ground truth labelling
and then averages it over all ground-truth labelling. Our method
improves the method [13] with the margins of 9.47, 12.02, 9.96,
8.60 percentages on the four datasets, respectively. It is worthy
noting that all the three variants of our methods outperform the
baseline BP that provides initializations of region labelling. These
comparisons show that jointly solving recognition and reconstruc-
tion can bring considerable improvements over recognition.



14

TABLE 2
Numerical comparisons on normal orientation estimation

CMU dataset [22] LMW-A LMW-B LMW-C
Gupta et al. [13] 73.72 % 62.21 % 59.21 % 58.39
Hoiem et al. [22] 68.8 % 56.3 % 52.7 % 53.28

Liu et al. [31] 76.34 % 67.90 % 64.30 % 62.34
Ours-I 74.24 % 67.35 % 63.18 % 60.41
Ours-II 75.87 % 68.39 % 64.29 % 62.78
Ours-III 79.53 % 71.40 % 68.51 % 65.92

TABLE 3
Numerical comparisons on region labelling

CMU dataset [22] LMW-A LMW-B LMW-C
BP 65.23% 55.23% 58.72 % 56.34

Gupta et al. [13] 68.85% 59.21% 60.28% 60.19
Hoiem et al. [22] 65.32 % 58.37% 57.7 % 59.25

Liu et al. [31] 72.71% 66.45% 65.14 % 63.17
Ours-I 69.34% 68.09 % 63.75 % 62.32
Ours-II 75.69% 70.15 % 65.91 % 65.47
Ours-III 78.32% 71.23 % 70.24 % 68.79

6 CONCLUSIONS

This paper presents an attribute grammar for 3D scene recon-
struction from a single view. We introduces five grammar rules to
generate a hierarchical image representation for both 2D parsing
and 3D reconstruction purposes. The developed inference method
can fully exploit the constrained space efficiently by optimizing
both the 2D surface layout and the geometric attributes required
for creating full 3D scene model. Extensive evaluations on public
benchmarks show that our method outperforms other popular
methods by achieving state-of-the-art in single-view 3D scene
reconstruction.

Our method is currently limited to the reconstruction of back-
ground structures, e.g. building, ground, and tree etc. The devel-
oped representation and formulations, however, can be extended
to parse foreground objects as well, e.g. car, human etc. This is
actually equal to jointly solving object detection, scene parsing
and 3D scene reconstruction together. Similarly, the 3D position
or pose of an object shall be regularized by the global geometric
attributes, e,g. camera focal length, camera viewpoint.

This work contributes a generic framework for jointly solving
2D recognition problems, e.g. classification, detection, recogni-
tion, tracking, etc., and 3D reconstruction problems, e.g. camera
calibration, depth estimation, geo-localization, etc. There are two
particular directions to exploit in the future: i) developing new
solution for existing joint tasks, e.g. calibration from tracking [12];
ii) motivating novel vision tasks, e.g. jointly solving tracking and
geo-localization. We shall push these two directions in the future.
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