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Abstract—Natural scenes contain a wide range of textured motion phenomena which are characterized by the movement of a large

amount of particle andwave elements, such as falling snow, wavywater, and dancing grass. In this paper, we present a generativemodel

for representing these motion patterns and study a Markov chain Monte Carlo algorithm for inferring the generative representation from

observed video sequences. Our generative model consists of three components. The first is a photometric model which represents an

image as a linear superposition of image bases selected from a generic and overcomplete dictionary. The dictionary contains Gabor and

LoG bases for point/particle elements and Fourier bases for wave elements. These bases compete to explain the input images and

transfer them to a token (base) representation with an Oð102Þ-fold dimension reduction. The second component is a geometric model

which groups spatially adjacent tokens (bases) and theirmotion trajectories into a number ofmoving elements—called “motons.” Amoton

is a deformable template in time-space representing amoving element, such as a falling snowflake or a flying bird. The third component is

a dynamic model which characterizes the motion of particles, waves, and their interactions. For example, the motion of particle objects

floating in a river, such as leaves and balls, should be coupled with the motion of waves. The trajectories of these moving elements are

represented by coupledMarkov chains. The dynamicmodel also includes probabilistic representations for the birth/death (source/sink) of

the motons. We adopt a stochastic gradient algorithm for learning and inference. Given an input video sequence, the algorithm iterates

two steps: 1) computing the motons and their trajectories by a number of reversible Markov chain jumps, and 2) learning the parameters

that govern the geometric deformations and motion dynamics. Novel video sequences are synthesized from the learned models and, by

editing the model parameters, we demonstrate the controllability of the generative model.

Index Terms—Textured motion, generative model, texton, statistical learning, object tracking, stochastic gradient.

�

1 INTRODUCTION

NATURAL scenes contain a wide variety of stochastic

motion patterns which are characterized by the

movement of a large amount of particle and wave elements,

such as falling snow, a flock of flying birds, wavy river, and

dancing grass. Such motion patterns, as is acknowledged in

[15], fall beyond the scope of conventional optical flow field

models [11] and a new framework has yet to be developed.

In recent years, the study of such motion patterns has

stimulated a growing interest in both the vision and the

graphics communities, driven by a number of applications

on synthesis and analysis.
Graphics methods. Computer graphics methods are

concerned with rendering photorealistic video sequences or

nonphotorealistic but stylish cartoon animations. In the

graphics literature, both physics-based and image-based

methods have been reported. The former uses partial

differential equations, for example, creating animations of

fire andgaseousphenomenawithparticles [20], [4]. The latter

includes:

1. Video texture [22] and its extension [23], which replay
a video by reordering the image frames to achieve
smooth transition between frames.

2. Three-dimensional volume texture [31] which gener-
ates motion through nonparametric sampling from
an observed video motivated by recent work on
texture synthesis [10], [33], [5].

3. Video rewrite [2],whichuses thehiddenMarkovmodel
(HMM) to create a speech driven facial animation
system.

4. Motion texture [24], which builds a HMM on a
linear dynamic system for modeling realistic hu-
man motion.

Although some realistic animations can be rendered at fast
speed, video texture and volume texture do not explicitly
account for the dynamic and geometric properties of the
moving elements, neither does video rewrite nor motion
texture infer the moving elements from input video. Conse-
quently, the synthesized animations are either less control-
lable or depend very much on the means of data acquisition.

Vision methods. In computer vision, the analysis of
these motion patterns is important for video analysis, such
as motion segmentation, annotation, recognition, retrieval,
and abnormal motion detection. In the vision literature, as
these motion patterns lie in the domains of both motion
analysis and texture modeling, statistical models are
proposed from both directions with a trend of merging
the two. In the rest of this section, we briefly review this
work to set the background of our method.

Szummer and Picard [27] called the motion patterns
temporal texture and adopted a Spatial-Temporal Auto-
Regression (STAR) model from Cliff and Ord [3]. The STAR
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model represents the intensity of each pixel as a linear
summation of intensities of its spatial and temporal
neighbors. It can be considered as an extension to the causal
Gaussian Markov random field model (GMRF) used in
texture modeling by adding the time dimension. Bar-Joseph
et al. [1] extended the 2D texture synthesis work [10], [33] to a
tree structured multiresolution representation, in a way
similar to the 3D volume texture method [31]. The dynamic
texturework by Soatto et al. [25] studied themotion dynamics
explicitly using models and tools from control theory [14]. It
is also shown to be useful for recognition [21]. Fitzgibbon [7]
added the rigid camera motion in combination with the
stochastic motion patterns, so that the motion is registered
properly.

Despite their reasonable success, the existingmodels need
to be extended to address the following problems: First, the
basicmoving elements in the existingmodels are either pixels
and points [20], [4], [27], [31], [1] or entire images [22] and
their principal components [25], [7]. Such representations
usually do not identify the human perceived moving
elements in the video, such as an individual bird or a
snowflake. Second, these models do not sufficiently char-
acterize the dynamics of moving elements, such as trajec-
tories, sources, sinks and lifespans of the elements. It is
considered rather challenging to model the interactions and
couplings between the elements. For instance, it is hard to
simulate and control balls or leaves drifting in water waves.
Consequently, thesemodels have less localization in analysis
and controllability (in terms of controlling the number of
moving elements and death/birth of the moving elements at
specified locations and time intervals) in synthesis.

In this paper, we call these motion patterns “textured
motions,” following a suggestion by Mumford in 1996, to
emphasize the fact that the image sequences are fundamen-
tally motion phenomena characterized by the dynamics of
the moving elements rather than texture phenomena. The
latter are often states of a large system at thermodynamic
equilibrium (i.e., system with maximum entropy under
constraints [33]).

Summary of our method. Motivated by the above
observation, we present a generative representation for
modeling textured motion that integrates the following
three components.

1. A photometric model. An image is represented as a
superposition of bases selected from an overcom-
plete dictionary, including Fourier bases, LoG, and
Gabor bases at various scales, orientations. Such
bases are known to be generic and effective for
representing natural images [6] with particle and
wave patterns. This model transforms a raw image
into a number of bases as a token representation and
achieves an Oð102Þ-fold dimension reduction. We
should trace these bases over the image frames and
compute their trajectories.

2. A geometric model. We group the bases and their
motion trajectories into a number of basic moving
elements which are coherent in space and time. We
call the basic moving elements “motons” in accor-
dance with the notion of “textons”—the atomic
perceptual elements in static images [13], [32]. A
moton is a deformable template in space-time
representing a moving element, for example, each

snowflake or bird is represented by a few Gabor and
LoG bases traveling together (see Figs. 3 and 4).

3. A dynamic model. We adopt a general motion
equation which includes an autoregression (AR)
component for the trajectory of each moton, its
source and sink maps, the external driving forces,
and the interaction/coupling with other motons. The
interaction among motons is always considered a
challenge in both vision and graphics. In this paper,
we assume that “waves have more influence on
particles,” i.e., a ball (Gabor bases) floating on a river
is driven by water waves (Fourier bases).

We adopt an EM-like stochastic gradient algorithm [9] for
the inference and learning. It infers the hidden variables
(bases, motons, and trajectories) by a number of reversible
Markov chain jumps and estimates the model parameters
(deformablemodels, source and sinkmaps, parameters of the
dynamics). This generative model offers more controllability
in rendering synthesized motion sequences. Figs. 9 and 11
show the synthesized results after we edit the number of
motons and the sources of motons, respectively.

This paper is organized as follows: In Section 2, we
present a two-level generative representation with photo-
metric, geometric, dynamic models in detail, and some
experimental results are shown together with the models’
illustration. In Section 3, we present the learning and
inference algorithm using Markov chain Monte Carlo
methods. A number of synthesized video clips and a
cartoon animation are presented. We conclude the paper
with a discussion and future work in Section 4.

2 TEXTURED MOTION REPRESENTATION

In this section, we present our generative representation
with three components—a photometric model, a geometric
model, and a dynamic model. We use I½0; � � to denote an
image sequence on a 2D lattice � in a discrete time
interval ½0; � � ¼ f0; 1; . . . ; �g. Iðu; v; tÞ denotes the intensity
of pixel ðu; vÞ 2 � in frame t 2 ½0; � �.

2.1 Photometric Model—Particles and Waves

The photometric model represents an image I by a super-
position of N image bases  j; j ¼ 1; 2; . . . ; N selected from a
dictionary � plus a Gaussian residual image n.

Iðu; vÞ ¼
XN
j¼1

�j �jðu; v;�jÞ þ nðu; vÞ;

 �j 2 �; nðu; vÞ � �ð0; �2oÞ; 8ðu; vÞ 2 �:

ð1Þ

�j is the coefficient (or amplitude) of a base  �j , �j denotes
the transforms (translation, rotation and scaling) on the
base, and �j is the type of the base, such as Gabor Cosine,
Gabor Sine, LoG, or Fourier functions. The dictionary � is
divided into particle bases (Gabors and LoGs) and wave
bases (Fouriers) and it is Oð102Þ-fold overcomplete.

� ¼ �pcl [�wav; with j�j ¼ Oð102j�jÞ:

In the following, we briefly introduce the particle bases �pcl

and wave bases �wav and a match pursuit algorithm for
base selection.
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1. Particle bases�pcl. The dictionary of particle bases is
constructed from three standard basis functions:
Gabor cosine, Gabor sine, and Laplacian of Gaussian,

�pcl ¼ fGcosðu; vÞ; Gsinðu; vÞ; LoGðu; vÞg:

Applying transforms denoted by variable �, we have

�pcl ¼ fGcosðu; v;�Þ;Gsinðu; v;�Þ;LoGðu; v;�Þ : 8�g:
ð2Þ

For Gabor bases, � ¼ ðx; y; �; �Þ specifies the center,
scale, and orientation of the base function. For the
isotropic LoG bases, � ¼ ðx; y; �Þ specifies its center
and scale. Thus, each base is an attributed point (or
token) bj ¼ ð�j; �j; �jÞ, and the photometric model in
(1) transfers a raw image I into a token representation,
which is a layerofhiddenvariables—called theparticle
base map,

Bpcl ¼ fbj ¼ ð�j; �j; �jÞ : j ¼ 1; 2; . . . ; Npclg: ð3Þ

2. Wave bases �wav. The wave dictionary is con-
structed from a single Fourier function FBðu; vÞ with
transforms � ¼ ð�; �; 	Þ on its spatial frequency ð�; �Þ
and phase 	.

�wav ¼ fFBðu; vÞg;
�wav ¼ fFBðu; v;�Þ ¼ e�ið�uþ�vþ	Þ : 8�g:

ð4Þ

Let �j be the Fourier coefficient, then the selected
Fourier bases form a wave base map,

Bwav ¼ fbj ¼ ð�j; �j; �jÞ :
�j ¼ FB; j ¼ 1; 2; . . . ; Nwavg:

ð5Þ

3. Initializing the base map by match pursuit. For� is
not an orthogonal basis, we adopt a match pursuit
[17] to compute the base map B at the initial stage.

Let Iobs bean input imageand Ibe its reconstruction
by the bases. The match pursuit algorithm starts with
B being an empty set and I being a constant image

whose intensity equals the mean of Iobs. The match
pursuit algorithm selects one base at each step so as to
minimize the squared reconstruction error until the
coefficient of the selected base falls below a threshold.

Repeat

 �jð�jÞ ¼ argmax
 2�
j <  ; Iobs � I > j2;

�j ¼<  �jð�jÞ; Iobs � I >;

B B [ fð�j; �j; �jÞg; I Iþ �j �jð�jÞ; j jþ 1;

until j�jj � 
:

It is a greedy algorithm and generates a sequence of

bases with decreasing coefficients,

�1 � �2 � � � � � �N � 
:

The rate of decrease reflects the efficiency of the

dictionary � (see plots in Fig. 2). The computed base

map B will be corrected by a Markov chain Monte

Carlo algorithm integrating the motion cues in

Section 3.3.
We show an example of the match pursuit

procedure on a snow image in Fig. 1. We limit the

dictionary to particle bases �pcl and show the

reconstruction in three stages with decreasing

thresholds 
1 > 
2 > 
3. At each stage, we visualize

the base map Bpcl in a Gabor map (left) and a LoG

map (right). A Gabor base is sketched symbolically

by a bar with the same size and orientation as the

Gabor function and a LoG base is sketched by a circle

with the size representing its scale. The brightness of

the bars and circles represents the coefficients (bright

for positive and dark for negative). Each base map

reconstructs a “subband” image. In the bottom row,

the subband images of the two types are added to

yield the reconstructed image I. We stop the

algorithm with Npcl ¼ 800 bases.

1350 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 10, OCTOBER 2004

Fig. 1. Image reconstruction bymatch pursuit in three stages. Top row: Three particle bases.Middle row: Symbolic sketch for theGabor bases (by bars)
and LoG bases (by circles) and the images they reconstruct. Bottom row: Reconstructed images at three stages. It terminates withNpcl ¼ 800 bases.



4. Comparison of bases. Since� is overcomplete, there
are a combinatorial number of ways to reconstruct an
input image. We compare the effectiveness of the
particle bases �pcl and the wave bases �wav in Fig. 2
when reconstructing textured motion patterns. We
select three typical images, and reconstruct each by
the wave bases and the particle bases, respectively.

Fig. 2a is a flock of birds. The reconstruction with
Nwav ¼ 300 Fourier bases is very blurry. In contrast,
the reconstruction with Npcl ¼ 216 particle bases
captures the birds accurately. Fig. 2b is a river image
where the Fourier bases are found to be more
effective than the particle bases. Fig. 2c shows a ball
floating in a river. We can see that neither �pcl nor
�wav alone is able to effectively represent this image.
A combination of 80 Fourier bases and 21 Gabor
bases exhibits better reconstruction.

For the bird and water images, we plot the
coefficients of the selected bases in�wav and�pcl in a
decreasing order, respectively. A steep slope of the
curve implies that the bases are effective in recon-
structing the image, whereas a flat curve means the
opposite. For the bird image, the curveplot shows that
the first few Fourier bases have large responses in
capturing the global lighting condition in the sky.
Therefore, the best representation for this image is a
few Fourier bases for lighting plus the particle bases
for individual birds. For the water image, the
dominance of Fourier bases is obvious.

Since, the particle and wave bases compete to
explain the input image through the match pursuit
algorithm, we obtain the base map by

B¼Bpcl [Bwav¼fbj¼ð�j; �j; �jÞ; j¼1; 2; . . . ; Ng;

N¼NpclþNwav¼O
j�j
100

� �
:

ð6Þ

After using the match pursuit algorithm to initialize
the base map B, the ambiguities in base selection can
be resolved by aMonte Carlo algorithm in Section 3.3,
which traces the bases over image frames, adjusts the
bases for spatial-temporal coherence, and eliminates
some false bases.

To summarize the photometric model, we rewrite
(1) in a conditional probability. It specifieshowagiven
image Iobs is generated by a hidden layer of basesB,

pðIobsjBpcl;Bwav;�; �oÞ ¼
1

ð2��2oÞ
j�j=2 exp

�
� 1

�2o

X
ðu;vÞ2�

ðIobsðu; vÞ

�
XN
j¼1

�j �jðu; v;�jÞÞ
2

�
:

ð7Þ

2.2 Geometric Model: Identifying Motons—
The Basic Moving Elements

In this section, we discuss a geometric model for grouping
the N bases in B into a smaller number of moving elements
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Fig. 2. Comparison of image reconstructions by wave bases�wav and particle bases�pcl, respectively. The curves plot the coefficients of the selected
bases in decreasing order. The thick curve is for�pcl. The slopes of the curves reflect the coding efficiency of the dictionary. (a) Flying birds. (b) Wavy
river. (c) An image with both particles and waves—a floating ball in a river.



called “motons.” First, we study the particle bases. In the
base map Bpcl, a moving element, such as the snowflake or
bird in Fig. 3b, is often represented by 3-7 adjacent bases
which travel together as a coherent group. For example, in
Fig. 3b, a snowflake image is the sum of three bases, two
LoG bases and one Gcos base with certain space displace-
ments, and a bird image consists of seven bases, three LoG
bases, two Gcos bases, and two Gsin bases. Therefore, Bpcl

can be divided into Mpcl disjoint subsets, each correspond-
ing to a moving element.

Bpcl ¼ S1 [ S2 [ � � � [ SMpcl
:

In a textured motion scene, the Mpcl moving elements are
instances ofN�-types of objects or spatial configurations. For
example, we set N� ¼ 1 for the snowflakes in the snowing
scene in Fig. 4 and N� ¼ 3 for the three poses of the flying
birds in Fig. 5. Each of the configurations is represented by a
deformable template�‘.�‘ includes the following variables:
the number of bases n‘, the n‘ bases b‘;1; . . . ; b‘;n‘ 2 �pcl with
relativepositions. The template is specifiedby threegroupsof
parameters. 1) The global transform � ¼ ðx; y; �; �Þ for
translation, scaling, and rotation. 2) A membership vector
� ¼ ð�1; . . . ; �n‘Þ 2 f0; 1g

n‘ indicating the presence or absence

of the base components due to occlusion or variation. 3) A

vector 
 for the deformations of the template. We denote the

set of templates by

�� ¼ f�‘ ¼ ðn‘; b‘;1; . . . ; b‘;n‘ ;�‘; �‘; 
‘Þ : ‘ ¼ 1; 2; . . . ; N�g:

A dictionary of motons is obtained from �� by varying

ð�; �; 
Þ and is denoted by

�� ¼ f �ð‘; �; �; 
Þ : ; 8‘; �; �; 
 g: ð8Þ

Fig. 4a displays the snowflake template �1 and a variety

of 120 snowflake instances f�1; . . . ; �120g generated by this

deformable template. Usually, a template has a “heavy”

base with relatively large coefficient �i which is surrounded

by several “light” bases with relatively small coefficients. By

analogy to the physical model of atoms, we call the heavy

bases “nucleus” bases and the light bases “electron” bases.

The atomic models for the birds are illustrated in Fig. 6b.
With dictionary ��, the base map Bpcl is generated by a

layer of moton map Mpcl with a subset Si 2 B for each

moton �i. Thus, we arrive at a more abstract and

parsimonious representation,
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Fig. 3. Motons as basic moving elements. (a) Three base functions—LoG, Gcos, Gsin, and their symbolic sketches—circles, bars, and step edge.
(b) Examples of learned motons—a snowflake and a bird. (c) A graphic view of a moton trajectory—the cable model.

Fig. 4. The computed motion elements: snowflakes and random examples. (a) A moton template in atomic structure and (b) 120 instances of
snowflakes as motons �.

Fig. 5. Motons in a bird flying sequence. (a) Input image. (b) Three moton templates �� ¼ f�i; i ¼ 1; 2; 3g learned in a clustering step for different
poses. Two instances are shown for each template.



Mpcl ¼ f�jð‘j; �j; �j; 
jÞ; j ¼ 1; 2; . . . ;Mpcl; 1 � ‘j � kg:

Second, we study the wave base map. According to the

theory of ocean waves [28], the bases in �wav also travel in

groups. For example, water flows travel as sinusoid waves

caused by different sources of vibration, such as wind, boats,

or earthquake. But, such motion groups can only be seen at a

macroscopicscale. Inourexperiments,wavestravel inasingle

group. To conform the notation, we denote a wave moton by

�j ¼ bj and themotonmap for thewaves isMwav ¼ f�j ¼ bj;

j ¼ 1; 2; . . . ; Nwavg ¼ Bwav, then M ¼Mpcl [Mwav: Thus, we

have a two-level generative model; the moton map M

generates the base map B with dictionary ��; and the base

mapB, in turn, generates the image Iwith dictionary�.

M ¼Mpcl [Mwav �!
ð��;��Þ

B ¼ Bwav [ Bpcl �!
ð�pcl;�pclÞ [ ð�wav;�wavÞ

I:

ð9Þ

In summary, the geometric model can be expressed as a

conditional probability,

pðBjM; ��Þ ¼ pðBpcljMpcl; ��ÞpðBwavjMwavÞ

¼
YMpcl

i¼1

Y
j2Si

pðbjj�i; �‘iÞ
" #

� �ðBwav �MwavÞ:
ð10Þ

Combining (7) and (10), we obtain the generative model for

a still image Iobs—pðIobsjB;�oÞpðBjM; ��Þ with B and M

being the hidden variables. In Section 3, we shall discuss

that the learning algorithm achieves several objectives:

1. dividing B into Mpcl groups,
2. clustering the Mpcl groups into N� moton templates,
3. adjusting the initial B obtained by match pursuit for

spatial coherence, and
4. learning the templates ��.

All these steps must be integrated with the motion repre-
sentation, which will be presented in the rest of the section.

2.3 The Moton Trajectories and Representation of
the Video Sequence

For a video sequence I½0; � �, the moton map M and the base

map B shall be tracked over time and adjusted for motion

coherence. Let �ðtÞ be the state of a moton at time t and

C½tb; te� be its trajectory,

C½tb; te� ¼ ð�ðtbÞ; �ðtbþ1Þ; . . . ; �ðteÞÞ; ½tb; te� � ½0; � �: ð11Þ

For example, a snowflake or a bird enters the image view at
frame tb and leaves the view at frame te (Figs. 8 and 10 show
some snowflake and bird trajectories). Intuitively, a moton
trajectory is like a cable where the trajectory of its “nucleus
base” forms the core of the cable and the trajectories of its
“electron” bases form the coils surrounding the core due to
self-rotation. In a coarse-to-fine computation, we compute
the trajectories of the cores first and then add the coils
sequentially. In practice, the core of a moton is relatively
consistent through its lifespan, but the number of coil bases
may change over time due to self-occlusion, etc. Thus, we
should use temporal coherence to regularize the coil
trajectories while learning the deformable templates ��.

We change the index from image frame t to moving
element i and transform the two-level hidden representation
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Fig. 6. (a) Input image. (b) Three-dimensional graphic illustration for the “atomic” model of bird motons �j; j ¼ 1; 2; . . . ; 9. (c) Diagram of three-state
transitions for birds flying.

Fig. 7. Experiment on the falling snow sequence. (a) Observed sequence. (b) Synthesized sequence by sampling the generative model.



B½0; � � and M½0; � � to a representation with K trajectories
Ci; i ¼ 1; 2; . . . ; K, plus waves.

W ½0; � � ¼ ðM½0; � �;B½0; � �Þ
¼ ðBwav½0; � �; K; fCi½tbi ; tei �; i ¼ 1; 2; . . . ; KgÞ:

ð12Þ

K is the number of particle objects that appear in the video
sequence. The number of motons and bases may change

over time due to the birth and death events.W ½0; � � includes
all the bases and motons. It is a low-dimensional generative
representation for the video I½0; � �.

2.4 Dynamic Model—Sources, Sinks, and
Wave-Particle Interactions

The dynamic model characterizes the sources, sinks, and
trajectories of the motons as well as their interactions. We
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Fig. 9. Experiment on a flying-bird sequence. (a) Observed sequence. (b) Synthesized sequence with fewer flying birds by editing the number of

motons Mpcl when sampling the model.

Fig. 8. Experiment on the falling snow sequence. (a) Observed sequence. (b) Graphic view of the computed trajectories of the snowflakes (as hidden
variables). (c) A probability map of the sources for snowflakes to enter the scene. (d) Probability map of the sinks for the snowflakes to leave the view.
Dark means high probability. Both the source and the sink maps are marginal probabilities over the locations (summed over time and other attributes).

Fig. 10. Experiment on the bird sequence. (a) Observed sequence. (b) Graphic view of the computed trajectories of the birds. (c) A probability map of
the sources for birds to enter the scene. (d) Probability map of the sinks for birds to leave the view. Dark means high probability.



model two types of interactions. The first type is the
interaction among wave components. Unlike particles such
as birds and snow flakes, which move rather independently,
waves travel together with complex interactions. Therefore,
the relative motion of different Fourier bases must be
constrained to keep certain phase alignments. The second
type is the influence of waves on particles, e.g., balls drifting
in a river, grass waving in the wind. Other interactions, such
as particle-particle collision and particle-wave collision
(splash) are not considered in this paper.

Let�ðtÞdenote the state of amoton or awave base at time t,
for particles � ¼ ð‘; �; �; 
Þ, and for waves � ¼ ð�; �; �; 	Þ. The
generalmotion equation for �ðtÞ is a pth orderARmodelwith
coefficients a ¼ ða1; . . . ; apÞ, driven by three types of forces:
1) influence from (other) waves UðBwavðtÞÞ, 2) external force
field fð�ðt� 1ÞÞ, such as gravity, wind field, and external
constraints, which may vary over space and time, and 3) a
Brownianmotionn. Thus,wehave a generalmotion equation
for the textured motion patterns.

�ðtÞ ¼
Xp
j¼1

aj�ðt� jÞ þ UðBwavðtÞÞ

þ fð�ðt� 1ÞÞ þ n; n � �ð0; �2Þ:
ð13Þ

In the rest of this section, we study three special cases
that occur in our experiments.

Case 1. Dynamic model for independent moving
particles—snow, birds, and fireworks.

The first case represents textured motion patterns with
particles elements that move rather independently, such as
snowing, birds flying, fireworks, etc. Though a few Fourier
bases are used to model the global lighting effects, they are
static anddonot affect themotons.The external force fð�Þ ¼ c
is a constant vector. Thus, the general motion equation (13)
reduces to a second order Markov chain model,

�ðtÞ ¼ a1�ðt� 1Þ þ a2 � �ðt� 2Þ þ cþ n;
n � �ð0; �2Þ t 2 ½tb þ 1; te�ð�ðtbÞ; tbÞ � PBð�; tÞ;
ð�ðteÞ; te � tbÞ � PDð�; tÞ:

The birth of amoton � and its timing tb follow aprobability
PBð�; tÞ. Its marginal probability on the location PBðx; yÞ

(summed over time and other attributes) is called the “source
map” or “birth map.” The timing is important, for example,
for controlling the fireworks. Similarly, the end of the
trajectory �ðteÞ and its life span te � tb are governed by a
probabilityPDð�; �Þ. Its marginal probability PDðx; yÞ reveals
the “sinks” and is called the “deathmap.”Note that� is a long
vector and PB and PD are high-dimensional probabilities. In
practice, we are most interested in the location ðx; yÞ.

The probabilities PB and PD are represented in a

nonparametric form using Parzen windows. During the

learning process, suppose we have computed K cables

Ci½tbi ; tei �; i ¼ 1; 2; . . . ; K from a sequence I½0; � �, we represent

PB and PD as

PBð�; tÞ ¼
1

K

XK
i¼1

�ð�� �iðtbiÞ; t� tbiÞ;

PDð�; tÞ ¼
1

K

XK
i¼1

�ð�� �iðtei Þ; t� ðtei � tbiÞÞ;
ð14Þ

where �ðÞ is a Parzenwindow centered at 0. Whenwe project

PB and PD to ðx; yÞ plane, we get the death and birth maps.

Fig. 8 (right column) displays the birth map PBðx; yÞ and the

death map PDðx; yÞ for a snow sequence, where darker spots

havehigher probabilities. Thus, the algorithm“understands”

that the snowflakes mostly enter from the upper-right corner

and disappear around the lower-left corner.
In summary, the probability for a moton trajectory is in

the form

pðC½tb; te�; �pclÞ ¼

PBð�ðtbÞÞPDð�ðteÞ; te � tbÞ
Yte

t¼tbþ1
pð�ðtÞj�ðt� 1Þ; �ðt� 2ÞÞ:

ð15Þ

In the above model, �pcl ¼ ða1; a2; c; �; PB; PDÞ denotes all
the parameters in the dynamic models.

Due to space limit, we briefly remark on two details in

the experiments of Case 1.

Remark 1. For the firework sequence in Fig. 11, the death and

birthofmotonsmustbe synchronized, as a largenumberof

particles come and go together. Wemanipulated the birth
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Fig. 11. Experiment on firework sequence. (a) Observed sequence with only one firework. (b) Synthesized sequence of multiple fireworks after

editing its birth (source) map.



map to illustrate controllability. For example,weobserve a

single firework at the center of the original sequence. By

editing thebirthprobabilityPB,we can easily rendermany

fireworks at all places and time intervals (See Fig. 11b).

Similarly, by reducing the motons’ number (Mpcl), the

model generates fewer birds in the synthesized sequence

in Fig. 9b.

Remark 2. For the bird sequence, the moton �ðtÞ comes

from three possible templates, �� ¼ f�1;�2;�3g, and

may change states over time (see Fig. 6c). In order to

have the birds flap wings properly, the Markov chain

model pð�ðtÞj�ðt� 1Þ; �ðt� 2ÞÞ includes a first order

transition probability pð‘ðtÞj‘ðt� 1ÞÞ as ‘ðtÞ 2 f1; 2; 3g
is a variable in �ðtÞ. The transition probability is

represented by a 3� 3 matrix. Note that this is not
necessary in the snow and firework sequences.

Case 2. Dynamic model for waves—river, pond, and
plastics.

The second case represents pure wave sequences with
only Fourier bases, e.g., Figs. 13, 14, and 15. There is no
birth/death event. The variables are

W ¼M ¼ B ¼ Bwav

¼ fð�j; �j; �j; 	jÞ; j ¼ 1; 2; . . . ; Nwavg; Nwav ¼ Oð103Þ:

If the camera does not move and the motion is stationary,
then the Fourier frequencies �j; �j and amplitudes �j are
time-invariant. Only the phases 	j; j ¼ 1; . . . ; N change and
this is known as the phase motion [8]. The speed of phase
d	 is related to the speed ðdx; dyÞ by
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Fig. 13. Experiment on a river sequence. (a) Observed sequence of wavy river. (b) Synthesized sequence with 1; 000 Fourier bases.

Fig. 14. Experiment on a wavy pond sequence. (a) Observed sequence. (b) Synthesized sequence with 1; 200 Fourier bases.

Fig. 12. Experiment on the firework sequence. (a) Observed sequence. (b) Graphic view of the trajectories of the firework. (c) Source map of the
firework. (d) Sink map of the firework.



d	jðtÞ
dt
¼ �j

dx

dt
þ �j

dy

dt
; or

dx
dy

� �
¼ �j

�j

� �
d	j=ð�2j þ �2j Þ:

ð16Þ

A slight complication is that we have towrap the phase into a

periodical interval ½0; 2�Þ in computing d	j and ðdx; dyÞ [8].
Our first attempt is to let each Fourier base move

independently in an AR model, as it is for the particles in

Case 1.

	jðtÞ ¼
Xp
i¼1

aji	jðt� iÞ þ nj;

nj � Nð0; �2Þ; j ¼ 1; 2; . . . ; N:

With p ¼ 15 � 20 accounting for low frequency components,

this simple model can synthesize the river sequences

reasonably well. However, the phases become misaligned

after 30-50 frames. To solve this problem, we study a joint

vector 	ðtÞ ¼ ð	1ðtÞ; . . . ; 	Nwav
ðtÞÞ; t 2 ½0; � �. To reduce the

dimension, we employ a standard PCA on f	ð0Þ; ; 	ð�ÞÞ and
obtain ei; i ¼ 1; 2; . . . ;m as the eigenvectors with the largest

eigenvalues. Then, we project 	ðtÞ to an m-vector

�ðtÞ ¼ ð�1ðtÞ; . . . ; �mðtÞÞ, where �iðtÞ ¼< 	ðtÞ; ei > . In our

experiments,m ¼ 8 and them coefficients follow a pth order

AR model independently as in the particle sequences,

�jðtÞ ¼
Xp
i¼1

aji�jðt� iÞ þ n;

n � Nð0; �2j Þ; p ¼ 20; j ¼ 1; 2; . . . ;m ¼ 8:

ð17Þ

The total number of variables used in the model is 3Nwav for
ð�j; �j; �jÞ; j ¼ 1; . . . ; Nwav, and 8Nwav for the eigenvectors,
plus 20� 8 for the AR coefficients.

In summary, we write the wave dynamics in the
following probability model,

pðBwav½0; � �; �wavÞ ¼
Ym
j¼1

Y�
t¼0

pð�jðtÞj�jðt� 1Þ; . . . ; �jðt� pÞÞ:

ð18Þ

We assume some initial conditions for the first p frames and
�wav ¼ ða1; . . . ; apÞ denotes all the parameters.

Figs. 13 and 14 show the synthesis results for the river
and pond waves. The same model is applied to the plastic
foil in Fig. 15 and the grass sequence in Fig. 16. In general,
the wavy plastic foil and grass are driven by an invisible
wind field which has wave properties. For the grass
sequence, we need more Fourier bases, Nwav ¼ 3; 000, to
reconstruct the high-frequency components.

Case 3. Dynamic model for particles—waves interac-

tions: a ball or foam on water.
Our third case concerns motion sequences with both

particles andwaves, suchasaball or foamfloatingonwater as
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Fig. 15. Experiment on a plastic foil sequence. (a) Observed sequence. (b) Synthesized sequence with 1; 500 Fourier bases.

Fig. 16. Experiment on a grassland sequence. (a) Observed sequence. (b) Synthesized sequence with 3; 000 Fourier bases for its spatial wave

pattern and high-frequency structures.



shown in Figs. 17 and 18, respectively. The coupling of the

two types of elements is characterized by a driving force from

waves to particles. As the particles are small, we are only

concerned about their positions ðx; yÞ and fix other attributes

in �. To conform the notation, we write � for ðx; yÞ.
Let 	ðtÞ ¼ ð	1ðtÞ; . . . ; 	Nwav

ðtÞÞ be the phases of all Fourier
bases whose motion follows the dynamic model in Case 2.

Given the phase motion d	 in Case 2, we transfer it into

motion velocity in spatial domain ðdx; dyÞ by (16). Themotion

of a particle is then influenced by the sum of all wave

velocities at point ðx; yÞ. In practice, we only need to choose

q ¼ 20 � 30 lower frequency Fourier bases fð~��k; ~��k; ~		kÞ : k ¼
1; 2; . . . ; qg to drive the particles. Thus, themotion equation of

a particle �ðtÞ ¼ ðxðtÞ; yðtÞÞ is:

�jðtÞ ¼
Xp
i¼1

aj�ðt� iÞþ

Xq
k¼1

bkð~��k; ~��kÞd ~		kðtÞ þ cþ n; n � Nð0; �2oÞ; 8j:
ð19Þ

The second term in the above equation accounts for the
coupling of the particle motion with waves and a; b are the
coefficients. The death and birth of particles follow the same
model in Case 1. This Markov chain model follows the
probability below:

pðC½tb; te�; �pclÞ ¼ pBð�ðtbÞÞpDð�ðteÞ; te � tbÞYte
t¼tbþ1

pð�ðtÞj�ðt� 1Þ; �ðt� 2Þ; ~		1ðtÞ; . . . ; ~		qðtÞÞ:
ð20Þ

The wave bases follow the dynamics in (17).
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Fig. 17. Experiment on a floating-ball sequence. (a) Observed sequence and the learned moton: the ball. (b) Synthesized sequence and the
trajectory of the ball.

Fig. 18. Experiment on a sequence with many foam particles drifting in a river. (a) Observed sequence. (b) Synthesized sequence. (c) Learned

motons: foams and their trajectories. (d) Sources and sinks of the floating foam.



Figs. 17 and 18 show the experiment results on the ball

and foam sequences, respectively. The coupling of the

particles with waves appears realistic in the video sequence.
To conclude Section 2, we integrate the photometric

model (7), the geometricmodel (10), and the dynamicmodels

in (15), (18), and (20) into a joint probability for an image

sequence Iobs½0; � � and the hidden representationW ½0; � �,

pðIobs½0; � �;W ½0; � �; �Þ ¼�Y�
t¼1

pðIobsðtÞjBpclðtÞ;BwavðtÞÞ � pðBpclðtÞjMpclðtÞ; ��Þ
�

� pðBwav½0; � �; �wavÞpðKÞ
YK
k¼1

pðCk½0; � �; �pclÞ:

ð21Þ

In the above representation, W ½0; � � includes all the hidden

variables,

W ½0; � � ¼ ðM½0; � �;B½0; � �Þ
¼ ðBwav; K; fCi½tbi ; tei �; i ¼ 1; 2; . . . ; KgÞ;

and � ¼ ð��;�wav;�pclÞ includes the parameters of the

deformable templates for motons and parameters of the

dynamics of waves and particles.

3 LEARNING AND INFERENCE

In this section, we present the algorithm that infers the

hidden variables W ½0; � � and learns the parameters � in

(21). With learned parameters �, one can easily synthesize

sequences following the two-level generative model. This

algorithm produces all the results presented in the previous

section (Figs. 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and 18).

3.1 Problem Formulation and Stochastic Gradient

The problem is posed as statistical learning by maximum

likelihood estimation (MLE). The objective is to compute the

optimal parameters that maximize the log-likelihood for an

observed sequence Iobs½0; � �,

�	 ¼ argmax log pðIobs½0; � �; �Þ

¼ argmax log

Z
pðIobs½0; � �;W ½0; � �; �ÞdW ½0; � �:

ð22Þ

By taking the derivative with respect to � and setting it

to zero, we have

0 ¼ 1

pðIobs½0; � �; �Þ
@
R
pðIobs½0; � �;W ½0; � �; �ÞdW ½0; � �

@�
;

¼
Z
@ log pðIobs½0; � �;W ½0; � �; �Þ

@�

pðW ½0; � � j Iobs½0; � �; �ÞdW ½0; � �;

¼ EpðW ½0;� � j Iobs½0;� �;�Þ
@ log pðIobs½0; � �;W ½0; � �; �Þ

@�

� �
:

ð23Þ

This MLE problem is solved by iterating the following two

steps.
First, given current parameter �, we simulate samples

from the posterior by Markov chain Monte Carlo (see

Section 3.3),

W smp
i ½0; � � � pðW ½0; � � j Iobs½0; � �; �Þ; i ¼ 1; 2; . . . ;M: ð24Þ

The expectation in (23) is then approximated by the sample
mean,

1

M

XM
i¼1

@ log pðIobs½0; � �;W smp
i ½0; � �; �Þ

@�
¼ 0: ð25Þ

Without loss of generality, we setM ¼ 1 for easy discussion.
Second, given the sampled hidden variablesW smp½0; � � ¼

ðBwav; K; C1; . . . ; CKÞ, we update the parameters � ¼ ð��;
�pcl;�wavÞ by gradient ascent with a step size ".

�wav  ð1�"Þ�wavþ"@ log pðBwav ½0;� �;�wavÞ
@�wav

; ðlearning motonsÞ

�pcl  ð1�"Þ�pclþ"
PK

k¼1
@ log pðCk ½0;� �jBwav ½0;� �;�pclÞ

@�pcl
; ðlearning particle dynamicsÞ

��  ð1�"Þ��þ"
P�

t¼1
@ log pðBpclðtÞjMpclðtÞ;��Þ

@��
ðlearning wave dynamicsÞ:

This algorithm is a stochastic version of the EM-algorithm.
Unlike the EM-algorithm, whichmaximizes the likelihood at
eachstep, ouralgorithmonlyupdates�witha small stepsize.
The two iterative steps are shown to converge to a globally
optimal�	 evenwithM ¼ 1 [9], provided that the step size in
learning the parameters� is small enough so that the sample
mean in (25) makes a good approximation to the expectation
at the current �. Intuitively, with a small step size, samples
collected over iterations are used to estimate the expectation.

In the following two sections, we present the algorithm
for computing W ½0; � � from Iobs½0; � �.

3.2 Initializing W ½0; � � by Bottom-Up Methods

Given Iobs½0; � �, we initialize the hidden variables W ½0; � �
usingdeterministicmethods in abottom-upphase.Theerrors
and ambiguities in the initial solution will be resolved by a
Markov chain Monte Carlo method (next section) which
generates samples from the posterior pðW ½0; � �jIobs½0; � �; �Þ.

Initial Step 1. Computing the base map B by match pursuit.
We run the match pursuit algorithm on each frame
independently. The match pursuit algorithm in Section 2.1
is a greedy method for selecting both particle and wave
bases from dictionary � according to their coefficients. For
the particle bases, we first set a high threshold (say 
 ¼ 3:0)
to obtain the “nucleus” bases. Then, we lower the threshold
to 
 ¼ 1:0 or 0:5 so that some new “electron” bases are
added and assigned to one of the existing “nucleus” bases
in a neighborhood. Thus, we have an initial base map which
is partitioned in Mpcl subsets.

B ¼ ðBwav;BpclÞ; Bpcl ¼ S1 [ � � � [ SMpcl
:

Initial Step 2. Computing the moton map M and templets ��

by K-means clustering. Each base map Bpcl has Mpcl ¼
Oð102Þ subsets S1; . . . ; SMpcl

. We collect them over a number
of frames and cluster these subsets into a smaller number of
N� ¼ 1 � 3 clusters by K-means clustering. The mean of
each cluster is then a deformable template for motons and
we denote them by �� ¼ f�1; . . . ;�N�

g. We have to
predefine a threshold for the clustering or equivalently
deciding the number N�. This will force each subset Sj; j ¼
1; . . . ;Mpcl to fit to one of the templates. Sj is registered to �i

by a similarity transform and a simple graph matching in
structure. The distance between a set Sj and a deformable
model �i is defined as the difference (sum of squared
errors) between the image patch generated by the bases in

WANG AND ZHU: ANALYSIS AND SYNTHESIS OF TEXTURED MOTION: PARTICLES AND WAVES 1359



Sj and the patch generated by bases in �i plus the structural
divergence. The latter includes the differences of the total
number of bases in Sj and in �i, and the type of bases in Sj
and in �i. We refer to a texton paper for more details in
learning the deformable templates [32].

Initial Step 3. Tracing the particle trajectories. At each
frame IðtÞ, we have a base map Bpcl by the match pursuit
method. We connect the “nucleus” bases at frameBðtÞ to the
existing trajectories at frames Bpclðt� 1Þ and Bpclðt� 2Þ as
long as they fit to a smooth spline. Recall that the motion of
particles follows second order AR models, their trajectories
form smooth curves. Any “nucleus” base that cannot find a
good fit starts a new trajectory. Once we have traced the
heavy bases and obtain the “core” of the cables, we trace the
“electron” bases as “coils.” We tried an alternative method
by projecting the bases at BpclðtÞ toBpclðtþ 1Þ and doing the
match pursuit only on the residue image at frame tþ 1, but
we got less satisfactory initial results in this way.

3.3 Sampling W ½0; � � from the Posterior by Markov
Chain Monte Carlo (MCMC)

The deterministic methods in the initial stage are fast and
often produce satisfactory results, but we need a nongreedy
phase to fix the following problems.

First, the base maps BpclðtÞ; t ¼ 1; 2; . . . ; � are computed
independently by a greedymatch pursuit algorithm. Ideally,
the base shouldbe selected in its spatial and temporal context.
For example, since� (or even�pcl) is overcomplete, there are
many combinations of bases that can reconstruct a moving
element (say a bird or a snowflake) equally well. It is then
desirable to select a common set of bases so that 1) the same
type ofmoving elements in the image are reconstructed in the
same way for better clustering and registration (i.e., spatial
context) and2) the samemovingobject is reconstructedby the
same set of bases across the frames for better tracking (i.e.,
temporal context).

Second,when themotons are dense andmove fast, such as
the snowflakes, the tracking results are very rough, which
produces an excessive number of short fragments of
trajectories. Also, sometimes the edgy waves could generate
some particle bases which have very short trajectories.

To resolve those problems above and to draw fair
samples from the posterior (24), as is required for computing
the sample mean in (25), we resort to the Markov chain
Monte Carlo algorithm and design a number of reversible
jumps (death/birth, extending/shrinking, group/ungroup)
operating on the trajectories of the motons. As Fourier bases
are consistent through the sequence, these reversible jumps
are mainly designed to adjust the trajectories of the motons

Cj½tbj; tej �; j ¼ 1; 2; . . . ; K, so that some trajectories are born,
removed, grouped, extended, and mutated to achieve a high
posterior probability. Along this process, the base maps and
the moton maps are adjusted.

Our MCMC inference is different from the sequential
Monte Carlo algorithms, e.g., particle filtering or condensa-
tion [12] for object tracking in the following two aspects: First,
we have a full generativemodel for images. In contrast, object
tracking algorithms often utilize discriminativemodels, such
as intensity contrast, along object contours. As we have to
track hundreds of moving elements in the sequence, a
condensation method will need to keep a huge number of
hypotheses for these elements and can easily lose the
correspondences. A full generative model has the advantage
in pruning the number of hypotheses because the image is
represented by a fixed number of bases, each belonging to
only one moton. This is often called the “explain-away”
mechanism, in other words, the motons and the bases are
exclusive in explaining the image while discriminative
hypotheses are not (e.g., an edge may belong to many
hypotheses in particle filtering). Second, we optimize the
whole trajectories over the image sequence and they can be
traced back in time during the computation. In contrast,
object tracking methods always propagate hypotheses for-
ward from t to tþ 1without an explicit notion of trajectory.

The essence of the Markov chain design is to form an
ergodic process in the space of all possible combinations of
the “cables” and the Markov chain should observe some
basic conditions such as detailed balance to ensure that it
follows the posterior probability as it converges.

Each move in our Markov chain design is a reversible
jump between two states A and B realized by a Metropolis-
Hastings method [19]. We design a pair of proposal
probabilities for moving from A to B qðA! dBÞ ¼
qðBjAÞdB and back with qðB! dAÞ ¼ qðAjBÞdA. The
proposed move is accepted with probability

�ðA! BÞ ¼ min 1;
qðAjBÞdA � pðBjIobs½0; � �ÞdB
qðBjAÞdB � pðAjIobs½0; � �ÞdA

� �
: ð26Þ

The move between A and B may involve a dimension
change so that the number of variables in A is different from
that in B. Thus, the proposal probabilities should match the
dimension difference. For example, dAdB is matched in
both the denominator and nominator in (26).

Our Markov chain consists of four pairs of moves. Each
type of move is randomly selected with probability
q1 þ q2 þ q3 þ q4 ¼ 1. Each pair involves designing a number
of proposal probabilities. Thus, we need to maintain some
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Fig. 19. Three pairs of typical reversible jumps. (a) Extend/shrink a trajectory. (b) Group/ungroup a trajectory. (c) Mutation and split/merge of
trajectories.



queues which list a number of candidate trajectories to be
grouped, ungrouped, extended, and shrunk, respectively,
in a order according to some fitness measurement. Similar
MCMC designs were reported in our previous work [29].
Due to space limit, we briefly specify the four pairs of
reversible jumps in the rest of this section.

Move Type 1. Extending/shrinking a trajectory Ci. This pair
of moves are illustrated in Fig. 19a. The purpose of the
moves are to extend a short fragment of trajectories or to kill
the over extended trajectories. They implement a pair of
reversible moves between two states A and B,

A ¼ ðK; Ci½tb; te�; W�Þ
Ð ðK; Ci½tb � 1; te� or Ci½tb; te þ 1�; W�Þ ¼ B;

where W� denotes all other variables which are unchanged
during this move. The proposal probabilities are:

qðA! BÞ ¼ q1 � qðiÞ � qtail � qextqð�ðte þ 1ÞjCi½tb; te�; �pclÞ;
qðB! AÞ ¼ q1 � qðiÞqtail � qshrk:

q1 is a probability for choosing type 1 jump, qðiÞ is the
probability for picking Ci, and, with qtail, we choose to
operate at the tail. qext þ qshrk ¼ 1 are probabilities for
extending or shrinking the trajectory, respectively. Then,
the new element �ðte þ 1Þ is proposed based on the current
cable Ci predicted by dynamics �pcl. This prediction is
expressed as probability qð�ðte þ 1ÞjCi½tb; te�; �pclÞ. Similarly,
one can predict the extension at the head of the trajectory.

Move Type 2. Group/ungroup a trajectory. This pair of
moves are illustrated in Fig. 19b. Let Ck be a short trajectory
of a base, usually an “electron” base with a small coefficient.
It is desirable to group it with a nearby trajectory Ci or Cj.
The ungroup proposal will remove those extra parts not
belonging to a moton. In this jump, the length of Ck could be
different from those of Ci and Cj.

This jump implements amovebetween twostatesAandB,

A ¼ ðK; Ci; Ck;W�Þ Ð ðK � 1; C0i;W�Þ ¼ B:

Again, W� denotes the remaining variables that are
unchanged during the move. The proposal probabilities are

qðA! BÞ ¼ q2qgrpqðkÞqðCijCkÞ;
qðB! AÞ ¼ q2qugrpqðiÞqðCk; CijC0iÞ:

We first choose move type 2 and then choose to group or
ungroup an existing trajectory with probabilities qgrp or
qugrp, respectively, where qgrp þ qugrp ¼ 1. Next, we choose a
single-base trajectory Ck to be grouped with probability qðkÞ
or a cable C0i to be ungrouped. The probabilities, qgrp, qugrp,
qðiÞ, and qðkÞ, are computed based on the current queues for
grouping and ungrouping. For example, qðkÞ can be
computed according to the distance and trajectory similar-
ity between the Ck and Ci. The closer and more similar, the
larger the chance to be grouped together.

Move Type 3. Mutation, split/merge of trajectories. Thispair
of moves are illustrated in Fig. 19c. They aim to correct
those wrongly tracked trajectories. It mutates two trajec-
tories Ci½tbi ; tei �; Cj½tbj; tej � into two new trajectories C0i and C0j by
exchanging some portions of the trajectories at a certain
time t,

C0i ¼ Ci½tbi ; t� 
 Cj½tþ 1; tej �; C0j ¼ Cj½tbj; t� 
 Ci½tþ 1; tei �:

In a special case when tei ¼ t ¼ tbj � 1, it becomes a split and
merge move.

A ¼ ðK; Ci; Cj;W�Þ Ð ðK; C0i; C0j;W�Þ ¼ B:

The proposal probabilities are

qðA! BÞ ¼ q3qði; jÞqðtjCi; CjÞ;
qðB! AÞ ¼ q3qði; jÞqðtjC0i; C0jÞ:

It first proposes move type 3 with q3, then proposes a pair of
trajectories in a queue by probability qði; jÞ to be mutated.
Then, based on the two trajectories’ dynamics (shapes), it
proposes a site t for mutation. As a result of this move, both
trajectories will fit their dynamics better after mutation.

Move Type 4: Death and birth of a single-base trajectory. This
pair of moves eliminate some degenerated trajectories with
length 1 or, conversely, create new bases and, thus, is a
necessary step to adjust the base maps created by match
pursuit. For example, in the snoworbird sequences, aparticle
may enter at certain time frame and, thus, new bases will be
created at that time frame.

A ¼ ðK;W�Þ Ð ðK;bj;W�Þ ¼ B; bj 2 �pcl:

So, the proposal probabilities are very simple,

qðA! BÞ ¼ q4qðbjÞ; qðB! AÞ ¼ q4qðjÞ:

It proposes to use type 4with probability q4 and then creates a
base with qðbjÞ for a birth move or select bj with qðjÞ for a
death move according to the base map configuration.

3.4 Experiments

Once we have learned the parameters in �, we can
synthesize new sequences from the joint probability
following the two-level generative model in a straightfor-
ward manner.

ðIsyn½0; � �;W syn½0; � �Þ � pðI½0; � �;W ½0; � �; �Þ; 8� > 0:

Figs.7,8,9,10,11,12,13,14,15,16,17,and18showsomeresults
of the analysis and synthesis for a number of texturedmotion
patterns.Weedit thebirthmapsof the fireworkssequenceand
density of the bird sequence to show controllability of the
model. Besides controllability, we replace the dictionary of
Gabor andFourier baseswith symbolic sketches (contours for
particles and ridges forwaves), thuswe easily render cartoon
animations in Fig. 20. In our view, a cartoon sketch is a
symbolic visualization of our inner representation of visual
perception. The success of the cartoon animation in turn
suggests that the generative model captures the essence of
visual perception of texturedmotion.

However, despite the success of the generative model,
there are two problems with the current representation.

1. The Fourier representation can synthesize some
wave patterns, but some blurry effects are noticeable
in Figs. 13 and 16.

2. The inference of W ½0; � � with MCMC is computa-
tionally intensive. The time complexity for learning a
textured motion sequence containing particles is
usually about 1 � 6 minutes per frame on an Intel
Pentium 4 1.5GHz computer, depending on the
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complexity of the scene. This includes computing the
trajectory and learning the parameters. The analysis
and synthesis of wave patterns usually take about
2 � 3 minutes for 50-100 frames.

4 DISCUSSION AND FUTURE WORK

In this paper, we present a generative method for modeling
textured motion patterns. Our representation includes
photometric, geometric, and dynamic models built on a
generic and overcomplete base representation. This repre-
sentation identifies the fundamental moving elements, their
trajectories, sources, sinks, and couplings in motion. A
Markov chain Monte Carlo method is adopted for learning
and inference. When analyzing these textured motion
patterns, we usually have to track hundreds of moving
elements. Thus, the full generative model plays a very
important role in terms of dimension reduction and hypoth-
esis pruning.

However, the choice of generative models (e.g., the Gabor
or Fourier bases) is still a matter of art. There is no rigorous
model complexity criterion for generativemodels indeciding
whether one set of bases (vocabulary) is better than the other.
The criterion should not only account for properties such as
MLE or MDL, but should also capture human perception so
as to reflect the purpose of vision. For example, when we see
wavy water, psychologically, it may be unclear what we
perceive exactly and, thus, we don’t have a quantitative
measure for the correctness of the model. In generating the
cartoon sequence, it is true that humanobservers are sensitive
to some aspects, e.g., whether the birds flap wings properly,
but are less sensitive to other details.

In the future, we would extend this current model in the
following aspects. 1) Learning a large base dictionary
including image primitives and textons [32] with heavy
lighting changes. 2) In this paper, we only deal with simple
topology changes, such as death/birth of bases. In practice,
the bases (including image primitives) or moving elements
may form spatial structures which can be represented with
a Gestalt graph representation. Thus, we need to track the
whole graph over time. The tracking procedure must
incorporate topological changes using graph grammars.
Only with such sophisticated representation can the

complex nonstationary motion patterns, e.g., dancing fire

and big surges, be properly modeled.
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