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1 OVERVIEW

In this document, we present additional materials in-
cluding pseudo code (§2), extra quantitative results on the
PASCAL-Person-Part [1] and ATR [2] datasets (§3), ablation
studies (§4), as well as qualitative results on the PASCAL-
Person-Part [1], LIP [3], ATR [2], Fashion Clothing [4], and
PPSS [5] datasets (§5).

2 PSEUDO CODE

Algorithms 1 and 2 give the pseudo codes of our structured
human parsers, CNIF and PRHP, respectively.

3 ADDITIONAL DIAGNOSTIC EXPERIMENT

We list the per-class performance on LIP val set [3] to
further verify the effectiveness of our proposed two human
parsers, using mIoU metric. As can be seen from Table 1,
our proposed methods achieve superior performance; they
outperform state-of-the-art methods across all categories. In
addition, the per-class performance using F-1 score on ATR
test set [2] is listed in Table 2. The results demonstrate
again that our CNIF and PRHP outperform state-of-the-art
methods across most categories.

4 ADDITIONAL ABLATION STUDY

4.1 Additional Ablation Study for CNIF based Human
Parser

To analyze and quantify the effectiveness and importance of
each essential components of our CNIF algorithm, Table 3
shows the detailed evaluation of our full model compared
to ablated versions without some key ingredients. The ex-
periments are performed on PASCAL-Person-Part test [1],
reported over each part using mIoU metric. Experimental
results intuitively demonstrate the superiority of our condi-
tional and compositional information fusion approach over
all the human parts on the three semantic levels.

Algorithm 1 Our Structured Human Parser, CNIF
Input: A test image I ;
Output: Hierarchical human parsing results {Ŷl}3l=1;

/* Human Semantic Hierarchy Initialization */
1: Represent the human semantics as a directed, three-

layer hierarchical graph G=(V=∪3l=1Vl, E ,Y=∪3l=1Yl).
/* Node Embedding Initialization */

2: Apply a backbone network F B over I to obtain the im-
age representation hI , then get three level-specific em-
beddings {hLSF

l }3l=1, and node (part) features {h(0)
v }v∈V ;

/* Direct Inference */
3: for each node v∈V do
4: Get prediction from the direct inference process:

logit(ŷv|I) = F �(hv);
5: end for

/* Top-Down/Bottom-Up Inference */
6: for each node v∈V do
7: Get prediction from the top-down inference process:

logit(yv|ŷu)=F ↓([ŷu,hv]);
8: Get prediction from the bottom-up inference process:

logit(yv|ŷw)=F
↑([PMP([ŷw]w∈w),hv]);

9: end for
/* Conditional Neural Information Fusion */

10: for each node v∈V do
11: Estimate the confidence of direct, top-down, and

bottom-up process: δ�v = σ(C�
v · CAP(hv)), δ↓u =

σ(C↓u · CAP(hu)), δ↑w = σ(C↑w · CAP([hw]w∈w));
12: Get final prediction from the three inference process:

logit(yv|Z)=F∪(δ�vF �
v , δ
↓
uF
↓
v , δ
↑
wF
↑
v );

13: end for
/* Final Hierarchical Human Parsing Result Generation */

14: for l = 1 · · · 3 do
15: For the l-th layer nodes Vl, apply pixel-wise soft-

max (PSM) for normalization: Ŷl = {ŷv}v∈Vl =
PSM

(
[logit(yv|Z)]v∈Vl

)
;

16: end for
17: return Hierarchical human parsing results {Ŷl}3l=1.
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Algorithm 2 Our Structured Human Parser, PRHP
Input: A test image I , and total inference iteration steps T ;
Output: Hierarchical human parsing results {Ŷ(T )

l }3l=1;
/* Human Semantic Hierarchy Initialization */

1: Represent the human semantics as a directed, three-
layer hierarchical graph G=(V=∪3l=1Vl, E ,Y=∪3l=1Yl).
/* Node Embedding Initialization */

2: Apply a backbone network F B over I to obtain the im-
age representation hI , then get three level-specific em-
beddings {hLSF

l }3l=1, and node (part) features {h(0)
v }v∈V ;

/* Message-Passing based Iterative Inference */
3: for t = 1 · · ·T do

/* Typed Relation Embedding Update */
4: for each edge (u, v)∈E do
5: Update edge embedding: h

(t−1)
u,v =

Rr([F r(h
(t−1)
u ),h

(t−1)
v ]), where r∈{dec, com,dep};

6: end for
7: for each node v ∈ V do

/* Message Aggregation */
8: Gather information along incoming edges: m(t)

v =∑
u∈Pv

h(t−1)
u,v︸ ︷︷ ︸

decomposition

+
∑

u∈Cv
h(t−1)
u,v︸ ︷︷ ︸

composition

+
∑

u∈Kv

h(t−1)
u,v︸ ︷︷ ︸

dependency

;

/* Node Embedding Update */
9: Use the collected massages update node embedd-

ing: h(t)
v =UconvGRU(h

(t−1)
v ,m(t)

v );
10: end for
11: end for

/* Final Hierarchical Human Parsing Result Readout */
12: for l = 1 · · · 3 do
13: For the l-th layer nodes Vl, apply a convolutional

readout function O over the final node embeddings
{h(T )

v }v∈V , and pixel-wise soft-max (PSM) for normal-
ization: Ŷ(T )

l = {ŷ(T )
v }v∈Vl = PSM

(
[O(h

(T )
v )]v∈Vl

)
;

14: end for
15: return Hierarchical human parsing results {Ŷ(T )

l }3l=1.

4.2 Additional Ablation Study for PRHP Model

We herein provide more detailed experimental results about
the three typed part relations (i.e., decompositional, compo-
sitional and dependency relations) over different human se-
mantic levels. The experiments are performed on PASCAL-
Person-Part test set [1], using mIoU metric.

To analyze and quantify the effectiveness and impor-
tance of different part relations to our hierarchical parsing
model, PRHP, experiments with different settings are con-
ducted. Table 4 shows the evaluation of our full model with
all three typed part relations compared to ablated versions
with only one of three typed part relations. Please note that,
to better show the effectiveness of different components,
such experiment is carried on only one iteration while our
full model performs two-iteration inference. In summary,
one typed part relation can mainly enhance partial nodes
in human hierarchy. To exploit more comprehensive infor-
mation from the whole human hierarchy, iteratively up-
dating node embeddings with all three typed part-relation
reasoning is more effective. Experimental results of our
full model with different iterations intuitively demonstrate

(a) (b) (c) (d) (e) (f) (g)

Fig. 1. Comparisons of our full CNIF model and direct inference on
PASCAL-Person-Part test [1]. Given an input image (a), results of
our full model: fine-grained human parts (b), upper/lower body (c), and
full body (d) predictions; results from the direct inference: fine-grained
human parts (e), upper/lower body (f), and full body (g) predictions.

(a) (b) (c) (d)

Fig. 2. Visual comparison results from our (b) backbone, (c) compo-
sitional information fusion w/o conditional inference, and (d) full CNIF
model.

the superiority of our hierarchical human parsing approach
with typed part-relation reasoning.

As shown in Table 5, different typed part relation net-
works with or without the corresponding attention mech-
anisms are evaluated. The results indicate that attention
mechanisms can improve the performance of part relation
networks consistently. Noted that, simply passing original
part embedding as the message in dependency relation net-
work does not bring any improvement or even be harmful.

5 ADDITIONAL QUALITATIVE RESULT

5.1 Additional Qualitative Result for CNIF Model
Through fusing cross-level information within human struc-
tures, our CNIF model estimates the overall part configu-
ration more accurately. For example, as shown in Fig. 1,
our full model is able to generate more accurate human
parts in different levels, compared to only using the direct
inference. It outputs semantically meaningful and precise
predictions despite the existence of large appearance and
position variations. In addition, our CNIF model is able to
give clearer details of arms and legs, especially for small-
scale parts or the regions with similar appearances. For ex-
ample, observed from the 1st row of Fig. 1, the small regions
(e.g., left lower-leg) can be successfully segmented out by
our method with the constraint of the top-down inference.
These regions with similar appearances can be recognized
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TABLE 1
Per-class comparison of mIoU with state-of-the-art methods on LIP val [3]. The two best scores are marked in red and blue, respectively.

Method Hat Hair Glov Sung Clot Dress Coat Sock Pant Suit Scarf Skirt Face L-Arm R-Arm L-Leg R-Leg L-Sh R-Sh B.G. Ave.
SegNet [6] 26.60 44.01 0.01 0.00 34.46 0.00 15.97 3.59 33.56 0.01 0.00 0.00 52.38 15.30 24.23 13.82 13.17 9.26 6.47 70.62 18.17
FCN-8s [7] 39.79 58.96 5.32 3.08 49.08 12.36 26.82 15.66 49.41 6.48 0.00 2.16 62.65 29.78 36.63 28.12 26.05 17.76 17.70 78.02 28.29

DeepLabV2 [8] 56.48 65.33 29.98 19.67 62.44 30.33 51.03 40.51 69.00 22.38 11.29 20.56 70.11 49.25 52.88 42.37 35.78 33.81 32.89 84.53 41.64
Attention [9] 58.87 66.78 23.32 19.48 63.20 29.63 49.70 35.23 66.04 24.73 12.84 20.41 70.58 50.17 54.03 38.35 37.70 26.20 27.09 84.00 42.92

Attention+SSL [3] 59.75 67.25 28.95 21.57 65.30 29.49 51.92 38.52 68.02 24.48 14.92 24.32 71.01 52.64 55.79 40.23 38.80 28.08 29.03 84.56 44.73
ASN [10] 56.92 64.34 28.07 17.78 64.90 30.85 51.90 39.75 71.78 25.57 7.97 17.63 70.77 53.53 56.70 49.58 48.21 34.57 33.31 84.01 45.41

SSL [3] 58.21 67.17 31.20 23.65 63.66 28.31 52.35 39.58 69.40 28.61 13.70 22.52 74.84 52.83 55.67 48.22 47.49 31.80 29.97 84.64 46.19
MMAN [11] 57.66 65.63 30.07 20.02 64.15 28.39 51.98 41.46 71.03 23.61 9.65 23.20 69.54 55.30 58.13 51.90 52.17 38.58 39.05 84.75 46.81

SS-NAN [12] 63.86 70.12 30.63 23.92 70.27 33.51 56.75 40.18 72.19 27.68 16.98 26.41 75.33 55.24 58.93 44.01 41.87 29.15 32.64 88.67 47.92
CE2P [13] 65.29 72.54 39.09 32.73 69.46 32.52 56.28 49.67 74.11 27.23 14.19 22.51 75.50 65.14 66.59 60.10 58.59 46.63 46.12 87.67 53.10

BraidNet [14] 66.8 72.0 42.5 32.1 69.8 33.7 57.4 49.0 74.9 32.4 19.3 27.2 74.9 65.5 67.9 60.2 59.6 47.4 47.9 88.0 54.4
CNIF (Ours) 69.55 73.45 45.17 41.45 70.57 38.52 57.94 54.02 75.07 28.00 31.92 30.20 76.38 68.28 69.49 65.52 65.51 52.67 53.38 87.99 57.74

PRHP (Ours) 70.65 75.18 46.77 43.10 71.82 40.72 59.41 55.65 76.38 30.13 33.72 32.12 77.25 69.58 70.47 66.84 66.79 54.23 54.69 89.45 59.25

TABLE 2
Per-class comparison of F-1 scores with state-of-the-art methods on the ATR test [2]. The two best scores are marked in red and blue,

respectively.

Method Hat Hair S-Gls U-Cloth Skirt Pants Dress Belt L-Shoe R-Shoe Face L-Leg R-Leg L-Arm R-Arm Bag Scarf
Yamaguchi [15] 8.44 59.96 12.09 56.07 17.57 55.42 40.94 14.68 38.24 38.33 72.10 58.52 57.03 45.33 46.65 24.53 11.43

Paperdoll [16] 1.72 63.58 0.23 71.87 40.20 69.35 59.49 16.94 45.79 44.47 61.63 52.19 55.60 45.23 46.75 30.52 2.95
M-CNN [17] 80.77 65.31 35.55 72.58 77.86 70.71 81.44 38.45 53.87 48.57 72.78 63.25 68.24 57.40 51.12 57.87 43.38

ATR [2] 77.97 68.18 29.20 79.39 80.36 79.77 82.02 22.88 53.51 50.26 74.71 69.07 71.69 53.79 58.57 53.66 57.07
DeepLabv2 [8] 72.25 82.58 44.61 87.12 80.91 85.80 79.05 24.96 65.44 65.70 85.33 80.21 80.34 73.04 74.49 78.33 46.99

PSPNet [18] 74.30 86.51 67.78 88.53 79.04 86.73 77.14 41.76 64.53 62.94 89.45 82.55 81.92 77.68 78.01 77.69 49.83
Attention [9] 76.78 84.62 56.98 87.56 83.46 87.95 82.49 36.20 68.73 69.36 87.03 84.29 83.63 78.43 78.99 81.60 48.90

DeepLabv3+ [19] 77.22 87.44 73.06 89.64 85.15 90.11 79.99 44.48 70.08 71.13 90.53 85.60 85.25 81.96 82.48 81.73 53.46
Co-CNN [20] 75.88 89.97 81.26 87.38 71.94 84.89 71.03 40.14 81.43 81.49 92.73 88.77 88.48 89.00 88.71 83.81 46.24

TGPNet [4] 80.18 87.13 70.93 91.01 88.95 90.72 87.42 51.73 75.13 75.36 89.78 89.06 88.73 83.91 83.96 84.72 52.86
CNIF (Ours) 86.53 90.25 82.16 90.25 81.64 90.30 80.63 64.72 79.11 78.97 92.71 91.60 91.48 90.47 90.32 87.82 68.07

PRHP (Ours) 87.14 90.58 83.15 91.04 82.76 91.09 81.31 66.32 81.26 80.15 92.57 91.76 91.42 91.45 90.87 88.79 70.33

TABLE 3
Additional ablation study for CNIF model using class mIoU on the PASCAL-Person-Part test [1].

mIoU
V3 V2 V1Aspects Module

Head Torso U-Arm L-Arm U-Leg L-Leg Upper-body Lower-body Full-body

CNIF direct+bottom-up+ 88.02 72.90 64.31 63.52 55.60 54.95 86.27 62.51 86.53top-down + conditional fusion
Backbone direct infer. w/o hierarchy 85.29 67.61 54.01 53.65 48.53 44.52 - - -

Variant

direct infer. 85.46 68.85 56.38 55.31 50.06 46.77 83.79 57.33 84.22
direct+bottom-up 85.29 68.93 57.50 57.87 51.28 48.54 84.62 57.96 86.03
direct+top-down 86.91 71.43 61.91 61.57 54.21 52.33 85.03 58.47 84.85

direct+bottom-up+top-down 87.63 71.84 62.80 62.27 54.80 52.74 86.02 62.02 86.23

and separated by the top-down guidance from their parent
nodes. In general, by effectively exploiting human semantic
hierarchy, our approach outputs more reasonable human
parsing results.

A visual comparison between the results from our back-
bone network, our model only using compositional fusion
and our full CNIF model can be found in Fig. 2 (b-d), which
intuitively shows the improvements from our conditional
and compositional information fusion.

We then add several segmentation results, compared
with ground-truth, on different human parsing datasets, in-
cluding the PASCAL-Person-Part test [1], shown in Fig. 4;
the LIP val [3], shown in Fig. 5; the ATR test [2], shown in
Fig. 6; the Fashion Clothing test [4], shown in Fig. 7, and
the PPSS test [5], shown in Fig. 8.

5.2 Additional Qualitative Result for PRHP Model

By effectively and iteratively exploiting human semantic
hierarchy and rich part relations (decomposition relation,
composition relation and dependency relation), our PRHP
model is able to generate more precise human parsing
results. For example, as shown in Fig. 3, our full PRHP
model is able to generate more accurate human parts in
different levels, compared to only using the initial node
embedding for inference.

We then provide several segmentation results, compared
with ground-truth, on different human parsing datasets, in-
cluding the PASCAL-Person-Part test [1], shown in Fig. 9;
the LIP val [3], shown in Fig. 10; the ATR test [2], shown
in Fig. 11; the Fashion Clothing test [4], shown in Fig. 12,
and the PPSS test [5], shown in Fig. 13.
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TABLE 4
Ablation study of the effectiveness of different typed part relations in our PRHP model on the PASCAL-Person-Part test [1].

mIoU
V3 V2 V1Module

Head Torso U-Arm L-Arm U-Leg L-Leg Upper-body Lower-body Full-body
Decomposition+Composition+Dependency (1 iteration) 89.12 74.35 65.86 65.03 57.46 56.87 86.91 63.87 86.74

Initial node embedding 85.95 71.55 62.3 60.26 53.7 51.93 85.33 62.22 85.28
Decomposition relation 87.74 73.72 65.13 63.90 56.41 56.39 86.12 63.05 85.76

Composition relation 86.52 71.94 63.17 61.32 54.48 53.01 86.03 62.97 86.32
Dependency relation 86.71 72.14 63.21 61.27 54.69 53.22 85.89 62.91 85.33

TABLE 5
Ablation study of the attention mechanisms in different typed part relation networks of our PRHP model on PASCAL-Person-Part test [1].

Aspect Relation Network Relation Adaption F r mIoU 4
Reference Full model - 73.12 -

Relation

Decomposition Relation (Eq. 20)
hu � attdec

u,v(hu) 71.38 -1.74
hu 71.04 -2.08

Composition Relation (Eq. 23)
hu�attcom

v ([hu′ ]u′∈Cv ) 69.35 -3.77
hu 69.19 -3.93

Dependency Relation (Eq. 25)
F cont(hu)�attdec

u,v(F
cont(hu)) 69.43 -3.69

F cont(hu) 69.24 -3.90
hu 68.83 -4.29

(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Comparisons between our PRHP model with three part relations
and base model with initial node embedding on PASCAL-Person-Part
test [1]. Given an input image (a), results of our full model: fine-grained
human parts (b), upper/lower body (c), and full body (d) predictions;
results from the initial node embedding: fine-grained human parts (e),
upper/lower body (f), and full body (g) predictions.
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Image Ground-Truth Ours Image Ground-Truth Ours

Fig. 4. Segmentation results of our CNIF model on the PASCAL-Person-Part test set [1].
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Image Ground-Truth Ours Image Ground-Truth Ours Image Ground-Truth Ours

Fig. 5. Segmentation results of our CNIF model on the LIP val set [3].
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Image Ground-Truth Ours Image Ground-Truth Ours Image Ground-Truth Ours

Fig. 6. Segmentation results of our CNIF model on the ATR test set [2].
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Image Ground-Truth Ours Image Ground-Truth Ours

Fig. 7. Segmentation results of our CNIF model on the Fashion Clothing test set [4].
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Image Ground-Truth Ours Image Ground-Truth Ours

Fig. 8. Segmentation results of our CNIF model on the PPSS test set [5].
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Fig. 9. Segmentation results of our PRHP model on PASCAL-Person-Part test set [1].
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Image Ground-Truth Ours Image Ground-Truth Ours Image Ground-Truth Ours

Fig. 10. Segmentation results of our PRHP model on LIP val set [3].
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Image Ground-Truth Ours Image Ground-Truth Ours Image Ground-Truth Ours

Fig. 11. Segmentation results of our PRHP model on ATR test set [2].
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Fig. 12. Segmentation results of our PRHP model on Fashion Clothing test set [4].
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Image Ground-Truth Ours Image Ground-Truth Ours

Fig. 13. Segmentation results of our PRHP model on PPSS test set [5].


