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Abstract

In this paper we present a two-level generative model for representing the images and surface depth

maps of drapery and clothes. The upper level consists of a number of folds which will generate the

high contrast (ridge) areas with a dictionary of shading primitives (for 2D images) and fold primitives

(for 3D depth maps). These primitives are represented in parametric forms and are learned in a

supervised learning phase using 3D surfaces of clothes acquired through photometric stereo. The

lower level consists of the remaining flat areas which fill between the folds with a smoothness prior

(Markov random field). We show that the classical ill-posed problem – shape from shading (SFS)

can be much improved by this two-level model for its reduced dimensionality and incorporation

of middle-level visual knowledge, i.e. the dictionary of primitives. Given an input image, we first

infer the folds and compute a sketch graph using a sketch pursuit algorithm as in the primal sketch

[10], [11]. The 3D folds are estimated by parameter fitting using the fold dictionary and they form

the “skeleton” of the drapery/cloth surfaces. Then the lower level is computed by conventional

SFS method using the fold areas as boundary conditions. The two levels interact at the final stage

by optimizing a joint Bayesian posterior probability on the depth map. We show a number of

experiments which demonstrate more robust results in comparison with state-of-the-art work. In a

broader scope, our representation can be viewed as a two-level inhomogeneous MRF model which

is applicable to general shape-from-X problems. Our study is an attempt to revisit Marr’s idea [23]

of computing the 2 1
2D sketch from primal sketch. In a companion paper [2], we study shape from

stereo based on a similar two-level generative sketch representation.

This is a preprint of the Statistics Department June, 2005. This version was submitted to IEEE
Trans. on PAMI in 2005. A short version appeared in the IEEE Conf. on Computer Vision and
Pattern Recognition, San Diego, June 2005.
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I. Introduction and motivation

In this paper we present a two-level generative model for studying two classical computer

vision problems: (i) shape from shading (SFS), and (ii) drapery and cloth representation.

Our study has three objectives. The first is to obtain a parsimonious representation for

drapery and clothes. We adopt a notion created long ago by artists [25] who paint drapery

and clothes by sparse sketches and a few categories of fold primitives. These folds, in

general, correspond to the ridges in the computer vision literature [14], [19], [12], [13], and

they form a sketch graph as the skeleton of the drapery/clothes. The remaining areas are flat

with almost no perceivable structures and therefore can be filled-in between the folds with

conventional SFS method. Thus our two-level model consists of an upper level sketch graph

for the folds and a lower level for the flat pixels. Without the upper level, this model reduces

to the conventional SFS representation, i.e. Markov random field on pixels. Our second goal

is to learn a dictionary of 3D “fold primitives” for surface depth maps. Each fold primitive

is an elongated segment of the fold with parametric attributes for its geometric shape and

surface profile (cross section) perpendicular to its axis. We learn these primitives using a

number of 3D cloth/drapery surfaces acquired through photometric stereo technique. The

3D fold primitives derive a dictionary of 2D “shading primitives” with lighting and albedo

attributes. Each shading primitive will be a rectangular image patch with relatively high

shading contrast. These primitives are inferred from a single input image through parameter

fitting. Our third goal is to overcome the traditional ill-posed problems associated with

shape-from-shading using the lower dimensional representation and prior knowledge learned

about the folds. We demonstrate robust reconstruction results (in Figures 11 and 12) in

comparison with state-of-the-art SFS methods [20], [33] (in Figure 13).
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Fig. 1. The dataflow of our method for computing the 3D surface S of drapery/cloth from a single image

I using the two-layer generative model. See text for interpretation.

Our model is inspired by the success of a recent primal sketch model [10], [11] which rep-

resents generic images with structural and textural parts. The structural part corresponds

to edges and boundaries with an attribute sketch graph which generates images with image

primitives, and the textural part is modeled by a Markov random field using the structural

part as boundary conditions. The two-level generative model in this paper is intended to

improve the one level smoothness priors (Markov random fields) used widely in regularizing

the shape-from-X tasks [15]. Thus our study is aimed at re-visiting a research line advocated

by Marr [23] for computing the 21
2
D sketches (surface depth maps) from a primal sketch (a

symbolic token image representation with primitives). In a companion paper [2], a similar

two-level generative model is studied for shape-from-stereo with a different dictionary of

primitives. In the following of this section, we briefly introduce the generative model, and

compare it with previous work in the literature.

A. Overview of the two-layer generative model

The dataflow of our method is illustrated in Fig. 1 and a running example is shown in

Fig. 2. The problem is formulated in a Bayesian framework, and we adopt a stepwise
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greedy algorithm by minimizing various energy terms sequentially. Given an input image I

on a lattice Λ, we first compute a sketch graph G for the folds by a greedy sketch pursuit

algorithm. Fig. 2.(b) is an exemplary graph G. The graph G has attributes for the shading

and fold primitives. G decomposes the image domain into two disjoint parts: the fold part

Ifd for pixels along the sketch and non-fold part Infd for the remaining flat areas. Fig. 3

illustrates the two level decomposition. We estimate the 3D surface Ŝfd for the fold part by

fitting the 3D fold primitives in a fold dictionary ∆fd. Fig.2.(c) shows an example of Sfd.

This will yield gradient maps (pfd, qfd) for the fold surface. Then we compute the gradient

maps (pnfd, qnfd) for the non-fold part by the traditional shape-from-shading method on the

lower level pixels, using gradient maps in the fold area as boundary conditions. Then we

compute the joint surface S = (Sfd,Snfd) from the gradient maps (p, q) of both fold part

and non-fold part. Therefore the computation of the upper level fold surfaces Sfd and the

lower level flat surface Snfd is coupled. Intuitively, the folds provide the global “skeleton”

and therefore boundary conditions for non-fold areas, and the non-fold areas propagate

information to infer the relative depth of the folds and to achieve a seamless surface S.

The two-level generative model reduces to the traditional smoothness MRF model when

the graph G is null.

The fold dictionary is learned in an off-line training phase using a number of 3D drap-

ery/clothes surfaces acquired by photometric stereo (see Fig.5). We manually sketch the

various types of folds on the 3D surfaces (see Fig.6). These fold primitives are defined in

parametric form. These 3D fold primitives derive a dictionary of 2D shading primitives [12]

for cloth images (see Fig.7) under different illumination directions.

There are three basic assumptions in the SFS literature: (i) object surfaces having con-
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Fig. 2. (a). A drapery image under approximately parallel light. (b). The sketch graph for the computed

folds. (c). The reconstructed surface for the folds. (d) The drapery surface after filling in the non-fold part.

It is viewed at a slightly different angle and lighting direction.

stant albedo with Lambertian reflectance, (ii) single light source far from the scene, and

(iii) orthographic camera projection. These assumptions are approximately observed in the

drapery/clothes images in our study due to the uniform color and small relative surface

depth compared with distance to the camera, except that some valleys between two deep

folds have inter-reflectance and shadows. For such dark areas, we do not apply the SFS

equation, but interpolate them by surface smoothness prior between the 3D folds.

B. Previous work in shape from shading and cloth representation

Shape from shading is a classical ill-posed vision problem studied in Horn’s seminar work

[15], [16], [18]. Most algorithms in the literature impose smoothness priors for regulariza-

tion. The state of the art algorithms are given in Zheng and Chellappa [33] and others [20],
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[21], [28], [31], and a survey is given in [32]. These prior models are Markov random field

on pixels, which, in our opinion, are rather weak for reconstructing surfaces, and therefore

more knowledge about the objects in the scene need to be incorporated for robust compu-

tation. This motivates our two-level generative model with dictionary of fold primitives.

Our attempt of learning fold primitives is related to two recent work. The first is the so-

called shape-from-recognition by Nandy and Ben-Arie [24] and Atick et al [1]. [1] built a

probabilistic 3D model for the whole human face in an off-line learning phase, while [24]

divided human face into generic parts like nose, lips and eyes and built the 3D prior models

of these parts. These models are much better informed than the smoothness priors in SFS

and enable them to infer 3D face surface from a single image by fitting a small number

of parameters. Their work demonstrates that one can solve SFS better when high level

knowledge about the object class is available. The second example is the learning of textons

including “lightons” in Zhu et al [36]. This work learns generic dictionary of surface patches

under varying illuminations. In comparison, our fold primitives are focused on drapery and

clothes images, and we believe the same method can be extended to other object classes.

The two-level model is also closely related to the primal sketch representation in Guo et al

[10], [11].

Drapery/cloth representation is also an interesting problem studied in both vision and

graphics, as clothes are complex visual patterns with flexible shapes and shading variations.

In the graphics literature, clothes are always represented by meshes with a huge number

of polygons in geometric based, physical based, and particle based cloth modeling and

simulation techniques [17], [4]. Such representation is infeasible for vision purposes. In

contrast, artists have long noticed that realistic drapery/clothes can be painted by a few
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types of folds [25]. In the vision literature, methods for detecting folds have been studied in

Huggins et al [19] and Haddon and Forsyth [12], [13], mostly using discriminative method.

Besides computing the 3D surfaces, the fold representation is also useful for some ap-

plications, such as, non-photorealistic human portrait and cartoon sketch, clothed human

understanding and tracking.

C. Paper Organization

The rest of the paper is organized as follows. Section II briefly reviews the formulation of

shape from shading and photometric stereo. Section III presents the two-level representation

for both 2D cloth images and 3D cloth surfaces. Section IV and Section V discuss the

learning and inference algorithms for cloth sketching and reconstruction. Section VI shows

the experiments with comparison results. Section VII concludes the paper with a discussion

of limitation and future work.

II. Problem formulation of shape from shading and photometric stereo

This section discusses the formulation of two problems which will be used as components

in our generative models and algorithms. (i) Shape from shading for the non-fold part.

(ii) Photometric stereo used in constructing 3D cloth surface for learning the fold primitive

dictionary.

A. Formulation of shape from shading

Considering a surface observed under orthographic projection, we define the coordinate

system so that its x and y axes span the image plane Λ and z axis coincides with the optical
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axis of the camera. Thus the surface S is expressed as a depth map,

S(x, y) = z(x, y), ∀(x, y) ∈ Λ. (1)

Following the notation of Horn [15], we denote the surface gradients at (x, y) by (p, q) with

p(x, y) =
∂S(x, y)

∂x
, q(x, y) =

∂S(x, y)

∂y
. (2)

The unit normal of the surface is,

n = (
−p√

p2 + q2 + 1
,

−q√
p2 + q2 + 1

,
1√

p2 + q2 + 1
)′ (3)

For Lambertian surface with constant composite albedo (including strength of illumination

and reflectivity of the surface) η, we obtain a reflectance map R under parallel light L =

(l1, l2, l3)
′,

R = η < n, L >= η
−pl1 − ql2 + l3√

p2 + q2 + 1
(4)

Eqn. 4 is the basic image irradiance equation in SFS. R can be written as either a function

R = R(p, q, η, L) or an image R = R(x, y). The light source L is a unit vector, which can

be equally represented by the lighting angle (γ, τ) for the slant and tilt. So (l1, l2, l3) =

(cos τ cos γ, cos τ sin γ, sin τ).

In the literature, the composite albedo η and light direction (γ, τ) are three global variables

that can be inferred quite reliably without computing (p, q,S). There are two statistical

approaches for estimating η and (γ, τ) by Lee and Rosenfeld [21] and Zheng and Chellapa

[33]. In this paper, we adopt the method in [33]. The computation of (p, q,S) are based on

the computation of η and (γ, τ) in the rest of the paper.

Since there are infinite number of surfaces that can produce the same intensity image

I, some additional constraints are needed to regularize the problem in the form of energy
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functions. In the literature, one may impose the smoothness energy on the surface S,

or alternatively one may put the smoothness energy plus an integrability energy on the

gradients (p, q) and derive S from (p, q). The latter is more convenient for computation,

and is adopted in this paper.

The following is an energy on (p, q) in [8] modified by smoothness weights in [30],

E1(p, q) = λint

∑

(x,y)∈Λ

(py − qx)
2 + λsmo

∑

(x,y)∈Λ

(w1p
2
x + w2p

2
y + w2q

2
x + w3q

2
y). (5)

The first term is an integrability term, the second term is an inhomogeneous smoothness

term, and λint and λsmo are parameters balancing the two parts1. w1, w2, and w3 are

the weights used in [30], which are chosen to be inversely proportional to the intensity

gradient along the x, diagonal, and y directions respectively. To compute these weights,

one normalizes the image intensity to [0, 1], and calculates w1(x, y) = (1 − |Ix(x, y)|)2,

w2(x, y) = (1−
√

2
2
|Ix(x, y) + Iy(x, y)|)2, and w3(x, y) = (1− |Iy(x, y)|)2.

The deterministic relation in eqns.(2) is relaxed to a soft energy between S and (p, q),

E2(S|p, q) =
∑

(x,y)∈Λ

(Sx − p)2 + (Sy − q)2. (6)

The residue between a radiance image R and input image I is assumed to be Gaussian

noise. For shadowed areas (deep and narrow valleys between folds), the image intensities

(lower than a threshold δ) no longer follow the Lambertian assumption, and thus they do

not contribute to the data energy term below. We denote the shadow pixels by Λo = {(x, y) :

I(x, y) ≤ δ}. The third energy term is,

E3(I|p, q, η, L) =
∑

(x,y)∈Λ\Λo

(I(x, y)−R(x, y))2

2σ2
. (7)

1As a side note, the smoothness energy function together with the parameters could be learned from data using a

minimax entropy principle as it was done in [35].
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R is a function of p, q, η, L.

In summary, the following are the common energy terms for shape-from-shading which

will be used in the non-fold area in this paper,

Enfd(S, p, q|I) = E1(p, q) + E2(S|p, q) + E3(I|p, q, η, L). (8)

As we stated before, the composite albedo η and lighting direction (γ, τ) are estimated in an

initial stage. In a Bayesian formulation, energy minimization is equivalent to maximizing a

posteriori probability,

(S, p, q)∗ = arg max p(I|p, q, η, L)p(S|p, q)p(p, q). (9)

The three probabilities are exponential models with energies E3(I|p, q, η, L), E2(S|p, q), and

E1(p, q) respectively.

In general, S, p, q are all unknowns and have to be inferred simultaneously in iterations

together with the global variables η and (γ, τ). In practice, people often compute them

sequentially for computational efficiency. First we compute the gradient map (p, q) by

minimizing E1 + E3, and the we construct the surface map S by minimizing E2.

A well-known phenomenon in SFS is the in-out ambiguity [26] that people may experience

when we view the shading images. For the drapery image in Fig. 2.(a), our preception may

flip between convex and concave for some parts. Such ambiguity could be resolved by the

shadows in the deep valley.

B. Formulation of photometric stereo

For a static surface S and fixed camera, one may obtain multiple images Ii under varying

lighting directions ~Li for i = 1, 2, ..., m. Then we can acquire the 3D surface S from these
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images. This is the standard photometric stereo technique [27]. We shall use photometric

stereo to obtain surface depth for supervised learning of the fold primitives in later section.

We write each reflectance image Ri in a |Λ| × 1 column vector and n a |Λ| × 3 matrix,

then we have a group of linear equations

(R1, R2, ..., Rm) =< ηn, (L1, L2, ..., Lm) > . (10)

One can solve n by minimizing the sum of squared errors

n∗ =
m∑

i=1

∑

(x,y)

(Ii(x, y)−Ri(x, y))2. (11)

This is solved by singular value decomposition (SVD). For surface with constant reflectance

η, it is well known that the SVD solution will have an in-out ambiguity. The in-out ambiguity

can be resolved by the observation of shadows.

III. Drapery/cloth representation by a two-layer generative model

In this section, we introduce the folds, the two-level generative model for both the 2D

cloth images and the 3D cloth surfaces, then we formulate the SFS problem in Bayesian

framework with this two-level generative model.

A. The sketch graph for fold representation

The sketch graph G in Fig. 1 is an attribute graph consisting of a number of folds fi, i =

1, 2, ..., Nfd. Each fold fi is a smooth curve which is divided into a chain of fold primitives.

Fig. 3 shows an example of the folds (in curves) and fold primitives (in deformed rectangles).

We pool all the fold primitives of G in a set V .

V = {πi = (`i, θ
geo
i , θpht

i , θprf
i , Λi) : i = 1, 2, ..., Nprm}. (12)
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Each fold primitive πi ∈ V covers a rectangle domain Λi ⊂ Λ. It is usually 15-pixel long and

9-pixel wide and has the following attributes to specify the 3D surface and image intensity

within its domain Λi.

1. A label `i indexing the three types of 3D fold primitive in the dictionary ∆fd (to be

introduced next section).

2. The geometric transformation θgeo
i including the center location xi, yi, depth zi, tilt ψi,

slant φi, scale (size) σi, and deformation (shape) vector δi. The latter stretches the rectangle

to fit seamlessly with adjacent primitives.

3. The photometric attributes θpht
i including the light source (l1i, l2i, l3i), and surface albedo

ηi. Here we assume all the fold primitives share the same light source and surface albedo.

But this assumption could be relaxed in case of multiple light sources in future study.

4. The surface (depth) of each primitive is represented by the profile (cross-section) perpen-

dicular to the principal axis of the rectangle of the primitive, and therefore is specified by

parameters θprf
i . As the surface profile is represented by PCA introduced later, θprf

i includes

a few coefficients for the PCA.

5. The image domain Λi which is controlled fully by the geometric transforms θgeo
i .

B. Two-layer generative model

As Fig. 3.(b) shows, the graph G divides the image lattice into two disjoint parts – the

fold and non-fold areas,

Λ = Λfd ∪ Λnfd, Λfd ∩ Λnfd = ∅. (13)

Thus both the image and the surface are divided into two parts,

I = (Ifd, Infd), S = (Sfd,Snfd). (14)
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(a) (b)

Fig. 3. (a) The graph G with rectangular fold primitives, and (b) the partition of the image domain Λ in

the two-level representation of an image shown in second column of Fig. 11 (a).

In general, Ifd captures the most information and Infd has only secondary information and

can be approximately reconstructed from Ifd. Fig. 4 is an example illustrating this observa-

tion. Fig. 4.(a) is an image of clothes, (b) is the sketch graph G, and (c) is the reconstructed

Ifd using shading primitives in ∆sd (to be introduced soon) with attributes in G, and (d) is

the reconstructed image after filling-in the non-fold part by simple heat diffusion. The heat

diffusion has fixed boundary condition Ifd and therefore it does not converge to uniform

image. 



∂I(x,y,t)
∂t

= α( ∂2I
∂x2 + ∂2I

∂2y
), (x, y) ∈ Λnfd,

I(x, y, t) = Ifd(x, y), (x, y) ∈ Λfd, ∀t ≥ 0.

(15)

As we know, the heat diffusion is a variational equation minimizing a smoothness en-

ergy (prior). Thus filling-in the non-fold part with the probabilistic models (formulated

in eqn.(9)) should achieve similar visual effects.

In the literature, it has long been observed, since Marr’s primal sketch concept [23] that

edge map plus gradients at edges (sketches here) contains almost sufficient image information
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(a) Input (b)Folds graph G (c)Ifd (d) Filling result

Fig. 4. Fill-in the non-fold part by smooth interpolation through diffusion. This figure demonstrates the

observation that the folds contains most information about the image. (a)Input cloth image. (b) The sketch

graph G. (c) The fold part Ifd reconstructed from the shading primitives with G. (d) Reconstructed cloth

image by filling in Infd by heat diffusion equation with Ifd being the fixed boundary condition.

[9] and this has been used in inpainting methods [6]. A more rigorous mathematical model

for integrating the structural (sketch) with textures is referred to the recent primal sketch

representation in [10], [11].

The fold area Λfd is further decomposed into a number of primitive domains

Λfd = ∪Nprm

i=1 Λi. (16)

Within each primitive domain Λi, the surface is generated by the attributes on geometric

transforms θgeo and profile parameters θprf ,

Si(x, y) = B`i
(x, y; θprf

i , θgeo
i ), (x, y) ∈ Λi, (17)

where B`i
∈ ∆fd is a 3D fold primitive in the dictionary ∆fd (next section) indexed by the

type `i. Si yields the gradients (p, q) and generates the radiance image using the photometric

attributes θpht
i = (ηi, l1i, l2i, l3i),

Ri(x, y) = ηi
−pl1i − ql2i + l3i√

p2 + q2 + 1
, (x, y) ∈ Λi. (18)
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In fact, we can rewrite the radiance image in terms of the shading primitive,

Ri(x, y) = b`i
(x, y; θprf

i , θgeo
i , θpht

i ), (x, y) ∈ Λi, (19)

with b`i
∈ ∆sd being a 2D image base in the shading primitive dictionary ∆sd (next section).

The overall radiance image for the fold part is the mosaic of these radiance patches. In

short, we have a generative model for Rfd on Λfd with the dictionary being parameters of

the generative model.

Rfd = R(G; ∆); ∆ = (∆fd, ∆sd). (20)

Since each domain Λi often covers over 100 pixels, the above model has much lower di-

mensions than the pixel-based representation in conventional SFS methods. The generative

relation is summarized in the following,

G → Sfd → (pfd, qfd) → Rfd → Ifd.

Therefore we can write the energy function for the fold part in the following,

Efd(G|Ifd) = E4(Ifd|G) + E5(G). (21)

E4 is a likelihood term,

E4(Ifd|G) =

Nprm∑
i=1

∑

(x,y)∈Λi

(I(x, y)− b`i
(x, y; Θi))

2

2σ2
, (22)

where Θi = (θprf
i , θgeo

i , θpht
i ). E5 is a prior term on the graph G. As G consists of a number

of Nfd folds (smooth curves f1, ...fNfd
), Efd(G) penalizes the complexity K and each fold fi

is a Markov chain model whose energy is learned in a supervised way (next section).

E5(G) = λ0K +
K∑

i=1

E0(fi). (23)
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We denote by E0(fi) the coding length of each fold (see eqn.(28)).

So far, we have a generative model for the fold surface Sfd and radiance image Rfd on Λfd.

The remaining non-fold part has flat surface Snfd and nearly constant radiance Rnfd. One

could use the traditional shape-from-shading method for the non-fold part conditioning on

the fold part. Therefore we have the following objective function,

ESFS2(G,S, p, q|I) = Efd(G | Ifd) + Enfd(S, pnfd, qnfd | Infd, pfd, qfd) (24)

The second energy is rewritten from eqn. (8). In summary, the overall problem is formulated

as,

(G,S, p, q)∗ = arg min ESFS2(G,S, p, q|I). (25)

In the computational algorithm, we solve the variables in a stepwise manner. We first

compute G by minimizing Efd(G | Ifd) = E5 + E4. Then with G we can derive the gradients

(pfd, qfd) for the fold part, which will be used as boundary conditions in computing the

gradients (pnfd, qnfd) at the non-fold part through minimizing E1 + E3. Finally we infer the

joint surface S from (p, q) over Λ by minimizing E2.

In the next section, we shall learn the 3D fold primitive dictionary ∆fd, the shading

primitive dictionary ∆sd, and the Markov chain energy Efd(G) for the smoothness of folds.

IV. Learning the fold primitives and shape

This section discusses the supervised learning of the 3D fold primitive dictionary ∆fd and

its derived 2D shading primitive dictionary ∆sd, and the Markov chain energy for the fold

shape. They are part of the two-level generative model.
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(a) (b) (c) (d)

Fig. 5. (a-c) are three of the twenty images for two drapery/cloth surfaces. (d) is the reconstructed 3D

surfaces using photometric stereo.

A. Learning 3D fold primitives

We use the photometric stereo algorithm [27] to acquire some 3D drapery/cloth surfaces

for training. For each of drapery/cloth surface, we take about 20 images under different

lighting conditions (nearly parallel light) with a fixed camera. Two examples are shown

in Fig. 5 where (a-c) are three of the twenty images and (d) is the reconstructed surface.

As we discussed in Section II, the photometric stereo has an in-out ambiguity for uniform

reflectance surfaces. Such ambiguity can be resolved with shadow and object boundary

information. For example, our perception may flip between concave and convex surfaces for

the drapery (Fig.5.(a) and (b) top row).

We build an interface program to manually extract fold patches on the 3D surfaces. We

draw the fold curves on the ridge (not valleys) and define the width of the fold (or scale) by

rectangles whose principal axes are aligned with the ridges (See Fig. 3.(a)). We extract the

surface profile at the cross-section perpendicular to the ridge (axis) within the rectangles.
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Examples of surface 
profile  at cross-sections

Fig. 6. Three types of fold profiles defined are shown at the top which correspond to the solid, dashed,

and dotted lines respectively. The right side shows some typical examples of the surface profile at the

cross-sections perpendicular to the folds.

We define three types of folds according to their surface profiles as Fig.6 shows. The

first type (in solid curves) is the full fold – a ridge in frontal view. The other two types

(in dashed and dotted curves) are half folds which are either a ridge in side views or the

two boundaries of a broad ridge in frontal view. We show the folds on an image not the

3D surface for better view. By analogy to edge detection, the full folds are like bars and

half folds are like step edges. The top row in Fig. 6 shows the surface profiles of the three

types of folds. These profiles are the cross-section of the surface (from photometric stereo)

perpendicular to the folds (one may call them curves, sketches, or strokes) and the right

hand panel shows some examples.

Note that we only represent the ridges not the valleys for two reasons. (i) The valleys

can be constructed from the ridges through surface smoothness assumption. (ii) The valleys

often have heavy inter-reflectance and shadows. Their radiances are less regular than the
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ridges in terms of parametric modeling. We tried to introduce a fourth primitive for the

shadowed deep valleys, but practically we find that such deep valleys can be reconstructed

from two nearby folds.

We use principal component analysis (PCA) to represent the surface profiles. Given a

number of cross-section profiles for each types of folds, we warp and interpolate to align

them to have the same vector length. Then we compute the mean and a small number

(3 ∼ 5) of eigen-vectors of the profiles. So the cross-section profile is represented by a few

PCA coefficients denoted by θprf . Along the fold axis, the surface is assumed to be the same

(a sweep function) except that slight smoothness adjustments are needed to fit two adjacent

primitives together.

Therefore, we have a dictionary of 3D fold primitives.

∆fd = {B`(x, y : θprf , θgeo) : θprf ∈ Ω`, θ
geo ∈ Ωgeo, ` = 1, 2, 3.}. (26)

Each fold primitive B is a 3D surface patch specified by the surface variables θprf and

variables θgeo for geometric transforms and deformations. In ∆fd, Ω` denotes the space of

the surface profiles for each type `, and Ωgeo denotes the space of geometric transforms.

A 2D shading primitive dictionary ∆sd is derived from ∆fd by adding the illumination

variables θpht ∈ Ωpht.

∆sd = {b`(x, y : θprf , θgeo, θpht) : θprf ∈ Ω`, θ
geo ∈ Ωgeo, θ

pht ∈ Ωpht, ` = 1, 2, 3.}. (27)

Each shading primitive b` is an image patch generated from a surface patch B` under lighting

condition θpht. The shading primitives are similar to the “lightons” studied in [36].

As we discussed in Section (III), G is an attribute graph and each vertex is a 3D fold

primitive that has all the attributes `, θprf , θpht, θgeo.
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three viewing directions four lighting trajectories

Fig. 7. The rendering results for the learned mean fold shape under different viewing directions and lighting

conditions.

B. Learning shape prior for folds

The graph G consists of a number of folds {fi : i = 1, 2, ...., Nfd} with each fold fi being a

smooth attribute curve. Suppose a fold f has Nf primitives f = (π1, π2, ..., πNf
), we model

each fold as a third-order Markov chain (trigram).

p(f) = p(π1, π2)

Nf∏
j=3

p(πj|πj−1, πj−2). (28)

The conditional probability ensures smooth changes of the following attributes of adjacent

primitives.

1. The orientation (tilt ψ and slant φ) in 3D space.

2. The primitives scale (width) σ.

3. The surface profile on θprf .

These probabilities are assumed to be Gaussians whose mean and covariance matrices are

learned from the manually drawn folds. Then we can transform the probability p(f) into
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energy functions E0 in eqn. (23).

We do not model the spatial arrangements of the folds, for it leads to a three-level model

as Section VII discusses (see Fig. 14).

V. Inference Algorithm for the folds and surface

The overall computing algorithm has been shown in Fig. 1. In this section, we discuss

the algorithm in details. The algorithm proceeds in two phases.

In phase I, we run a greedy sketch pursuit algorithm to find all folds in the sketch graph

G from the input image. At each step, the algorithm selects one shading primitive from

∆sd by either creating a new fold or growing an existing fold so as to achieve the maximum

reduction of the energy function following the formulation of the previous section. The

energy function favors a primitive which has good fit to the dictionary and is aligned well

with an existing primitive. This procedure is similar to the matching pursuit algorithm [22]

in signal decomposition with wavelet dictionary, as well as the sketch pursuit in the primal

sketch work [10], [11]. To expedite the pursuit procedure, we use a discriminative method

[12] to detect the fold candidates in a bottom-up step. These fold candidates are proposed

to the sketch pursuit algorithm which sorts the candidate primitives according to some

weights and selects the primitives sequentially using a top-down generative model. This is

much more effective than simply trying all shading primitives at all locations, scales and

orientations in the dictionary ∆fd. Therefore the algorithm bears resemblance to the data-

driven Markov chain Monte Carlo methods [34], [29] except that our method is a greedy

one for simplicity of the fold shape. In phase I, we also compute the 3D folds and surface

Sfd by fitting the shading primitives to the 3D fold dictionary with the estimated composite

albedo η and lighting direction (τ, γ).
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(a) (b) (c)

Fig. 8. (a) Input image. (b) Ridge detection result. (c) Proposed positions of folds.

In phase II, we compute the gradient map (p, q) for the non-fold areas using the existing

SFS method and recover the surface Snfd with the fold surface Sfd as boundary condition in

a precess of minimizing a joint energy function.

A. Bottom-up detection of fold candidates by discriminative methods

An important feature for detecting folds is the intensity profile for the cross sections of

the folds. It is ineffective to examine all possible cross sections at all possible locations,

orientations, and scales. Therefore we adopt the idea of detection by a cascade of features

in the recent pattern recognition literature and thus detect the fold candidates in two steps

as Fig. 8 shows.

In the first step, we run a ridge detection method [14] to locate the possible locations of

the ridges and estimate their local orientations. A similar method was also used in [19].

Fig. 8.(b) is an example of the ridge detection results. Then the intensity profiles at the

strong ridge locations are extracted perpendicular to the ridge direction.

In the second step, we train a support vector machine [12] for binary classification –

fold vs non-fold by supervised learning using the images we collected in the photometric
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stereo stage. Then we test the intensity profiles at various scales (widths) for the locations

and orientations extracted in the ridge detection step. Fig. 8.(c) shows an example of the

detected folds in the bottom-up step. As we can see in Fig. 8.(c) that the bottom-up

methods detect the salient locations which will largely narrow the top-down search scope.

There are two problems with the bottom-up detection: (i) disconnected segments which

have to be removed or connected, and (ii) redundant points along the folds which have to

be suppressed.

At each detected fold position, we do parameter fitting using the fold dictionary and get

one candidate fold primitive. We denote the set of all obtained candidate fold primitives as

Φ = {(πo
i , ωi) : i = 1, 2, ...., Ncan}. (29)

Each πo
i is a candidate fold primitive having its own label, geometric transformation and

surface profile. The associated ωi is a weight for measuring the prominence of the fold

candidate which will be computed from the Bayesian probability formulation as discussed

next.

B. Computing folds by sketch pursuit with the generative model

Our goal in this section is to infer the folds in the sketch graph G following the generative

model in Section (III). To simplify the computation, we make two assumptions which will

be released in the next step. (i) We assume the non-fold area is a flat surface Snfd and thus

has a constant radiance image Rnfd = Ro
nfd. Snfd will be inferred in the next subsection, (ii)

We assume the fold surface Sfd is deterministically decided by the attribute graph G, and

Sfd will be adjusted in the next subsection to achieve global consistence.
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Therefore, the Bayesian formulation in eqn.(25) is simplified as

G∗ = arg max p(I|G)p(G) = arg minL(I|G) + L(G) (30)

L(G) and L(I|G) are the energy for the prior terms and likelihood respectively defined in

Section (III). Here we use the notation L to replace E due to the new composition of energy

terms.

L(G) = λoK +
K∑

i=1

Eo(fi)

L(I|G) =

Nprm∑
i=1

∑

(x,y)∈Λi\Λo

(I(x, y)− b`i
(x, y; Θi))

2

2σ2
−

∑

I(x,y)∈Λnfd\Λo

(I(x, y)−Ro
nfd(x, y))2

2σ2
.

We initialize G = ∅ with the number of folds and primitives being zero (K = Nprm = 0)

and Λnfd = Λ. Then the algorithm computes G sequentially by adding one primitive in the

candidate set π+ ∈ Φ at a time. π+ may be a seed for starting a new fold or it may grow

an existing fold fi. Therefore we have G+ = G ∪ {π+}. The primitive π+ is selected from

the candidate set Φ so that it has the maximum weight,

π+ = arg max
π∈Φ

{ω(π) = L(I|G)− L(I|G+) + L(G)− L(G+)} (31)

The image likelihood term favors a primitive that has a better fit to a domain Λi against a

constant image Ro
nfd as the background (null hypothesis). The prior term favors a primitive

that has a good fit in position, scale, and orientation to existing fold according to the fold

prior in eqn (28). The seed primitive that starts a new fold will receive an extra penalty λo

in the prior term.

The weight ω(π) for each π ∈ Φ is initialized by the difference of the likelihood term plus

a prior penalty for π being a seed for new fold. That is,

ω(πi) = λo +
∑

(x,y)∈Λi\Λo

{(I(x, y)−Ro
nfd(x, y))2

2σ2
− (I(x, y)− b`i

(x, y; Θi))
2

2σ2
}. (32)
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(a) iteration 53 (b) iteration 106 (c) iteration 159

(d) iteration 212 (e) iteration 265 (f) iteration 317

Fig. 9. The state of sketch graph G at iteration 53, 106, 159, 212, 265, 317 on the cloth image shown in

Figure 8.

Each time after a new primitive π+ (with domain Λ+) is added, the weights of other primitive

candidates πi ∈ Φ will remain unchanged unless in the following two cases.

Case I: πi overlaps with π+. As the pixels in Λi ∩ Λ+ has been explained by π+, then

for πi the likelihood term in eqn. (32) only sums over Λi \ Λ+. Therefore the weight ω(πi)

usually is reduced after adding π+ to G.

Case II: A few neighboring candidate primitives which fit well with π+ and can be con-

sidered the next growing spot from π+. For such neighbors πi, the prior term penalty λo

is then replaced by the less costly smoothness energy in the Markov chain model Eo(f) in

eqn. (28). Therefore the weight ω(πi) is increased after adding π+ to G

The candidates with changed weights are sorted according to the updated weights, and
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Fig. 10. The plot of the weight ω(π+) (vertical axis) for the newly added primitive π+ at each iteration

(horizontal axis).

the procedure stops when the heaviest candidate has weight less than a threshold ω(π+) ≤ δo

(δo = 0 in our experiment). Figure 9 shows an experiment for the sketch pursuit procedure

at 53, 106, 159, 212, 265, and 317 iterations respectively. The plot of the weight ω(π+) at

each iteration is shown in Figure 10.

To summarize, we have the following algorithm for pursuing the sketch graph G.

The algorithm for sketch pursuit process

1. Bottom-up phase I: ridge detection for fold location and orientation.

2. Bottom-up phase II: SVM classification of fold primitives to obtain a candidate set Φ.

3. Initialize G ← ∅, Λnfd = Λ, and Rnfd = Ro
nfd.

4. Add a new primitive to G. G ← G ∪ {π+} with highest weight

ω(π+) = arg max{ω(π) : π ∈ Φ}.

5. Update the weights ω(π) for the neighboring primitives π ∈ Φ of π+.

6. Re-sort the candidate primitives according to their weights in decreasing order.

7. Repeat 4-6 until ω(π+) ≤ δo.
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After computing G, we obtain the fold primitives from the shading primitives by fitting

the radiance equation with the estimated composite albedo η and lighting direction (γ, τ).

Therefore we obtain an estimate for the fold surface Ŝfd. One problem with the estimated

depth map Ŝfd is that the depth of each primitive is estimated locally in the domain Λi.

Thus it has one degree of freedom for its absolute depth. As a result, the relative depth

between any two folds fi, fj are undecided. The relative depth must be decided together

with the non-fold areas in solving the whole surface.

C. Infer the non-fold surface and refine the fold surface

Given the estimated fold surface Ŝfd, we estimate the gradient map (pfd, qfd) on Λfd which

is not affected by the undecided depth constant at each fold primitive. In the next step,

we infer the gradient maps (pnfd, qnfd) for the non-fold surface Λnfd using (pfd, qfd) on Λfd as

boundary condition. Thus we rewrite the energy in eqn.5 in the following,

E1(pnfd, qnfd|pfd, qfd) = λint

∑

(x,y)∈Λnfd

(py−qx)
2+λsmo

∑

(x,y)∈Λnfd

(w1p
2
x+w2p

2
y+w2q

2
x+w3q

2
y). (33)

We take a gradient method in [8] for minimizing the energy with respect to (pnfd, qnfd). At

each iteration, we compute the gradient ∇E1(pnfd, qnfd) and choose a discrete stepsize d so

that the energy is minimized along the gradient direction. The procedure stops until the

decrease of energy is less than a threshold proportion to the number of |Λnfd|.

Now we have the gradient map (p, q) for the whole image domain Λ, and we compute the

surface S = (Sfd,Snfd) by minimizing the following energy term rewritten from eqn.6,

E2(S|p, q) =
∑

(x,y)∈Λ

(Sx − p)2 + (Sy − q)2. (34)

We solve the above minimization problem using the just discussed gradient method in [8].

This will be our final result for the surface.
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To conclude this section, we list the steps of the overall algorithm. The algorithm seeks

for greedy steps for estimating the variables η, (γ, τ), G,Sfd, (pnfd, qnfd),Snfd sequentially by

minimizing some energy terms.

The overall algorithm for SFS with the two-level generative model

1. Estimate the global variables: the composite albedo η and lighting direction (γ, τ).

2. Compute the sketch graph G by the fold pursuit process.

3. Initialize the fold surface Ŝfd by fitting the radiance equations.

4. Compute the gradient map (pfd, qfd) for the fold part.

5. Compute the gradient map (pnfd, qnfd) for the non-fold part conditioned on (pfd, qfd).

6. Estimate the cloth surface S = (Sfd,Snfd) jointly from (p, q).

It is valuable in theory to estimate the variable in iterations for more accurate result which

maximizes the Bayesian posterior probability jointly. For example, adjusting the estimation

of η, γ, τ or G after computing S. In practice, we find these greedy steps often obtain

satisfactory results, and therefore do not pursue the maximization of the joint posterior

probability.

VI. Experiments

We test our whole algorithm on a number of images. Figure 11 shows the results for three

images of drapery hung on wall and a cloth image (last column) on some people. Figure 12

shows four cloth images on people. The lighting direction and surface albedos for all the

testing cloth are estimated by the method in [33].

In the experimental results, the first row are input images, the second row are the sketches

of folds in the input images and their domain, the third row are the syntheses for Ifd based

on the generative sketch model for the fold areas, the fourth row are the 3D reconstruction
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 11. (a). Input cloth image. (b). 2d folds and their image domains. (c). Synthesis for 2D fold sketches

Ifd. (d). 3D reconstruction Sfd for fold areas. (e-f). Final reconstructed surface S in novel views.
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 12. (a). Input cloth image. (b). 2d folds and their image domains. (c). Synthesis for 2D fold sketches

Ifd. (d). 3D reconstruction Sfd for fold areas. (e-f). Final reconstructed surface S in novel views.
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(a)

(b)

(c)

Fig. 13. (a). Input cloth images. (b). Cloth reconstruction results by approach in (Zheng and Chellappa,

1991). (c). Cloth reconstruction results by approach in (Lee and Kou, 1993).

results Sfd for the fold areas, while fifth and sixth rows are the final reconstruction results

of the whole cloth surface S shown in two novel views.

In these results, the folds in row (d) have captured most of the perceptually salient

information in the input images, and they can reconstruct the surface without too much

skewing effects. It makes sense to compute them before the non-fold part. We observe that

the SFS for the non-fold parts indeed provides useful information for the 3D positions of

the folds.

For comparison with the state-of-art-art SFS algorithms, we run two minimization ap-

proaches on the same testing images above, as the minimization approaches are more robust

and accurate even though much slower than other approaches. The first approach is from

[33], while the second one is from [20]. The results for these two approaches are shown in

second and third rows respectively in Figure 13. The main problems with these methods
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are: (i) the global surface shape could be skewed (see row (c)) due to the accumulated effect

of computing S from the gradient map (p, q) through integration over pixels; and (ii) the

relative depth of the folds are not computed reliably. This latter problem is overcome in

our method due to the use of fold dictionary.

VII. Discussion and future Work

The two-level generative model is an attempt to incorporate visual knowledge represen-

tation for solving the traditional ill-posed vision problems. The current representation is

still limited and shall be extended in the following directions.

1. One may infer a third level generative representation that will explain the spatial

relation of the folds. As Fig. 14 shows, the folds are not independently distributed, but

are radiated from some hidden structures which artists called “hubs” [25]. These hubs are

shown in dashed ellipses for protruding parts or grip points such as the shoulder, or curves

for boundaries such as a waist belt. A fold must start or end with one of these hubs.

Physically, these hubs are the stretching points or lines that create the cloth folds.

2. We should learn a richer set of surface and shading primitives for more object classes.

One extreme will be the human face model in shape-from-recognition [1], [24], and the

other related work is the study of textons and lightons in [36]. With a richer dictionary, we

expect that SFS could work for various locations in an image with different types of object

primitives even without assuming global parallel lighting conditions.
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