IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO.9, SEPTEMBER 2011

1713

C*: Exploring Multiple Solutions
in Graphical Models by Cluster Sampling

Jake Porway, Student Member, IEEE, and Song-Chun Zhu, Fellow, IEEE

Abstract—This paper presents a novel Markov Chain Monte Carlo (MCMC) inference algorithm called C*—Clustering with
Cooperative and Competitive Constraints—for computing multiple solutions from posterior probabilities defined on graphical models,
including Markov random fields (MRF), conditional random fields (CRF), and hierarchical models. The graphs may have both positive
and negative edges for cooperative and competitive constraints. C* is a probabilistic clustering algorithm in the spirit of Swendsen-
Wang [34]. By turning the positive edges on/off probabilistically, C* partitions the graph into a number of connected components (ccps)
and each ccp is a coupled subsolution with nodes connected by positive edges. Then, by turning the negative edges on/off
probabilistically, C* obtains composite ccps (called cccps) with competing ceps connected by negative edges. At each step, C* flips the
labels of all nodes in a ccep so that nodes in each ccp keep the same label while different ccps are assigned different labels to observe
both positive and negative constraints. Thus, the algorithm can jump between multiple competing solutions (or modes of the posterior
probability) in a single or a few steps. It computes multiple distinct solutions to preserve the intrinsic ambiguities and avoids premature
commitments to a single solution that may not be valid given later context. C* achieves a mixing rate faster than existing MCMC
methods, such as various Gibbs samplers [15], [26] and Swendsen-Wang cuts [2], [34]. It is also more “dynamic” than common
optimization methods such as ICM [3], LBP [21], [37], and graph cuts [4], [20]. We demonstrate the C* algorithm in line drawing

interpretation, scene labeling, and object recognition.

Index Terms—Markov random fields, computer vision, graph labeling, probabilistic algorithms, constraint satisfaction, Monte Carlo.

1 INTRODUCTION

1.1 Motivations and Objective

MANY vision tasks, such as scene labeling [22], [31], [32],
object detection/recognition [11], [36], segmentation
[8], [35], and graph matching [6], [24], are formulated as
energy minimization (or maximum a posteriori probability)
problems defined on graphical models—Markov random
fields [3], [15], conditional random fields (CRFs) [22], [23],
or hierarchical graphs [14], [40]. These optimization
problems become exceedingly difficult when there are
multiple solutions, i.e., distinct modes with high probabil-
ities and, in some cases, equal probability.

Fig. 1 shows examples of typical scenarios that have
multiple, equally likely solutions in the absence of further
context. The top row shows the well-known Necker Cube,
which has two valid 3D interpretations. The middle row is
the Wittgenstein illusion in which the drawing can appear
to be either a duck or a rabbit. Without further context, we
cannot determine the correct labeling. The bottom row
shows an aerial image for scene labeling. It can be explained
as either a roof with vents or a parking lot containing cars.

Computing multiple solutions is important for preserving
the intrinsic ambiguities and avoiding early commitment toa
single solution which, even if it is currently the globally

o |. Porway is with the R&D Division of The New York Times.

o S.-C. Zhu is with the Departments of Statistics and Computer Science,
University of California, Los Angeles (UCLA), and the Lotus Hill Research
Institute.

Manuscript received 10 May 2010; revised 4 Dec. 2010; accepted 11 Dec.
2010; published online 9 Feb. 2011.

Recommended for acceptance by K. Murphy.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number
TPAMI-2010-05-0362.

Digital Object Identifier no. 10.1109/TPAMI.2011.27.

0162-8828/11/$26.00 © 2011 IEEE

optimal one, may turn out to be less favorable when later
contextarrives. However, it is a persistent challenge to enable
algorithms to climb out of local optima and to jump between
solutions far apart in the state space. Popular energy
minimization algorithms, such as Iterative Conditional
Modes (ICM) [3], Loopy Belief Propagation (LBP) [21], [37],
and graph cuts [4], [20], compute one solution and thus donot
address this problem. Existing MCMC algorithms, such as
various Gibbs samplers [15], [26], Data-Driven Markov Chain
Monte Carlo (DDMCMC) [35], and Swendsen-Wang (SW)
cuts [2], [34], promise global optimization and ergodicity in
the state space, but often need long waiting time in moving
between distinct modes, which needs a sequence of lucky
moves up the energy landscape before it goes down.

In this paper, our objective is to develop an algorithm
that can discover multiple solutions by jumping out of
equal probability states and thus preserve the ambiguities
on rather general settings:

1. The graph can be flat, such as an MRF or CRF, or
hierarchical, such as a parse graph.

2. The graph may have positive (cooperative) and
negative (competitive or conflicting) edges for both
hard or soft constraints.

3. The probability (energy) defined on the graph is
quite general, even with energy terms involving
more than two nodes.

In vision, it is safe to assume that the graph is locally
connected and we do not consider the worst-case scenario
where graphs are fully connected.

1.2 Related Work in the Literature

In the 1970s, many problems, including line drawing
interpretation and scene labeling, were posed as constraint

Published by the IEEE Computer Society

1714

input interpretation 1 interpretation 2

\j-———
|

!
|
|
J I

N

Necker cube

gﬁ?

duck/rabbit illusion

convex concave

parking lot and cars

roof and vents

aerial image

Fig. 1. Problems with multiple solutions: (top) the Necker cube, (middle)
the Wittgenstein illusion, and (bottom) an aerial image interpreted as
either a roof with vents or a parking lot with cars. Ambiguities should be
preserved until further context arrives.

satisfaction problems (CSPs). The CSPs were either solved
by heuristic search methods [30] or constraint propagation
methods [1], [28]. The former keeps a list of open nodes for
plausible alternatives and can backtrack to explore multiple
solutions. However, the open list can become too long to
maintain when the graph is large. The latter iteratively
updates the labels of nodes based on their neighbors. One
well-known constraint propagation algorithm is the relaxa-
tion labeling method by Rosenfeld et al. [32].

In the 1980s, the famous Gibbs sampler—a probabilistic
version of relaxation labeling—was presented by Geman
and Geman [15]. The update of labels is justified in a solid
MCMC and MRF framework and thus is guaranteed to
sample from the posterior probabilities. In special cases, the
Gibbs sampler is equal to belief propagation [30] for
polytrees and to dynamic programming in chains. The
Gibbs sampler is found to slow down critically when a
number of nodes in the graph are strongly coupled.

Fig. 2 illustrates an example of the difficulty with
strongly coupled graphs using the Necker Cube. The six
internal lines of the figure are divided into two coupling
groups: (1-2-3) and (4-5-6). Lines in each group must have
the same label (concave or convex) to be valid, as they
share the two “Y”-junctions. Thus, updating the label of a
single line in a coupled group does not move at all unless
we update the label of the whole group together, i.e., all
six labels in one step.

The problem is that we don’t know which nodes in the
graph are coupled and to what extent they are coupled for
general problems with large graphs. In 1987, a break-
through came from two physicists, Swendsen and Wang
[34], who proposed a cluster sampling technique. The SW
method finds coupled groups, called “clusters,” dynami-
cally by turning the edges in the graph on/off according to
the probabilities defined on these edges. The edge prob-
ability measures the coupling strengths. Unfortunately,
their algorithm only works for the Ising and Potts models.
We will discuss the SW method in later sections.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO.9, SEPTEMBER 2011

state A state B

positive edge =A== negative edge (_____) coupled states
O - convex label

Fig. 2. Swapping between the two interpretations of the Necker cube.
Locally coupled labels are swapped with alternate labelings to enforce
global consistency. See text for explanation.

- concave label

There were numerous attempts made to improve MCMC
methods in the 1990s (see Liu [25] for surveys), such as the
block Gibbs sampler [26]. Green formulated reversible jumps
in 1995 [17] following the jump-diffusion algorithm by
Grenander and Miller [18]. In 1999, Cooper and Frieze
analyzed the convergence speed of SW using a path coupling
technique and showed that the SW method has a polynomial
mixing time when the nodes in the graph are connected to a
constant number of neighbors [7]. Nevertheless, it was also
shown that SW could mix slowly under conditions when
graphs were heavily or fully connected [16].

In the 2000s, a few non-MCMC methods generated
remarkable impacts on the vision community, for example,
the LBP algorithm by Weiss [37] and the graph cut
algorithms by Boykov et al. and Kolmogorov and Rother
[4], [20]. These algorithms are very fast and work well on a
special class of graph structures and energy functions. In
addition, techniques such as survey propagation [5] have
had great success in statistical physics. In the case of
multimodal energy functions, however, it can be difficult
for these techniques to converge properly, as we will see.

On the MCMC side, Tu and Zhu developed the
DDMCMC algorithm for image segmentation in 2002 [35],
which uses bottom-up discriminative probabilities to drive
the Markov chain moves. They also developed a
“K-adventurer” procedure to keep multiple solutions. The
DDMCMC method was also used by Dellaert [29] for
tracking bee dances. Dellaert also used MCMC to explore
correspondences for structure-from-motion problems, even
incorporating a “jump parameter” to allow the algorithm to
jump to new solutions [9]. In 2005, Barbu and Zhu proposed
the SW-cut algorithm [2] which, for the first time, general-
ized the SW method to arbitrary probabilities models. As
we will discuss in later sections, the SW-cut did not
consider negative edges, high-order constraints, or hier-
archical graphs and is less effective in swapping between
competing solutions. The C* algorithm in this paper is a
direct generalization of the SW-cut algorithm [2].

1.3 Overview of the Major Concepts of C*

In this paper, we present a probabilistic clustering
algorithm called Clustering Cooperative and Competitive
Constraints (C*) for computing multiple solutions in
graphical models. We consider two types of graphs:
Adjacency graphs treat each node as an entity, such as a
pixel, a superpixel, a line, or an object, which has to be

PORWAY AND ZHU: C*: EXPLORING MULTIPLE SOLUTIONS IN GRAPHICAL MODELS BY CLUSTER SAMPLING

labeled in K-classes (or colors). Most MRFs and CRFs used
in computer vision are adjacency graphs.

Candidacy graphs treat each node as a candidate or
hypothesis, such as a potential label for an entity, or a
detected object instance in a window, which has to be
confirmed (“on”) or rejected (“off”). In other words, the
graph is labeled with K = 2 colors.

As we will show in Section 2.1, an adjacency graph can
always be converted to a bigger candidacy graph. In both
cases, the tasks are posed as graph coloring problems on
MRF, CREF, or hierarchical graphs. There are two types of
edges expressing either hard or soft constraints (or
coupling) between the nodes.

Positive edges are cooperative constraints that favor the two
nodes having the same label in an adjacency graph or being
turned on (or off) simultaneously in a candidacy graph.

Negative edges are competitive or conflicting constraints
that require the two nodes to have different labels in an
adjacency graph or one node to be turned on and the other
turned off in a candidacy graph.

In Fig. 2, we show that the Necker cube can be represented
in an adjacency graph, with each line being a node. The six
internal lines are linked by six positive edges (in green) and
two negative edges (in red and wiggly). Lines 2 and 4 have a
negative edge between them as they intersect with each
other, as do lines 3 and 6. We omit the labeling of the six outer
lines for clarity.

In this paper, the edges play computational roles and are
used to dynamically group nodes which are strongly
coupled. On each positive or negative edge, we define an
edge probability (using bottom-up discriminative models) for
the coupling strength. Then, we design a protocol for turning
these edges on and off independently according to their edge
probabilities, respectively, for each iteration. The protocol is
common for all problems, while the edge probabilities are
problem specific. This probabilistic procedure turns off some
edges, and all of the edges that remain “on” partition the
graph into some connected components (ccps).

A cep is a set of nodes that are connected by the positive
edges. For example, Fig. 2 has two ceps: ccp; includes nodes
1-2-3 and ccpy includes nodes 4-5-6. Each ccp is a locally
coupled subsolution.

A ccep is a composite connected component that consists
of a number of ccps connected by negative edges. For
example, Fig. 2 has one cccp containing ccp; and ceps. Each
ceep contains some conflicting subsolutions.

At each iteration, C* selects a ccep and updates the labels
of all nodes in the cccp simultaneously so that 1) nodes in
each ccp keep the same label to satisfy the positive or
coupling constraints, and 2) different ccps in the ccep are
assigned different labels to observe the negative constraints.

Since C* can update a large number of nodes in a single
step, it can move out of local modes and jump effectively
between multiple solutions. The protocol design groups the
cceps dynamically and guarantees that each step follows the
MCMC requirements, such as detailed balance equations,
and thus it samples from the posterior probability.

We evaluate C* against other popular algorithms in the
literature by two criteria.

1. The speed at which they converge to solutions. In
some studied cases, we know the global minimum
solutions.

1715

2. The number of unique solution states generated by
the algorithms over time. This measures how
“dynamic” an algorithm is.

3. The estimated marginal probability at each site in the
graphical model after convergence.

The remainder of the paper is organized as follows: In
Section 2, we describe the graph representation and an
overall protocol for C*. In Section 3, we introduce the
C* algorithm on flat graphs and show the sampling of Potts
models with positive and negative edges as a special case.
In Section 4, we show experiments on generalized C*
outperforming BP, graph cuts, SW, and ICM for some
segmentation, labeling, and CRF inference tasks. We extend
C* to hierarchical graphs in Section 5 and show experiments
for hierarchical C*. Finally, we conclude the paper with a
discussion of our findings in Section 6.

2 GRAPHS, COUPLING, AND CLUSTERING

2.1 Adjacency and Candidacy Graphs

We start with a flat graph G that we will extend to a
hierarchical graph in Section 5:

G=<V,E> E=E'UE". (1)

Here, V = {v;,i = 1,2,...,n} is a set of vertices or nodes on
which variables X = (zy,...,z,) are defined, and E =
{eij = (vi,v;)} is a set of edges which is divided into E*
and E~ for positive (cooperative) and negative (competitive
or conflicting) constraints, respectively. We consider two
types of graphs for G:

An adjacency graph, where each node v; € V' is an entity,
such as a pixel or superpixel in image labeling, a line in a
line drawing interpretation, or an object in scene under-
standing. Its variable z; € {1,2,3,..., K;} is a label or color.
MRFs and CRFs in the literature belong to this category,
and the task is to color the nodes V' in K colors.

A candidacy graph, where each node v, €V is a
candidate or hypothesis, such as a potential label assign-
ment for an entity, an object instance detected by bottom-up
methods, or a potential match of a point to another point in
graph matching. Its variable z; € {'on/,’off'} is a Boolean
which confirms (“on”) or rejects (“off”) the candidate. In
other words, the graph is labeled with K = 2 colors. In the
graph matching literature [6], the candidacy graph is
represented by a assignment matrix.

An adjacency graph can always be transferred to a bigger
candidacy graph by converting each node v; into K; nodes
{xij}. @i € {'on',’off'} represents x; = j in the adjacency
graph. These nodes observe a mutual exclusion constraint
to prevent fuzzy assignments to z;.

Fig. 3 shows this conversion. The adjacency graph G.q; =
<Vidj, Eagi> has six nodes V,q; = {4, B,C, D, E, F'} and each
has 3 ~5 potential labels. The variables are X,q =
(xa,...,zp) with z4 € {1,2,3,4,5} and so on. We convert
it to a candidacy graph G = <Vean, Eecan> With 24 nodes
Vean = {A1,...,45,...,F1,...,Fi}. Node A; represents a
candidate hypothesis that assigns z4 =1. The X =
(x4,,...,xF,) are Boolean variables.

Represented by the graph G, the vision task is posed as
an optimization problem that computes a most probable

1716
T positive edge 4 4
- negative edge
3
candidacy
graph 2
1
adjacency
graph O *On’ nodes

@ "Off " nodes

Fig. 3. Converting an adjacency graph to a candidacy graph. The
candidacy graph has positive (straight green lines) and negative
(wiggled red lines) edges, depending on the values assigned to the
nodes in the adjacency graph.

interpretation with a posterior probability p(X|I) or an
energy function £(X):

X" = argmax p(X| I) = argmin £(X). (2)

To preserve the ambiguity and uncertainty, we may
compute multiple distinct solutions {X;} with weights
{w;} to represent the posterior probability:

(Xiywi) ~p(X|I), i=12,...,K. (3)
2.2 Positive and Negative Edges

In conventional vision formulation, edges in the graphs are
a representational concept and the energy terms in £ are
defined on the edges to express the interactions between
nodes. In contrast, Swendsen and Wang [34] and Edward
and Sokal [10] added a new computational role to the edges
in their cluster sampling method. The edges are turned
“on” and “off” probabilistically to dynamically form groups
(or clusters) of nodes which are strongly coupled. We will
introduce the clustering procedure shortly after the exam-
ple below. In this paper, we adopt this notion and the edges
in graph G are characterized in three aspects:

Positive versus negative. A positive edge represents a
cooperative constraint for two nodes having the same label
in an adjacency graph or being turned on (or off)
simultaneously in a candidacy graph. A negative edge
requires the two nodes to have different labels in an
adjacency graph or requires one node to be turned on and
the other turned off in a candidacy graph.

Hard versus soft. Some edges represent hard constraints
which must be satisfied, for example, in line drawing
interpretation or scene labeling, while other edge con-
straints are soft and can be expressed with a probability.

Position-dependent versus value-dependent. Edges in adja-
cency graphs are generally position-dependent. For example,
in an Ising model, an edge between two adjacent nodes
poses a soft constraint that they should have the same label
(ferromagnetism) or opposite labels (antiferromagnetism).
In contrast, edges in candidacy graphs are value-dependent
and thus have more expressive power. This is common for
vision tasks, such as scene labeling, line drawing inter-
pretation, and graph matching. As Fig. 3 illustrates, the
edges between nodes in the candidacy graph could be
either positive or negative depending on the values
assigned to nodes A, B in the adjacency graph.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO.9, SEPTEMBER 2011

candidacy graph

@ concave label
@ convex label

O "On’ nodes
@ Off " nodes

Fig. 4. The Necker cube example. The adjacency graph with 6 nodes
(bottom) is converted to a candidacy graph of 12 nodes (top) for
concave and convex label assignments, respectively. Twelve positive
and two negative edges are placed between these candidate assign-
ments to ensure consistency.

As we will show in a later section, the positive and
negative edges are crucial for generating connected compo-
nents and resolving the problem of node coupling.

2.3 The Necker Cube Example

Fig. 4 shows the construction of a candidacy graph G for
interpreting the Necker cube. For clarity of discussion, we
assume the exterior lines are labeled and the task is to
assign two labels (concave and convex) to the six inner lines
such that all local and global constraints are satisfied.
Therefore, we have a total of 12 candidate assignments or
nodes in G.

Based on the theory of line drawing interpretation [27],
[33], the two “Y”-junctions pose positive constraints so that
lines 1-2-3 have the same label and lines 4-5-6 have the same
label. We have 12 positive edges (green) in G to express
these constraints. The intersection of lines 2 and 4 poses
negative constraints that lines 2 and 4 have opposite labels
which are shown in the red and wiggly edges in Fig. 4. The
same is true for lines 3 and 6. The two different assignments
for each line should also be linked by a negative edge. These
negative edges are not shown for clarity.

In this candidacy graph, the two solutions that satisfy all
constraints are represented by the 2-colors in Fig. 4. The first
has all nodes 1, 2, and 3 labeled convex (“x”) and all nodes
4, 5, and 6 labeled concave (“0”). This solution is currently
in the “on” state. This would create a valid 3D interpreta-
tion where the cube is “coming out” of the page. The
alternative solution has the opposite labeling and creates a
3D interpretation of the cube “going in” to the page.

To switch from one solution to the other, we must swap
the junction labels. Each set of nodes, 1-2-3 and 4-5-6,
constitutes a corner of the Necker Cube and all have positive
constraints between them. This indicates that we should
update all of these values simultaneously. We create two
connected component ccp; and ccp, comprised of the coupled
nodes 1-2-3 and nodes 4-5-6, respectively. If we were to

PORWAY AND ZHU: C*: EXPLORING MULTIPLE SOLUTIONS IN GRAPHICAL MODELS BY CLUSTER SAMPLING

simply invert the labels of ccp; or ccp, alone, we would
create an inconsistent interpretation where all edges in the
whole graph would now have the same label. What we need
to do is simultaneously swap ccp; and ceps.

Note that we have negative edges between nodes 2 and 4
and between nodes 3 and 6. Negative edges can be thought
of as indicators of multiple competing solutions, as they
necessarily dictate that groups on either end of the edge can
either be (“on,” “off”) or (“off,” “on”), creating two possible
outcomes. This negative edge connects nodes in ccp; and
ccpa, thus indicating that those nodes in the two ccps must
have different labels. We construct a composite connected
component (called ccep), ccepro, encompassing nodes 1-6,
we now have a full component that contains all relevant
constraints. Moving from solution 1 to 2 is now as simple as
flipping all the nodes simultaneously or, equivalently,
satisfying all of the constraints.

In the next section, we explain how we form the ccps and
cceps in a formal way.

2.4 Edge Probability for Clustering

On each positive or negative edge, we define an edge
probability (using bottom-up discriminative models) for the
coupling strength. That is, at each edge e € E, we define an
auxiliary probability u, € {0,1} or {'on’,’off'}, which
follows an independent probability g..

In Swendsen and Wang [34], the definition of ¢. is
decided by the energy term in the Potts model ¢. = e 27 as a
constant for all e. Barbu and Zhu [2], for the first time,
separate ¢. from the energy function and define it as a
bottom-up probability: g. = p(l(x;) = I(z;)|F(x:), F(z;)) =
p(e = on|F(z;), F(z;)) with F(z;) and F(z;) being local
features extracted at nodes x; and z;. This can be learned
through discriminative training, for example, by logistic
regression and boosting,

pU(zi) = U(z))|F(z:), F(z
pU(zi) 7 U(z)) | F (i), F(z

On a positive edge e = (i,5) € Et, u. ='on’ follows a
Bernoulli probability

ji% - Z)\nhn(F(xl)aF(‘r]))

ue ~ Bern(g. - 1(z; = z;)).

1() is Boolean function. It equals 1 if the condition is
satisfied and 0 otherwise. Therefore, at the present state X,
if the two nodes have the same color, i.e., 2; = x;, then the
edge e is turned on with probability ¢.. If z; # z;, then u, ~
Bern(0) and e is turned off with probability 1. So, if two
nodes are strongly coupled, ¢. should have a higher value
to ensure that they have a higher probability of staying the
same color.

Similarly, for negative edges e€ E~, u.='on' also
follows a Bernoulli probability

ue ~ Bern(g.1(z; # x;)).

At the present state X, if the two nodes have the same color
x; = x;, then the edge e is turned off with probability 1,
otherwise e is turned on with probability g. to enforce that
z; and z; stay in different colors.

After sampling u, for all e € E independently, we denote
the sets of positive and negative edges that remain “on” as

1717

E! C Eyand E,, C E-, respectively. Then, we have formal
definitions of the ccp and ccep.

Definition 1. A ccp is a set of vertices {v;;i =1,2,...,k} for
which every vertex is reachable from every other vertex by the
positive edges in E

on’

Definition 2. A ccep is a set of ceps {cep;;i=1,2,...,m} for
which every ccp is reachable from every other ccp by the
negative edges in E_ .

No two ccps are reachable by positive edges or else they
would be a single ccp. Thus, a ccep is a set of isolated ccps
that are connected by negative edges. An isolated ccp is also
treated as a ccep.

In Section 5, we will treat the invalid cases where a ccp
contains negative edges by converting it to a cccp.

To observe the detailed balance equations in MCMC
design, we need to calculate the probabilities for selecting a
ccp or cccp which are determined by the edge probabilities g..
For this purpose, we define their cuts. In general, a cut is the
set of all edges connecting nodes between two nodes sets.

Definition 3. Under a current state X, a cut for a ccp is the set
all positive edges between nodes in ccp and its surrounding
nodes which have the same label:

Cut(ccp|X) ={e:e € E*, x; = xj,i € ccp, j & ccp}.

These are the edges that must be turned off probabilistically
(with probability 1 — g.) in order to form the ccp and the cut
depends on the state X.

Definition 4. A cut for a cccp at a state X is the set of all
negative (or positive) edges connecting the nodes in the cccp
and its neighboring node which has different (or same) labels:

Cut(ccep|X) ={e: e€ E™, i € ccep, j & ceep, x; # xj}
U{e: e€ E, i € ccep, j & ceep,x; = x;}.

All of these edges must be turned off probabilistically with
probability 1 — ¢. in order to form the composite connected
component cccp at state X.

As edges in £ only connect nodes with the same label,
so all nodes in a ccp have the same label. In contrast, all
edges in E only connect nodes with different labels,
adjacent ccps in a cecp must have different labels.

To illustrate the concepts, we show a nonsolution state X
for the Necker cube in Fig. 5. By turning off some edges
(marked with the crosses), we obtain three cceps for the
nodes that are currently “on.” In this example, ¢. =1 as
these are hard constraints that are inviolable. cccp, and ceeps
have only one node, and cccp; has two ceps with four nodes.
The algorithm will now arbitrarily select a cccp and update
its values according to its constraints. If it selects either cccp;
or cccps, then we are one step closer to the solution. If it
selects (cceps), then all four vertex labels are swapped and
we have reached a solution state and will continue to swap
back and forth between the two solutions.

1718

cceps

Fig. 5. A Necker cube candidacy graph not in a solution state.

3 (C* ALGORITHM ON FLAT GRAPHS

In this section, we introduce the C* algorithm for cluster
sampling on flat graphs.

3.1 Outline of the Algorithm

The C* algorithm works iteratively following the MCMC
design. In each iteration, it generates the cceps, selects (or
visits) a cccp, with a probability, and reassigns labels to its
ceps such that all internal negative constraints are satisfied.
As the number of ccps in ccep, grows large, the number of
potential labelings will grow as well. One can remedy this
situation in two ways:

1. Use a CSP-solver to solve this smaller, easier

constraint satisfaction problem within cccp,.

2. Use random or heuristic sampling to find a new

valid labeling.

We will use the second approach throughout this paper
and the number of ceps in a ccep, is in general small, so the
label assignment is not a problem. The C* algorithm can be
a viewed as a method that breaks a large constraint-
satisfaction problem into smaller fragments in cccp, which
can be satisfied locally. Then, it propagates the solution
through iterations.

This assignment represents a move in MCMC which is
accepted by the Metropolis-Hastings step with an accep-
tance probability. The acceptance probability account for
the probabilities for generating the cceps, selecting a cccp,,
assigning new labels, and the posterior probability.

In summary, we state the C* algorithm below.

C* algorithm
Input: A graph G = <V, E> and posterior prob. p(X] I).
Calculate the edge probability ¢., Ve € E.

//qe is a problem specific discriminative probability.

Initialize the state X = (z1, 9, ...,2y,).
//e.g., all nodes are turned off in a candidacy graph.
Repeat

Denote the current X by state A.
Step 1: Generate a cccp, at state A
Ve = (i,j) € E, sample u, ~ Bern(g.1(z; = z;))
Ve = (i,j) € E~, sample u, ~ Bern(g.1(z; # z;))
Generate the {ccp} and {ccep} based on Ef, and E,
Select a ccep, from {ceep} probabilistically
// Denote the prob for selecting cccp, by q(ccep,|A).
Step 2: Assign labels to ccp’s in the cccp with
probability: ¢(I(ccep, = Liccep,, A)).
Denote the new X as state B.
Step 3: Calculate the acceptance probability:

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO.9, SEPTEMBER 2011

. (B—A) p(X=B|I)
a(A — B) = mln(l,Z(AﬂB) 'Z(X:A\I))'

Output: Distinct states {X*} with highest probabilities.
We will elaborate on the probabilities used in the
algorithm in the next section.

3.2 Calculating the Acceptance Probability

In Markov chain design, each move between two states A
and B is made reversible and observes the detailed balance
equation

p(X=A)K(A— B)=p(X=B|)K(B— A). (4)

K(A — B) is the Markov chain kernel or transition
probability from A to B. In the Metropolis-Hastings design,

K(A— B)=q(A— B)a(A— B),VA#B. (5

g(A — B) is the probability for proposing state B from
state A and a(A — B) is the acceptance probability
¢(B— A) p(X =B|1
B8 W =B0)

a(A — B) :min(l’q(AHB) .p(X:A|)

It is easy to check that the design of proposal probability in
(6) and the acceptance probability in (5) makes the kernel
satisfy the detailed balance equation in (4), which in turn
suffices to observe the invariance condition

p(X =A|I)K(A — B) =p(X = B| I). (1)

So, p(X| I) is the invariant probability of the Markov chain
with kernel K. Now, we elaborate on the design of proposal
and acceptance probabilities. The acceptance probability is
determined by two ratios.

1. The ratio i gif} ifi is problem specific and is not part

of our design. The posterior probability can be in
general form and does not have to be modified or
approximated to fit the C* algorithm. As states A
and B only differ in their labels for nodes in cccp,, it
often can be computed locally if the posterior
probability is a MRF or CRF.

2. The proposal probability ratio is completely up to
our design, and it includes two parts

q(B— A)

q(ccep,|B) 'q(l(cccpo) = Lalccep,, B)
q(ceep,|A) q(l(ccep,) = Lp|eeep,, A)

q(A — B)

g(ccepp|A) and g(ceepy|B) are the probabilities for
choosing cccp, at states A and B, respectively. Given
the chosen composite connected component ccep,, in
both states A and B, the assignment of new labels is
independent of the surrounding neighbors of cccp,
and is often assigned by equal probability (uniform)
amonyg all valid assignments in the CSP-solver. Thus,

q(Uceepo)=Lalecepo,B) _

they cancel out, and we have Wcop =L plccapA) = 1.

To summarize, the key to the algorithm design is the
ratio ZEZZ :ﬁ; . In single site samplingt suc.h as Gibbs sar.nPFer,
each node is a ccep, and the selection is simply a visiting
scheme. In C*, the probability for choosing cccp, at a state
depends on two steps: 1) How likely it is to generate cccp,
by sampling the edge probabilities ¢, following the

Bernoulli probability. 2) How likely it is to select cccp,

PORWAY AND ZHU: C*: EXPLORING MULTIPLE SOLUTIONS IN GRAPHICAL MODELS BY CLUSTER SAMPLING

(a) Potts model with +/- edges
Il

(b) state X=A

1719

(c) state X=B

ONOZONO)
0010 @
OROUORO)
ORCACRC,

positive edge <\~ negative edges

X cut: turn off edge probabilistically

O xi=1 O x;=0

Fig. 6. The Potts model with negative edges. (a) Minimum energy is a checkerboard pattern. (b) Forming cceps. (c) ccepy consists of sub-ceps of

positive edges connected by negative edges.

from the set of formed {cccp} in states A and B. These
probabilities are hard to compute because there are a vast
amount of partitions of the graph that include a certain
ceep, by turning on/off edges. A partition is a set of cceps
after turning off some edges.

Interestingly, the set of all possible partitions in state A
is identical to those in state B, and all of these partitions
must share the same cut Cut(ccep,). That is, in order for
ceep, to be a composite connected component, its connec-
tions with its neighboring nodes must be turned off. Even
though the probabilities are in complex form, their ratio is
simple and clean due to cancellation. Furthermore, given
the partition, cccp, is selected with uniform probability
from all possible cceps.

Proposition 1. The proposal probability ratio for selecting cccp,
at states A and B is

q(cccp0|B) _ HEECut(ccep,,\B)(]‘ - qt) (8)
q(cccp0|A) HeECut(cccpo\A)(l - qf’«)

We will prove this in the Appendix, which can be found in
the Computer Society Digital Library at http://doi.ieee
computersociety.org/10.1109/TPAMI.2011.27, in a similar
way to the SW-cut method [2].

3.3 Special Case: Potts Model with +/— Edges

To illustrate C*, we derive it in more detail for a Potts model
with positive and negative edges. Let X be a random field
defined on a 2D lattice with discrete states z; € {0,1,2,...,
L —1}. Its probability is specified by

p(X) = exp{~E(X)}:
EX)= D BSmi=xz)+ Y B #),

<i,j>€E" <ij>€E-

(9)

where 3 > 0 is a constant. The edge probability will be ¢, =
1 — e for all edges.

Fig. 6a shows an example on a small lattice with L =2
labels, which is an adjacency graph with position-
dependent edges. The states with checkerboard patterns
will have highest probabilities. Figs. 6b and 6c show two
reversible states A and B by flipping the label of a ccep,
in one step. In this example, cccp, has three ceps,

ceep, = {{2,5,6};{3,7,8}; {11,12}}. The labels of the eight

nodes are reassigned with uniform probability, and this

leads to the difference in the cuts for ccep, at the two states,

Cut(ceepo|A) ={(3,4),(4,8),(12,16)} and Cut(ccep,|B) =

{(1,2),(1,5),(5,9), (6,10), (10,11), (11,15)}.

Proposition 2. The acceptance probability for C* on the Potts
model is a(A — B) =1 for any two states with different
labels in ccep,. Therefore, the move is always accepted.

The proof follows two observations. First, the energy terms
inside and outside cccp, are the same for both A and B, and
they differ only at the cuts of cccp,. More precisely, letting
¢ = |Cut(ccep,|B)| — |Cut(ceep,|A) be the difference of sizes
in the two cuts (i.e., ¢ = 3 in our example), it is not too hard
to show that

pX A (10)
Second, we have the proposal probability ratio, following (8):

[Cut(ccep,|B)|
q(ceepo|B) _ (1 —g)" "0 4 (1)

q(CCCpo‘A) (1 _ qe)\Cut(ccupo\A)\

Plugging in the two ratios in (6), we have (4 — B) = 1. In
the literature of SW [10], Edwards and Sokal explain the SW
on Potts model as data augmentation where the edge
variables {u.} are treated as auxiliary variables and they
sample {z;} and {u.} iteratively from a joint probability.

4 EXPERIMENTS ON FLAT GRAPHS

In this section, we test C*'s performance on some flat
graphs (MRF and CRF) in comparison with the Gibbs
sampler [15], SW method [34], ICM, graph cuts [4], and LBP
[21]. We choose classical examples:

1. the Ising/Potts model for MRF,

2. line drawing interpretation for constrained-satisfac-
tion problem using candidacy graph,

3. scene labeling using CRF, and

4. scene interpretation of aerial images.

1720

| BEOSSES) SESE

£
he

%%%%5%%%

—~

a) initial state

Sre
e
3049
iy

5
5

(b) solution state 1 (c) solution state 2

Fig. 7. The Ising/Potts model with checkerboard constraints and two
minimum energy states computed by C*.

4.1 Checkerboard Ising Model

We first show the Ising model on a 9 x 9 lattice with
positive and negative edges (the Ising model is a special
case of the Potts model with L = 2 labels). We tested C*
with two parameters settings: 1) 5 = 1 and thus ¢. = 0.632;
and 2) =5 and thus ¢, = 0.993. In this lattice, we have
created a checkerboard pattern. We have assigned negative
and positive edges so that blocks of nodes want to be the
same color, but these blocks want to be different colors than
their neighbors.

Fig. 7 shows a typical initial state to start the algorithm,
and two solutions with minimum (i.e., 0) energy. Fig. 8a
shows a plot of energy versus time for C*, Gibbs sampler,
SW, graph cuts, and LBP. c* converges second fastest of all
five algorithms in about 10 iterations, behind graph cuts.
Belief propagation cannot converge due to the loopiness of
the graph, and Gibbs sampler and the conventional
Swendsen-Wang cannot quickly satisfy the constraints as
they do not update enough of the space at each iteration.
This shows that C* has a very low burn-in time.

Figs. 8b and 8c show the state visited at each iteration. We
show the states in three levels: The curve hits the ceiling or
floor for the two minimum energy states, respectively, and
the middle for all other states. Here, we are only comparing
graph cuts, SW, and C* as they are the only algorithms that
converge to a solution in a reasonable amount of time. C*

(@ (b

& N % ; LBP § “[Graphcut| SW

=i \H_ L
%ADt B A Gibb 4 ”« J
oo |\ L L1bbs : I N (N R I S
E 0 v (0 " Iterations
4a} 1

20 - 4 M: - %

o NC . W g

AGrapheut ” i

Iterations " Iterations

Fig. 8. (a) Energy plots of C*, SW, Gibbs sampler, graph cuts, and LBP
on the Ising model versus time. (b) and (c) The state (visited by the
algorithms) in time for graph cuts, SW, and C*. Once SW and graph cuts
hit the first solution, they get stuck, while C* keeps swapping between
the two minimum energy states. C* results shown for 5 =1 and 8 = 5.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO.9, SEPTEMBER 2011

~

C4
0.8

—— Gibbs| |

0.6

0.2

Empirical Belief at Single Node

.
1000 2000 3000 4000 5000 6000 7000
Iterations

Fig. 9. Comparison of marginal beliefs at a single site of the Ising model
for Gibbs, SW, and C*. C* correctly converges toward 0.5, while the
other algorithms only find a single solution state. LBP does not converge
and thus has erratic beliefs that we do not show on this plot.

keeps swapping solutions while SW and graph cuts get
stuck in their first solution. This is because C* can group
along negative edges as well as positive edges to update
large portions of the system at once, while Swendsen-Wang
is stuck proposing low probability moves over smaller
portions of the solution space.

We also compared our results for experiments where 3 =
1 and 3 = 5. Fig. 8c shows the states visited by the sampler
over time. In the =1 case, it takes longer for C* to
converge because it cannot form large components with
high probability. As 3 gets large, however, C* very quickly
takes steps in the space toward the solution and can move
rapidly between solution states. We have found that an
annealing schedule where ¢, = 1 — ¢ #/T and T is adjusted
such that ¢, moves from 0 to 1 over the course of the
experiment works quite well too.

We finally compare the estimated marginal beliefs at
each node as computed by each algorithm. LBP computes
these beliefs directly, but we can estimate them for Gibbs
sampling, SW, and C*! by running each algorithm and
recording the empirical mean at each iteration for each node
given the previous states. Fig. 9 shows the belief for one of
the Ising model sites over time for each of the four
algorithms. LBP does not converge, so it has a noisy
estimate over time and is not plotted for clarity, Gibbs and
SW converge to a probability of 1 because they get stuck in a
single solution state, while C* approaches 0.5 as it keeps
flipping between the two states.

4.2 Checkerboard Potts Model with Seven Labels

We ran the same experiment as with the Ising model above
but this time solved the same checkerboard pattern on a
Potts model in which each site could take one of seven
possible colors (L = 7). In this example, we have a large
number of equal states (in checkerboard pattern) with
minimum energy.

Fig. 10a plots the energy convergence of each algorithm
over time. Graph cuts again converges to just one of the
many solutions. Unlike in the case of the L = 2 model, SW is
able to find multiple solutions this time, as seen in Fig. 10b.
Fig. 10c shows the number of distinct states with minimum
energy that have been visited by SW and C* over time. We
see that C* explores more states in a given time limit, which

PORWAY AND ZHU: C*: EXPLORING MULTIPLE SOLUTIONS IN GRAPHICAL MODELS BY CLUSTER SAMPLING

(a)

30 a0 =0 B0 70 80
Iterations

1721

Unique Solution States Visited
Over Time

ctB=5
Cg=1 — —
SW,B=5
SW,B=1 — —

Total Unique Solutions

i} 2 Ab Bb Eb 160 12‘0
Iterations

Iterations

Fig. 10. (a) Energy plots of C*, SW, Gibbs sampler, and LBP on the Potts model (L = 7) versus time. (b) and (c) The minimum energy states visited
by the SW and C* algorithms over time. (d) The total number of unique solutions found versus time for SW and C* with 3 =1 and 8 = 5.

solution - —
state 1

solution
state 2

@)

Fig. 11. Experimental results for swapping state between interpretations:

and inner cubes. (c) States visited by C* for the double cubes.

again demonstrates that C* is more dynamic and thus has
fast mixing time—a crucial measure for the efficiency of
MCMC algorithms. We also compare the case where 8 =1
versus (3 = 5. Once again we see that 5 = 1 does not create
strong enough connections for C* to move out of local
minimum, so it finds roughly as many unique solutions as
Swendsen-Wang does (about 13). When £ is increased to 5,
however, the number skyrockets from 13 to 90. We thus see
that C* can move around the solution space much more
rapidly than other methods when [is high and can
discover a huge number of unique solution states.

4.3 Line Drawing Interpretation

The previous two examples are based on MRF models
whose edges are position-dependent. Now, we test on line
drawing interpretation on candidacy graph. We use two
classical examples which have multiple stable interpreta-
tions, or solutions: 1) the Necker cube in Fig. 1 that has two
interpretations and 2) a line drawing with double cubes in
Fig. 11 that has four interpretations. The swapping between
these states involves the flipping of 3 or 12 lines
simultaneously. Our goal is to test whether the algorithms
can compute the multiple distinct solutions over time.

We adopt a Potts-like model on the candidacy graph.
Each line in the line drawing is a node in the Potts model,
which can take one of eight line drawing labels indicating
whether the edge is concave, convex, or a depth boundary.
See [33] for an in-depth discussion on labels for consistent
line drawings. We add an edge in our candidacy graph
between any two lines that share a junction. At each
junction, there are only a small set of valid labels for each
line that are realizable in a 3D world. We add positive edges
between pairs of line labels that are consistent with one of
these junction types, and negative edges between line labels

5

45
solution 4 4
35
solution 3 5
25
solution 2 2
1.5

solution 1 1
05

)

0 100 200 300 400 500 600
(C) iterations

700 800 900 1000

(a) States visited by C* for the Necker cube. (b) A line drawing with outer

that are not. Thus, we model the pairwise compatibility of
neighboring line labels given the type of junction they form.

For these experiments, we set § =2, resulting in
¢e = 0.865. Figs. 11a and 11c plot the state visited by the
algorithms over time. Once again, we see that C* can
quickly switch between solutions where CSP-solvers or
other MCMC methods could get stuck.

4.4 Labeling Man-Made Structures on CRFs

We recreate the experiments in [22], where CRFs were
learned to model man-made structures in images. Fig. 12
shows images that are broken into 16 x 24 grids and
assigned a label z; = {—1,+1} if they cover a man-made
structure or not. The probability of labeling the sites = given
data y in a CRF is

p(X]Y)

Z Zd’(xuxpy)

i jeN;

2o oliy) + (12)

For space, we refer the reader to [22] for more details of
this model. We simply choose their model so that we can
compare various algorithms on the same representation.
The authors use a greedy algorithm (ICM) for inference.

We learned the CRF weights via BFGS [13] using the data
from [22] and compared inference results using C* to ICM,
LBP, and SW. Edge probabilities were taken from the CRF
interaction potentials. The CRF defines a potential for the
case when two sites have the same label and for when they
have different labels. If the ratio of these two potentials was
below a threshold 7, a negative edge was used to connect
the sites to force them to be labeled differently.

Fig. 12 shows the detection results and ground truths. LBP
has very few false positives, but misses huge amounts of the
detection. ICM looks graphically similar to C*, but produces

1722

LBP

IcM

c

Ground
truth

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO.9, SEPTEMBER 2011

Fig. 12. Man-made structure detection results using a CRF model with LBP, ICM, and C*.

significantly more false positives. C* is able to swap between
foreground/background fragments in large steps so it can
find blocks of man-made structure more effectively.

Table 1 shows our results as in [22]. We used an
implementation for that paper provided by K. Murphy' that
achieves a higher false positive rate than Hebert's model.
Nevertheless, our goal is not to outperform [22], but to
show that, given the same learned model, C* can outper-
form other inference methods. Here, we see that, for
roughly the same false alarm rate, C* has a higher detection
rate than other algorithms.

4.5 Parsing Aerial Images

In this experiment, we use C* to parse aerial images. This
experiment is an extension of our work from [31]. In [31],
aerial images are represented as collections of groups of
objects, related by statistical appearance constraints. These
constraints are learned automatically in an offline phase
prior to inference.

We create our candidacy graph by letting each bottom-
up detected window be a vertex in the graph, connected by
edges with probabilities proportional to how compatible
those objects are (we refer to [31] for detailed discussion of
the energy function). Each candidate can be on or off,
indicating whether it is in the current explanation of the
scene or not.

Each edge is assigned to be positive or negative and
assigned a probability g. of being on by examining the
energy e = ¢(z;, ;) between its two nodes. If e > ¢, the edge
is labeled as a negative edge, and if e < ¢, the edge is labeled
as a positive edge, where ¢ is a threshold of the user’s
choosing. In our experiments, we let ¢t = 0. In this way, we
create data-driven edge probabilities and determine posi-
tive and negative edge types for C*.

In these experiments, we learned a prior model for likely
object configurations using labeled aerial images. Object

1. http://people.cs.ubc.ca/~murphyk/Software/CREF/crf2D_
kumarData.html.

boundaries were labeled in each image from a set of over
50 images. We tested the results on five large aerial images
collected from Google Earth that were also labeled by hand
so that we could measure how much C* improved the final
detection results. Though we only use five images, each
image is larger than 1,000 x 1,000 pixels and includes
hundreds of objects, so one could also think of the
evaluation as spanning 125 images of 200 x 200 pixels.

Fig. 13 shows an example of a parsed aerial scene. The
bottom-up detected windows are treated as candidates and
many are false positives. After using C*! minimizing a
global energy function, however, we are left with the subset
that best satisfies the constraints of the system. The false
positive rates are vastly diminished after C* rules out
incompatible proposals. Fig. 13d shows the precision-recall
curve for aerial image object detection using C* versus just
bottom-up cues. We can see that the C* curve, drawn in
dashed green, has a much higher precision than the bottom-
up detections even as the recall increases.

We also compared the results of using C* over LBP, ICM,
and SW for similar false alarm rates. The results are shown
in Table 2.

Fig. 14 shows the true power of C*. Fig. 14a shows an
interpretation of a scene that C* initially incorrectly labeled
as a line of cars in a parking lot, for which it has mistaken
some building vents. Because C* can simultaneously swap
these competing subsolutions, however, we see in Fig. 14b
that, later in the algorithm, C* has settled on the correct
explanation.

TABLE 1
False Positives per Image and Detection Rate Using
Loopy BP, SW, ICM, and C* for Man-Made Structure Detection

Method | FalsePositive (per image) DetectRate (%)
SW 46.51 0.556
ICM 46.90 0.651
LBP 47.18 0.685
c4 47.12 0.696

PORWAY AND ZHU: C*: EXPLORING MULTIPLE SOLUTIONS IN GRAPHICAL MODELS BY CLUSTER SAMPLING

(a) input aerial image

1723

(c) after C*inference (d) dataset performance

(b) detected candidates

precision

after C*
inference

- bottom-up
detection

i P TS S S S O
LX) CE LX) () [o4t o8 o) ot
recall

Fig. 13. An application of C* to aerial image parsing. (a) A portion of an aerial image from Google earth. (b) A set of bottom-up detections of objects
with each being a candidate, i.e., a node in the candidacy graph. Note the large number of false positives that need to be turned off. (b) The final
subset of proposals selected by C* to represent the scene. C'* has removed the candidates that are inconsistent with the prior. (c) Precision recall

curve for pixel-level performance over a data set of aerial images.

5 (C* oN HIERARCHICAL GRAPHS

In this section, we discuss the consistency of the flat graphs
and extend C* from flat graphs to hierarchical graphs, and
then we address high-order constraints that involve more
than two sites.

5.1 Condition for Graph Consistency

In each iteration of the C* algorithm, suppose we have
turned on edges probabilistically and the original graph G =
<V,E> becomes G,, =<V,E,> with E=FE,, UE,,
Ey =E},UE,, and Ey; = EjUE, . As we discussed
in Section 2.4, all nodes in the graph G, in each ccp share the
same label and they are supposed to form a coupled partial
solution. However, if the constraints in graph G are
inconsistent, then some nodes in a ccp may be connected
by edges in E ;. Though such negative edges are not turned
on in cep, they indicate that some nodes in the ccp may be
conflicting with each other. This may not be a serious

TABLE 2
False Positives per Image and Detection Rate Using
Loopy BP, SW, ICM, and C* for Aerial Image Parsing

Method | FalsePositive (per image) DetectRate (%)
LBP 85.32 0.668
ICM 82.11 0.768

SW 87.91 0.813
ct 83.04 0.875

(a) interpretation 1: cars in parking lot

(b) interpretations 2: roof with vents

Fig. 14. Alternate subsolutions during scene parsing. C* swaps between
these two interpretations during inference. (a) Vents on top of building
roofs incorrectly detected as cars in parking lot. (b) Vents on top of
buildings correctly grouped with buildings, thus removing the car
detections.

problem; for example, the negative edges may simply
express soft constraints, such as overlapping windows due
to occlusion, which is acceptable in the final solution.

Fig. 15 shows an example where the negative edgeis a hard
constraint. If we try to solve the duck/rabbit illusion using flat
candidacy graph, a ccp may contain {'eye’,’nose’,’head'}
which is inconsistent. We call it a “love triangle.”
Definition 5. In a graph G, two nodes i,j connected by a

negative edge are said to be involved in a love triangle if there
also exists a path between i, j that consist of all positive edges.

Definition 6. A ccp is said to be consistent in graph G if there
are no negative edges in E that connect two nodes in the ccp,
that is, {e: i,j € ccp} NE~ =(. A graph G is said to be
consistent if all of its ccps are always consistent in C*.

When a graph is consistent, then we are guaranteed to get
valid solutions.

The existence of the so-called “love triangles” is the sole
reason to generate inconsistent ccps. For this, we can easily
prove the following proposition.

Proposition 3. In the absence of “love triangles,” the graph G
will be consistent.

The essential reason for generating the “love triangles” in
a graph, mostly in candidacy graphs, is that certain nodes
are overloaded with multiple labels, and thus they are

-~

“love triangle” _-~7 7\

Fig. 15. An attempt to solve the duck/rabbit illusion using flat C*. We see
that we are very likely to form love triangles on the left and right of the
graph, making constraint satisfaction very difficult.

1724

o} 4

Fig. 16. Breaking the “love triangle” in a candidacy graph.

coupled with conflicting nodes. For example, the node
“eye” should be either a “rabbit eye” or a “duck eye” and it
should be split into two conflicting candidates connected by
an negative edge. This way it can eliminate the “love
triangle.” Fig. 16 illustrates that we can remove the love
triangle by splitting node 1 into nodes 1 and 1/, and thus
we will have consistent ccp.

5.2 Formulation of Hierarchical C*

One other common issue that we need to address is higher
order constraints that involve more than two nodes. Fig. 17
shows a hierarchical graph representation for the duck/
rabbit illusion. This is a candidacy graph with two layers.
The top layer contains two hidden candidate hypotheses:
“duck” and “rabbit.” The two nodes are decomposed into
three parts in layer 1, respectively, and thus impose high-
order constraints between them. Now, the hypotheses for
parts are specifically for “duck.eye,” “rabbit.eye,” etc. The
negative edge connecting the two object nodes is inherited
from their overlapping children.

This hierarchical candidacy graph is constructed on-the-
fly with nodes being generated by multiple bottom-up
detection and binding processes as well as top-down
prediction processes. We refer to a recent paper by Wu
and Zhu [39] for the various bottom-up/top-down pro-
cesses in object parsing. In this graph, positive and negative
edges are added between nodes on the same layers in a way
identical to the flat candidacy graph, while the vertical links
between parent-child nodes are deterministic.

By turning on/off the positive and negative edges
probabilistically at each layer, C* obtains ccps and cccps as
in the flat candidacy graphs. In this case, a ccp contains a
set of nodes that are coupled in both horizontal and
vertical directions and thus represents a partial parse tree.
A ccep contains multiple competing parse trees, which will
be swapped in a single step. For example, the left panel in

state A hierarchical candidacy graph
duck layer 2
P, candidates w @
‘\ D

layer 1
candidates

state B

rabbit
L
Car)—Ceye D —(oso)

Fig. 17. An attempt to solve the duck/rabbit illusion using hierarchical C*.
The trees define which parts comprise each object. Nodes are grouped
according to these trees, creating higher level nodes. The higher level
nodes inherit the negative constraints.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO.9, SEPTEMBER 2011

flat C*
12
®
=7 1
08
frustrated 08
duck + rabbit
04
02
o
02
10 20 30 4 , 50 60 70 80 90 100
Iterations

empty solution

hierarchical C*

duck 08
04
=5r| -
s o ZU 10 20 30 40 50 60 70 80 80 100
rabbit iterations

Fig. 18. (Top panel) Flat C* results on the duck/rabbit illusion. C* swaps
between two impossible states due to love triangles. (Bottom panel)
Hierarchical C* results on the duck/rabbit solution. C* now swaps
uniformly between the two correct solutions.

Fig. 17 shows two ccps for the duck and rabbit, respec-
tively, which are connected with negative edges in the
candidacy graph.

This hierarchical representation can also eliminate the
inconsistency caused by overloaded labels. That is, if a
certain part is shared by multiple object or object instances,
we need to create multiple instances as nodes in the
hierarchical candidacy graph.

5.3 Experiments on Hierarchical C*

To demonstrate the advantages of hierarchical C* over
flat C*, we present two experiments 1) interpreting the
duck/rabbit illusion, and 2) finding configurations of object
parts amid extremely high noise.

1. Experiment on hierarchical duck/rabbit illusion.
As referenced above, C* on the flat candidacy graph
in Fig. 15 creates two love triangles. The top panel of
Fig. 18 shows the results of flat C* on the duck/
rabbit illusion. C* continuously swaps between two
states, but the two states either have all nodes on or
all nodes off, neither of which are valid solutions.
The bottom panel of Fig. 18 shows the results of
applying hierarchical C* to the duck/rabbit illusion.
We defined a tree for the duck/rabbit illusion
consisting of either a duck, {beak, eye, duckpeqq} or a
rabbit {ears, eye, rabbityc.q}. As a result, the algo-
rithm instantly finds both solutions and then
proceeds to swap between them uniformly. These
results show that hierarchical C* can help guide the
algorithm to more robust solutions and negates
the effects of love triangles.

PORWAY AND ZHU: C*: EXPLORING MULTIPLE SOLUTIONS IN GRAPHICAL MODELS BY CLUSTER SAMPLING

input image noisy part detections ICM
SW flat C* hierarchical C*

Fig. 19. Hierarchical C* for detecting signal from noise. A huge set of
distractors is added over a true parse of an object. Using a spatial
model, C* can find the best subset while other algorithms cannot.

2. Experiments on object parsing. A problem that
often appears in computer science is the problem of
finding the optimal subset from a larger set of items
that minimizes some energy function. For example,
in the star model [12], many instances of each object
part may be detected in the image. However, our
algorithm should find the subset (or subsets) of these
detections that creates the highest probability con-
figuration. This is a combinatorially hard problem as
the number of solutions grows exponentially in the
number of detections, so heuristic approaches are
usually proposed to deal with this situation. One can
use dynamic programming for inferring star models,
but these require that the root part be present, which
our algorithm does not. Hierarchical C* is ideally
suited for this problem as it can use local edge
constraints and hierarchical grouping to guide its
search through large sets of detections to find the
most likely solutions.

In this experiment, we learned a star model for four
categories of objects: “side car,” “front car,” “teapot,” and
“clock.” We collected 25-50 images from the Lotus Hill Data
Set [38] for each of the categories, which include the true
labeled parts of each object. We then added 50 false
detection at random orientations, scales, and positions, for
each part to serve as distractors, as shown in Fig. 19. The
goal is to see if the algorithms can identify the true ground
truth configuration amidst a huge number of distractors. If
so, then such an algorithm could thrive when we have weak
part detectors but strong geometric information. If we only
considered configurations of four parts, finding the optimal
configuration would require exhaustively searching

Right results
(all correct
parts)

Good results

(one or two

parts slightly
off)

Bad results
(majority of
object not
found)

1725
True Positives False Positives 15
25 35
20 30
25
15
20
10
15
5 10
0 5
-25 -20 -15 -10 -5 0 -25 -20 -15 -10 -5 0
Log threshold Log threshold
True Negatives False Negatives
400 30
395 25
390
20
385
15
380
375 10
370 5
-25 -20 -15 -10 -5 0 -25 -20 -15 -10 -5 0
Log threshold Log threshold

Fig. 20. True positive, false positive, true negative, and false negative
rates for object part detection on the teapot category when using
different negative edge thresholds. The plots all have a minimum/
maximum near 1e-7.

64,684,950 configurations, which quickly becomes intract-
able when considering larger configurations or more
detections.

Fig. 19 shows that ICM and Swendsen-Wang find
completely unreasonable solutions. Flat C* does not find
the correct solution although it does find a set of parts that
look similar to a teapot. Hierarchical C*, on the other hand,
quickly converges to the true solution amid the myriad
other possible part combinations available.

Fig. 21 shows the results of other signal-from-noise
images that were generated as above. We show the results
divided into roughly three categories: good, medium, and
bad results. We see that hierarchical C* gets mostly good
results, while ICM gets entirely bad results.

Fig. 22 shows the energy of the system over time for the
four algorithms we tested. Not only does hierarchical C*
achieve a minimum energy almost instantaneously, but
both hierarchical C* and flat C* are able to achieve lower
energy minimums than the other methods. This improve-
ment applies to graph cuts as well, which, as mentioned, are
not shown here because no implementation we found was
able to converge in the presence of love triangles. This result
shows Hierarchical C"s ability to quickly find deeper
energy minima than competing approaches.

‘Pcrccmagc of Bach Type ot Result

[]
Right
0
I Good
[]
Bad

Fig. 21. Examples of good/medium/bad results for Hierarchical C*, Flat C*, Swendsen-Wang cuts, and ICM. The graphs to the right show the
proportion of the testing images that belonged to each ranking according to algorithm.

1726

400 T T T T T T T T T

HC4
30| —
ICM
x
300 SwW
250
[
5 m
o
150

RRRERR,
e T LTI

xxx

15 20 2% 30 3 40 45 50
Iterations

Fig. 22. Plots of energy over time for Hierarchical C*, Flat C*,
Swendsen-Wang cuts, and ICM. Not only does Hierarchical C*
converge fastest of all of the algorithms, but it achieves a lower energy
than the other methods.

We also tested our negative edge selection criteria. We
use a threshold the pairwise probabilities computed by the
star model to create negative and positive edges. We had
empirically arrived at a threshold between positive and
negative edges of le-7. Fig. 20 shows the true positive, false
positive, true negative, and false negative rates for different
thresholds (on a log scale). We can see that le-7 is a good
cutoff probability as it produces a clear peak in the plots
(note that all individual edge probabilities are quite low in
our star models). We propose to look at general heuristics
for negative edge creation in future work.

These results show the power of Hierarchical C* for
quickly finding minimal energy subsets and swapping
between equally or nearly equally likely solutions once
found, where as similar methods (Swendsen-Wang, ICM,
Graph Cuts) fail to even find a viable solution.

6 DISCUSSION

In this paper, we presented C?, an algorithm that can
handle complex energy minimization tasks with soft and
hard constraints. By breaking a large CSP into smaller sub-
CSPs probabilistically, C* can quickly find multiple solu-
tions and switch between them effectively. This combina-
tion of cluster sampling and constraint-satisfaction
techniques allows C?! to achieve a fast mixing time,
outperforming single-site samplers, and techniques-like
belief propagation on existing problems. This novel algo-
rithm can sample from arbitrary posteriors and is thus
applicable to general graphical models, including MRFs
and CRFs. In addition, we were able to use a hierarchical
prior to guide our search to avoid frustrations in the graph
and thus achieve richer and more accurate results than just
by using Flat C* alone.

In this paper, we applied C* to a number of simple
application for illustration purpose. In two related papers
by the authors’ group, the C* algorithm was applied to
layered graph matching [24] and aerial image parsing [31]
with state-of-the-art results. In ongoing work, we are
extending C* for scene labeling, integrating object parsing,
and scene segmentation.

ACKNOWLEDGMENTS

This work was partially supported by US National Science
Foundation (NSF) IIS grant 1018751 and US Office of Naval

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO.9, SEPTEMBER 2011

Research MURI grant N000141010933. The authors would
also like to acknowledge the support of the LHI data set
[38]. Work done at LHI was supported by 863 grant
2009AA01Z331 and NSFC 90920009. J. Porway was a PhD
student with the Department of Statistics, University of
California, Los Angeles (UCLA) when this paper was
submitted.

REFERENCES

[1] KR. Apt, “The Essence of Constraint Propagation,” Theoretical
Computer Science, vol. 221, pp. 179-210, 1999.

[2] A. Barbu and S.C. Zhu, “Generalizing Swendsen-Wang to
Sampling Arbitrary Posterior Probabilities,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1239-1253, Aug.
2005.

[3] J. Besag, “On the Statistical Analysis of Dirty Pictures,” J. Royal
Statistical Soc. Series B, vol. 48, no. 3, pp. 259-302, 1986.

[4] Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate Energy
Minimization via Graph Cuts,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 23, no. 11, pp. 1222-1239, Nov. 2001.

[5] A. Braunstein, M. Mzard, and R. Zecchina, “Survey Propagation:
An Algorithm for Satisfiability,” Random Structures and Algorithms,
vol. 27, pp. 201-226, 2005.

[6] H. Chui and A. Rangarajan, “A New Point Matching Algorithm
for Non-Rigid Registration,” Computer Vision and Image Under-
standing, vol. 89, no. 2, pp. 114-141, 2003.

[71 C. Cooper and A. Frieze, “Mixing Properties of the Swendsen-
Wang Process in Classes of Graphs,” Random Structures and
Algorithms, vol. 15, nos. 3/4, pp. 242-261, 1999.

[8] T.Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to
Algorithms, second ed. MIT Press/McGraw-Hill, 2001.

[9] F. Dellaert, S. Seitz, C. Thorpe, and S. Thrun, “Feature Corre-
spondence: A Markov Chain Monte Carlo Approach,” Advances in
Neural Information Processing Systems, vol. 13, MIT Press, pp. 852-
858, 2001.

[10] R. Edwards and A. Sokal, “Generalization of the Fortuin-
Kasteleyn-Swendsen-Wang Representation and Monte Carlo
Algorithm,” Physical Rev. Letters, vol. 38, pp. 2009-2012, 1988.

[11] P.F. Felzenszwalb and].D. Schwartz, “Hierarchical Matching of
Deformable Shapes,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2007.

[12] R. Fergus, P. Perona, and A. Zisserman, “A Sparse Object
Category Model for Efficient Learning and Exhaustive Recogni-
tion,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
2005.

[13] R. Fletcher, “A New Approach to Variable Metric Algorithms,”
Computer J., vol. 13, pp. 317-322, 1970.

[14] A. Gelman,].B. Carlin, H.S. Stern, and D.B. Rubin, Bayesian Data
Analysis. second ed, chapter 5. Chapman and Hall/CRC, 2004.

[15] S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distribu-
tions and the Bayesian Restoration of Images,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 6, no. 6, pp. 721-741, Nov.
1984.

[16] V.K. Gore and M.R. Jerrum, “The Swendsen-Wang Process Does
Not Always Mix Rapidly,” Proc. 29th Ann. ACM Symp. Theory of
Computing, pp. 674-681, 1997.

[17] P. Green, “Reversible Jump Markov Chain Monte Carlo
Computation and Bayesian Model Determination,” Biometrika,
vol. 82, pp. 711-732, 1995.

[18] U. Grenander and M.I. Miller, “Representations of Knowledge in
Complex Systems,” J. Royal Statistical Soc. Series B, vol. 56, no. 4,
pp. 549-603, 1994.

[19] D.A. Huffman, “Impossible Objects as Nonsense Sentences,”
Machine Intelligence, vol. 8, pp. 475-492, 1971.

[20] V. Kolmogorov and C. Rother, “Minimizing Nonsubmodular
Functions with Graph Cuts-A Review,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 29, no. 7, pp. 1274-1279, July
2007.

[21] M. Kumar and P. Torr, “Fast Memory-Efficient Generalized Belief
Propagation,” Lecture Notes in Computer Science, Springer-Verlag,
2006.

[22] S. Kumar and M. Hebert, “Man-Made Structure Detection in
Natural Images Using a Causal Multiscale Random Field,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, 2003.

PORWAY AND ZHU: C*: EXPLORING MULTIPLE SOLUTIONS IN GRAPHICAL MODELS BY CLUSTER SAMPLING

(23]

[24]

(23]

[20]

(27]
(28]

[29]

[30]

(31]

(32]

(33]

(34]

(35]

(30]

(371

(38]

[39]

[40]

J. Lafferty and F. Pereira, “Conditional Random Fields: Probabil-
istic Models for Segmenting and Labeling Sequence Data,” Proc.
Int’l Conf. Machine Learning, 2001.

L. Lin, K. Zeng, X.B. Liu, and S.C. Zhu, “Layered Graph Matching
by Composite Clustering with Collaborative and Competitive
Interactions,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 2009.

J. Liu, Monte Carlo Strategies in Scientific Computing. Springer,
2001.

J. Liu, W.H. Wong, and A. Kong, “Correlation Structure and
Convergence Rate of the Gibbs Sampler with Various Scans,”
J. Royal Statistical Soc. Series B, vol. 57, pp. 157-169, 1995.

A K. Mackworth, “Interpreting Pictures of Polyhedral Scenes,”
Artificial Intelligence, vol. 4, no. 2, pp. 121-137, 1973.

A K. Mackworth, “Consistency in Networks of Relations,”
Artificial Intelligence, vol. 8, pp. 99-118, 1977.

S. Oh, J. Rehg, T. Balch, and F. Dellaert, “Learning and Inference in
Parametric Switching Linear Dynamical Systems,” Proc. IEEE Int’l
Conf. Computer Vision, vol. 2, pp. 1161-1168, 2005.

J. Pearl, Heuristics:Intelligent Search Strategies for Computer Problem
Solving, Addison-Wesley Longman Publishing, 1984.

J. Porway, K. Wang, and S.C. Zhu, “A Hierarchical and Contextual
Model for Aerial Image Understanding,” Int’l J. Computer Vision,
vol. 88, no. 2, pp. 254-283, 2010.

A. Rosenfeld, R.A. Hummel, and S.W. Zucker, “Scene Labeling by
Relaxation Operations,” IEEE Trans. Systems, Man, and Cybernetics,
vol. 6, no. 6, pp. 420-433, June 1976.

K. Sugihara, Machine Interpretation of Line Drawings. MIT Press,
1986.

R.H. Swendsen and].S. Wang, “Nonuniversal Critical Dynamics
in Monte Carlo Simulations,” Physical Rev. Letters, vol. 58, no. 2,
pp. 86-88, 1987.

Z.Tu and S.C. Zhu, “Image Segmentation by Data-Driven Markov
Chain Monte Carlo,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 24, no. 5, pp. 657-673, May 2002.

A. Torralba, K. Murphy, and W. Freeman, “Object Detection,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 2004.

Y. Weiss, “Correctness of Local Probability Propagation in
Graphical Models with Loops,” Neural Computation, vol. 12, no. 1,
pp- 1-41, 2000.

B. Yao, M. Yang, and S.C. Zhu, “Introduction to a Large-Scale
General Purpose Ground Truth Database: Methodology, Annota-
tion Tools and Benchmarks,” Proc. Int’l Conf. Energy Minimization
Methods in Computer Vision and Pattern Recognition, 2007.

T.F. Wu and S.C. Zhu, “A Numeric Study of the Bottom-Up and
Top-Down Inference Processes in And-Or Graphs,” Int'l].
Computer Vision, 2010.

S.C. Zhu and D. Mumford, “A Stochastic Grammar of Images,”
Foundations and Trends in Computer Graphics and Vision, vol. 2,
no. 4, pp. 259-362, 2006.

1727

Jake Porway received the BS degree in
computer science from Columbia University in
2000 with a focus on intelligent systems, and the
MS and PhD degrees in statistics from the
University of California, Los Angeles (UCLA) in
2005 and 2010, respectively. During his PhD
career, he worked in the CIVS lab at UCLA,
where his research focused on probabilistic
grammar models for object recognition in
images and video, Bayesian methods for in-
ference in graphical models, and unsupervised and semi-supervised
methods for automated learning. At the time of this publication, he is
working as the data scientist for the New York Times R&D division and is
examining the role of big data in modern machine learning applications.
He is a student member of the IEEE.

Song Chun Zhu received the BS degree from
the University of Science and Technology of
China in 1991 and the MS and PhD degrees
from Harvard University in 1994 and 1996,
respectively. He is currently a professor with
the Department of Statistics and the Department
of Computer Science at the University of
California, Los Angeles (UCLA). Before joining
UCLA, he was a postdoctoral researcher in the
Division of Applied Math at Brown University
from 1996 to 1997 a lecturer in the Department of Computer Science at
Stanford University from 1997 to 1998, and an assistant professor of
computer science at The Ohio State University from 1998 to 2002. His
research interests include computer vision and learning, statistical
modeling, and stochastic computing. He has published more than
100 papers in computer vision. He has received a number of honors,
including the David Marr Prize in 2003 with Z. Tu et al., the
J.K. Aggarwal prize from the International Association of Pattern
Recognition in 2008, the Marr Prize honorary nominations in 1999 and
2007 with Y.N. Wu et al., a Sloan Fellowship in Computer Science in
2001, a US National Science Foundation Early Career Development
Award in 2001, and a US Office of Naval Research Young Investigator
Award in 2001. In 2005, he founded, with friends, the Lotus Hill Institute
for Computer Vision and Information Science in China as a nonprofit
research organization (www.lotushill.org). He is a fellow of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

