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Abstract—In this paper, we present a compositional and dynamic model for face aging. The compositional model represents faces in

each age group by a hierarchical And-Or graph, in which And nodes decompose a face into parts to describe details (e.g., hair,

wrinkles, etc.) crucial for age perception and Or nodes represent large diversity of faces by alternative selections. Then a face instance

is a transverse of the And-Or graph—parse graph. Face aging is modeled as a Markov process on the parse graph representation. We

learn the parameters of the dynamic model from a large annotated face data set and the stochasticity of face aging is modeled in the

dynamics explicitly. Based on this model, we propose a face aging simulation and prediction algorithm. Inversely, an automatic age

estimation algorithm is also developed under this representation. We study two criteria to evaluate the aging results using human

perception experiments: 1) the accuracy of simulation: whether the aged faces are perceived of the intended age group, and

2) preservation of identity: whether the aged faces are perceived as the same person. Quantitative statistical analysis validates the

performance of our aging model and age estimation algorithm.

Index Terms—Face aging modeling, face age estimation, generative model, And-Or graph, ANOVA.

Ç

1 INTRODUCTION

THE objective of this paper is to study a statistical model
for human face aging, which is then used for face aging

simulation and age estimation. Face aging simulation and
prediction is an interesting task with many applications in
digital entertainment. In such applications, the objective is
to synthesize aging effects that are visually plausible while
preserving identity. This is distinguished from the task of
face recognition in biometrics where two key considerations
are to extract features stable over a long time span and learn
the potential tendency of facial appearance in aging process.
Building face recognition systems robust to age-related
variations [27], [34], [38] is a potential application, but it is
beyond the scope of this paper.

We adopt a hierarchical And-Or graph representation to

account for the rich information crucial for age perception
and large diversity among faces in each age group. A
specific face in this age group is a transverse of the And-Or
graph and is called parse graph. Aging process is modeled

as a Markov chain to describe the evolution of parse graphs
across age groups and to account for the intrinsic

stochasticity of the face aging process. The accuracy of
simulation (i.e., whether the synthetic images are perceived
of the intended age group) and preservation of face identity
(i.e., whether aged faces are perceived as the same person)
are two criteria used to evaluate our modeling results in
human experiments.

Compared with other face modeling tasks, modeling face
aging encounters some unique challenges.

1. There are large shape and texture variations over a
long period, say 20-50 years: hair whitens, muscles
drop, the wrinkles appear, and so on. In the traditional
AAM model [11] it is hard to describe all of these
variations.

2. The perceived face age often depends on global
nonfacial factors, such as the hair color and style, the
boldness of the forehead, etc., while these nonfacial
features are usually excluded in face aging modeling.

3. It is very difficult to collect face images of the same
person over a long time period and the age-related
variations are often mixed with other variations (i.e.,
illumination, expression, etc.).

4. There exist large variations of perceived age within
each biologic face group due to external factors, such
as health, life style, etc.

5. There is a lack of quantitative measurements for
evaluating the aging results in the literature.

All of these characteristics demand a sophisticated face
aging model to account for rich face details related to age
perception, intrinsic uncertainty in aging process, and a
criteria for evaluating the aging simulation results.

1.1 Previous Work

Face aging modeling and face aging simulation have
attracted growing research interest from psychology,
graphics, and lately computer vision. Previous work on
face aging can be divided into two categories: child growth
and adult aging.
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For child growth modeling, shape change of face profile is
the most prominent factor. Most researchers adopted
specific transformation on a set of landmarks [11], [15],
[33] or statistical parameters [21], [26], [29] to model age-
related shape changes. Ramanathan and Chellappa [33]
defined growth parameters over the landmarks to build a
crania facial growth model and anthropometric evidence is
included to make the model consistent with the actual data.
Lanitis et al. [21] built three aging functions to describe the
relationships between facial age and the AAM parameters,
by which they could estimate the age from a child image
and predict face growth inversely. Some others [17], [37]
included texture parameters in their facial growth model.
All of these methods showed the validness of modeling
shape changes in growth prediction.

For adult aging, both appearance and shape were studied.
In computer graphics, people built physical models to
simulate aging mechanisms of cranium, muscles, and skin.
For example, Boissieux et al. [6] , Wu and Thalmann [44]
both built layered skin models to simulate the skin
deformation as age increases. Berg and Justo [4] simulated
the aging process of obituaries muscles. Other similar work
include Bando et al.’s [2], Lee et al.’s [25], and Ramanathan
and Chellappa’s work [35].

In computer vision, most aging approaches are example
based and can be divided into three types. 1) The prototype
method [7], [41] computes average face image of each age
group as prototype and defines the differences between
prototypes as aging transformation. Wang et al. [43] applied
this prototype approach in PCA space instead of on image
directly and Park et al. [30] applied it to 3D face data.
Prototype method is able to extract average patterns, but
many details (e.g., wrinkles, pigments, etc.) crucial for age
perception are ignored. There is also work studying texture
transfers from a specific senior face to young ones, such as
[13], [28]. 2) The function-based method describes relation-
ships between a face image and its age label with an explicit
function, such as quadratic function [31], support vector
regression [42], kernel smoothing method [18], or an implicit
function [5]. Jiang and Wang [19] directly built a mapping
function between young faces and their appearances at later
ages. All of those functions need considerable real aging
sequences to learn the function parameters. 3) Distance-
based methods [22] formulate aging simulation as an
optimization problem. They synthesize a face close to the
images of intended age in age space and close to the input
individual in the identity space simultaneously. The algo-
rithm in [22] adopted global AAM model and simple
similarity metrics, simulation results are not realistic enough.

Another related work is age estimation, which selects
discriminative features to estimate face age. Primary studies
on age estimation [20] coarsely divided human faces into
groups based on facial landmarks and wrinkles. Most recent
approaches considered the continuous and temporal prop-
erty of face age and formulated age estimation as a regression
problem. Researchers explored different features, including
AAM coefficients [23], image intensities [12], [14], [46],
features designed heuristically [40], and adopted various
regression methods, such as quadratic function [23], piece-
wise linear regression [23], [40], multiperceptron projection
[12], [23], [40], etc. Differently from the aforementioned
methods, Geng et al. [16] defined an aging sequence as an

aging pattern and estimated age by projecting a face instance
onto appropriate position of a proper pattern.

Despite the progress, there are some problems in the
existing work. First, example-based models need a large
number of image sequences of the same person across age
groups to learn aging patterns and the existing data set is far
from being sufficient. Second, most of the existing models
do not account for high resolution features; therefore, they
are insufficient for describing the large facial variations
across age groups and the aging results lack crucial details
(e.g., wrinkles, pigments, etc.) for age perception. Third,
hair features are usually not considered, despite its
influence on the perception of face age. Fourth, the ground
truth for aging modeling is difficult to collect and appro-
priate performance measurement is not standardized, so a
quantitative evaluation of face aging results is also needed.

1.2 Overview of Our Approach

Motivated by the aforementioned problems, we propose a
compositional and dynamic model to represent the face
aging process. Our model represents faces in each age
group by a three-level And-Or graph [8] (see Fig. 3), which
consists of And nodes, Or nodes, and Leaf nodes. The And
nodes represent the decomposition, which divides a face
into parts and primitives at three levels from coarse to fine.
The first level describes face and hair appearance, the facial
components are refined at the second level, and wrinkles
and skin marks are further refined at the third level. Or
nodes represent the alternatives to represent the diversity of
face appearance at each age group, and Leaf nodes are basic
primitives. Spatial relations and constraints are imposed
among the nodes at the same level to ensure the validness of
the configurations (symmetry of eyes, spatial relationships
among facial parts, etc.). By selecting alternatives at the Or
nodes, one obtains a hierarchic parse graph for a face
instance, and the face image can be synthesized from this
parse graph in a generative manner. Based on the And-Or
graph representation, we represent the dynamics of the face
aging process as a first-order Markov chain on parse graphs
(see Fig. 5), and learn the aging patterns from annotated
faces of adjacent age groups at each level. To overcome the
difficulty of collecting face images of the same person at
different ages, our compositional model decomposes face
into facial components and skin zones. The part-based
strategy allows the aging pattern of each part across age
groups to be learned from similar patches. Our data set
includes about 50,000 face images with large diversity in the
age range of 20-80. The patterns learned from similar
patches might be different from those learned from the
aging data of the same person; thus, we need to evaluate the
results quantitatively as an important extension of work in
the published short version [39].

A central issue in face aging modeling is to study the
stochasticity of the aging process, as Fig. 1 illustrates. For an
observed young face Iobs, the appearance changes over time
is intrinsically a stochastic process. Like Brownian motion,
the uncertainty increases along both directions of the time
axis and confusion between two subjects increases as well,
as Fig. 1b shows. As an example, Fig. 2 shows some
plausible aging results of a young individual to illustrate
the uncertainty of face aging. The value of each arrow is the
transition probability computed by our dynamic model.
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Since there is intrinsic uncertainty for face aging, we

propose two criteria to evaluate the face aging results.

1. The accuracy of simulation. For each age group we
select 80 real images from our data set and
80 simulated images synthesized using our algo-
rithm. Then these images are given to 20 volunteers
for age estimation. By analyzing the results with
ANalysis of VAriance (ANOVA), we find no
significant difference in age estimation performance
between real images and synthetic images.

2. Preservation of the identity. We collect real aging
sequences of 20 individuals from relatives and
friends; for each individual, we synthesize one aging
sequence from the photo at the initial age group and
then 20 volunteers are asked to identify the
individuals in the two sets. The ANOVA analysis
of recognition results shows that our face aging
model preserves face identity effectively.

2 REPRESENTATION AND FORMULATION

We study adult faces in the age range of 20-80, and divide
them into five groups: [20, 30), [30, 40), [40, 50), [50, 60), and
[60, 80]. In this section, we present the And-Or graph model
for face representation, the dynamic model for aging, and
the procedure of model learning.

2.1 Compositional And-Or Graph for Face Modeling

We extend a multiresolution face representation proposed

by Xu et al. [45] with hair features and build age group

specific face models. As Fig. 3a illustrates, a face image It at

age group t is represented at three levels, from coarse to fine,

It ¼ ððIhair;t; Iface;tÞ; Icmp;t; Iwkl;tÞ: ð1Þ

ðIhair;t; Iface;tÞ is the whole face image, where Ihair;t

represents hair and Iface;t accounts for general face appear-
ance. Icmp;t refines the facial components (eyes, eyebrows,
nose, mouth, etc.). Iwkl;t further refines the wrinkles, skin
marks, and pigments in six facial skin zones. All faces of
age t are collectively represented by an And-Or graph GAO

t

(see Fig. 3b), where an And node (in solid ellipse)
represents the decomposition and an Or node (in dashed
ellipse) represents the alternatives to account for a large

diversity of faces, for example, different eye shapes. A
dictionary �t for each age group t is shown on the right side
for various components over the three levels.

�t ¼ ðð�hair;t;�face;tÞ;�cmp;t;�wkl;tÞ: ð2Þ

The dictionary �t is learned from a large number of faces
at age group t. Fig. 4 shows the diversity of the examples in
the dictionary at different age groups.

By choosing the alternatives at the Or nodes, the And-Or
graph GAO

t is converted to an And-graph Gt as a specific
face instance at age group t, called parse graph.

Generative model accounts for a large variety of faces,
we denote the set of faces generated by GAO

t as

�t ¼ fGtg; ð3Þ

which is evidently much larger than the training set. A face
instance is represented by

Gt ¼ ðw1;t; w2;t; w3;tÞ; ð4Þ

where wi;t, i ¼ 1; 2; 3, are the hidden variables controlling
the generation of It at three resolutions and i indexes the
three resolutions. They can be further decomposed as

wi;t ¼
�
li;t; T

geo
i;t ; T

pht
i;t

�
: ð5Þ

In the above notation, li;t ¼ fli;tðmÞ : m ¼ 1; 2; . . . ; n Or
i;t g

includes a vector representing all the “switch” variables

for the alternatives in each Or node m at resolution i and age

group t, T geo
i;t ¼ fT

geo
i;t ðmÞ : m ¼ 1; 2; . . . ; n And

i;t g and T pht
i;t ¼

fT pht
i;t ðmÞ : m ¼ 1; 2; . . . ; n And

i;t g are variables for the geo-

metric and photometric attributes in each And node m at

resolution i and age group t, respectively.
We impose a prior probability for the hierarchical parse

graph Gt,

pðGt; �AOGÞ
¼ pð!3;t j !2;t; �3;AOGÞpð!2;t j !1;t; �2;AOGÞpð!1;t; �1;AOGÞ;

ð6Þ
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Fig. 1. Stochasticity of face aging. (a) The node I obs is a face observed
at time t, while the other nodes are the plausible faces before and after
time t. Each dashed curve represents a space of possible face images
at certain time. (b) The shadowed area means that two people may
become unidentifiable after certain period, which reflects that the
difficulty of preserving face identity increases as time evolves.

Fig. 2. The uncertainty of aging increases with time. Given an input face
image (leftmost), the algorithm simulates a series of plausible aging
results reflecting the stochasticity. The vertical column shows the
plausible faces at certain age group. For each arrow, we show the
transition probability (unnormalized) computed by the dynamic model.



which accounts for the constraints of upper level to

current level as well as the constraints among nodes at

the same level, e.g., enforcing the same type of eyes.

�AOG ¼ ð�1;AOG;�2;AOG;�3;AOGÞ includes the parameters.

The above probability can further be decomposed into

three factors:

pð!i;t j !i�1;t; �i;AOGÞ
¼ pðli;t j li�1;t; �i;AOGÞ � p

�
T geo
i;t

�� T geo
i�1;t; �i;AOG

�
� p
�
T pht
i;t

�� T pht
i�1;t; �i;AOG

�
:

ð7Þ

Gt in turn generates image It in a generative manner.

Gt ¼)
�t

It: ð8Þ

The likelihood model specifies how !i;t generates

image Ii;t as in [45] and AAM [10].

Ii;t ¼ Jiðwi;t; �i;tÞ þ I res
i;t ; i ¼ 1; 2; 3; ð9Þ

where Ji is the reconstruction function of human face at

resolution i using the dictionary �i;t. I
res
i;t is a residual image

of the reconstruction at resolution i, which follows a

Gaussian distribution. The likelihood model of the whole

face can be written as

pðIt j Gt; �tÞ ¼
Y3

i¼1

pðIi;t j wi;t; �i;tÞ: ð10Þ
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Fig. 4. Examples of the facial components and hairs from the
dictionaries of different age groups.

Fig. 3. (a) A high resolution face image It at age group t is represented at three resolutions—Iface;t, Icmp;t, and Iwkl;t. (b) All face images at age group t
are represented collectively by a hierarchic And-Or graph GAO

t . The And nodes (in solid ellipses) in the graph GAO
t represent coarse-to-fine

decomposition of a face image into its parts and components. The Or nodes (in dashed ellipses) represent alternative configurations. By choosing
the Or nodes, we obtain a parse graph Gt for a specific face instance. (c) Dictionary �t includes �hair;t, �face;t, �cmp;t, and �wkl;t at three levels from
coarse to fine.



The parse graph is computed from an observed image by
Bayesian inference from coarse to fine in a way similar to
[45]. By denoting w�0;t ¼ ;, for i ¼ 1; 2; 3, we have

w�i;t ¼ arg max
!

pðIi;t j !i;t; �i;tÞp
�
!i;t j !�i�1;t; �i;AOG

�
: ð11Þ

2.2 Modeling Aging Procedure as a Markov Chain
on Parse Graphs

Based on the above graph representation, the face aging

process is modeled as a Markov chain on the parse graphs.

We denote by I½1; � � and G½1; � � the sequence of images and

parse graphs, respectively, for a period ½1; � �. Therefore, our

probabilistic model is a joint probability,

pðI½1; � �; G½1; � �; �Þ

¼
Y�
t¼1

pðItjGt; �tÞ � pðG1Þ �
Y�
t¼2

pðGtjGt�1; �dyn;�AOGÞ:

ð12Þ

Here, � ¼ f�t;�dyn;�AOGg denotes the parameters. pðIt j
Gt; �tÞ is the image model in (10) generating an image It from
a parse graph Gt. pðGt j Gt�1; �dyn;�AOGÞ is the dynamic
model for the evolution from one parse graphGt�1 to the next
Gt with �dyn being the aging parameters.

Fig. 5 is an illustration of our dynamic model for face

aging. I1 is an input young face image and G1 is its parse

graph representation. By sampling from the dynamic model

pðGt j Gt�1; �dyn;�AOGÞ we can simulate a series of parse

graphs G2, G3, G4, and G5. Then new face images I2, I3, I4,

and I5 are synthesized in four consecutive age groups with

dictionaries �2 to �5.
In the dynamic model, we factorize the transition

probabilities of li;t, T
geo
i;t , and T pht

i;t separately over time t

and resolution i. Each component !i:t depends on its upper

level !i�1;t and previous age group !i;t�1.

pðGt j Gt�1;�dyn;�AOGÞ

¼
Y3

i¼1

pðli;t j li;t�1; li�1;tÞ � p
�
T geo
i;t

�� T geo
i;t�1; T

geo
i�1;t

�
� p
�
T pht
i;t

�� T pht
i;t�1; T

pht
i�1;t

�
:

ð13Þ

Here, �dyn is learned from a large training data. In the
following, we discuss the two types of variations in the
dynamic model above: 1) abrupt changes for the emergence
of new age-related features and 2) continuous changes of
the geometric and photometric attributes.

1. Abrupt changes. The aging process may change the
topology of the graph, for example, inserting new
nodes (e.g., wrinkles emerge, etc.) or switching the
alternatives in the Or nodes (e.g., change of hair
style, the type of eyes, etc.). We use the transition
probabilities of li;t to represent this type of variation.

pðli;t j li;t�1; li�1;tÞ

/
YnOr
i;t

m¼1

�i;tðli;tðmÞ; li;t�1ðmÞÞ � pðli;t j li�1;tÞ;

i ¼ 1; 2; 3:

ð14Þ

In the above model, m indexes the corresponding Or
nodes between two adjacent graphs Gt and Gt�1 at
resolution i, and �i;tðÞ is a stochastic transition
matrix for how likely a node of type li;t�1ðmÞ ages
to a node of type li;tðmÞ. pðli;t j li�1;tÞ is the hierarchy
model from the And-Or graph and accounts for the
frequency of li;tðmÞ and constraints for symmetry
between nodes.

2. Continuous changes. Some variations in aging only
change the attributes of Leaf nodes, such as skin
color, facial part shape, wrinkle length, etc. We
represent them by the transition probabilities of T geo

i;t

SUO ET AL.: A COMPOSITIONAL AND DYNAMIC MODEL FOR FACE AGING 389

Fig. 5. Modeling the aging process as a Markov chain on parse graphs. (a) A face image sequence at different ages, with the leftmost one being the
input image and the other four being synthetic aged images. (b) The parse graphs of the image sequence. (c) The Markov chain and �dyn includes
the parameters for Markov chain dynamics.



and T pht
i;t . The continuous variation transitions are

represented in the following model at three resolu-
tions, i ¼ 1; 2; 3:

p
�
T geo
i;t

�� T geo
i;t�1; T

geo
i�1;t

�
/ exp �

XnAnd
i;t

m¼1

 
�
T geo
i;t ðmÞ; T

geo
i;t�1ðmÞ

�8<
:

9=
;

� p
�
T geo
i;t

�� T geo
i�1;t

�
;

ð15Þ

p
�
T pht
i;t

�� T pht
i;t�1; T

pht
i�1;t

�
/ exp �

XnAnd
i;t

m¼1

 
�
T pht
i;t ðmÞ; T

pht
i;t�1ðmÞ

�8<
:

9=
;

� p
�
T pht
i;t

�� T pht
i�1;t

�
:

ð16Þ

In the above formula, m indexes the And node at

resolution i between two adjacent groups t and t� 1.

T geo
i;t ðmÞ and T pht

i;t ðmÞ denote the geometric and

photometric attributes of an And node m, respec-

tively.  ðÞ is a potential which favors the transitions

between similar parts, and penalizes large variations

of the same part between adjacent groups. For

geometric distance, we adopt the thin-plate spline

(TPS) model after aligning the landmark points on

the parts. Although large variations may occur in

real data (e.g., the scars caused by injury, the change

of hair styles, the variations introduced by expres-

sion, illumination, etc.), we try to penalize these

effects of external unpredictable factors and TXtable

learn only the natural aging patterns. The probabil-

ities pðT geo
i;t j T

geo
i�1;tÞ and pðT pht

i;t j T
pht
i�1;tÞ are parts of the

original prior model of the parse graph in (8).

2.3 Automatic Learning of Face Aging Model

The image model and dynamic model can both be learned

automatically from a large labeled data set, we summarized

the procedure in Algorithm 1. For clarity of presentation,

we shall discuss the implementation details in Section 4.

Algorithm 1. Learning of face aging model

input: Data set of face images at five age groups

output: Hierarchical face model and dynamic face aging

model

for t ¼ 1 to 5 do

1. Label facial landmarks and wrinkle lines for:

1.1 Learn the parameters of hierarchical face model

�i;AOG

1.2 Build the dictionary �i;t

2. Compute parse graphs of faces in the data set from (11);
3. Learn the probabilistic image model by MLE;

for t ¼ 2 to 5 do

1. Define similarity metrics between images of the same

part from adjacent age groups;

2. Learn the dynamics of aging model—transition
probabilities;

3 FACE AGING: ANALYSIS AND SYNTHESIS

Following the compositional face representation and the
dynamic model, we propose a multilevel face aging
algorithm, which is implemented in three steps: 1) com-
puting the parse graph representation from an input young
face by Bayesian inference in (11), 2) sampling the parse
graphs of other age groups from the dynamic model in (13),
3) generating the aging image sequence by the generative
model in (10).

3.1 The Overall Algorithm

Given a young face image I1 at age group 1, our objective is
to infer the parse graph G1 by maximizing a Bayesian
posterior probability, and then synthesize the parse graphs
G2, G3, G4, and G5 by sampling the dynamic model. These
parse graphs then generate the face images I2, I3, I4, and I5

at consecutive age groups. We summarize the flow of our
face aging algorithm as below:

Algorithm 2. Inferring the face aging sequences

input: A young face image I1

output: A sequence of aged faces I2 to I5

1. Compute G1 as parse graph of I1;

G1 ¼ arg maxpðG1 j I1; �1Þ
2. Sample the graphs at consecutive age groups from (13);

Gt � pðGt j Gt�1; �dyn;�AOGÞ; t ¼ 2; 3; 4; 5.

3. Synthesize the aged image It from the generative model;
It ¼ JðGt; �tÞ

3.2 Details of the Algorithm

In this section, we present the details for the three steps in
the algorithm above.

3.2.1 Computing G1 from I1

The process of computing the parse graph representation of
the input face image is to infer the hidden variables
generating the image, as in (9) and (11). This part of work
is the integration and extension of the grammatical face
model [45] and generative hair model [9] in our group; for
self-containment, we briefly discuss step 1 in the following
three paragraphs.

Computing the hair representation. Following Chen’s
generative hair model [9], the geometric attributes T geo

hair of
hair can be represented by its sketch, which includes a set
of curves Ck and corresponding directions dk. After
extracting hair image as Fig. 6a illustrates, the sketch can
be computed by a sketch pursuit algorithm. The photo-
metric attributes T pht

hair describe the hair texture and include
three variables: Iflow, IUV, and Ishd. Iflow is the vector flow in
the hair region, which controls the generation of high
frequency hair texture. It can be computed using the hair
sketches with prior knowledge of hair direction by a
diffusion method. IUV accounts for the hair color, and Ishd ¼
fxi; yi; �i; �x;i; �y;ig is a set of Gaussian basis simulating the
lighting and shading of hair image. Based on T geo

hair and T pht
hair,

we classify hair into a number of styles, which are listed in
Fig. 6c and indexed by lhair.
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Computing parameters of face and facial components.

We represent the face and facial components with AAM [10]
models. First, we train a traditional AAM model for the first
level face image with 90 landmarks as shown in Fig. 7a.
Because there exist large variations for each facial compo-
nent (e.g., single-lid eyes and double-lid eyes, etc., in Fig. 7b)
and a global AAM model is not sufficient for presenting all
of these details, we build local AAM models to refine these
component regions at second level. After clustering facial
components into prototypes indexed by lcmp, we train a local
AAM model for each prototype. For face and facial
components, T geo

i and T pht
i are coefficients of shape

eigenvectors and texture eigenvectors, respectively, which
are both computed by minimizing the reconstruction error.

Computing parameters of wrinkles and pigments. In
the third level representation, we divide the face skin into
six wrinkle zones as Fig. 8a shows. The wrinkles (curves or
sketches) in each zone are located with matching pursuit
algorithm using two types of filters: Gabor wavelets and
blobs. The geometric variables T geo

wkl describe the position,
length, orientation of the traced curves, and the position
and scale of the marks. The photometric variable T pht

wkl is
represented directly by the straighten wrinkle intensity
profiles perpendicular to the wrinkle curves and the skin

mark patches in Fig. 8b. Mostly there is no wrinkle for faces
of age under 30, so the initial parse graph G1 usually has
only two levels.

3.2.2 Simulating the Evolution of Parse Graphs

Learning the dynamic parameters. To overcome the
difficulty of collecting photos of the same person across

all age groups, our model decomposes faces into parts and

learns the aging transition probabilities for each part
separately, which can be cropped from faces of different

people. Fig. 9a gives a subset of the training data in three

groups for learning dynamics of eye aging and illustrates
the aging process of eye, where the thickness of the arrows

reflects the transition probability.
The transition of a face component across age groups is

allowed only between images of the same prototype, i.e.,
the same number of landmarks. The similarity measure-

ment over the geometric and photometric attributes, i.e.,

 ðÞ in (16) and (17) follows the TPS model and AAM
model, respectively.

Probabilistic sampling to simulate evolution of parse

graphs from the dynamic model. For aging simulation, we

use probabilistic sampling instead of maximizing the
conditional probability pðGt j Gt�1Þ to preserve the intrinsic
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Fig. 7. AAM models of face and facial components. (a) The 90 landmarks
defined for the global AAM model. (b) We cluster various images of each
facial component into subclasses and build a local AAM model for
detailed representation.

Fig. 8. Parameters for wrinkles and skin marks at the third level. (a) The
skin is divided in six wrinkle zones; our algorithm adds wrinkles in each
zone separately. (b) Iorg is the input image. The curves and marks in Isk

and image patches Ipatch account for the geometric and photometric
attributes of wrinkles, respectively.

Fig. 6. Computing hair parameters. (a) The procedure of extracting hair image from complex background. (b) The parameters for a hair image Iorg.
The geometric attributes are described by the directed curves in sketch image Isk. Photometric attributes are described by three components: Iflow is
the vector flow accounting for hair directions, Ishd represents the lighting and shading in the hair, and IUV is the color channel of hair image. (c) The
hair styles in our hair dictionary, the one with boundary is the hair type of Iorg in (b).



stochasticity. In our algorithm, we adopt widely applicable

Gibbs sampling technology as in Algorithm 3. For each

parse graph Gt�1, we can sample a variety of Gt from the

probability with different attributes, which in turn gener-

ates different aged images. This process is similar to the

Brownian motion. The longer the time period, the larger

variance can be observed in the sampled results. Fig. 2

illustrates some simulation results over four age groups and

we often need to sample more examples for longer time

period to account for the large diversity.

Algorithm 3. Gibbs sampling algorithm for evolution of
Markov chain

input: li;1; T
geo
i;1 ; T

pht
i;1

output: li;t; T
geo
i;t ; T

pht
i;t ; t ¼ 2; 3; 4; 5

for t ¼ 2 to 5 do

for i ¼ 1 to 3 do

for loop ¼ 1 to T do

for m ¼ 1 to nOr
i;t do

li;tðmÞ �
pðli;tðmÞ j li;t�1ð1Þ; . . . ; li;t�1ðnOr

i;t�1Þ; li�1;tðmÞÞ
for m ¼ 1 to nAnd

i;t do

T geo
i;t ðmÞ �
pðT geo

i;t ðmÞ j T
geo
i;t�1ð1Þ; . . . ; T geo

i;t�1ðnAnd
i;t�1Þ; T

geo
i�1;tðmÞÞ

for m ¼ 1 to nAnd
i;t do

T pht
i;t ðmÞ �
pðT pht

i;t ðmÞ j T
pht
i;t�1ð1Þ; . . . ; T pht

i;t�1ðnAnd
i;t�1Þ; T

pht
i�1;tðmÞÞ

3.2.3 Synthesizing Image It from Gt

By the generative model, we synthesize face image It from

its parse graph Gt ¼ ð!1;t; !2;t; !3;tÞ. The image generation

process proceeds in three steps from coarse to fine [45].

First, it generates the face and hair image I1;t from !1;t based

on the AAM model for face and the hair model in [9].

Second, it refines the five face components based on !2;t and

I1;t. Each component is again an AAM model with

landmarks and appearance. This step leads to higher

resolution details and diverse appearance for these compo-

nents. Third, it generates wrinkles and marks in the six skin

zones based on !3;t.

4 IMPLEMENTATION DETAILS

In this section, we discuss some implementation details for
the representation and aging of each part—hair, face,
components, and wrinkles in the dynamic model.

4.1 Level 1: Global Appearance Aging

4.1.1 Hair Aging

We annotated 10,000 face images across the five age groups in
the Lotus Hill data set [47]; thus, a large set of hair images are
collected for each age group. For an observed hair image Iobs

t�1

in group t� 1, we select a similar hair image Iobs
t at group t

according to two metrics: geometric similarity and texture
similarity. The geometric similarity between hair contours is
computed using a TPS warping energy between two
contours, while the texture similarity is computed by KL
distance between vector flow histograms of two hair
textures. Then, the selected hair of group t is warped to
fit the face shape of Iobs

t�1 under constraints from the skull
structure. Finally, we get the final result Isyn

t . Fig. 10b shows
an example of hair aging.

4.1.2 Face Aging

At level one, the face aging effects reflect the change of
global face shape, skin color darkening, and drop of
muscles. We select aging patterns based on geometric and
photometric similarities. For each face, we have 90 facial
points describing the facial geometry T geo

face;t. TPS warping
energy measuring the cost for aligning two face geometries
is used as a natural shape distance. The appearance distance
is computed as the KL distance between histograms of
corresponding filter responses (mean, variance, etc.) of two
aligned faces. As studied in [1], [3], [48], there occur certain
noticeable bony and soft tissue changes in shape, size, and
configuration during adult aging, and the shape changes in
muscular regions is larger than in bony regions. We
compute the differences between mean face shapes of
different age groups as is illustrated in Fig. 10c and adopt
the mean shape changes as soft constraints during warping
of face shape as age increases. Figs. 10d and 10e show the
process of first level face aging.

4.2 Level 2: Facial Component Aging

Different variations occur on different facial components
during face aging. In general, variations include changes in
both geometry and photometry. The aging pattern of eyes
is the most complex and most important for the final
results; therefore, we take the eye aging as an example to
explain the component aging approach.

The evolution parameters for eye aging are learned from
the data set of eye patches across age groups, as is shown in
Fig. 9a. By applying AAM searching with the local eye
model, we can locate the landmarks of the components
accurately as shown in Fig. 9b. Then, the transition
probability (thickness of arrows) is computed following
(16) and (17). The geometric distance in (16) is measured by
TPS bending energy between two eye shapes with the same
topology, while the photometric distance in (17) is computed
by summing over the squared intensity difference in the
Gaussian window around the matched points. For a given
eye image I2;t�1, after selecting a similar aged image I2;t, we
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Fig. 9. Learning aging pattern for each part. (a) Eye examples in three
age groups. The thickness of the arrows between two eye images
indicates the transition probability between the two images in con-
secutive age groups. (b) The labeled landmarks describing the contours
of one pair of selected eyes from two adjacent age groups. (c) An aging
result of an eye.



perform two transformations to I2;t�1. 1) Warping it to the
target shape by applying a set of affine transformations T to
I2;t to minimize the geometric distance between the land-
marks of T ðI2;tÞ and I2;t�1. 2) Using Poisson image editing
[32] techniques to transfer high frequency information in
skin region of T ðI2;tÞ to I2;t�1 and perform color histogram
specification to the nonskin area texture. An aging result of
eye is shown in Fig. 9c.

Symmetry of facial components, such as the left and right
eyes and eyebrows, is represented by imposing constraints
on the transformations mentioned above. The aging pattern
of facial components should also be constrained by the
upper level face aging. Fig. 11 gives an aging sequence for
each facial component.

4.3 Level 3: Wrinkle Addition

At level three, we model the aging effects of the six
wrinkle zones (see Fig. 8). For each age group, we labeled
200 images randomly selected from our data set to learn
the statistics of wrinkles. Fig. 12a shows some labeled
forehead wrinkles collected from the data set. According to
the generative model, the wrinkle addition is completed in

two steps: 1) Generating curves in various wrinkle zones.

The number of curves and their positioning follow some

prior probability densities, as is shown in Figs. 12b and

12c. 2) Rendering the curves with wrinkle intensity profiles

in the dictionary. Given a wrinkle curve and intensity

profile, the wrinkle image can be synthesized according to

(8). Fig. 12d shows a series of generated wrinkle curves

over four age groups, and Fig. 12e shows an example of

generating the wrinkle image from the wrinkle curves.

4.3.1 Learning Prior of the Wrinkles from Labeled Data

For wrinkle zone m, we model the number of wrinkles with

a Poisson distribution:

pðntðmÞ ¼ k; tÞ ¼ expð��tðmÞÞð�tðmÞÞk

k!
: ð17Þ

Here, ntðmÞ is the number of wrinkles in zone m at age

group t and �tðmÞ is the parameter learned from the

training data.

�tðmÞ ¼
1

Mt

XMt

k¼1

Nl
tðmÞ; ð18Þ

in which Mt is the number of training images at age group t

andNl
tðmÞ is the wrinkle number in zonem of the lth sample

at age group t. �tðmÞ equals to the mean value in Fig. 12b.
Similarly, we compute priors of curve length, distance

between two adjacent curves. Prior distributions of curve

position and the orientation are also learned from the

labeled data, as Fig. 12c shows.
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Fig. 11. Intermediate results of facial component aging. (a) 30-40,
(b) 40-50, (c) 50-60, and (d) 60-80.

Fig. 10. Steps of hair aging and global face aging. (a) The aging process of a hair image in age group t� 1, denoted as Iobs
t�1. Iobs

t is a similar hair
image in age group t selected based on similarity metrics. After applying geometric transformation to meet the shape of Iobs

t�1, we get the intermediate
result Imed

t . The final aging result is Isyn
t . (b) A resulted hair aging sequence. (c) The mean shape changes of face shape in adult aging. Here, the

length of line segments denotes change magnitude and orientation describes the moving direction. (d) The face aging process of Iobs
t�1, which is a

young face in age group t� 1. Here, Iobs
t is the selected similar face image in age group t. Imed

t and Imed
t�1 are the intermediate results after applying

geometric transformations under Anthropometric constraints. With a mask image excluding the facial components, we can synthesize an aged
image as Isyn

t . (e) An aging sequence synthesized for Iobs
t in (d).



4.3.2 Generating Wrinkle Curves

In our algorithm, the transition probability of ntðmÞ
between two consecutive age groups is modeled by a
bigram model.

pðntðmÞ ¼ kjnt�1ðmÞ ¼ jÞ ¼
0; k < j;
1

z
pðntðmÞ ¼ k; tÞ; k � j:

(

ð19Þ

Here, we force pðntðmÞ < nt�1ðmÞÞ ¼ 0 to ensure that the
wrinkle number increases as time goes and z is a normal-
ization factor.

From the statistics of the wrinkle curves, we compute the
geometric parameters of the wrinkle curves. Wrinkle
number is computed from bigram model in (19). The other
variables (length, position, and orientation) can be sampled
from the corresponding prior distribution. With these
geometric parameters, we can generate a sequence of curve
groups as are shown in Fig. 12d.

4.3.3 Generating Realistic Wrinkle Images

For the initial wrinkles, we select the wrinkle intensity
profile randomly from the dictionary. After warping the
profiles to the shape of wrinkle curves, we use Poisson

image editing techniques to render realistic wrinkle images
(shown in Fig. 12e). Because the wrinkle texture across age
groups will not change much, we select similar wrinkle
profile in the next age group based on the photometric
distance. Fig. 13 shows some intermediate results of wrinkle
addition in different skin zones.

5 EXPERIMENTS: AGING SIMULATION, AGE

ESTIMATION, AND HUMAN EVALUATION

5.1 Data Set Collection and Organizations

One of the widely used data sets for face aging is the FG-NET
aging database [49]. It includes 1,002 photos of 82 subjects,
whose ages are between 0 and 69. As many images in the FG-
NET data set are not of very high resolution and about
60 percent are children, we did not use it for aging
simulation. Instead it is used for a comparative study on
age estimation. We collected a database with about 50,000 ID
photos of Asian adults in the age range of [20, 80], and the
statistics of the database are shown in Table 1. All of these face
images have high resolution, with the between-eye distance
being about 100 pixels. We train our algorithm and perform
face aging simulation on this data set, some results are shown
in Fig. 15. Another publicly available aging data set is the
MORPH database [36], an extended version of which
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Fig. 13. Intermediate results of wrinkles and marks emerge at
consecutive age groups. (a) Forehead. (b) Eye corner. (c) Laughline.
(d) Glabella. (e) Pigment.

TABLE 1
Data Distribution

Fig. 12. Prior learning and wrinkle synthesis in different skin zones. (a) Some examples of wrinkle curves in the forehead zone. A large number of
wrinkle curves are collected from the annotated data set. (b) The statistics of wrinkle numbers in three wrinkle zones over different age groups. (c) The
prior distribution of wrinkle curve orientation in the six wrinkle zones, where the length of the arrow reflects the strength and the orientation describes
the directions. (d) A sequence of synthetic wrinkle curves. (e) The process of rendering photorealistic wrinkle images.



includes 16,894 face images of 4,664 adults, among which
there are 13,201 images from African-Americans, 3,634 from
Caucasian descents, and 59 are of other groups. There are
2,505 females and 14,389 males in this data set. The average
age is 40.28 years and maximum age is 99 years. We
reorganize the MORPH database for face aging (see Table 1)
and synthesize several aging sequences on this data set to
validate the generality of our algorithm. We also collected real
aging sequences from 20 people (friends and relatives) for the
evaluation experiments.

As life experiences affect face appearance, we must
distinguish the appearance age from biologic age. Biologic
age is the actual age of the subject while the appearance age
is the perceived age. Often appearance age needs to be
estimated through human experiments, the biologic age is
not completely a sure thing either. In our data set, we know
the birth dates of the people in the ID photos and the time
when the photo was taken. The latter is recorded at the time
when the file was created.

In our first human experiment, we use 500 face images of
different ages and asked 20 volunteers (college students) to
estimate the appearance age. Fig. 14a plots the results. The
two solid lines illustrate the standard deviation of differ-
ence between appearance age and biologic age. In general,
the estimated age can be different from the biologic age by
3-5 years older or younger.

Due to the intrinsic ambiguities, we divide the age range
into five age groups: [20, 30), [30, 40), [40, 50), [50, 60), and
[60, 80] based on the following reasons: 1) The difference
between biologic age and appearance age is about 3-5 years.
Thus, the appearance ages between two individuals in a
certain age have an uncertainty interval of 6-10 years. 2) As
we increase the number of age groups, the perceptual errors
among these groups increase (see Fig. 14b); thus, it is hard
to evaluate the synthesis results. On the other hand, when
the number of age groups increases, the feature variance
within each group decreases, and makes the model more
accurate (see Fig. 14c). As a trade-off, we select five groups.
3) The number of images within group [60, 80] is relatively
small because less senior people took ID photos.

5.2 Experiment I: Face Aging Simulation

We take 10,000 images from the Asian data set and
annotate these images by decomposing them into three
levels to build the compositional and dynamic model. For
each face image, we label 90 landmarks on the face and

about 50 landmarks for hair contour. Based on the

annotation, our algorithm parses the face into parts and

primitives, and then builds the hierarchic dictionaries for

each age group automatically. We learn the dynamic

model as discussed in Section 4. Based on the learned

model, we test our inference and simulation algorithms

using a number of young faces in the [20, 30) age range,

and generate images for the other four age groups. Fig. 15

shows some of the aging results synthesized by our

algorithms. Fig. 2 shows an example of simulating multi-

ple plausible aging sequences for a person following the

Markov chain model, as Fig. 1 specifies. Note that people

shown in Figs. 15 and 2 are not in the training set as we

cannot show the ID photos for privacy reasons.
We also synthesize a series of aging results from

MORPH database to test the generality of our algorithm.

Since aging pattern has large variations for subjects from

different ethnic groups, we label 1,000 images of African-

Americans and 1,000 of Caucasians from the MORPH

database, and learn two aging models for two ethnic groups

separately. Female aging sequences are not synthesized

because the number of females in age group 4 and 5 is too

small for learning the dynamics. The simulation results are

shown in Fig. 16, in which the top three rows and the

bottom three rows are, respectively, for Caucasian and

African-American faces.

5.3 Experiment II: Contributions of Facial Parts to
Subjective Age Estimation

Our aging algorithm uses part-based strategy and we notice

that some features influence the age perception significantly

more than others. This observation inspires us to study the

relative contribution of each aging feature to age perception

quantitatively. The features considered in our experiment

include both the internal factors (e.g., brow, eyes, nose,

mouth, skin zones) and the external factor (mainly the hair).
We select 100 midresolution images from our database

with 20 images for each of the five age groups. As Fig. 17
displays, we extract eight subimages for face, hair, brow,
eye, nose, mouth, forehead, and laughline. Volunteers are
presented with the masked images and asked to estimate
the age of each part. Then, we apply Multivariate Regres-
sion Analysis (MRA) to measure the contributions of each
component to the perception age of the whole face. The
R square value is 0.907; this indicates that our model
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Fig. 14. Experiments for selecting the number of age groups. (a) Plot of the appearance age against the biologic age averaged over 500 faces in
human experiment. The two solid lines illustrate the standard deviation of subjective age estimation results and dashed line is the ground truth.
(b) Vertical axis is the rate of images with age group being incorrectly estimated, and the horizontal axis is the age group number. (c) The within-
group appearance variations for different group numbers. Here, the appearance variations is described by the standard deviation of certain age-
related feature number.



accounts for most of the age-related changes. � values of
different features are shown in Table 2.

From the � value of each feature, we can clearly see that
there are five features that contribute most to the age

perception. The large contribution of the hair confirms the

effectiveness of the hair feature in face age perception

which was missing in previous studies.
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Fig. 15. Some aging simulation results. The leftmost column is the original images of the individuals in group 1. The second to fifth columns are
synthetic aged images at four consecutive age groups. (a) Male subjects. (b) Female subjects.



5.4 Experiment III: Automatic Age Estimation

In this experiment, we use an age estimation algorithm [40]

to test the accuracy of synthetic images. The estimation

approach formulates age estimation as a repression pro-

blem on features extracted from the hierarchical face model

and tests performances of various regressors, including Age

specific Linear Regression (ALR), Support Vector Regres-

sion (SVR), Multilayer Perceptron (MLP), and logistic

regression (boosting). Among these regressors, MLP per-

formances best in our experiment.
Here, we conduct age estimation experiments on two

data sets: First, we selected a set of 8,000 face images (4,000

males and 4,000 females) from our data set and denote it

as set A; fourfold cross validation is conducted for

performance measurement. Then, we conduct comparative

study on 1,002 photos from FG-NET (denoted as set B) to

validate the effectiveness of our algorithm. On set A, mean

absolute error (MAE) of our algorithm is about 4.68 years

and CS�10 ¼ 91:6% averagely. Performance on FG-NET

data set is relative lower, with MAE ¼ 5:97 years and

CS�10 ¼ 82:7% due to resolution limitations and affects

from other variations, while it is still comparative to the

state-of-the-art algorithms (see Fig. 18b), with MAE being

5.78 years in Geng et al.’s [16] and 6.22 years in Yan’s [46].
Similarly to Experiment II, we perform MAR to measure

relative contributions of different facial parts in our
algorithm, the R square value is 0.95 and � values are
shown in Table 2. From the rank of contributions, one can see
that for adult age estimation, wrinkles in laughline, fore-
head, and around-eye region provide plenty of information
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Fig. 16. Some aging simulation results on MORPH database, including Caucasians males and African-American males. The leftmost column is
the original input images of the individuals in group 1. The second to fifth columns are synthetic aged images at four consecutive age groups.
(a) Caucasian subjects. (b) African-American subjects.



and hair is also an important cue for age perception. Here,
wrinkles in the laughline region and hair features display
larger significance than in Experiment II (Table 2) subjective
experiment, this maybe due to that other features (e.g.,
wrinkles in eye corner region, etc.) can be more easily
affected by illumination.

5.5 Experiment IV: Evaluating Face Aging Results

Similarly to [24], we use two criteria to evaluate the
goodness of the aging model: 1) the accuracy of simulation,
i.e., whether the synthetic faces are indeed perceived to be
of the intended age and 2) preservation of the identity, i.e.,
whether the synthetic faces are still recognized as the
original person. In this section, we conduct both subjective
(human) experiments and objective (algorithmic) experi-
ments as quantitative measurement for these two criteria.
Twenty volunteers are recruited to evaluate our aging
results subjectively and the age estimation algorithm [40] is
adopted as objective evaluations to measure the accuracy of
aging simulation. Corresponding to the hierarchical face
representation and three-level aging algorithm, we conduct
evaluation experiments on facial images at three resolu-
tions. The quantitative analysis in following two sections
are performed on face images of Asians.

5.5.1 Experiment IV.a: Evaluating the Accuracy of

Simulation

We compare sets C and D in this experiment. For set C, we
select randomly 20 real face images from the ID photo data
set for each of the age groups 2-5, respectively. For set D,
we select 20 young faces in age group 1 and synthesize one
aging sequence for each person as Fig. 15 shows. Thus,
set D has 80 synthetic images with 20 images in each of the
age groups 2-5. We normalize the images in set C to the
same resolution and intensity level as the set D images.
Fig. 19a gives some example images from set C (first row)
and set D (second row).

In the human perception experiment, the volunteers are
asked to estimate the age of each face in the two sets. Fig. 19b
plots the human estimation results on the two sets. From the
plot, we can see following phenomena:

1. The accuracy improves with resolution increasing
because details at middle and high resolutions
indeed provide information for facial age estimation.
The high performance at high resolution also
validates the adopted hierarchical face model.

2. The age estimation results of the synthetic images
are mostly consistent with those of real images.

3. Estimation result with hair cropped out is a little
lower; this shows that hair is an effective feature for
age perception.

4. For subjective evaluation hair has negative influ-
ences on estimation performance in group 30-40
and helps estimation a lot in group 60-80, maybe
because that large intersection occurs in hair styles
in group 30-40 and 40-50, whereas in group 60-80
hair appearance is informative for age estimation.

We analyze the age estimation results on high resolution
face images by ANOVA. The large main effects of age group
on age estimation (F3;156 ¼ 216:511; p ¼ 0:000 with hair
included and F3;156 ¼ 49:142; p ¼ 0:000 without hair) indi-
cate that our model accounts for the aging-related variations
mostly and the small main effects (F1;158 ¼ 0:080; p ¼ 0:295
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TABLE 2
Relative Contribution of Each Facial Part to Subjective Age Perception

Fig. 18. Cumulative scores of automatic age estimation algorithms. (a) Performances of proposed regressors on our data set (left) and FG-NET
database (right). (b) Comparison between the performances of our estimation algorithm and the state-of-the-art algorithms on FG-NET database.

Fig. 17. Eight masks are designed to extract different parts for the
experiment of relative contributions.



with hair and F1;158 ¼ 1:415; p ¼ 3:885 without hair) of
image set on age estimation show that the estimation
accuracies on two sets do not differ significantly.

At the same time, we perform objective age estimation on
both sets using age estimation algorithm in Experiment III

and obtain similar results, as Fig. 19c shows. The plot
indicates that synthetic images include appropriate aging-
related variations and consist with real images in age

perception accuracy. Performance is improved about
15 percent with hair features included. ANOVA analysis

result is also similar to that of subjective experiment: Age
group shows significance (F3;156 ¼ 235:39; p ¼ 0:000 for
images with hair and F3;156 ¼ 167:368; p ¼ 0:000 for images

without hair) and there is no apparent difference between
estimation accuracies of two sets (F1;158 ¼ 0:006; p ¼ 0:023

with hair and F1;158 ¼ 0:225; p ¼ 0:613 without hair).

5.5.2 Experiment IV.b: Evaluating the Preservation of

Face Identity

We compare sets E and F. For set E, we use 20 real aging
sequences from friends and relatives (they are all Asians
and the images are different from the ID photo data set)
with images in group 5 missing. For each young face at
age group 1 in Set E, we synthesize one aging sequence as
Fig. 15. Thus, we have 80 synthetic images and denote
them as Set F. Fig. 19d shows some examples from set E
(first row) and set F (second row).

We then add 50 faces in age group 1 as “distracting
background.” Since the resolution of some old photos is
relatively low, we downsample the images in F to the same
resolution with images in Set E. Thus, we randomly draw
an image from set E or set F in the age groups 2-5, and ask

the volunteers to identify the image to the 70 candidates
(20 real and 50 distractors) in age group 1.

Fig. 19e shows the recognition rates by humans on both
sets in the four age groups. From the result, we can see that
recognition rate improves as resolution increases in each
age group. In accordance with our model, it has lower
recognition rate for longer aging period, and recognition
rate after three decades is only around 50 percent. One can
also see that the recognition performance on synthetic
images is slightly higher than that on real aging sequences;
this indicates that our algorithm preserves face identity of
the input face very well. The lower performances on real
aging sequences is partially due to the effects from non-age-
related variations (i.e., illumination, pose, etc.).

In the same way as in Experiment 1, we apply ANOVA
to the recognition results on synthetic high resolution faces,
and find that recognition rate is affected significantly by age
group (F2;117 ¼ 0:839; p ¼ 0:000 with hair and F2;117 ¼
6:291; p ¼ 0:003 with hair excluded). Differently from age
perception results, image set also shows some significance
for the intrinsic variations between two image sets
(F1;118 ¼ 0:104; p ¼ 0:031 with hair included and F1;118 ¼
2:739; p ¼ 0:101 without hair).

6 CONCLUSIONS

We present a compositional and dynamic face aging model,
based on which we develop algorithms for aging simulation
and age estimation. Results synthesized by our algorithm are
evaluated for the accuracy of age simulation and the
preservation of identity. Our estimation algorithm obtains
performances comparative to the state-of-the-art algorithms.
Our results are attributed to two factors: a large training set
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Fig. 19. The accuracy of age perception and face identification. (a) The first row shows real images from set C and second row shows synthetic
images from set D. (b) and (c) Separate performances of subjective age perception and algorithmic age estimation on sets C and D. (d) The first row
is a real aging sequence from set E, and the second row is a sequence synthesized by our algorithm for the same individual. (e) Plot of the
performances of subjective face recognition on sets E and F.



and the expressive power of the compositional model,
including external appearance (e.g., hair color and hair style)
and high resolution factors (e.g., wrinkles, skin marks, etc.).

Although our work on modeling adult face aging
achieved promising visual results, more work remains to
be explored in the future. 1) When more image aging
sequences from the same individuals become available,
our model should be extended by assigning more weights
to these samples, and hopefully our model may be also
suitable for face recognition applications besides entertain-
ment ones. 2) Objective evaluation on identity preservation
is not conducted due to the lack of real face aging
sequences over a long period, i.e., 3-4 decades, and
effective recognition algorithms. With more and more
aging databases becoming available as well as the progress
of face recognition technologies, this kind of evaluation
will be conducted in time.
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