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Natural images have a vast amount of visual patterns distributed in a wide spectrum of subspaces of
varying complexities and dimensions. Understanding the characteristics of these subspaces and their
compositional structures is of fundamental importance for pattern modeling, learning and recognition.
In this paper, we start with small image patches and define two types of atomic subspaces: explicit man-
ifolds of low dimensions for structural primitives and implicit manifolds of high dimensions for stochas-
tic textures. Then we present an information theoretical learning framework that derives common
models for these manifolds through information projection, and study a manifold pursuit algorithm that
clusters image patches into those atomic subspaces and ranks them according to their information gains.
We further show how those atomic subspaces change over an image scaling process and how they are
composed to form larger and more complex image patterns. Finally, we integrate the implicit and explicit
manifolds to form a primal sketch model as a generic representation in early vision and to generate a
hybrid image template representation for object category recognition in high level vision. The study of
the mathematical structures in the image space sheds lights on some basic questions in human vision,
such as atomic elements in visual perception, the perceptual metrics in various manifolds, and the per-
ceptual transitions over image scales.

This paper is based on the J.K. Aggarwal Prize lecture by the first author at the International Conference
on Pattern Recognition, Tempa, FL. 2008.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Quest for structures of the image space

In pattern recognition, people often extract many features, as
many as one could come up with, from input data, treat them as
independent points in a vector space, lump them together for clas-
sification, and justify them by error rates in the end. It is taken for
granted that we are not obligated to understand analytically the
ingredients of these features. To the contrary, people feel rather
proud that they can solve problems without analytically studying
the features or the space structures. Yes, why should we ‘‘solve a
problem more than necessary!” But, if we can solve the problems
by just trying good features, then why are we still here designing
new features on a daily bases since the birth of pattern recogni-
tion? For example, in object recognition, new features are invented
in every computer vision and pattern recognition conference.
Given the very high dimensions of images, even the seemingly
humble request of finding distinct features for weak classifiers
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turns out to be very hard to meet for many object categories. For
example, for detecting vehicles in streets using Adaboost (Freund
and Schapire, 1997), we may run out of weak classifiers rather
quickly.

This approach sounds very similar to the Chinese herb clinics,
which have been practiced for more than a thousand years. A herb
clinic typically has hundreds of remedies including almost anything
one can try on: barks, roots, stems, leaves, bugs, worms, and shells
which are like our features. They are selected, mixed in calculated
proportions and boiled to a soup – darker and more bitter than
the strongest coffee. With the enormous number of possible combi-
nations, one is always hopeful to try some of them for any given
new or unknown illness. But good recipes are tough to find!

The herb clinics are nowadays adopting terms in modern med-
icine, such as virus, genes, and molecules. Similarly, why could not
we spend some time understanding the structures of the image
space, the ingredients of the features, and the mechanism of image
composition?

In this paper, we do not intend to engage the long standing
debates on generative versus discriminative methods. Instead we
take a short journey to explore the image space and to report some
characteristics of its atomic subspaces, and then we show how
we can pursue models for them under a common information
theoretical principle, and integrate them into more complex
icit visual manifolds by information projection. Pattern Recognition Lett.
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representations for generic images and object categories. Although
the image space is very complex, the tools and principles for
understanding them could be simple.

1.2. Manifolds in image space: implicit, explicit, and hybrid

Considering an image I, for simplicity, we start with a small
patch of N ¼ 11� 11 pixels. Depending on where we look, the
patch could be a simple primitive, e.g. patch A at the nose of a
hedgehog in Fig. 1, or a texture, e.g. patch B in the hedgehog body.

If we map patches A and B to the N-dimensional space of all im-
age patches, it is not hard to realize that they are from two very dif-
ferent subspaces.

Patch A lies in a 4-dimensional subspace where all the image
patches correspond to the same geometric pattern of an edge seg-
ment. Each image patch can be represented by the following vari-
ables: central location of the edge segment, ðx; yÞ, orientation h, and
intensity contrast a. We denote these variables by w ¼ ðx; y; h; aÞ. In
general, we have the following definition:

Definition 1. An explicit manifold is a subspace of image patches
defined by an explicit function gðwÞ with small distortions �,

Xex ¼ fI : I ¼ gðwÞ þ �; w 2Wg: ð1Þ

Each image patch I in the explicit manifold Xex is represented or
identified by a low-dimensional variable w, that can take values
within a range W. � corresponds to the precision of representation
or perception. As w varies in W; gðwÞ spans a low-dimensional
manifold in the image space. The left panel of Fig. 1 shows a num-
ber of geometric primitives, where each column shows a primitive
at the top, followed by some instances below. Each geometric
primitive corresponds to an explicit manifold, with a different
functional form of gðÞ and an associated range W. The instances
in each column belong to the same manifold, and each instance
is indexed by a particular value of w. Sometimes, an explicit man-
ifold is also called an equivalent class invariant to a set of transfor-
mations associated with gðÞ.

Patch B belongs to a subspace of a much higher dimension,
where the patches are perceptually equivalent and share some
common statistical properties, e.g., the histograms of Gabor filtered
responses. Let HðÞ extract the histograms of filtered responses from
image I and h be a specific value of the histograms that is shared by
all the image patches in Xim.
primitive patch

+
+

++
+

primitive patches in  
explicit manifolds

Fig. 1. Pure manifolds in the space of image patches. Patches A and B belong to two dis
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Definition 2. An implicit manifold is defined by statistical con-
straints with a small statistical fluctuation �,

Xim ¼ fI : HðIÞ ¼ hþ �g: ð2Þ

The fluctuation decreases with the patch size N.

The image patches in the subspace Xim cannot be represented or
identified by a small number of variables. That is, these image
patches lose their individual identities, and they are collectively
described by statistics h, in the sense that all the image patches
in Xim share the same h. The subspace Xim is very different from
the explicit manifold Xex. With a rather liberal use of the term
‘‘manifold,” we call Xex the implicit manifold, in the sense that im-
age patches I in Xex cannot be explicitly identified or differentiated
by a small number of variables, and they are defined by an implicit
function HðIÞ ¼ h, instead of an explicit function I ¼ gðwÞ as in the
explicit manifold.

Xim is also called the Julesz ensemble in (Zhu et al., 2000), It is
similar to the micro-canonical ensemble in statistical physics
which defines a huge set of microscopic states using a small num-
ber of macroscopic properties as constraints. Xim can induce a gen-
eral family of Markov random fields called the FRAME model for
texture (Zhu et al., 1997). In Xim, I is the microscopic state and h
is the macroscopic (or statistically invariant) property which are
considered sufficient statistics in human perception. That is,
according to the well-known psychophysicist Bella Julesz, texture
images are perceptually equivalent if they share certain statistical
properties.

The explicit manifolds and implicit manifolds are two ex-
tremes of the image patterns. The explicit manifolds contain
pure geometric structures, and the implicit manifolds contain
pure stochastic textures. For that reason, we also refer to them
as pure or atomic manifolds. When we look at the area around
of eye of the hedgehog or a larger patch, the image patch may
contain both geometric structures and stochastic textures. So
such image patches belong to what we call a hybrid or compos-
ite manifold.

It is worth pointing out that many terms in various disciplines
refer to the same thing from different perspectives. For example,
manifolds in mathematics, ensembles in statistical physics, equiv-
alent (invariant) classes in geometry or control theory, clusters in
pattern recognition, subspaces in machine learning. In statistics a
probability model p is also said to focus on a set or ensemble Xp.
Thus we have the first set of terminologies:
++
+
+

+

texture patch

texture patches in  
implicit manifolds

tinct types of subspace. See text for interpretation. Picture adopted from Si (2009).
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manifold$ subspace$ cluster$ equivalence class

$ ensemble$model Xp:

The symbol $ means ‘‘the two concepts can be used inter-
changeably”. These terms may sound confusing sometimes, but
we should not be too rigorous or sensitive about these names. In
fact, if we tolerate different perspectives, we can benefit from the
diversity brought to our field over the years with useful tools asso-
ciated with them. In pattern recognition, the term ‘‘cluster” has
never been defined precisely. We believe that the study of mani-
folds and their compositions will provide a better description for
the structures of the image space.

At this point, people may raise many questions. Below are some
urgent ones.

1. How many explicit and implicit manifolds can we find in the
space of daily photos? These manifolds are supposed to be the
basic components for image coding, recognition, and
perception.

2. How are they related to each other in the space? Can we sort
these manifolds along some axis?

3. How do we model these manifolds in the image space? How do
we measure their volume and weight their mass?

4. How do we compose atomic manifolds to form larger composed
manifolds? The latter host images from object categories.

We shall discuss these questions along our short journey in
exploring the fascinating image space which we still do not know
too much about.

1.3. The spectrum of manifolds and manifold transition

It has long been accepted that daily pictures, such as face
images under different expressions and lighting conditions or
images of a vehicle taken by motion camera, lie in low dimensional
appearance manifolds. This is the pillow of many well-known
dimension reduction techniques, such as Isomap, local linear
embedding (LLE) (Roweis and Saul, 2000). People who applied
LLE to image patches cropped from daily photos will be disap-
pointed. The reason is intuitively discussed in the previous subsec-
tion, the image space is not a low dimensional manifold but
contains a wide spectrum of manifolds with compositions. These
manifolds have varying dimensions. Fig. 2 shows image patches
of 11 categories from image primitives in ‘‘low entropy” classes:
edges, bars, parallel lines; to entropy objects: cat, dog, lion, tiger;
and to ‘‘high entropy” textures: fur, carpet and grass. When all
the images are normalized to have zero mean intensity, the two ex-
tremes of the spectrum are (1) the set of images with constant pix-
Fig. 2. Example patches of 11 categories ranging from the classes of low-entropy patche
Object categories, such as animal faces, often lie in the middle entropy classes.
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el intensities over the image lattice, which has zero/minimal
dimension, and (2) the set of images with pixel intensities i.i.d. uni-
formly distributed, which has full N dimensions.

Here we need to clarify another set of terms which are highly
related to each other: volume of a manifold X, its entropy H – a
term used in statistical physics and information theory, and its
intrinsic dimension d – a term adopted in mathematics, coding
and learning. In later sections, we will show that the volumes of
the explicit and implicit image manifolds are measured in two dis-
tinct ways. In both cases, H; d and the log-volume of X are mea-
sures for the massiveness of the manifolds,

entropy H$ dimension d$ log volume log jXj:

Intuitively, one may also call it the degree of freedom in pattern
recognition.

In this paper, we use entropy as an axis to map all these mani-
folds. Sometimes, people confuse entropy with information. Infor-
mation has to be defined for a task. For vision tasks, both primitives
(in the low entropy classes) and textures (in the high entropy clas-
ses) are considered boring and less informative than objects (in the
middle entropy classes). As we will discuss in later section (see
Fig. 18), we have a smaller number of classes at the two ends of
the entropy spectrum and a much larger number of classes in the
middle entropy regime. The latter are hybrid manifolds and have
complexer structures. We dub it the ‘‘middle-entropy crisis” of
computer vision and pattern recognition. Understanding the struc-
tures of such hybrid manifolds shall shed lights on the search of
good features and algorithms for pattern recognition.

The entropy is inherently related to image scaling (zooming).
Fig. 3 shows sequences of snapshots of maple and ivy leaves in
the process of zooming out. At closer distance, each image contains
a single image leaf and thus represents image primitives from the
low entropy regime of geometric primitives. As the camera zooms
out, each image contains a few leaves (i.e. objects) with pedals. At
further distances, each image captures hundreds or thousands of
leaves and becomes texture where the individual leaves can no
longer be identified. At the limit, if we have had large enough ma-
ple forest or ivy wall, the intensity of each pixel is the sum of pho-
tons from hundreds of leaves, and the image should converge to
Gaussian noise because of the central limit theorem.

As the camera zooms out, more leaves come into the images,
which become more complex, and the image entropy increases.
As images are discrete signals with finite resolution, details of
the leaves get lost and become imperceptible. Our perception has
to drop explicit variables for geometric structures and change the
representation as well as the perceptual metric. In this process, if
we crop image patches from images at different scales, the mani-
folds that contain these image patches will change from explicit
s, such as edges and bars, to the classes of high-entropy patches, such as textures.

icit visual manifolds by information projection. Pattern Recognition Lett.
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Fig. 3. Image scaling causes perceptual transitions between manifolds. From left to right, as the we zoom out from the leaves, our perception of the image patches transits
from a primitive for single leaf instance in a low entropy class (or explicit image manifold) to textures in high entropy classes (or implicit image manifolds).

4 S.-C. Zhu et al. / Pattern Recognition Letters xxx (2009) xxx–xxx

ARTICLE IN PRESS
to hybrid and finally to implicit manifolds. Readers interested in
this aspect are referred to an early paper (Wu et al., 2008) for a dis-
cussion about the information scaling, imperceptibility, and per-
ceptual transitions.

To summarize, we have the third set of terminologies for the
axis,

entropy regime transition$ camera zooming $ image scaling:

In Fig. 3, the leaves have similar sizes in a narrow depth range,
thus images at each scale reside in classes/manifolds of similar en-
tropy and the entropy transition is obvious. Intuitively, we may
think of the spectrum of manifolds as distributed in different en-
tropy regimes in the image space. By analogy, the structures of
the image space may be similar to the cosmology picture in
Fig. 4. In our universe, mass and energy are distributed in various
forms. In some subspaces, like the stars, the distributions are of
high densities and low volumes; while in other subspaces, like
the nebulas, the distributions have low densities and high volumes.
By analogy, the stars correspond to the explicit manifolds for image
primitives and the nebulas correspond to the implicit manifolds for
textures.
1.4. Pursuing manifolds in the image space

So far, we have shown that the image manifolds have vastly dif-
ferent dimensions and characteristic structures, and some low
dimensional manifolds may be submerged in high dimensional
manifolds. In the literature, the conventional K-means clustering
methods and other recent methods for subspace learning (Ma
et al., 2007) all assume that clusters have similar linear structures,
and thus cannot be applied to such image space. We need a new
way to find these manifolds or clusters. This is illustrated in Fig. 5.
Fig. 4. By analogy, a picture of the universe with mass distributed on stars (high
density, low volume) and nebulous (low density, high volume).

Please cite this article in press as: Zhu, S.-C., et al. Learning explicit and imp
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Suppose that in the image space, represented by the big ellipse
in Fig. 5, there is an unknown target manifold Xf to be clustered for
a pattern, and it is governed by an underlying ‘‘true” probability
f ðIÞ. Xf is a subspace represented by the red1 closed curve. We
learn a sequence of models to approach f in a stepwise manner,
i.e. pursuit, starting from an initial probability qðIÞ:

q ¼ p0 ! p1 ! p2 ! � � � ! pk ! f : ð3Þ

These models represent a series of manifolds, shown by the dashed
blue curves approaching Xf ,

Xp0
! Xp1

! Xp2
! � � � ! Xpk

! Xf : ð4Þ

When Xp coincides with Xf , we said the manifold is captured.
There are two ways for pursuing the manifolds as Fig.5 illus-

trates in (a) and (b) respectively. For an implicit manifold, we
may start with Xp0 the whole image space, and at each time, we
add a new constraint to shrink the manifold. With more con-
straints added, Xp will capture Xf from outside. For Xim defined
in Eq. (2), these constraints augment to h ¼ ðh1; . . . ;hKÞ. For an ex-
plicit manifold, we start locally with a single point or small ball in-
side Xf , and at each step we expand some dimensions w in Eq. (1)
and fill Xf from inside. We will present the model pursuit frame-
work by information projection and then show two case studies
for the two types of pursuit in Section 3.

The reason for choosing the two pursuit strategies is quite intu-
itive. As implicit manifolds are of very high dimensions, thus it is
fast to capture them through constraints (reducing entropy or vol-
ume), while the explicit manifolds are of much lower dimensions,
thus it is more effective to capture them by expansion (increasing
the volume).

By analogy, when a teacher is grading a final exam with the full
mark being 100 (just like our full dimension N), for a very strong
student, the teacher will start with 100, and substract a few points
here and there for errors, and then count the final grade like

strategy a : 100� 3� 0� 2� 1� 0� 0� 2� 0� 0� 0 ¼ 92:

For a very weak student, the teacher starts will count from 0 and
add a few points for credits,

strategy b : 0þ 5þ 0þ 0þ 2þ 0þ 0þ 2þ 0þ 0þ 1 ¼ 10:

In practice, students at both ends are easy to grade. Students in
the middle range around the pass/no-pass line need the most
work. This is exactly like the manifold pursuit where we encounter
the hybrid manifolds in the middle entropy regime for objects.
1 For interpretation of colour in Figs. 5, 9, 11, 14, 21, and 22, the reader is referred to
the web version of this article.

licit visual manifolds by information projection. Pattern Recognition Lett.
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(a) pursuit of implicit manifold (b) pursuit of explicit manifold

Fig. 5. The red curve represents a manifold Xf to be pursued. (a) An implicit manifold is pursued through a sequence of models by shrinking from the whole image space.
(b) An explicit manifold is pursued through a sequence of models by expanding from a single point or small ball.
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1.5. Plan of the paper

So far, we have introduced our motivation for studying the
structures of the images space, the characteristics of manifolds or
subspaces, an entropy axis for mapping the manifolds into various
regimes and its relation to scaling, and the intuitive ideas about
modeling and manifold pursuit.

The plan for the rest of the paper is the following.
Firstly, we discuss some related work in the literature in Section

2 to set up the background and context. We overview a number of
streams in psychology, coding, image modeling, and applied math
which have investigated similar topics.

Secondly, we present the theoretical framework for manifold
pursuit by information projection in Section 3. We show that this
is a general modeling and learning scheme which has been prac-
ticed in several fields under different names. We show two case
studies: one on Markov random fields, and the other on learning
active basis models for object templates.

Thirdly, in Section 4, we apply the manifold pursuit algorithm in
Section 3 to the space of image patches and present experiments
for clustering the implicit and explicit manifolds from the space.
Also we show the manifolds in a sequence of scaled images to illus-
trate the transition of these manifolds.

Fourthly, we present two case studies in Section 5 that integrate
the implicit and explicit manifolds for image representation. One is
the primal sketch model for generic images at the middle level
(Guo et al., 2007), and the other is the mixed templates for object
categories (Si, 2009). The two cases demonstrate that the two
atomic manifold can be combined to represent general images.

Finally we conclude the paper with a discussion and connection
to a more general framework at the higher level: stochastic image
grammar embedding in a hierarchical And-Or graph structure. The
study of the mathematical structures in the image space sheds
lights on some basic questions in human vision, such as atomic ele-
ments in visual perception, the perceptual metrics in various man-
ifolds, and the perceptual transitions over image scales.
2. Related research streams in the literature

We overview some interesting work in psychology, natural im-
age modeling, coding, and applied mathematics, which investi-
gated related topics.
2.1. Studies in early vision: texture, texton, and primal sketch

In the 1960s, a well-known psychophysicist Julesz (1928–2003)
asked a fundamental question about texture perception: what are
the essential feature statistics so that two texture images sharing
Please cite this article in press as: Zhu, S.-C., et al. Learning explicit and impl
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the same statistics are perceptually equivalent. In today’s termi-
nology, a texture is a set of images that share the same feature sta-
tistics HðIÞ ¼ h. This is the implicit manifold that we defined in Eq.
(2) and named the Julesz ensemble (Zhu et al., 2000). Julesz’s tex-
ture quest was not very fruitful, since there was very limited
knowledge about the neural functions (such as Gabor filters) in
selecting the features and statistics h. Given some statistical con-
straints h, one needs to generate arbitrary (unbiased) images that
share the same h. In statistics, this is to draw fair sample from
the manifold Xim, so one needs to establish Markov random fields
for various h and use Markov chain Monte Carlo methods for sam-
pling from the models. Such mathematical tools are necessary for
studying the implicit manifolds, but they were simply not available
at that time.

Julesz noticed that early vision (about 100–200 ms) seems to be
very sensitive to certain elements while indifferent to others. Fig. 6
shows two examples designed by Julesz. In (a), One can detect the
arrows from the triangles instantly (i.e. constant time) regardless
of the number of triangles (distracters) in the background, while
in (b) one has to search for the ‘S’ in a number of ‘10’s. The search
time increases linearly with the number of distractors. Julesz con-
cluded that there must be a set of atomic elements for human per-
ception, which he called ‘‘textons.” In our terminology, each texton
is an explicit manifold. Later psychophysical experiments showed
that textons are adaptive (Karni and Sagi, 1991) and can be learned
through repeated exposure to such elements. Such phenomenon is
also quite common in recognizing symbols in language. For exam-
ple, when western travelers in China look at a Chinese newspaper
or magazine, the Chinese characters appear to be textures, while
the Chinese people see the characters as textons.

As a pioneer, Julesz had touched the essence of texture and tex-
tons. In his 1995 book (Julesz, 1995), he wrote a dialogue with him-
self and was apparently puzzled by the textures and the textons,
which in our opinion, are two different types of manifolds studied
by distinct branches of mathematics with different tools. The tex-
tures are modeled by Markov random fields with analysis tools
from statistical physics, while textons are studied by coding theo-
ries and tools from harmonic analysis. In computer vision, textons
are represented by vectors of filter responses (Leung and Malik,
1999) or transformed component analysis (Frey and Jojic, 1999).
A comprehensive review and comparison is given in (Zhu et al.,
2005). Since Julesz, there has been no real successful work investi-
gating and comparing the atomic textures and textons in generic
images. Our result presented in Section 4 is the first direct
experiment in the literature that compares and competes between
textures and textons and ranks these manifolds numerically.

In his monumental book (Marr, 1982), Marr inherited Julesz’s
texton notion and proposed the concept of image primitives as
basic perceptual tokens, such as edges, bars, junctions, and
icit visual manifolds by information projection. Pattern Recognition Lett.
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Fig. 6. Two examples from Julesz’s experiments on textons.

6 S.-C. Zhu et al. / Pattern Recognition Letters xxx (2009) xxx–xxx

ARTICLE IN PRESS
terminators. Inspired by the Nyquest sampling theorem in signal
processing, Marr went a step further and asked for a token repre-
sentation which he named ‘‘primal sketch” as a perceptually loss-
less conversion from the raw image. He tried to reconstruct the
image with zero-crossings unsuccessfully and his effort was mostly
limited by the lack of proper models of texture. In Section 5.1, we
will present a mathematical model for primal sketch based on our
early work (Guo et al., 2007), which integrates the implicit and ex-
plicit manifolds seamlessly. We refer to two early papers on texton
(Zhu et al., 2005) and primal sketch (Guo et al., 2007) for detailed
discussions.

In summary, texture, texton, and primal sketch are important
concepts in the early stage of visual perception. In this paper, they
correspond to the implicit, explicit, and hybrid manifolds in the
image space.

2.2. Studies in the statistics of natural images – tips of the iceberg

It has long been noticed since the 1960s that image signals do
not observe the prominent Gaussian distributions. For example,
the distribution of the gradients of image intensity rI has higher
kurtosis and heavier tails than Gaussian, and often remains invari-
ant when the images are down-scaled. This has inspired much re-
search in the 1990s and early 2000s studying the statistics of
natural images (Ruderman, 1994; Zhu and Mumford, 1997; Huang
and Mumford, 1999; Geman and Koloydenko, 1999; Lee et al.,
2003; Mumford and Gidas, 2001). Here, by natural images, people
usually mean photos taken in natural scenes which have a rich set
of objects of various sizes in a long range of distance from the cam-
era, e.g. trees in a forest.

Fig. 7 shows two typical results that are non-Gaussian distribu-
tions. The heavy tails in (a) and spikes in (b) indicate the existence
of structures in images. Filters (such as gradients, Gabor) receive
very high responses at such structural locations (such as image
primitives) and thus contribute to the tails or spikes of the
histogram.
Fig. 7. (a) The histogram of image gradient rI of images at four resolutions, from Zhu an
depth image patches (2� 2 minus mean) of natural scenes, from Huang and Mumford (

Please cite this article in press as: Zhu, S.-C., et al. Learning explicit and imp
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These histograms are marginal (projected) statistics of the im-
age manifolds that we are discussing, and are the tips of the ice-
berg – the underlying structures of the image space. This simple
evidence argues against the Gaussian assumptions and quadratic
metrics that are common in computer vision and pattern recogni-
tion, including Gaussian MRF, K-mean clustering, etc., and call for
non-Gaussian models.

It is worth noting that these studies focused on low dimensional
statistics over local features. The observed scale invariance is
pooled over all locations in an image which consists of objects in
a large range of scales. When we scale the image by downsampling,
the larger objects become smaller, the local statistics remain rela-
tively stable or invariant while the perception of individual object
changes over scales. Such invariance does not conflict with our
observations in the scale transitions on objects (say the maple
leaves) over scales in Fig. 3.

2.3. The puzzle of feature learning: sparse coding vs. MRF

The natural image statistics motivated a new round of efforts in
image modeling in the past 15 years. Two types of models are
adopted to account for the statistics.

The first model is the sparse coding by Field (1987) and Olshau-
sen and Field (1996), who argued that the high kurtosis in natural
images indicates a sparsity principle which directly contributes to
the receptive fields of simple cells found in the prime visual cortex
area V1. Fig. 8a shows some examples of the image base functions
learned in an unsupervised manner from natural images using a
simple sparse coding model. These patches resemble the Gabor
functions and in our opinion belong to the explicit manifolds. We
notice that their algorithm involved some preprocessing stage that
suppressed the high frequency texture signals.

The second model is the non-parametric Gibbs (MRF) model
proposed by Zhu and Mumford (1997). This model is constructed
through the minimax entropy principle (Zhu et al., 1997) with
statistical constraints so that the model reproduces exactly the
d Mumford (1997). (b) The iso-probability surface plot on a 3D histograms of range
1999).

licit visual manifolds by information projection. Pattern Recognition Lett.
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Fig. 8. (a) Learned base functions in sparse coding by Olshausen and Field (1996). (b) Learned features in a Field of Experts (Markov random fields) by Roth and Black (2005).
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observed statistics in Fig. 7a. Interestingly this model automati-
cally selects features with the most information gain from a
pre-defined set. It selects the Laplacian of Gaussian (LoG) and
gradients, i.e. the second and first order image derivatives, whose
histograms provide the more informative statistics against the
uniform distribution (noise images). In 1999–2005, Roth and Black
further enlarged the pre-defined set of features and let the model
learn arbitrary features freely as in Olshausen and Field’s experi-
ments. They used a factorized version of the Zhu-Mumford model
and called it the Field of Experts (FoE). Fig. 8b shows some exam-
ples of the top features learned by the FoE model which are close to
checkerboard pattern. In our opinion, these features are different
versions of the LoG and Gradient filters in a predefined patch size.
For example, LoG and Gradients selected in (Zhu and Mumford,
1997) are also checkboard like feature in 3� 3 or 2� 1 patches
respectively. But they are nothing like the Gabor patches in Fig. 8a.

How could two learning models, motivated by the same statis-
tical observations, end up choosing two completely different sets
of features as the most informative representation? Which set
has the true or better features?

To comprehend this puzzle, we again have to remind readers of
the implicit and explicit manifolds in the image space and the two
manifold pursuit strategies discussed in Fig. 5. The sparse coding
model looks for explicit base functions to reconstruct the observed
images, starting from a constant image, and they capture the struc-
tures or primitives which are good at representing the explicit
manifolds for image structures. In contrast, in learning the MRF
models, one seeks for more informative features to distinguish nat-
ural images against noise images in pursuing the implicit mani-
folds, and therefore selects the LoG or gradients features. So both
are correct, and they pursue the manifolds from two different
ways, as we discussed in Fig. 5.

Fig. 9 illustrates this idea intuitively. Suppose we have some
Gaussian clusters and we plot their eigenvalues in a decreasing or-
der. If a cluster is of a very low dimension, like images of human
faces, then we choose a few largest eigenvalues (see the blue
curve) whose eigenvectors most effectively reconstruct the face.
1 2 3                                                       N

ei
ge

nv
al

ue
 λ

explicit: e.g. face

implicit: e.g. texture

mixed: e.g. tiger face

Fig. 9. Plot of eigenvalues in decreasing order for some Gaussian clusters of low
dimension (blue curve) or high dimension (red curve). One should choose the
largest eigenvectors for the low dimensional clusters and the smallest eigenvectors
for the high dimensional clusters. PCA are special cases for the manifold pursuit and
related feature selection.
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This PCA example corresponds to the sparse coding model except
that the base functions in the sparse coding model are over-com-
plete and not orthogonal to each other. If a cluster is of a very high
dimension, like stochastic textures whose eigenvalue plot will be
like the red curve, then it won’t be effective to choose the top
eigenvectors, instead one ought to use the smallest eigenvalues
whose eigenvectors are often the checkerboard patterns. Both
could be considered as principal component analysis (PCA). The
first is the usual case for constructing lower dimension clusters,
and the second is the opposite case where we constrain the model
from uniform. This is again like the two grading strategies used by
teachers as we discussed in Section 1.4. We refer to a recent paper
(Weiss and Freeman, 2007) for more formal account and compar-
ison between the two learning schemes: sparse coding and Markov
random fields.

2.4. Image scaling and perceptual transitions

Objects appear at arbitrary scales or sizes in images and evoke
very distinctive perceptions and representations at different scales,
Fig. 3 demonstrates the perception of maple leaves changes from
primitives to texture. Although there is a long thread of research
in image scale space, the first work that linked the perceptual tran-
sition to the entropy was done by Wu et al. in 2007–2008 (Wu
et al., 2008).

Let W denotes the variables describing the whole scene, say the
locations, shapes and appearance for tens of thousands of maple
leaves. W generates the image I ¼ gðWÞ deterministically by a ren-
dering function gðÞ. Many details are lost due to occlusion and im-
age discretization in the rendering process. Visual perception is to
estimate W from I following a posterior probability in the Bayesian
framework,

W � pðWjIÞ: ð5Þ

The symbol x � pðxÞ means ‘‘x follows a probability p”.
Suppose at a certain scale, we have I and W following probabil-

ity pðIÞ and pðWÞ respectively. The entropy of the posterior
probability pðW jIÞ, averaged over the images I in a certain scale, re-
flects our uncertainty or inability to compute W precisely.

Definition 3. The imperceptibility of description W from an image I
in an image ensemble is,

imperceptibility : HðWjIÞ ¼
X

W

X
I

pðW; IÞ log pðWjIÞ:

It was shown in (Wu et al., 2008) that the imperceptibility in-
creases when the image is downsampled to a lower resolution
where we denote the images by I�. For example, the shapes of ma-
ple leaves may not be visible. Thus our representation need to re-
duce its complexity from W to W� by dropping or combining some
variables, so that HðW�jI�Þ returns to below a certain threshold.
The underlying assumption in this Bayesian inference is that visual
perception, human or machine, do not handle variables of high
ambiguities. For example, we don’t attempt to recognize a person’s
face if the person is very far away, and even for close faces we do
not define the exact boundary between the upper part of nose and
the rest of the face.
icit visual manifolds by information projection. Pattern Recognition Lett.
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Fig. 10. Learning by information projection in the space of probabilities. Each point
is a probability model. With more constraints added, the KL-divergence reduces
monotonically.
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For a scene where the elements have a narrow range of sizes,
such as the maple scenes, at a critical scale, a catastrophic transi-
tion (Wang and Zhu, 2008) occurs when we discard all the shape
variables in W (describing the explicit manifolds for leaves) and
switch to a statistical description W� ¼ h for implicit manifolds.
In the latter case, h is an representation for the overall texture
impression without noticing the individual primitives.

explicit ðW ¼ fwg; IÞ !zoom-out
implicit ðW� ¼ fhg; I�Þ: ð6Þ

This intuitively explains the transition between explicit mani-
folds and implicit manifolds over the scaling process. For natural
scenes which contain objects in a continuous scale following cer-
tain distributions, for example, the object radius r � 1=r3 in the
scene follows a density pðrÞ / 1=r3 (Mumford and Gidas, 2001),
the individual object must undergo the above perceptual transi-
tions during the zooming process, but the overall local statistics
averaged over the entire image remain invariant. We refer to Wang
and Zhu (2008) and Wu et al. (2008) for more discussion.

To summarize this section, we have discussed a few puzzling
topics of significant importance in the literature: (1) texture, tex-
ton and primal sketch; (2) high kurtosis and sparsity in natural im-
age statistics; (3) seemingly contrast features learned by sparse
coding vs Markov random fields; and (4) image scaling and percep-
tual transitions. All these issues are related to or explained by the
explicit and implicit manifolds.
3. Information projection and manifold pursuit

In this section, we present the manifold learning framework and
pursuit algorithm, following the introduction in Section 1.4.

3.1. Learning by information projection

Suppose we have a target manifold Xf governed by a probability
f ðIÞ, and it is represented by a number of observed examples. In the
context of discriminative pattern recognition, they are called posi-
tive examples.

Xf � fIobsm ; m ¼ 1;2; . . . ;Mg � f ðIÞ: ð7Þ

The objective of manifold pursuit is to find a sequence of models,
starting from an initial reference model q, that would gradually ap-
proach f ðIÞ,

q ¼ p0 ! p1 ! � � � ! pk to f ð8Þ

in terms of minimizing the Kullback–Lebler divergence KLðfkpÞ.
We have introduced two pursuit strategies in Section 1.4, more

specifically in Fig. 5. Both pursuit strategies follow the same learn-
ing procedure and principle, and only differ in their initial models q
and the selected feature statistics.

Fig. 10 illustrates the learning procedure by information projec-
tion in the space of probability distribution. Note that we have
been talking about image space and subspaces where each point
is an image. Now we are dealing with a new space for probabilities
where each point is a probability distribution qðIÞ; pðIÞ, or f ðIÞ. In
this probability space, the Kullback–Leibler divergence between
two probabilities plays the same role as squared distance in the
Euclidean space.

The learning proceeds iteratively. At each step k, we augment
the current model pk�1 to pk by adding some statistical constraint
that pk�1 does not observe, i.e.

Epk
½rkðIÞ� ¼ Ef ½rkðIÞ� – Epk�1

½rkðIÞ�: ð9Þ

rkðIÞ is some function of image I, for example, the response of a Ga-
bor filter at certain location in the image, or rkðIÞ can be a vector for
Please cite this article in press as: Zhu, S.-C., et al. Learning explicit and imp
(2009), doi:10.1016/j.patrec.2009.07.020
the histogram of Gabor filter responses. In practice we can always
approximate the expectation by the sample mean,

Ef ½rkðIÞ� � �rk ¼
1
M

XM

m¼1

rkðIobsm Þ: ð10Þ

Definition 4. We denote the set of all probabilities p that satisfy

the condition as candidate models in the probability space,

Pk ¼ fp : Ep½rkðIÞ� ¼ Ef ½rkðIÞ�g: ð11Þ

Pk is represented by the curve in Fig. 10. For example, both f
and pk lie on Pk in Fig. 10 as they satisfy the constraint.

Now, we hope to project pk�1 to Pk perpendicularly, and thus
find the p	 on Pk that is closest to pk�1,

p	 ¼ arg min
p2Pk

KLðpkpk�1Þ: ð12Þ

Solving this constrained optimization problem by Lagrange multi-
plier, we have

pkðI; HkÞ ¼
1
zk

pk�1ðI; hk�1Þe�kkrkðIÞ; ð13Þ

kk is the parameter and zk normalizes the probability to 1. This new
model pk may no longer observe the previous constraints, for exam-
ple, pk is not on Pk�1.

The three points pk�1; pk and f form a triangle with right angle,
as Fig. 10 shows. This is the famous Pythagorean theorem (see Del-
la Pietra et al. (1997) and Csiszár and Shields (2004)).

Theorem 1. For the exponential probability family fpkg constructed
above, we have

KLðfkpk�1Þ ¼ KLðfkpkÞ þ KLðpkkpk�1Þ; 8k: ð14Þ

As long as one can find informative features rkðIÞ so that
pk�1 – pk, then KLðpkkpk�1Þ > 0 and the pursuit process converges
to f monotonically.

After K iterations, we obtain a model,

pðI; HÞ ¼ qðIÞ
YK

k¼1

1
zk

e�kkrkðIÞ: ð15Þ

Or we can rewrite it as

pðI; HÞ
qðIÞ ¼

YK

k¼1

1
zk

e�kkrkðIÞ ¼ 1
Z

exp �
XK

k¼1

kkrkðIÞ
( )

: ð16Þ

Z ¼ z1z2 � � � zK and H ¼ ðk1; . . . ; kKÞ. The above learning process
sequentially projects the current model to a number of constrained
spaces, and thus is called ‘‘information projection”.
licit visual manifolds by information projection. Pattern Recognition Lett.
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Each iteration of the learning process includes two steps.

1. Min-step: given the feature constraint rk, we compute the
parameter kk by finding the pk on Pk that is closest to pk�1,

k	k ¼ arg min
pk2Pk

KLðpkkpk�1Þ: ð17Þ

2. Max-step: choosing an informative feature and statistics rk,
which reveals the biggest difference between pk and pk�1:

r	k ¼ arg max KLðpkkpk�1Þ: ð18Þ

As Eq. (14) shows that KLðpkkpk�1Þ ¼ KLðfkpk�1Þ � KLðfkpkÞ, this step
is a greedy way of minimizing the KL-divergence between f and p.

There are variations of the above information projection pre-
cess, which differ in two major ways.

1. The choice of the initial or reference probability q. For implicit
manifold or texture modeling, one often starts with q being
the uniform probability over the entire image space. In contrast,
for explicit manifolds q is chosen to be focused on a point with
an � radius. See illustrations in Fig. 5. For the former case, the
constraint is a ‘‘push” operator that shrinks the volume of Xp

at each step, while for the latter case, the constraint is a ‘‘pull”
operator that expands the volume of Xp at each step.

2. One may choose to accumulate the statistical constraints and
thus let Pk observe all the existing statistical constraints,

Pk ¼ fp : Ep½rnðIÞ� ¼ Ef ½rnðIÞ�; n ¼ 1;2; . . . ; kg: ð19Þ

The Pythagorean theorem holds true for the above construction.
This leads to the minimax entropy learning scheme in (Zhu et al.,
1997). It was also used in language modeling in (Della Pietra
et al., 1997).

In the following, we show two case studies to illustrate the
above learning process: one for implicit manifolds and one for ex-
plicit manifolds.

3.2. Case study I: the FRAME model for texture modeling

In the first case study, we illustrate the pursuit of implicit man-
ifolds for texture modeling following the work of FRAME model
(Zhu et al., 1997) and Julesz ensemble (Zhu et al., 2000).

The feature dictionary Dim ¼ fFkg consists of Gabor sine and co-
sine filters, Laplacian of Gaussian (LoG) and gradient filters of var-
ies sizes. The features extracted are filter responses hFkðx; yÞ; Ii,
where k indexes the scale and orientation of the filter, and ðx; yÞ
is the location. We assume that the texture is homogeneous, so
we pool the filter responses over the image domain to form a his-
togram rkðIÞ ¼ hkðIÞ for each filter k. So we have the implicit man-
ifolds for texture in a sequence,

Pk ¼ fp : EpðhiðIÞÞ ¼ Ef ðhiðIÞÞ; i ¼ 1;2; . . . ; k; 8ðx; yÞg; ð20Þ

where f is the true distribution that generates the observed image,
and Ef ðhiðIÞÞ can be approximated by the corresponding histogram
of the observed image, because f is stationary.

We initialize the learning process with k ¼ 0, and we take p0 to
be the uniform distribution of the entire image space. Each step, set
k kþ 1, we choose from Dim a new filter Fk and its histogram hk

which reveals the biggest difference between the current model
pk�1 and the true distribution f, then we keep adding hk to augment
the model. As k increases, it gets closer to f as Fig. 5 illustrates.

To verify the learning process, we draw typical samples, by
Markov chain Monte Carlo simulation, from the sequence of image
manifolds Xim

k ; k ¼ 0;1;2; . . . ;6. These typical images are shown in
Please cite this article in press as: Zhu, S.-C., et al. Learning explicit and impl
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Fig. 11. As k increases, the sampled images become perceptually
more similar to the input image in (a).

As another way to visualize the learning process, we randomly
choose 10,000 image patches of 10� 10 pixels from the sample
images at each learned stage Xim

k ; k ¼ 0;1; . . . ;6, as well as the ori-
ginal image. We applied PCA analysis and plot the eigenvalues in
decreasing order for each manifold in the right panels of Fig. 11.
The eigenvalues are scaled in the figure so the first eigenvalue
would equal 1. The red-dotted curve is the eigenvalue plot of noise
patches which is almost flat as expected. As k increases, the curves
converges to the green curve for the input texture.

For a large image lattice, each learned pk is equivalent to the
uniform distribution over an implicit image manifold Xim

k ¼
fI : hiðIÞ ¼ hi; i ¼ 1; . . . ; kg, where hiðIÞ is the histogram of filter re-
sponses pooled over the image I. The entropy of pk is the log-vol-
ume of the ensemble Xim

k . This volume decreases as k increases.
This example for pursuing implicit manifold confirms our intuitive
ideas discussed in Fig. 9 and the grading strategy a in Section 1.4.

In the above example, the first two steps have the most effective
compression along some dimensions, that is, the volume of the
manifold shrinks at each step. In fact, the effectiveness of a filter
Fk and thus its statistics hk is measured by reduction of volume
in logarithm,

Info: gain : IgimðhkÞ ¼ log
jXim

k�1j
jXim

k j
: ð21Þ

Because of the equivalence between entropy of pk and the log-vol-
ume of Xim

k , the above information gain is

IgimðhkÞ ¼ entropyðpk�1Þ � entropyðpkÞ: ð22Þ

The pursuit of implicit manifold is a greedy process of entropy
reduction process. This information gain is computed numerically
by the following formula in (Zhu et al., 1997), following a Taylor
expansion of entropyðpkÞ at entropyðpk�1Þ,

IgimðhkÞ ¼ N=2 � ðhk � hoÞ0R�1
o ðhk � hoÞ; ð23Þ

where N is the number of images in I, ho is the statistics (histogram
of filter responses) according to the current model pk�1, and Ro is a
covariance matrix of hk. Thus the larger the distance between the
observed statistics hk and the current statistics ho, the bigger the
information gain. We refer to Zhu et al. (1997) for details of the
modeling and learning process.

3.3. Case study II: the active basis model for object template

In the second case study, we illustrate the pursuit of explicit
manifolds for learning deformable templates using the Active Basis
model in our recent work (Wu et al., 2007, 2009). Suppose we ob-
serve images fIobsm ;m ¼ 1; . . . ;Mg from an object category. For sim-
plicity, let us assume that these images are of the same size, and
the objects in these images appear at the same position and scale
and in the same pose. Our goal is to learn a common template from
these training images.

Similar to the FRAME model, the feature dictionary Dex ¼ fFkg
consists of Gabor sine and cosine filters. However, in the Active Ba-
sis model, the Gabor filters play the role of basis functions for span-
ning the explicit manifolds. More specifically, let Bx;y;s;a be the
Gabor wavelet centered at location ðx; yÞ, at scale s and orientation
a. Then the active basis representation is as follows:

B ¼ ðBk ¼ Bxk ;yk ;s;ak
; k ¼ 1; . . . ;KÞ: ð24Þ

B is viewed as a deformable template, because we allow each
basis function Bk to deform to BxkþDxm;k ;ykþDym;k ;s;akþDam;k

, where
ðDxm;k;Dym;kÞ is the shift of Bk in location, and Dam;k is the shift of
Bk in orientation. We restrict the shifts ðDxm;k;Dym;k;Dam;kÞ to be
icit visual manifolds by information projection. Pattern Recognition Lett.
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Fig. 11. (a) is the original input image, (b) is the initial noise image, and (c)–(h) are the synthesized image after adding 1–6 features into the model. The right panel plots of
eigenvalues for the images patches from the synthesized image sequence. The red dotted line is for the noise image, and green broken line for the original input image.
Eigenvalues are scaled so that the first eigenvalue would equal to 1.
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within a limited range. In detecting the template, these local defor-
mations are computed through a local maximization process that
chooses the maximum response rk for Bk over the deformation
range.

The Active Basis B defines an explicit manifold of images,

Xex ¼ I : I ¼
XK

k¼1

ckBxkþDxk ;ykþDyk ;s;akþDak

( )
; ð25Þ

where w ¼ ðck;Dxk;Dyk;Dak; k ¼ 1; . . . ;KÞ are the variables. This ex-
plicit manifold is highly non-linear, because of the shifts in loca-
tions and orientations of the basis elements.

Though Xex is spanned by K independent basis functions, these
basis functions are like the spikes pointing to various dimensions
and thus the volume of Xex is quite small even if K is large. In
the following, we define a probability distribution for Xex following
the information projection procedure.

We construct a sequence of constraints on the individual re-
sponse of basis function Bk.

PK ¼ fp : Ep sðrkðIÞÞ½ � ¼ Ef sðrkðIÞÞ½ �; k ¼ 1;2; . . . ;K; g; ð26Þ

where sðrÞ is a sigmoid transformation that increases monotonically
from 0 to a saturation level, and Ef ½sðrkðIÞÞ� can be estimated by the
sample mean,

Ef ½sðrkðIÞÞ� �
1
M

XM

m¼1

sðrkðIobsm ÞÞ: ð27Þ

The learning process leads to the following model,
Fig. 12. Top: the process of learning the Active Basis templates for a deer image. Basis
examples of the deer images with their deformed templates on the right.
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pðI; HÞ ¼ qðIÞ
YK

k¼1

1
zk

e�kksðrkðIÞÞ: ð28Þ

H ¼ ðk1; . . . ; kKÞ is the parameters. We choose qðIÞ to be a uniform
distribution in the image space centered at a flat image with small
perturbations. For example, we may take patches from natural
images and these patches are dominated by flat regions as we shall
show in the next section.

Fig. 12 illustrates the pursuit process for a deer template. It
consists of 50 basis functions represented by strokes.

Intuitively, if more image instances have a feature (i.e. high re-
sponse rk) at a common location and orientation, then the corre-
sponding basis function Bk has a higher information gain.

In the following, we briefly derive the information gain for the
Active Basis model in Eq. (28), and refer to Wu et al. (2009) for
more details. In (Wu et al., 2009), some simplification steps are ta-
ken by assuming the basis function are non-overlapping and con-
ditionally independent given the overall alignments. Thus we
have both p and q in factorized forms,

pðIÞ
qðIÞ ¼

YK

k¼1

pðrkðIÞÞ
qðrkðIÞÞ

; ð29Þ

with pðrkðIÞÞ and qðrkðIÞÞ being 1D probabilities. Thus the informa-
tion gain for selecting a basis function Bk is simply,

IgexðBkÞ ¼ KLðpðrkÞkqðrkÞÞ: ð30Þ

Fig. 13 illustrates the information gain for an car example. In this
example, qðrkÞ is the same for all rk and is focused around zero,
function vectors are selected in the order of their information gains. Bottom: nine

licit visual manifolds by information projection. Pattern Recognition Lett.
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Fig. 13. Active Basis pursuit and measuring the information gain for each basis function. The three basis functions B1; B2;B3 represent some common car structures and their
responses follow distributions pðr1Þ; pðr2Þ and pðr3Þ respectively in contrast to the null model qðrÞ. The KL-divergence between pðrkÞ and qðrkÞ measures the information gain
of choosing Bk .
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while pðrkÞmay have a bump due to high responses at the observed
image instances.

Following the parametric model in Eq. (28), we have

pðrkÞ
qðrkÞ

¼ 1
zk

e�kksðrkðIÞÞ: ð31Þ

The information gain for choosing Bi is then,

IgexðBkÞ ¼ kiEf sðrkðIÞÞ½ � � log zk: ð32Þ

Ef ½sðrkðIÞÞ� is estimated in Eq. (27) and kk and zk are scalars which
can be estimated by Monte Carlo methods on positive training
images.

For the source code, data and further details of the above
results, please refer to http://www.stat.ucla.edu/~ywu/ActiveBasis.
html.

3.4. Manifold pursuit: a push and pull process

So far, we have introduced manifold learning by information
projection, and shown examples for pursuing both implicit and ex-
plicit manifolds. The model pursuit in the probability space in
Fig. 10 is an abstract view which may be less intuitive. Now we fur-
ther discuss the pursuit in the image space and interpret the man-
ifold pursuit as a push and pull process.

Let Xf be the underlying image manifold that we are pursuing
and it is governed by a probability f ðIÞ, and the current model
pðIÞ corresponds to an image manifold Xp. When p ¼ f ;Xp coin-
cides with Xf , we say the manifold is ‘‘caught” successfully. As
the image space is of very high dimensions, we cannot visualize
r
(a) push and compress

Fig. 14. Two 1D marginal statistics. The blur dashed curves are the marginal probabilit
(a) the push process, and (b) the pull process. See text for interpretation.
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the shape of Xf or Xp, instead we project them to lower dimen-
sional space and observe their marginal distributions. For example,
Fig. 7 shows the 1D and 3D marginal statistics for the set of natural
images. Let r be the response of an image to a filter (an axis in the
image space), and for simplicity we denote the marginal statistics
of r by Ep½r� and Ef ½r� respectively (note they are not the expecta-
tions of the response), and they are shown by the dashed blue
curves and solid red curves respectively in Fig. 14.

If p is matched to f, then a necessary but not sufficient condition
is to match their marginal probabilities

Ep½r� ¼ Ef ½r�: ð33Þ

This is exactly what we do in each iteration of the information
projection process.

1. The push process. In pursuing implicit manifolds like texture
in case study I, one starts from a uniform probability p0 and thus
Ep½r� is ‘‘fat” while Ef ½r� is ‘‘slim” and peaked at a single point. We
need to push Ep½r� to fit Ef ½r� by compressing the volume of Xp. In
an extreme case, if Ef ½r� is so slim and becomes an impulse function
(or direct delta function), then its means Xf is perpendicular to the
filter. So the pushing process compresses a whole dimension.

2. The pull process. In pursuing explicit manifolds like the active
basis in case study II. Ef ½r� has a much longer tail than Ep½r� because
the structures aligned with the filter generate large responses. The
matching process pulls Ep½r� to fit Ef ½r�, and thus produces a spike
along the axis of the filter, just like the spikes shown in Fig. 7b.

The above push and pull processes are refined interpretations to
the two manifold pursuit strategies discussed in Fig. 5 and show
that we can use the statistical constraints to both compress and
r
(b) pull and expand

y Ep½r� of model p, and the red curves are the marginal probability Ef ½r� of model f.

icit visual manifolds by information projection. Pattern Recognition Lett.
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expand the manifolds. In the hybrid template learning case which
we shall introduce in Section 5.2, the push and pull processes will
alternate to reshape Xp so that it matches to Xf . The convergence is
guaranteed by the Pythagorean theorem.
4. Pursuing atomic manifolds in the space of image patches

In this section, we pursue the explicit and implicit manifolds in
the space of image patches. We choose small patches as they
mostly belong to either a pure explicit or a pure implicit manifold.
These manifolds are the atomic structures in the image space, con-
tain the prevailing textures and textons in our visual environ-
ments, and they are composed to form large subspaces for
complex image patterns. We are particularly interested in knowing
the most popular atomic manifolds in the space of natural (or dai-
ly) images and sorting them according to their information gains.
4.1. The space of image patches

Let X denote the space of all image patches of N pixels, say,
N = 112–192. We are interested in studying a subspace Xf 
 X gov-
erned by a probability f ðIÞ. For example, Xf contains patches
cropped from generic images that we see in daily life or photos that
we download from the Internet. We observe a large number of
patches fIobsm : m ¼ 1;2; . . . ;Mg and assume that Xf is made up of
both explicit and implicit manifolds, plus some leftover image
patches that are rare and complex patterns

Xf ¼ [S
s¼1Xs [ Xleftover; ð34Þ

Xs denotes an implicit or explicit manifold, and the ‘‘leftover” image
patches in Xf are explained by the background model qðIÞ ¼ Unif
½X�, i.e. uniform probability over the entire space X.

We assume that Xs are non-overlapping, and estimate the fre-
quency of each manifold by

fs ¼ Ef ðIÞ 1ðI 2 XsÞ½ � � 1
M

XM

m¼1

1ðIm 2 XsÞ; ð35Þ

1() is an indicator function. This is a reasonable assumption in
high dimensional spaces. Sometimes a low dimensional subspace
(cluster) is submerged in a cluster of higher dimensions, the vol-
ume of the formal is negligible in comparison to the later.

Our objective is to pursue a probability model p to approxi-
matef, with an initial uniform distribution q over X. The Kull-
back–Leibler divergence is

KLðfkqÞ ¼ �
XS

s¼0

fs log
fs

jXsj
þ Ef ½log f ðIÞ�: ð36Þ

So we can measure the information gain of Xk by

ls ¼ fs log
fs

jXsj
: ð37Þ

Note that jXj ¼ LN is a constant with L being the number of gray
levels. Therefore the pursuit process seeks the manifold Xs with
large frequency (i.e. heavy) and small volume (i.e. tight).

In the following, we shall calculate ls for the explicit and implicit
manifolds. To do so, we need to estimate their volumes jXsj; s ¼
1;2; . . . ; S.

(1) Volumes of the explicit manifolds. For an explicit manifold,
the images are represented by an Active Basis model with
K ¼ 1;2;3;4 strokes, such as edges, bars, junctions, and cross etc.
Xs ¼ fI : I ¼ gsðwsÞ þ �g, with ws ¼ ðws;1; . . . ;ws;KÞ, we define its
volume as
Please cite this article in press as: Zhu, S.-C., et al. Learning explicit and imp
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log jXsj ¼
XK

i¼1

Li; ð38Þ

where Li is the log-volume of the space that ws;i spans, or the coding
length of ws;i.

Li ¼ log jXxi
j þ log jXyi

j þ log jXhi
j �
X

ai

pðaiÞ log pðaiÞ;

where Xxi
�Xyi

�Xhi
is the deformation space of the i-th stroke, and

pðaiÞ is the probability for the contrast ai. We can also measure the
information gain based on the likelihood ratio of the fitted active
basis model as discussed in Section 3.3.

(2). Volumes of the implicit manifolds. For an implicit manifold
Xs ¼ fI : HsðIÞ ¼ hs þ �g. hs denotes the normalized histograms. Its
volume can be estimated according to the information gain in Eq.
(23):

log jXsj ¼ log jXj � N=2 � ðhs � hoÞ0R�1
o ðhs � hoÞ; ð39Þ

where ho is the histograms of filtered responses from noise images,
and log jXj ¼ N log L. We can also compute the information gain
using the method discussed in Section 5.2.

4.2. The pursuit algorithm

For the observed image patches in Xf , we first apply an EM-type
clustering algorithms using the implicit and explicit models sepa-
rately. Thus we decompose Xf into a set of candidate explicit man-
ifolds (clusters) Xex ¼ fXex

s g, and also decompose Xf into a set of
candidate implicit manifolds (clusters) Xim ¼ fXim

s g. The two sets
of manifolds overlap with each other.

These candidate manifolds are ranked by their information
gains ls discussed in the previous subsection. Currently in this
experiment, we calculate the information gain of the explicit man-
ifold based on the log-likelihood ratio of the fitted active basis
model. We iteratively select the manifold that has a maximum
information gain, and mark its cluster members (image patches)
as ‘‘explained”. Then patches in this cluster are then eliminated
from all other clusters whose information gains are re-calculated
to only count the un-explained ones. This procedure is carried on
until the gain of the newly selected manifold is small than a
threshold, or when all example image patches are ‘‘explained”.
lici
Input: Xex ¼ fXex

1 ; . . . ;Xex

M g and Xim ¼ fXim

1 ; . . . ;Xim

N g

Output: X ¼ fX1; . . . ;XSg
1. Initialize X ¼ ;; S 0
2. Repeat
3. Calculate information gain lk for all Xex

k

4. Calculate information gain lk for all Xim

k

5. Select XK with highest gain lmax, remove it from Xex

or Xim

6. For each Xk 2 Xex [Xim

7. Xk  Xk �XK .
8. K  K þ 1
9. Until lmax < s, or Xex ¼ ; and Xim ¼ ;
4.3. Pursuit experiment I: manifolds in generic images

In this section, we report the manifold pursuit experiments on
three sets of images. For more detailed description refer to a
Ph.D. dissertation (Shi, 2008).

The images in this experiment are from Flickr.com, Corel image
database and our own collection. The images are approximately
400� 600 pixels, and we crop image patches of 19� 19 pixels.
t visual manifolds by information projection. Pattern Recognition Lett.
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Fig. 15. Top: examples of generic images. Bottom: the top 20 clusters with prototypes of the manifolds sequentially selected, and the instances of image patches on these
manifolds. The two types of manifolds are selected in a mixed order. For illustration purpose, we have beautified the explicit shape templates by minimally adjusting the
positions of edge elements.
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The first image set consists of 200 generic natural images.
Fig. 15 shows examples of collected natural images, together with
top 20 image manifolds learned using the method described in
Section 4.2. The left most column displays a template or prototype
image for each manifold, and to the right of it we show three of its
instances. Each instance is shown with its context.

The two types of manifolds are selected in a mixed order. Fig. 16
shows the relative frequencies fk and information gains lk of the
sequentially selected manifolds. The frequencies are highly un-
even. The top selected manifolds are dominated by implicit mani-
folds. Only 5 of the top 20 manifolds are explicit, and they combine
to contribute to less than 15% of the total image patches. Clean
boundaries of objects are often much more informative perceptu-
ally (Marr, 1982) and useful in object recognition. However, the ex-
plicit manifolds we found using generic image set only contain
Please cite this article in press as: Zhu, S.-C., et al. Learning explicit and impl
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very simple structures such as edges, bars and parallel lines. We
did not obtain complex structures such as T-junctions, which is
in part due to their extremely low frequencies.

To see what types of manifolds are important for describing
images with man-made objects, we selected 30 such images as
our second image set, which includes both indoor and outdoor
scenes with buildings, furniture etc. The top 15 manifolds found
are shown in Fig. 17. Comparing with the manifolds shown in
Fig. 15, the most glaring difference is that there are far more expli-
cit manifolds. In addition to edges and bars, ‘‘L”-junctions and ‘‘T”-
junctions are also found. This demonstrates that explicit manifolds
are more prominent in images containing man-made objects than
they are in more generic images. We would like to point out that
even though ‘‘L”-junctions and ‘‘T”-junctions have much higher fre-
quencies in this image set, their frequencies are still small.
icit visual manifolds by information projection. Pattern Recognition Lett.
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Fig. 16. Plot of frequencies and information gains of the 20 sequentially selected
manifolds.

Fig. 17. The prototypes of the manifolds sequentially selected from images primarily com
but explicit manifolds appear much more often, and the implicit manifolds are mostly fl
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4.4. Pursuit experiment II: manifold transition in scales

For the third image set, we study the images with visual pat-
terns of different scales. Wu et al. (2008) studied this problem
using a dead leaves model (Matheron, 1975) by generating sets
of 512� 512 images containing multiple occluding squares of var-
ies sizes, with one of the sets shown in the bottom of Fig. 18. This
simulates the maple leaf example shown in Fig. 3. The image at the
first scale is generated by randomly placing squares of various sizes
onto the image. The side length of the squares is s and it takes val-
ues from [64,256] with the frequency proportional to 1=s3. That is,
the large squared are occluded by much more squares of smaller
size. The squares are placed at random until all pixels are covered
at least once. The pixel intensityt is constant within each square,
with t randomly sampled from a uniform distribution [0,255]. Im-
age in each subsequent scale is a downsampled version of the im-
age in the previous scale. The resolution is lowered by 1/2, and the
intensity of each pixel ðx; yÞ is generated by taking the average of
the four pixels ð2x� 1;2y� 1Þ; ð2x� 1;2yÞ; ð2x;2y� 1Þ; ð2x;2yÞ
from the previous scale. In their study, they found that the per
pixel entropy of the images increases as the scale increases. As
pose of man-made objects, The two types of manifolds are selected in mixed order,
at textures.

licit visual manifolds by information projection. Pattern Recognition Lett.
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Fig. 18. Bottom: a sequence of images of occluding squares. The resolution of each image is 1/2 of the previous image. Top: examples of manifolds found at each scale,
additional patch instances are displayed for selected manifolds to show the within-manifold variance.

Fig. 19. Coding length changes over scales for the implicit and explicit manifolds.

S.-C. Zhu et al. / Pattern Recognition Letters xxx (2009) xxx–xxx 15

ARTICLE IN PRESS
we discussed before, the images go from cartoon like pictures in a
low entropy regime, to an object like middle entropy regime, and
to a texture like high entropy regime, and end at Gaussian noise
at scale 8. At scale 8, each pixel is the normalized sum of 27 � 27

pixels at scale 1. Even the largest squares are longer destroyed in
the downsampling and discretization process.

Studying this dataset reveals some interesting results for transi-
tions of manifold as well as our models for representation.

Firstly, we estimate the number of manifolds needed to encode
at each scale. Again we perform the manifold pursuit procedure,
and we allow the explicit and implicit manifolds compete against
each other in order to form the optimal set of manifolds. Manifolds
identified in each scale are shown in Fig. 19. We only display the
top manifolds with frequencies greater than 0.5%. These manifolds
give a good picture of how many manifolds is needed because
Please cite this article in press as: Zhu, S.-C., et al. Learning explicit and impl
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these top manifolds already cover the vast majority of the images
(greater than 95%).

As Fig. 18 shows, scales 1–2 contain only explicit manifolds, and
scales 6–8 are exclusively implicit manifolds. The scales 3–5 have
both types. In addition, the number of manifolds peaks around
scale 4. This means that we only need a few manifolds in our dic-
tionary to efficiently code very high or very low resolution images,
but more manifolds are needed to code images of middle resolu-
tion. This suggests that the ‘‘middle resolution”, which is also
where typical patterns of visual objects appear, contains most
interesting information.

Secondly, we compare the coding efficiencies of the two types
of manifolds at different scales by computing the coding effi-
ciency of the two manifolds. We tabulate the total number of pix-
els Tk covered by member image patches of each explicit
manifold Xex

i or implicit manifold Xim

i . Overlapping pixels con-
tained by multiple image patches are counted as 1=N of a pixel
toward each of the N image patches that cover it. Pixels that
are not covered by any image patches belonging to an explicit
manifold or implicit manifold are placed into the default back-
ground manifold X0, where pixels are coded with the maximum
coding length of 8. Given this information, the average descrip-
tion length per pixel for the whole image by using only explicit
manifold and only implicit manifolds can be compute by
L ¼

PK
k¼1

Ti

N2 lk, where lk is the description length of manifold Xi,
and N2 represents the total number of pixels in the image.

The coding lengths for both explicit and implicit methods in-
crease as the scale increases, because the entropy of the images in-
creases as we increase scale, thus it is inevitable that manifolds
obtained from high-resolution images will have larger volumes,
regardless how we model it. But it is clearly more efficient to use
explicit manifolds to represent the high resolution images, and
use the implicit manifolds to represent the low resolution images.
The two curves intersect between scale 4 and 5, indicating that the
icit visual manifolds by information projection. Pattern Recognition Lett.
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coding efficiencies of the two manifolds are comparable for images
at the medium resolutions.

5. Integrating the explicit and implicit manifolds

In this section, we show two cases for integrating image patches
from the explicit and implicit manifolds to form larger representa-
tions: (1) the primal sketches for representing generic images, and
(2) the hybrid image templates for representing object recognition.

5.1. Case study III: the primal sketch model for generic image
representation

As reviewed in Section 2.1, the primal sketch was conjectured
by Marr (1982) as a symbolic and perceptually lossless representa-
tion for generic images and it was considered the perceptual model
for early vision. A mathematical model was proposed by Guo et al.
(2007). We briefly show how this model integrates the texture and
textons (or image primitives), or in our terms, patches from explicit
and implicit manifolds.

Fig. 20 illustrates the primal sketch model from Guo et al.
(2007), the image domain K is divided into two disjoint parts:
the sketchable part Ksk for structures in (e) and non-sketchable
part for textures in (d):

K ¼ Ksk [Knsk; I ¼ ðIsk; InskÞ: ð40Þ

The sketchable part is further divided into a number of domains
(usually 5� 11 pixels) for image primitives, such as blobs, edges,
bars, and junctions in (b):

Ksk ¼ [iKsk;i; with Isk;i ¼ B	i ðwiÞ þ �; Isk;i 2 Xim

i	 : ð41Þ

In the above notation, each patch Isk;i is mapped to (or coded by)
a closest explicit manifold Xex

i	 with a primitive B	i indexed by its
explicit variables wi ¼ ðxi; yi; hi; aiÞ for translation, rotation, and
contrast.

The non-sketchable part is also divided into a few texture re-
gions shown by different gray levels in (c). The shape of these re-
gions may be irregular unlike the primitives. The image in each
region belongs to an implicit manifold since Insk;j under its bound-
ary condition Isk has certain statistics

Knsk ¼ [jKnsk;j; with hðInsk;jjIskÞ ¼ h
	
j þ �; Insk;j 2 Xim

j	 : ð42Þ
Fig. 20. Example of the primal sketch rep
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In the above notation, each texture region Insk;j is mapped to (or
coded by) a closest implicit manifold Xim

j	 with statistics h	j . The tex-
ture areas can be synthesized by sampling the images from the im-
plicit manifold Xim

j	 using a Markov Chain Monte Carlo method. The
sampling is conditional on the sketchable part Isk.

In Fig. 20, both structures in (e) and textures in (d) are repre-
sented by explicit and implicit manifold respectively. The two
parts are combined to yield an image in (f), which is perceptually
almost lossless to the input image in (a), although the texture parts
are very different in terms of pixel intensities. We refer to Guo et al.
(2007) for details of the primal sketch model. This model is also re-
lated to the well-known Mumford-Shah model that integrates a
MRF term for smoothness and an edge term for boundary
(Mumford and Shah, 1989).

In summary, the primal sketch model decomposes the image
into patches and each patch is indexed to either an explicit mani-
fold or an implicit manifold. This is a very parsimonious represen-
tation and it needs much less bytes than jpeg coding (see the bit
count in (Guo et al., 2007)). It has the following properties in com-
parison to vector quantization and image coding in the literature.

Firstly, one may view the primal sketch representation as a vec-
tor quantization process. Unlike conventional vector quantization
where the reconstruction errors are measured in a single space,
say the squared distance in Euclidean space for image coding, the
reconstruction errors in primal sketch are measured in differ met-
rics. A primitive patch is reconstructed to an � precision in the ex-
plicit manifold for errors in location, orientation and intensity
difference. A texture patch is reconstructed to an � precision in
an implicit manifold measured by histogram difference.

Secondly, it is drastically different from wavelet coding or
sparse coding and is more effective in image reconstruction. For
structure patches, the image primitives are much sparser (i.e. more
over-complete) than the wavelet dictionary. Each patch is repre-
sented by only one primitive that can account for sharp object
boundaries. For texture patches, the image is reconstructed up to
a statistical histogram that produces textures perceptually equiva-
lent to the input texture areas.

5.2. Case study IV: learning hybrid image templates for object
recognition

In the fourth case study, we show another application of com-
bining explicit/implicit manifolds for representing hybrid image
resentation, from Guo et al. (2007).

licit visual manifolds by information projection. Pattern Recognition Lett.
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templates for object recognition in high level vision. More discus-
sion about the hybrid template is referred to a recent paper (Si,
2009).

The hybrid template is an extension of the Active Basis model
presented in Section 3.3. The latter only uses Gabor basis functions
from the explicit manifolds for representing structural elements in
the objects. Now we use both primitives from explicit manifolds
and texture patches from implicit manifolds. For each object we
may have multiple deformable templates to account for different
views or configurations. Each template is learned from a set of
training images fIobsm : i ¼ 1;2; . . . ;Mg. These images are instances
of the object and are well aligned in position, orientation and scale
with arbitrary background. Different templates of the object can be
learned through an EM-like clustering procedure.

Like primal sketch, the image domain of a hybrid template is di-
vided into a number of K non-overlapping patches K ¼ [K

i¼1Ki. The
image in a patch Ki is denoted by IKi

. A patch can be either a prim-
itive from the explicit manifold or a texture from the implicit man-
ifold, just like the hedgehog example in Fig. 1.

Fig. 21 shows our results of the learned hybrid templates for
eight object categories. Explicit manifolds and implicit manifolds
largely complement each other in explaining the object boundary
and interior clutters.

In the following, we briefly introduce the modeling and learning
process.

If a patch IKi
is from an explicit manifold, we define its feature

response by,

rexi ðIÞ ¼ qexðIKi
;BiÞ; ð43Þ

where Bi is a basis function normalized to unit norm, qexðIKi
;BiÞ ¼

kIKi
� ciBik2, is an Euclidean distance with ci ¼ hI;Bii. Because

kIKi
� ciBik2 ¼ kIKi

k2 � jcij2, we can model jcij2 directly, and let
rexi ðIÞ ¼ jcij2. We allow Bi to slightly perturb its locations and orien-
tations in order to better fit I.

If a patch IKi
is from an implicit manifold, we define the feature

response,

rimi ðIÞ ¼ qimðhðIKi
Þ;hiÞ; ð44Þ

where hðIKi
Þ is the histogram of the responses from Gabor filters at

different orientations pooled within IKi
, and hi is the typical histo-

gram. We can use ‘2 distance between hðIKi
Þ and hi as the feature

response rim
i ðIÞ.
Fig. 21. Learned hybrid templates of eight object categories. Bold block bars denote sketc
manifolds). The sketch features capture the global shape, while the texture features cap
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Our objective is to learn a model pðIÞ against a back-
ground model qðIÞ. We transform the image I to a new set of
variables,

I # ðR;RÞ; with R ¼ ðr1; . . . ; rKÞ: ð45Þ

R is a vector for the K responses from the explicit or implicit
patches, and R is the remaining dimensions. This is a non-linear
transform that transfers the space into a subspace for R and the
remaining subspace for R. The pursuit process is to seek for the most
informative patches in the image so that pðRÞ is very different from
the background model qðRÞ, while in the remaining subspace, pðRÞ is
of no difference to qðRÞ, so pðRÞ ¼ qðRÞ. By canceling the Jacobian
term, we have

pðIÞdI
qðIÞdI

¼ pðRÞdR
qðRÞdR

� pðRÞdR
qðRÞdR

�
@I

@ðR;RÞ

��� ���
@I

@ðR;RÞ

��� ��� ð46Þ

¼ pðRÞdR
qðRÞdR

: ð47Þ

As the images are well-aligned, the feature responses frig do
not overlap and thus are independent of with each other condi-
tional on the overall location and alignment. So we obtain a
probability

pðIÞ ¼ qðIÞ
YK

i¼1

piðriÞ
qiðriÞ

; ð48Þ

where piðriÞ is a 1-dimensional distribution of ri pooled over the M
training images of the object, and qiðriÞ is a 1-dimensional distribu-
tion pooled over generic images (i.e. daily photos that do not have
the object). Thus the task is decomposed as learning a series of
1D models through the information projection process,

piðriÞ ¼
1
zi

qiðriÞe�kisðriÞ:

The learning process is to select Bi or hi sequentially according to
their information gains. Intuitively we seek for patches whose re-
sponses have large KLðpikqiÞ.

In experiments, we use the same set of Gabor filters fFkg as in
the Active Basis and texture modeling. We perform feature selec-
tion for both sketch and texture and rank them by information
gains, until a maximum number of features (60) is reached or the
information gain is smaller than a threshold, currently set to a
hes (explicit manifolds), while the blurred red blobs describe local textures (implicit
ture additional information in the image appearance. Results are from Si (2009).

icit visual manifolds by information projection. Pattern Recognition Lett.
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Fig. 22. Competition of sketch (explicit) and texture (implicit) features in learning hybrid templates. Each figure plots the information gains of selected features, ranked in
descending order: hollow black/white bars for primitive patches and solid red bars for texture patches. For image categories with clear and regular shape, e.g. human head/
shoulder, primitives dominate the information gain. For texture categories with cluttered structures, the texture patches dominate. The hedgehog category is a typical case
where the two types of patches alternate. Results are from Si (2009).
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heuristic number 0.2, which is universal across different image cat-
egories. To ensure the approximate orthogonality of features, the
selected primitives patch are enforced to correlate no larger than
a threshold 0.1. The texture patches are allowed to overlap 25%
so as to pool the feature statistics.

Fig. 22 illustrates the information gain for three categories and
each category has M ¼ 15 training examples. For image category
that has regular shape, like the head and shoulder, the explicit
patches dominates. In contrast, the implicit patches dominate the
water category, and the hedgehog template is mixed. Eight learned
object templates are shown in Fig. 21. More experiments and rec-
ognition results are reported in (Si, 2009). For source code and data
please refer to the project web page at http://www.stat.ucla.edu/
~zzsi/mixed_template.html.

In the following, we briefly compare the hybrid templates to
other related templates or object representations in the literature.

1. As a generative representation, deformable shape models and
pictorial templates were widely used in the 1970–1980s (Yuille
et al., 1992). Appearance is added to shape in the well-known ac-
tive appearance model in (Cootes et al., 2001). But in such models,
the shape (or keypoints) are defined manually and the appearance
is modeled by global linear representation, such as PCA. In contrast,
the hybrid templates are learned though training images and the
shape and texture patches are selected by calculating an informa-
tion gain in an unsupervised way. Obviously the selection of prim-
itives and textures will change over image scales, as it is discussed
in previous sections.

2. As a discriminative representation, many image features are
extracted for objects, the most popular one in recognition is the
HoG template (Histogram of oriented Gradients) (Dalal and Triggs,
2005), and recently part based HoG models are also studied
(Felzenszwalb et al., 2009). The HoG representation divides the im-
age domain into regular m� n grid with each cell being a small im-
age patch, for instance, 8 pixels. At each pixel, a gradient is
calculated, and a histogram is pooled over each cell for different
orientations. The histograms from the mn cells are concatenated
into a long vector to feed a SVM classifier. In fact, this HoG tem-
plate bears similarities to the hybrid template here. The differences
are (i) the cells or patches are not regularly divided and are allowed
to deform in the hybrid templates; (ii) at image primitives, such as
edges and bars, the histogram of gradients is dominated by one
orientation in the HoG, and thus it is a more expensive representa-
tion than the primitives themselves.

In general, the hybrid template is a generative model for object
that integrates shape and texture. The implicit and explicit mani-
folds quantize the space of image patches and provide a very
sparse representation.
Please cite this article in press as: Zhu, S.-C., et al. Learning explicit and imp
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6. Discussion

Two types of manifolds. The key idea in this paper is to pro-
pose a theoretical framework for studying two different types of
manifolds in a unified framework. Explicit manifolds are better sui-
ted for geometric structures, whereas implicit manifolds are better
suited for stochastic textures. They are the atomic structures in the
space of image patches and they are composed to form complex
representation for larger images.

An entropy spectrum. We map different manifolds in the im-
age space according to their entropy. The explicit manifolds and
active basis models are in the low entropy regime, while the impli-
cit manifolds and texture models are in the high entropy regime.
The hybrid templates belong to the middle entropy regime where
a combinatorial number of objects reside. Image scaling could
cause transitions between these manifolds.

Visual vocabulary and AND–OR graph composition. The
atomic explicit and implicit manifolds form a leaf level dictionary
for the visual vocabulary. They can then be recursively composed
into more complicated image categories or visual words, which
in turn serve as non-terminal nodes in an hierarchical AND–OR
graph representation (Zhu and Mumford, 2006). In this representa-
tion, the AND node denotes the composition of its components,
while the OR node denotes multiple ways of compositions. We re-
fer to Zhu and Mumford (2006) for a lengthy discussion of the com-
positional mechanisms.
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