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Abstract—This paper presents an effective jump-diffusion method for segmenting a range image and its associated reflectance image

in the Bayesian framework. The algorithm works on complex real-world scenes (indoor and outdoor), which consist of an unknown

number of objects (or surfaces) of various sizes and types, such as planes, conics, smooth surfaces, and cluttered objects (like trees

and bushes). Formulated in the Bayesian framework, the posterior probability is distributed over a solution space with a countable

number of subspaces of varying dimensions. The algorithm simulates Markov chains with both reversible jumps and stochastic

diffusions to traverse the solution space. The reversible jumps realize the moves between subspaces of different dimensions, such as

switching surface models and changing the number of objects. The stochastic Langevin equation realizes diffusions within each

subspace. To achieve effective computation, the algorithm precomputes some importance proposal probabilities over multiple scales

through Hough transforms, edge detection, and data clustering. The latter are used by the Markov chains for fast mixing. The algorithm

is tested on 100 1D simulated data sets for performance analysis on both accuracy and speed. Then, the algorithm is applied to three

data sets of range images under the same parameter setting. The results are satisfactory in comparison with manual segmentations.

Index Terms—Energy minimization, jump-diffusion, range segmentation, Markov chain Monte Carlo, data clustering, edge detection,

Hough transform, change point detection.

�

1 INTRODUCTION

RESEARCH on range images in the past was mostly
motivated by robotics applications for recognizing

industry parts on assembly lines, and most of the work was
focused on simple polyhedra objects. Recently, long-range
laser scanners have become accessible to many users. These
scanners can capture accurate 3D range images of real-world
scenes at large scales. For example, Fig. 1 displays four
panoramic range images of indoor and outdoor scenes
scanned in cylindric coordinates. Other examples are the
3D Lidar images in aerospace imaging which can capture
depth maps of terrain and city scenes with accuracy up to
1 centimeter. As these range images provide much more
accurate depth information than conventional vision cues,
such as motion, shading, and binocular stereo, they are
important for a wide variety of applications, for example,
visualization of city scenes and historic sites [33], spatio-
temporal databases of 3D urban and suburban develop-
ments, 3D scene modeling, and natural scene statistics
analysis [22].

These new data sets pose much more serious challenges

for range image analysis than the traditional polyhedra

world. The main difficulties lie in the following aspects.
First, natural scenes contain many types of objects, for

example, man-made objects (buildings, desks), animate

objects (human and animals), and free-form objects (trees

and terrain). These objects should be represented by various
families of surface models which have different parameter-
ization dimensions. Formulated in the Bayesian framework,
the posterior probability is distributed over a solution (state)
space with a countable number of subspaces of varying
dimensions. Each subspace is for a certain combination of
surface models. Thus, an algorithm must accommodate
multiple surface models in representation and explore the
possible combinations of these models during computation.

Second, objects and surfaces in natural scenes appear at
multiple scales. For example, theoffice scenes inFig. 1 contain
large surfaces such as walls, ceilings, and floors; middle size
objects such as people, chairs and tables; and small objects
suchasbooks andcupson thedesktop.This is in contrastwith
the block world (see Figs. 9 and 10) where objects are of
similar sizes. In the presence of such a broad range of
perceptual scales, it becomes difficult to segment small
objectswithout oversegmenting large surfaces. Conventional
model complexity criteria like MDL and AIC [34], [1] do not
easily dealwith such cases as they are based on image coding,
not perception. Therefore, one should seek prior models to
ensure proper segmentation of surfaces at all sizes.

Third, although range data is accurate in general, it is
rather noisy around object boundaries. It becomes rather
messy for objects like trees and bushes. Also, depth data are
missing for objects at infinite distance like the sky and at
metal, glass, and ceramic surfaces where the laser rays
never return to the scanner.

In the literature, range image segmentation methods are

mostly adapted from algorithms developed for optical

images. For example, edge detection [24], region-based

methods [2], [5], surface fitting [19], clustering [20], [12], and

the generalizedHough transform [3] for detectingparametric

surfaces of low dimension.We refer to Hoover et al. [21] for a
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survey of range segmentation algorithms and a good

empirical comparison. Generally speaking, algorithms for

range segmentation are not as advanced as those for intensity

image segmentation. For example, there is no algorithm, to

our knowledge, which can satisfactorily segment complex

scenes such as those displayed in Fig. 1.
This paper presents a stochastic jump-diffusion algorithm

for segmenting 3D scenes and reconstructing object surfaces

from range images and their reflectance images. This work is

an extension of our recent image segmentationwork on data-

drivenMarkov chainMonteCarlo [36]. Itmakes the following

contributions to the range segmentation literature.

1. Todealwith thevarietyof objects in real-world scenes,
this algorithm incorporates five types of generative
surface models, such as planes and conics for man-
made objects, splines for free-form flexible objects,
and a nonparametric (3D histogram) model for free-
formobjects (trees). These surfacesmodels compete to
explain the range data under the regularity of a
statistical prior for model complexity. The paper also
introduces various prior models on surfaces, bound-
aries, and vertices (corners) to enforce regularities.
The generative models and prior models are inte-
grated in the Bayesian framework.

2. To handle missing range data, the algorithm uses the
reflectance image as a different data channel and
integrates it with the range data in the Bayesian
framework. The reflectance image measures the
proportion of laser energy returned from surface
and therefore carries material properties. It is useful
for segmenting glass, metal, ceramics, and the sky.

3. To explore the solution (state) space which consists of
a countable number of subspaces of varying dimen-
sion, the algorithm simulates both reversible jumps
and stochastic diffusions. The jumps realize split,
merge, and model switching, while the diffusions
realize boundary evolution and competition and
model adaptation. These moves, in combination,
simulate a Markov chain process sampling from the
Bayesianposterior probability and the final solution is

obtained by annealing the temperature of the poster-
ior probability.

4. To improve computational speed, the algorithm
precomputes some bottom-up heuristics in a
coarse-to-fine manner, such as edge detection and
surface clustering at multiple scales. The computed
heuristics are expressed as importance proposal
probabilities [36] on the surfaces and boundaries
which narrow the search space in a probabilistic
fashion, and drive the Markov chain for fast mixing.

We first test the algorithm using 100 1D simulated range
data sets for performance analysis where the ground truth
is known. Then, we apply the algorithm to three data sets of
range images. Two are the standard polyhedra data set and
curved-surface data set from the vision group at University
of South Florida, and the other data set, collected by the
pattern theory group at Brown University, contains real-
world scenes. The experiments demonstrate robust and
satisfactory results under the same parameter setting and
the results are compared with manual segmentation.

The paper is organized as follows: We present the jump-
diffusion algorithm and evaluate its performance on
1D simulated data in Section 2. Then, we present a Bayesian
formulation of the problem in Section 3 and the design of the
algorithm in Section 4. Then, we show the experimental
results in Section 5 and conclude the paper with some critical
discussions in Section 6.

2 JUMP-DIFFUSION FOR 1D SIGNAL

SEGMENTATION: A TOY EXAMPLE

This section presents the jump-diffusion algorithm for
segmenting 100 simulated 1D range signals. With this
simplified example, we focus on the fundamental ideas of
the algorithm without becoming entangled in the complex-
ity of real range images. Since the ground truth is known for
the simulated data, we can evaluate how well the algorithm
approaches the globally optimal solutions. We also compare
the speeds of the algorithm with different designs and
evaluate how much the various bottom-up heuristics
expedite the Markov chain search.
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Fig. 1. Four examples of indoor and outdoor scenes from the Brown range data set. The laser scanner scans the scene in cylindric coordinates and
produces panoramic (wrapped) views of the scenes. (a) Office scene 1. (b) Office scene 2. (c) A street scene. (d) A cemetery scene.



2.1 Segmenting 1D Range Data: Problem
Formulation

Fig. 2a displays an example of a simulated 1D range image
IðxÞ; x 2 ½0; 1�. It is generated by adding Gaussian noise
Nð0; �2Þ to the original surfaces Io in Fig. 2b. Io consists of an
unknownnumber of k surfaceswhich could be either straight
lines or circular arcs, separated by k� 1 change points,

0 ¼ x0 < x1 < x2 < � � � < xk�1 < xk ¼ 1:

Let ‘i 2 fline; circleg index the surface type in interval
½xi�1; xiÞ with parameters �i, i ¼ 1; 2; . . . ; k. For a straight
line, � ¼ ðs; �Þ represents the slope s and intercept �. For a
circular arc, � ¼ ð�; �; �Þ represents the center ð�; �Þ and
radius �. Thus, the 1D “world scene” is represented by a
vector of random variables,

W ¼ ðk; fxi : i ¼ 1; 2; . . . ; k� 1g; fð‘i; �iÞ; i ¼ 1; 2; . . . ; kgÞ:

The surface Io is fully determined by W with IoðxÞ ¼
Ioðx; ‘i; �iÞ; x 2 ½xi�1; xiÞ; i ¼ 1; 2; . . . ; k.

By the standard Bayesian formulation, we have the
posterior probability

pðW jIÞ / exp � 1

2�2

Xk
i¼1

Z xi

xi�1

ðIðxÞ � Ioðx; ‘i; �iÞÞ2dx
( )

� pðkÞ
Yk
i¼1

pð‘iÞpð�ij‘iÞ:
ð1Þ

The first factor above is the likelihood and the rest are prior

probabilities pðkÞ / exp��ok and pð�ij‘iÞ / exp��#�i , which

penalize the number of parameters #�i. pð‘iÞ is a uniform

probability on the lines and arcs. Thus, an energy function is

defined,

EðWÞ ¼ 1

2�2

Xk
i¼1

Z xi

xi�1

ðIðxÞ � Ioðx; ‘i; �iÞÞ2dxþ �ok

þ �
Xk
i¼1

#�i:

ð2Þ

The problem is thatW does not have a fixed dimension. The

probability pðW jIÞ (or the energy EðWÞ) is thus distributed
over a countable number of subspaces of varying dimen-

sion. The following subsection briefly introduces the jump-

diffusion process for exploring such solution spaces.

2.2 Background on Jump-Diffusion

In the statistics literature, there are some designs of hybrid

samplers [35] which traverse parameter spaces of varying

dimension by random choices of different Markov chain

moves. Grenander and Miller [18] introduced the jump-

diffusion process which mixed the Metropolis-Hastings

method [29] and Langevin equations [14]. Other notable

work includes [15] for reversible jumps and [31] for model

comparison with reversible jumps. This section briefly
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Fig. 2. (a) A 1D range image IðxÞ; x 2 ½0; 1Þ. (b) The true segmentationWth. (c) Edgeness measure bðxÞ x 2 ½0; 1Þ. A large value bðxÞ indicates a high
probability for x being a change point. (d) The best solution W � (dark gray) found by the algorithm plotted against Wth (light gray).



presents the basic ideas and discusses the main difficulty,
namely, the computational speed.

In the 1D range segmentation problem above, let �
denote the solution space which is a union of a countable
number of subspaces

� ¼ [1
n¼1�n;

where n ¼ ðk; ‘1; . . . ; ‘kÞ indexes the subspaces. To traverse
such solution space, the algorithm needs two types of
moves: reversible jumps between different subspaces and
stochastic diffusions within each continuous subspace.

1. Reversible jumps. Let W ¼ ðn;  Þ be the state of a
Markov chain at time t, where  2 �n represents the
continuous variables for the change points and the
parameters of lines and arcs. In an infinitesimal time
interval dt, the Markov chain jumps to a new space
�m (m 6¼ n) at state W 0 ¼ ðm;�Þ. There are three
types of moves: 1) switching a line to a circular arc or
vice versa, 2) merging two adjacent intervals to a line
or a circle, and 3) splitting an interval into two
intervals (lines or circles).

The jump is realized by a Metropolis move [29]
which proposes to move from ðn;  Þ to ðm;�Þ ðm 6¼
nÞ by a forward proposal probability qðn! mÞ
qð�jmÞd�. The backward proposal probability is
qðm! nÞqð jnÞd . The forward proposal is accepted
with probability

	ððn;  Þ ! ðm;�ÞÞ ¼

min 1;
qðm! nÞqð jnÞd � pðm;�jIÞd�
qðn! mÞqð�jmÞd� � pðn;  jIÞd 

� �
:

ð3Þ

The dimension is matched in the above probability
ratio.

2. Stochastic diffusions. Within each subspace �n with
n ¼ ðk; ‘1; . . . ; ‘kÞ fixed, the energy functionalEðWÞ is

E½ � ¼ Eðx1; . . . ; xk�1; �1; . . . ; �kÞ

¼ 1

2�2

Xk
i¼1

Z xi

xi�1

IðxÞ � Ioðx; ‘i; �iÞð Þ2dxþ const:

We adopt a stochastic diffusion (or Langevin) equa-
tion to explore the subspace. The Langevin equations
are the steepest descent PDE (partial differential
equations) driven by Brownian motions dBðtÞ with
temperature T . Let  ðtÞ denote the variables at time t,

d ðtÞ ¼ � dE½ �
d 

dtþ
ffiffiffiffiffiffiffiffiffiffiffiffi
2T ðtÞ

p
dwt; dwt � Nð0; ðdtÞ2Þ:

ð4Þ

For example, the motion equation of a change
point xi is

dxiðtÞ
dt

¼ 1

2�2
ððIðxÞ � Ioðx; ‘i�1; �i�1ÞÞ2

� ðIðxÞ � Ioðx; ‘i; �iÞÞ2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2T ðtÞ

p
Nð0; 1Þ:

This is the 1D version of the region competition
equation [39]. The movement of the point xi is
driven by the fitness of data IðxiÞ to the surface

models of the two adjacent intervals plus a Brownian

motion. In practice, the Brownian motion is found to

be useful in avoiding local pitfalls.
For computing the parameters �i; i ¼ 1; 2 . . . ; k,

running the diffusion is more robust and often faster

than fitting the best �i for each interval ½xi�1; xiÞ
deterministically since the deterministic fit is an

“overcommitment.” It is especially true when the

current interval contains more than one objects.
It is well-known [14] that the continuous Lange-

vin equations in (4) simulate Markov chains with

stationary density

pð Þ / exp �Eð Þ
T

� �
:

This is the posterior probability within subspace �n

at temperature T .
3. The coordination of jumps and diffusions. The

continuous diffusions are interrupted by jumps at
time instances t1 < t2 < � � � < tM . . . as Poisson
events. In practice, the diffusion always runs at a
discrete time step�t. Thus, the discrete waiting time

j between two consecutive jumps is

w ¼ tjþ1 � tj
�t

� pðwÞ ¼ e�


w

w!
;

where the expectedwaiting timeE½w� ¼ 
 controls the

frequency of jumps. Both jump and diffusion pro-

cesses should follow an annealing scheme for low-

ering the temperature gradually.
For illustration, Fig. 4a shows two trials (thin and

thick curves respectively) of the jump-diffusion

process running on the input 1D range data in

Fig. 2a. The energy plots go up and down (i.e., the

algorithm is not greedy) and the continuous energy

curves (diffusion) are interrupted by jumps.
4. Reversibility and global optimization. From an

engineering point of view, the most important
property of the jump-diffusion process is that it
simulates Markov chain to traverse the complex
solution space. This property distinguishes it from
greedy and local methods. In theory, this Markov
chain samples from the posterior probability pðW jIÞ
over the solution space � [18]. With an annealing
scheme, it can theoretically achieve the globally
optimal solution with probability close to one. The
reversibility of the jumps may not be a necessary
condition; however, it is a useful tool for achieving
irreducibility of the Markov chain in the complex
solution space. To the best of our knowledge, there is
no alternativeway for traversing such complex spaces
except exhaustive searches.

5. The speedbottlenecks. Conventional jump-diffusion
designs are limited by their computing speed. How-
ever, this problemcanbe overcomebybetter design of
the proposal probabilities aswe shall show in the next
section. We observed that the bottlenecks are in the
jumps affected by the design of the proposal prob-
abilities. In (3), a proposal probability qð�jmÞ in
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interval ½xi�1; xiÞ can be divided into three cases:
1) switching to a newmodelwith� ¼ �i, 2)merging to
form a new interval ½xi�2; xiÞ with type ‘ and
parameter�, and3) splitting to formtwonew intervals
with models ð‘a; �aÞ and ð‘b; �bÞ, respectively.

qð� jmÞ¼

qð�ij‘i;½xi�1;xiÞÞ switch ½xi�1;xiÞ to model ð‘i;�iÞ;

qð�j‘;½xi�2;xiÞÞ merge to a model ð‘;�Þ;

qðxj½xi�1;xiÞÞqð�a j‘a;½xi�1;xÞÞ

qð�bj‘b;½x;xiÞÞ split ½xi�1;xiÞ into ð‘a;�aÞ and ð‘b;�bÞ at x:

8>>><
>>>:

ð5Þ

In the statistical literature [18], [15], the proposal prob-

abilities were taken mostly as uniform distributions, i.e.,

jumps to randomly selected lines or/and circles for new

models. Such proposals are almost always rejected because

the ratio pðm;�jIÞ=pðn;  jIÞ ¼ e��E could be close to zero.

This causes extremely long waiting. We can overcome this

problem by a better design than the uniform proposal

probabilities, as the data-driven Markov chain Monte Carlo

method has shown [36].

2.3 Data-Driven Techniques for Design Proposal
Probabilities

Thebasic concept of adata-drivenMarkov chainMonteCarlo

scheme [36] is to compute proposal probabilities by bottom-

up methods in each of the parameter spaces for x, ðline; s; �Þ,
and ðarc; �; �; �Þ, respectively. In the 1D range signal, we use

Hough transformation and change-point detection.

1. Hough transformation in the model spaces. Fig. 3a

shows the Hough transform [3] in the line space (i.e.,

plane � ¼ ðs; �Þ). The crosses are detected as line

candidates �
ð1Þ
line; �

ð2Þ
line; . . . ; �

ðNlineÞ
line . Fig. 3b is the Hough

transform result on the circular arc space � ¼ ð�; �; �Þ
with bounds. The balls are arc candidates �

ð1Þ
arc;

�
ð2Þ
arc; . . . ; �

ðNarcÞ
arc with the sizes representing the weights

(total number of votes received). Thus, when we

proposeanewmodel for an interval ½a; bÞ,we compute

the importance proposal probability by Parzen windows

centered at the candidates.

qð� j ‘; ½a; bÞÞ ¼
XN‘

i¼1

!iG �� �
ðiÞ
‘

� �
; ‘ 2 fline; arcg: ð6Þ
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Fig. 3. Results of Hough transforms on the signal in Fig. 2a (a) Hough transform for lines. The line model space ðs; �Þ. (b) Hough transform for arcs.
The circle model space ð�; �; �Þ.

Fig. 4. (a) Diffusion with jumps. Energy plots for two trials (MCMC II—thin curve and MCMC III—thick curve) of the jump-diffusion processes.

Continuous energy changes in diffusion are interrupted by energy jumps. (b) Average energy plot. Comparison of the energy curves in the first

10,000 steps of three Markov chains MCMC I, II, and III averaged over 100 randomly generated signals. (c) Zoomed-in view of MCMC II and III for

the first 2,000 steps. Note the energy scale is different from (b).



!i is the accumulated weights voted from the data in
½a; bÞ and GðxÞ is a Parzen window centered at 0.

2. Change point detection in the x space. Fig. 2c shows the
result of an edge strength fðxjrG � I;r2G � IÞ based
on two filters: the first and second derivatives of a
Gaussian shape. Instead of making a hard decision
which is bound to be unreliable, we treat the
strength measure as a probability. Thus, the propo-
sal for a change point x is

qðx j ½a; bÞÞ ¼ fðxjrG � I;r2G � IÞR b
a fðxjrG � I;r2G � IÞdx

: ð7Þ

2.4 Speed Analysis and Empirical Evaluation

Replacing the uniform proposal probabilities by data-driven
probabilities does not degrade the jump-diffusion process to
a local algorithm. First, thedata-drivenproposal probabilities
in (6) and (7) arenonzero in theentireparameter spaces, so the
moves are still reversible and the Markov chain still can
traverse the space. Second, by lowering the threshold, the
chance ofmissing a line or arc in theHough transforms can be
made zero because any line or arc with nontrivial length
should receive a number of votes in proportion to its length.
The proposal probabilities only narrow the focus of the
Markov chain search probabilistically.

Recent theoretical analysis [27] confirms our observation.
Consider a finite space with M (very large) states �o ¼
f1; 2; . . . ;Mg and a posterior probability p ¼ ðp1; . . . ; pMÞ.
We sample p by an independent Metropolis method with
proposal probability q ¼ ðq1; . . . ; qMÞ.
Theorem Maciuca and Zhu [27]. For the independent

Metropolis sampler above, let 
ðiÞ be the first hitting-time
when the Markov chain first visits a state i 2 �o and E½
ðiÞ�
its expectation. Then,

1

minfpi; qig
� E½
ðiÞ� � 1

minfpi; qig
� 1

1� kp� qk ; 8 i 2 �o;

ð8Þ

where kp� qk ¼ 1
2

P
i2�o

jpi � qij measures the difference
between q and p.

The theorem indicates that, if the bottom-up proposal q is
close to p, theMarkov chainwill hit the optimal state in about
1=p� steps on average with p� ¼ maxfp1; . . . ; pMg. For poster-
ior probabilities p with low entropy, this means a small
number of steps even though the space sizeM is huge.

However, for a more complex space �, we have not yet
been able to analytically link the design of qðÞ’s to the
convergence rate. Thus, we seek empirical comparison on
the performance of various designs.

A set of 100 1D range data sets (like Fig. 2a) are simulated
randomly with the known true segmentation. Three Markov
chain designs are compared over the 100 1D range data.

MCMC I uses uniform distributions for qðÞs without
data-driven heuristics. MCMC II uses Hough transform
results for qð� j ‘; ½a; bÞÞ and a uniform distribution for
qðxj½a; bÞÞ, i.e., the change point detection heuristics are
omitted. MCMC III uses both the Hough transform and
change point detection heuristics for proposals.

Fig. 2d displays the optimal solution W � found by

MCMC III which coincides with the ground truth with a

relative energy error under 0.2 percent. Fig. 4a shows the

energy EðW Þ against running time for the input in Fig. 2a

by the thin curves (MCMC II) and thick curves (MCMC III).

We select a number of time steps to only show the jump and

diffusion processes in this figure.
The main results are shown in Figs. 4b and 4c. The

Markov chains all start with randomized initialization and

follow annealing schemes carefully tuned to the three cases.

We plot the energy changes averaged over 100 signals for

10; 000 steps. The energy jumps disappear because of

averaging. In Fig. 4b, the dotted curve is for MCMC I, the

dash-dotted curve is for MCMC II, and the solid curve is for

MCMC III. The bottom line is the average “true” global

optimal energy. Clearly, theMCMC II andMCMC III always

achieve solutions near the ground truth (with relative energy

error under 2 percent in the first 10,000 steps). The bottom-up

heuristics drastically improve the speed in comparison with

MCMC I. Fig. 4c is a zoomed-in view of the first 2,000 steps of

MCMC II and MCMC III. It shows that change-point

detection heuristics offer only a little bit of improvement.

3 BAYESIAN FORMULATION: INTEGRATING CUES,
MODELS, AND PRIOR

This section formulates the problem of 2D range segmenta-

tion and surface reconstruction under the Bayesian frame-

work by integrating two cues, five families of surface

models, and various prior models.

3.1 Problem Formulation

We denote an image lattice by � ¼ fði; jÞ : 0 � i � L1;

0 � j � L2g. A range scanner captures two images. One is

the 3D range data which is a mapping from lattice � to a

3D point,

D : � ! R3; Dði; jÞ ¼ ðxði; jÞ; yði; jÞ; zði; jÞÞ:

ði; jÞ indexes a laser ray that hits a surface point ðx; y; zÞ and
returns. The other image is a reflectance map

I : � ! f0; 1; . . . ; Gg:

Iði; jÞ is the portion of laser energy returned from point

Dði; jÞ. Iði; jÞ is small at surfaces with high specularity, such

as glass, ceramics, and metals that appear dark in I, and

Iði; jÞ ¼ 0 for mirrors and the sky. Dði; jÞ is generally very

noisy and unreliable when Iði; jÞ is low, and is considered

missing if Iði; jÞ ¼ 0.
The objective is to partition the image lattice into an

unknown number of K disjoint regions,

� ¼ [Kn¼1Rn; Rn \Rm ¼ ; 8m 6¼ n:

Since natural scenes contain different types of surfaces like

the 1D example, at each region R the range data is fit to a

surface model of type ‘D with parameter �D and the

reflectance is fit to a reflectance model of type ‘I with

parameter �I . We denote a solution by
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W ¼ ðK; fRi : i ¼ 1; 2; . . . ; Kg;
fð‘Di ;�D

i Þ; ð‘Ii ;�I
i Þ : i ¼ 1; 2 . . . ; KgÞ:

The algorithm should maximize a Bayesian posterior
probability over a solution space � 3W ,

W � ¼ argmax
W2�

pðW jD; IÞ ¼ argmax
W2�

pðD; IjW ÞpðWÞ: ð9Þ

In practice, two regionsRi;Rj may share the same surface
model but with different reflectance models, that is,
ð‘Di ;�D

i Þ ¼ ð‘Dj ;�D
j Þ but ð‘Ii ;�I

i Þ 6¼ ð‘Ij ;�I
j Þ. For example, a

pictureorapieceofclothhungonawallorathinbookorpaper
on a desk, may fit to the same surfaces as the wall or desk
respectively, but they have different reflectances. It is also
possible that ð‘Di ;�D

i Þ 6¼ ð‘Dj ;�D
j Þ but ð‘Ii ;�I

i Þ ¼ ð‘Ij ;�I
j Þ. To

minimize the coding length and to pool information from
pixelsover largeareas,weshallallowadjacentregionstoshare
eitherdepthor reflectancemodels. Thus, aboundarybetween
two regions could be labeled as a reflectance boundary, a depth
boundary, or both. In the following, we briefly describe the
likelihoodmodel pððD; IÞjWÞ and the prior probability pðW Þ.

3.2 Likelihood Coupling a Mixture of Surface and
Reflectance Models

In the literature, there are many ways for representing a
surface, such as implicit polynomials [5], [19], super-
quadrics, and other deformable models. In this paper, we
choose five types of generative surface models to account
for various shapes in natural scenes. New models can be
added under the same formulation and algorithm.

1. Family D1: planar surfaces with unit normal ða; b; cÞ
and intercept d, axþ byþ cz ¼ d; a2 þ b2 þ c2 ¼ 1.
We denote the space of all planes by�D

1 3 �with� ¼
ða; b; dÞ being the plane parameters.

2. Family D2: conic surfaces—spheres, ellipsoids,
cylinders, cones, and tori for many man-made
objects and parts. We adopt the representation in
[28]. These surfaces are specified by seven para-
meters � ¼ ð%; ’; #; k; s; �; 
Þ. We refer to [28] for

detailed discussions and fitting methods. We denote
by �D

2 3 � the space of family D2.
3. FamilyD3: B-spline surfaces with four control points.

As surfaces in a natural scene have a broad range of
sizes and orientation, we choose a reference plane � :
axþ byþ cz ¼ dwhich approximately fits the surface
normal. Then, a rectangular domain ½0; �� � ½0; �� is
adaptively defined on � to just cover the surface
indexed by two parameters ðu; vÞ, because a domain
much larger than the surfacewill be hard to control. A
grid of h� w control points are chosen on this
rectangular domain. A B-spline surface is

sðu; vÞ ¼
Xh
s¼1

Xw
t¼1

ps;tBsðuÞBtðvÞ;

where ps;t ¼ ð�s;t; �s;t; �s;tÞ is a control point with

ð�s;t; �s;tÞ being coordinates on � and �s;t is the

degree of freedom at a point. By choosing

h ¼ w ¼ 2, a surface in D3 is specified by nine

parameters � ¼ ða; b; d; �; �; �0;0; �0;1; �1;0; �1;1Þ. We

denote by �D
3 3 � the space of family D3.

4. Family D4: B-spline surfaces with nine control
points. Like D3, it consists of a reference plane �
and a 3� 3 grid. It is specified by 14 parameters
� ¼ ða; b; d; �; �; �0;0; . . . ; �2;2Þ.

5. FamilyD5: cluttered surfaces. Some objects in natural
scenes, such as trees and bushes, have very noisy
range depth. There are no effective models in the
literature for such surfaces. We adopt a nonpara-
metric 3D histogram for the 3D points in the region.
It is specified by � ¼ ðhu1 ; hu2 ; . . . ; huLu ; h

v
1; h

v
2; . . . ; h

v
Lv
;

hw1 ; h
w
2 ; . . . ; h

w
Lw
Þ, where Lu, Lv, and Lw are the number

of bins in the u, v, and w directions, respectively. We
denote by �D

5 3 � the space of family D5.

Fig. 5 displays some typical surfaces for the five families.
For the reflectance image I, we use three families of

models, denoted by �I
i ; i ¼ 1; 2; 3, respectively.
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Fig. 5. Some typical surfaces for the five families of surfaces for fitting the range data D. (a) Plane. (b) Sphere/ellipsoid. (c) Cylinder. (d) Cone.
(e) Torus. (f) 4-point spline. (g) 9-point spline. (h) Clutter.



1. Family I1: regions with constant reflectance
� ¼ 
 2 �I

1. They represent most of the surfaces
with uniform material properties or surfaces
where range data are missing.

2. Family I2: regions with smooth variation of reflec-
tance, modeled by a B-spline model as in family D3.

3. Family I3: This is a cluttered region with a nonpara-
metric 1D histogram � ¼ ðh1; h2; . . . ; hLÞ for its
intensity, with L being the number of bins.

For the surface and reflectance models above (except the
histogram models), the likelihood model for a solution W
assumes the fitting residues to be Gaussian noise subject to
some robust statistics treatment [6], so the likelihood is

pðD; I jW Þ ¼
YK
n¼1

p
�
DRn

; IRn
; ð‘Dn ;�D

n Þ; ð‘In;�I
nÞ
	

ð10Þ

¼
YK
n¼1

Cn exp

(
�

X
ði;jÞ2Rn

EðDði; jÞ; Iði; jÞ;

ð‘Dn ;�D
n Þ; ð‘In;�I

nÞÞ
)
: ð11Þ

Cn is a constant depending on themodel in regionRn. At each
pixel ði; jÞ in Rn, the data energy Ei;j ¼ EðDði; jÞ; Iði; jÞ;
ð‘Dn ;�D

n Þ; ð‘In;�I
nÞÞ is the squared distance from the 3D point

Dði; jÞ ¼ ðxði; jÞ; yði; jÞ; zði; jÞÞ to the fitting surface Sð‘Dn ;�D
n Þ

plus the fitness distance of reflectance Iði; jÞ to the reflectance
model Jð‘In;�I

nÞ.

Ei;j ¼ d2ðDði; jÞ; Sð‘Dn ;�D
n ÞÞ � �ðIði; jÞ � 
Þ

þ d2ðIði; jÞ; Jð‘In;�I
nÞÞ:

The depth data Dði; jÞ is considered missing if the
reflectance Iði; jÞ is lower than a threshold 
 , i.e.,
�ðIði; jÞ � 
Þ ¼ 0. Such Dði; jÞ will not be used.

In practice, we use a robust statistics method to handle
outliers [6]which truncatespoints that are less than25percent
of the maximum error. We further adopt the least median of
squares method based on orthogonal distance [38]. Alter-
native likelihood models for laser radar range data [16], [17]
could also be used in our framework.

3.3 Prior Models on Surfaces, Boundaries, and
Corners

In general, the prior model pðWÞ should penalize model
complexity, enforce stiffness of surfaces, enhance smooth-
ness of the boundaries, and form canonical corners at
junctions. In this paper, the prior model for W is

pðW Þ ¼ pðKÞpð�KÞ
YK
n¼1

pð‘Dn Þpð�D
n j‘Dn Þpð‘InÞpð�I

nj‘InÞ:

�K ¼ ðR1; . . . ; RKÞ denotes a K-partition of the lattice �
which forms a planar graph with K faces for the regions,M
edges for boundaries, and N vertices for corners,

�K¼ ðRk; k ¼ 1; . . . ; K; �m;m ¼ 1; . . . ;M; Vn; n ¼ 1; . . . ; NÞ:

We treat energy terms onRk, �m, and Vn independently, thus

pð�KÞ ¼
YK
k¼1

pðRKÞ
YM
m¼1

pð�mÞ
YN
n¼1

pðVnÞ:

Our prior probability pðWÞ consists of four parts.

1. Prior on surface number and area sizes. It is well-known
that a higher order model always fits a surface better
than a lower order model, but the former could be
less stable in the presence of noise. Some conven-
tional model complexity criteria in model selection
and merging techniques include MDL (minimum
description length) [34], AIC (Akaike Information
Criterion), BIC (Bayesian information criterion) [1].
A survey study for range surface fitting is reported
in [7]. According to such criteria, model complexity
is regularized by three factors, which penalizes the
number of surfaces K and the number of parameters
in each surface model #j�j, respectively.

pðKÞ / e��oK; pð�D
n j ‘Dn Þ / e��

D#j�D
n j;

and pð�I
n j ‘InÞ / e��

I#j�I
n j; 8n:

ð12Þ

However, in our experiments as well as in our
previous work [36], we observed that such criteria
are not appropriate in comparison with human
segmentation results. Conventional model complex-
ity criteria, like MDL, are motivated by shortest
image coding. But, the task of segmentation and
image understanding is very different from coding.
The extent to which an object is segmented depends
on the importance and familiarity of the object in the
scene and the task. In particular, natural scenes
contain a very broad range of sizes measured by
their areas. Unfortunately, it is impractical to define
the importance of each type of object in a general
purpose segmentation algorithm, so we adopt a
statistical model on the surface areas jRnj

pðRnÞ / e�	jRn jc ; 8n ¼ 1; 2; . . . ; K; ð13Þ

where c is a constant and 	 is a scale factor to control
the scale of the segmentation. In our experiments, 	 is
the only parameter that is left to be adjusted. All other
parameters are set to a singlevalue for all experiments.

2. Prior on B-spline control points for surface stiffness. For
all the B-spline models, a prior is imposed on the
control points f�s;t : 0 � s; t � 2 or 3g such that the
surface is as planar as possible. We triangulate the
spline grid on the �-plane and every adjacent three
control points form a plane. The prior energy terms
enforce the normals of adjacent planes to be parallel
to each other. A similar prior was used in the
wireframe reconstruction in [25].

3. Prior for surface boundary smoothness. Due to the
heavy noise of the range data along surface
boundaries, a boundary smoothness prior is
adopted, like in the SNAKE [23] or region competi-
tion model [39]. Let �ðsÞ ¼ ðxðsÞ; yðsÞÞ; s 2 ½a; b� be a
boundary between two surfaces,

pð�ðsÞÞ / expf�
Z
�ð _��ðsÞÞ þ �ð€��ðsÞÞdsg; or

pð�ðsÞÞ / expf�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_xx2ðsÞ þ _yy2ðsÞ
p

dsg:
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�ðÞ is a quadratic function with flat tails to account
for sharp L-shaped turns in boundaries. We choose
the second one as the smoothness prior.

4. Prior for canonical corners. On each vertex Vn, we
impose a prior model pðVnÞ; n ¼ 1; 2; � � � ; N adopted
from the line-drawing work in [25]. It assumes that
the angles at a corner should be more or less equal.

To summarize, the Bayesian framework provides a
convenient way for integrating multiple generative
models, for coupling two cues, and for introducing
prior models. This enables us to deal with complex
natural scenes.

4 EXPLORING THE SOLUTION SPACE BY

JUMP-DIFFUSION

As we illustrated in the 1D case, the posterior probability is
distributed over a countable number of subspaces of
varying dimensions. In the range segmentation literature,
some methods, such as edge detection [24], region growing
[19], [5], clustering [20], [12], and generalized Hough
transforms can produce useful information, but none of
these methods are capable of exploring such complex
spaces thoroughly.

Our algorithm extends the 1D range examples in Section 2.
It consists of six types ofMarkov chain jumps and a boundary
diffusion processes. To speed up the MCMC search, we use
data clustering in each model space and an edge detection/
partition on the lattice�. These are discussed in the following
three sections.

4.1 Six Dynamics with Jumps and Diffusion

This section briefly presents the six types of moves/
dynamics which form a Markov chain that can traverse
the solution space.

Dynamics 1: diffusion of region boundary—stochastic region

competition. Within a subspace of fixed dimension (i.e., the
number of surfaces and their models are given), the
boundaries evolve according to a stochastic version of the
region competition equations [39]. Let �ijðsÞ ¼ ðxðsÞ; yðsÞÞ;
s 2 ða; bÞdenote theboundarybetweentworegionsRi andRj,
and let ð‘Di ;�D

i ; ‘
I
i ;�

I
i Þ and ð‘Dj ;�D

j ; ‘
I
j ;�

I
j Þ be the models of

the two regions, respectively. The motion of curve �ijðsÞ
follows the following equation [39].

d�ijðsÞ
dt

¼

� � log pðW jD; IÞ
��ijðsÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2T ðtÞ

p
dwt~nnðsÞ; dwt � Nð0; ðdtÞ2Þ:

ð14Þ

The Brownian motion is always along the curve normal
direction ~nnðsÞ ¼ ð� _yyðsÞ; _xxðsÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_xx2ðsÞþ _yy2ðsÞ
p .

To couple with the continuous representation of curves
�ij, we assume the lattice � to be a continuous 2D plane.
The curve �ijðsÞ is involved in three terms in the posterior
pðW jD; IÞ: the smoothness prior and the likelihood on two
regions Ri and Rj.

By a Green’s theorem and an Euler-Lagrange equation,
the gradient is

d�ijðsÞ
dt

¼
(

�2
�ðsÞ þ log
pðDðxðsÞ; yðsÞÞ; ðlDi ;�D

i ÞÞ
pðDðxðsÞ; yðsÞÞ; ðlDj ;�D

j ÞÞ

� �ðIðxðsÞ; yðsÞÞ � 
Þ þ log
pðIðxðsÞ; yðsÞÞ; lIi ;�I

i Þ
pðIðxðsÞ; yðsÞÞ; lIj ;�I

j Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2T ðtÞ

p dwt
dt

)
~nnðsÞ:

In the above equations, �ðsÞ is its curvature. At each point

ðxðsÞ; yðsÞÞ along the curve, two local loglikelihood ratio tests

compare the fitness of the two region models: one for the

surface model and the other for the reflectance model. When
the range data is less reliable, i.e., �ðIðxðsÞ; yðsÞÞ � 
Þ ¼ 0, its

loglikelihood ratio test is not used. For clarity, we omit

another energy term originated from the prior in (13) on the

areas jRij and jRjj.
Dynamics 2: diffusion of vertices. A vertex V ¼ ðx; yÞ refers

to an intersection of more than two regions. It involves
some prior model pðV Þ for canonical corners in the previous

section, and the curvature is ill-defined at such a point. Its

diffusion is implemented by the Gibbs sampler [13]. That is,

we consider a local lattice, say 3� 3 pixels, and randomly

select a position subject to the posterior probability.
Dynamics 3: diffusion of surface and reflectance models. The

diffusion of the parameters (ð�D
n ;�

I
nÞ) for a region

Rn; n ¼ 1; 2; . . . ; K, with other variables in W fixed, is:

dð�D
n ;�

I
nÞ

dt
¼ d log pðDRn

; IRn
; ‘Dn ;�

D
n ; ‘

I
n;�

I
nÞ

dð�D
n ;�

I
nÞ

:

Robust statistics methods are used in calculating the
gradient. Some range pixels do not contribute to the surface

fitting if the reflectance is low. In experiments, we found

that the Brownian motion does not amount to any notice-

able improvement in the above equation in the parameter

space; hence, we leave it out in practice.
Dynamics 4: switching a surface or reflectance model ‘Dn or ‘In.

This is similar to the 1D example, but we have more families
of model to choose from. Suppose, at a time instance, a

region Rn is selected to switch to a model ‘Dn . Then, we need

some heuristic information for the new model �D
n . The

importance proposal probability is calculated, like qð� jmÞ
in (3), based on a number of candidate surfaces precom-

puted by a data clustering approach. As we shall discuss

below, data clustering is a better method than the Hough

transform in high-dimensional spaces.
Dynamics 5 and 6: splitting and merging of regions. Split and

merge are a pair of reversible moves to realize the jump
process between subspaces. Suppose that a region Rk with

model ð�D
k ;�

I
kÞ is split into two regions Ri and Rj with

models ð�D
i ;�

I
i Þ and ð�D

j ;�
I
j Þ, respectively; the present

state W and the new state W 0 are

W ¼ ðK;Rk; ðlDk ;�D
k Þ; ðlIk;�I

kÞÞ; W�Þ;
W 0 ¼ ðK þ 1; Ri; Rj; ðlDi ;�D

i Þ; ðlIi ;�I
i Þ; ððlDj ;�D

j Þ; ðlIj ;�I
j Þ;W�Þ:

W� includes all other variables inW that remain unchanged
during this jump. The split and merge are proposed with

probability GðW !W 0ÞdW 0 and GðW 0 !WÞdW , while the

split move is accepted with probability
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	ðW ! dW 0Þ ¼ min 1;
GðW 0 ! dWÞpðW 0jIÞdW 0

GðW ! dW 0ÞW 0pðW jIÞdW

� �
: ð15Þ

The merge proposal probability is,

GðW 0 ! dWÞ ¼
qð6ÞqðRi;RjÞqð‘Dk ;�D

k jRkÞd�D
k qð‘Ik;�I

k jRkÞd�I
k:

ð16Þ

qð6Þ is the probability for choosing the merge move, and

qðRi;RjÞ is the probability for choosing Ri;Rj. qð‘Dk ;�D
k jRkÞ

is the probability for a new surface model. We first compute

an excessive number of candidates by a data clustering

method, like the Hough transform for the 1D case. Then,

each candidate model is voted by the pixels inside the

region Rk and, thus, a nonparametric proposal probability

is constructed for qð‘Dk ;�D
k jRkÞ with weights proportional

to the number of votes.
Similarly, the split proposal probability is GðW !

dW 0Þ ¼

qð5ÞqðRkÞqð�ijjRkÞqð‘Di ;�D
i jRiÞd�D

i qð‘Ii ;�I
i jRiÞ

d�I
i qð‘Dj ;�D

j jRjÞd�D
j qð‘Ij ;�I

j jRjÞd�I
j :

Once Rk is chosen to split, �ij is a candidate splitting

boundary. In the 1D example, this is randomly chosen by an

edge strength function. In 2D, this is selected from a set of

candidate partitions precomputed by edge detection.
In the following, we focus on the computation of two

importance proposal probabilities used above: 1) qð� jRÞ—
splitting the boundary of a region R. 2) qð‘;� jRÞ—the new

model of a region (surface or reflectance).

4.2 Coarse-to-Fine Edge Detection and Partition

In this section, we detect potential surface boundaries based

on local edge cues, and trace the edges to form a partition of

the lattice which will be used as candidate boundaries in the

split-merge jumps. Since natural scenes contain objects in a

broad range of sizes, we organize the edge maps in three

scales according to an edge strength measure that we shall

discuss below. For example, Fig. 6 displays one example for

anoffice scene inwhich the edges arebasedonboth rangeand
reflectance measures.

To overcome noise, we first estimate the surface normal at
each point ðx; yÞ 2 � over a small window�, say 5� 5 pixels.
Let fpi ¼ ðxi; yi; ziÞ : ðm;nÞ 2 �ðx; yÞ; i ¼ 1; 2; . . . ; j�jg be a
set of 3D points in a local patch� centered at ðx; yÞ, and �pp be
their mass center. One can estimate the local surface normal
by minimizing the quadratic error function [12]

n� ¼ argmin
n

n0Sn; with S ¼
X
i

ðpi � �ppÞðpi � �ppÞ0;

where n� is the eigenvector of the scatter matrix S that
corresponds to the smallest eigenvalue.

With the normal n, we fit a local plane axþ byþ cz ¼ d
(c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2 � b2

p
) to the patch, and obtain a vector

representation ¼ ða; b; dÞ for each point ðx; yÞ. An edge
strength is computed on this vector field using a technique
from [30]. We compute a 2� 2 matrix at each point ðx; yÞ,

�ðx; yÞ ¼
Z Z

�ðx;yÞ

rx2; rxry

rxry; rx2

� �
�ðu� x; v� yÞ dudv; ð17Þ

where �ðu� x; v� yÞ is a Parzen window centered at ðx; yÞ.
Let �1 and �2 (�2 � �1) be the two eigenvalues of the matrix,
and v1 and v2 be the corresponding eigenvectors. Then, the
edge strength, orientation, and cornerness are measured by
e, �, and c, respectively,

eðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1 þ �2

p
; �ðx; yÞ ¼ argðv1Þ; cðx; yÞ ¼ �2:

In addition to computing the edge maps from range images,
we also apply standard edge detection to the reflectance
image and obtain edge maps on three scales. We threshold
the edge strength eðx; yÞ at three levels to generate the edge
maps shown in Fig. 6 after tracing them with heuristic local
information to form closed partitions [10].

Choosing a region R to split, we superimpose Rwith one
of the three edge maps depending on the size of R (large
regions will use coarse edge partitions in general). Then, the
edge partitions within R are candidate subregions. Thus,
the splitting boundaries � are chosen at random from a set
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Fig. 6. Computed edge maps at three scales for an office scene. (a) Range image of an office scene. (b) Edge detection and partition scale 1. (c) Edge

detection and partition scale 2. (d) Edge detection and partition scale 3.



of candidates. It is worth mentioning that these partitions
are only heuristics for proposal probabilities. Some mistakes
on the boundary can still be corrected by the boundary
diffusion steps. As an alternative, we can always use the
original lattice as the partition at scale 4, which only slows
down the algorithm. We refer to our previous work [36] for
a detailed formulation, and a more rigorous treatment is
recently developed in [4] which transfers the split-merge
jumps into a graph partition problem and designs the split-
merge by a Swendsen-Wang cut method.

4.3 Coarse-to-Fine Surface Clustering

We compute importance proposal probabilities on the
parameter spaces �D

1 , �
D
2 , �

D
3 , �

D
4 , and �D

5 , respectively.
Theseprobabilities are expressedbya set of candidate surface
models in nonparametric forms. But, unlike the 1D example
presented in Section 2, we shall use data clustering instead of
Hough transforms for two reasons: 1) Hough transforms
become impractical in high-dimensional space (say more
than three dimensions) and 2) Hough transforms assume a
2-category detection and, thus, the peaks (candidates) in the
space can be contaminated by each other. In contrast, data
clustering is more general.

In the edge detection step, we have fitted each small
patch � to a local plane ða; b; dÞ with mass center �pp and the
smallest eigenvalue �min of the scatter matrix S. Therefore,
we collect a set of patches by subsampling the lattice � by a
factor of � for computational efficiency,

Q ¼ fð�j; aj; bj; dj; �ppj; �min;j : j ¼ 1; 2; . . . ; J ¼ j�j=�2g:

We can discard patches which have relatively large �min,
i.e., patches that are likely on the boundary.

The patches in set Q are clustered into a set of C
candidate surfaces in all five model spaces

C ¼ f�i : �i 2 �D
1 [ �D

2 [ �D
3 [ �D

4 [ �D
5 ; i ¼ 1; . . . ; Cg;

where C is chosen to be excessive. We use the EM-
clustering algorithm to compute the candidate surfaces.
Alternatively, one may use the mean-shift clustering
method [8], [9].

For example, Fig. 7 shows six selected clusters (among
many) for a polyhedra scene. Each cluster is associatedwith a
“saliency map” where the brightness at a patch displays the

probability that it fits to the cluster (or candidate model).

Such probability comes automatically from the EM-cluster-

ing. It is very informative in such simple scenes where the

models are sufficient to describe the surfaces and objects

have similar sizes.
In natural scenes, the results are less impressive. Very

often small objects, like books on the top of a desk, are

relatively too small to form a separate cluster in the presence

of other large objects (clusters) like wall and ceiling. To

resolve this problem, we compute the clusters in a coarse-to-

fine strategy. For example, Fig. 8 shows eight chosen saliency

maps for the most prominent clusters in the office scene,

which correspond to the floor, desktop, furnace, windows,

walls, and ceiling, respectively. The total sum of the

probability over the lattice is a measure of how prominent a

cluster is. Then, for patches in Q that do not fit very well to

theseprominent clusters,we refine the rangedataby subpixel

interpolation, and conduct the clustering on such areas. For

example, the lower panel in Fig. 8 displays six of the clusters

for a subarea (on the left, indicated by windows in the big

scene above), such as, people, chairbacks, small box, etc.
These candidate models are used to form the importance

proposal probabilities as in the 1Dexample.Given a regionR,

each pixel inside R votes for the candidate models by a

continuous probability. Then, the proposedmodel is selected

from the candidates proportional to their votes and some

random perturbations.

5 EXPERIMENTS

5.1 The Data Sets and Preprocessing

We test the algorithm on three range data sets. The first two
are the standard Perceptron LADAR camera images and
K2T structured light camera images in the USF data set. The
third one is a data set from Brown University, where images
are collected with a long range scanner LMS-Z210 by Riegl.
The field of view is 80 degrees vertically and 259 degrees
horizontally. Each image contains 444� 1440 measure-
ments with an angular separation of 0.18 degree.

As range data are contaminated by heavy noise, some

preprocessing algorithm is helpful to deal with various

errors present in the data, while preserving the disconti-

nuities. In our experiments, we adopt the least median of

1148 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 26, NO. 9, SEPTEMBER 2004
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squares (LMedS) and anisotropic diffusion [37] sequentially

to remove noise. LMedS is related to the median filter used

in image processing to remove impulsive noise from images

and can be used to remove strong outliers in range data.

The anisotropic diffusion removes small noise while

preserving the discontinuities along the surface boundaries.

5.2 Results and Evaluation

We fix the parameters in the algorithm to be the same for all

three data sets with only one free parameter c in (13). This

parameter controls the extent of the segmentation. Even in

human segmentation of the same scene, people may come

up with coarse or very detailed segmentations. The

algorithm starts with arbitrary initializations: a 2� 2 grid

partition or randomized initializations.

Fig. 9 displays the segmentation results on four images in

data set 1. Fig. 10 shows two examples from data set 2. For

these two data sets, we only use range data and the

segmentations are superimposed on the reflectance images.

For comparison,wealso showamanual segmentationused in

[21]and[32].Wealsoshowthe3Dreconstructedscenes froma

novel viewing angle using OpenGL based on our segmenta-

tionresultsandthe fittedsurfacemodels.This isagoodwayto

examine the sufficiency of the models used. In these

reconstructed 3D scenes, the background and floor behind

the occluding objects are completed using the simplemethod

discussed below. It is not surprising that the algorithm can

parse such scenes very well because the image models are

sufficient to account for the surfaces in these two data sets.
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Fig. 8. Saliency maps for an office scene at two scales. See text for explanation. (a) Range image. (b) Reflectance image.



Six examples from theBrowndata set are shown in Figs. 11
and 12. For lack of space, we only show small part of each
scene. The trees in these scenes are correctly segmented and
thus it seems that the clutter model does well for such
cluttered regions.

Object surfaces in range imagesareoften incompletedue to
partial occlusion and poor surface reflectance at various
places. In the 3D scene reconstruction stage, it is important to
fill the missing data points and complete surfaces behind
occlusions [11]. The completion of depth information
needs higher-level understanding of the 3D objects. In our

experiments, we use a simplemethodwhich proceeds in two

steps: 1) Identify the typesofboundaries, suchas creasingand

occluding, based on the surface functions and 2) compute the

ownership of the boundary, i.e., which surface is in the front.

Once the surface order is computed, we complete the

occluded areas by extending the surface function fitted to

that region. This works well for the walls and the floor as we

showed in the 3D reconstructed scenes in Figs. 9 and10. But, it

is much more challenging to complete surfaces in the Brown

data set.
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Fig. 9. Segmentation results compared with the manual segments provided in [21]. We only use range data and the segments are superimposed
on the reflectance images in (c). The reconstructions are shown in slightly different views. (a) Range data. (b) Manual segment. (c) Our result.
(d) 3D reconstruction.

Fig. 10. Segmentation on the second data set compared with manual segmentations provided in [32]. We only use range data and the
segmentations are superimposed on the reflectance images in (c). The reconstruction is generated from novel views. (a) Range. (b) Manual
segment. (c) Our result. (d) 3D reconstruction.
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Fig. 11. Segmentation results for parts of the four scenes in Fig. 1. (a) Range. (b) Reflectance. (c) Our result. (d) Manual segment.

Fig. 12. Segmenting the most cluttered part of office B in Fig. 1 and a scene with trees.



6 DISCUSSION

We adopt a Bayesian formulation to integrate two cues,

many families of generative models, and a number of prior

models. We use a jump-diffusion process as a general tool

for designing Markov chains traversing the complex

solution space so that the solution no longer depends on

initialization. The computational speed is largely expedited

by bottom-up heuristics.
Some remaining problems that need to be resolved in

future research include:

1. The algorithm is still time consuming and takes
about 1 hour on a Pentium IV PC to segment a scene
(usually having 300� 300 pixels) with arbitrary
initial conditions. Recent developments using the
Swendsen-Wang cut [4] suggest considerable im-
provements in speed.

2. The experiments reveal that when the models are not
sufficient, the segmentation is not good. For exam-
ple, the cable in the air in Fig. 11 is missing because
of being a 1D structure, not a region.

3. Better prior models for 3D objects are needed to
group surfaces into objects and, therefore, to
complete surfaces behind the occluding objects.

4. We acknowledge that the manual segmentations
used for evaluation may not correspond to the
optimal solutions given by the limited models and it
remains an open question for measuring the good-
ness of a segmentation solution.
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