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Region Competition: Unifying Snakes,
Region Growing, and Bayes/MDL for
Multiband Image Segmentation

Song Chun Zhu and Alan Yuille

Abstract—We present a novel statistical and variational approach to image segmentation based on a new algorithm named region
competition. This algorithm is derived by minimizing a generalized Bayes/MDL criterion using the variational principle. The algorithm
is guaranteed to converge to a local minimum and combines aspects of shakes/balloons and region growing. Indeed the classic
snakes/balloons and region growing algorithms can be directly derived from our approach. We provide theoretical analysis of region
competition including accuracy of boundary location, criteria for initial conditions, and the relationship to edge detection using filters.
It is straightforward to generalize the algorithm to multiband segmentation and we demonstrate it on gray level images, color images
and texture images. The novel color model allows us to eliminate intensity gradients and shadows, thereby obtaining segmentation
based on the albedos of objects. It also helps detect highlight regions.

Index Terms—Image segmentation, region growing, snakes, minimum description length, Bayes statistics, uncertainty principle,

color model.

1 INTRODUCTION

MAGE segmentation is a critical problem of early vision
and it has been intensively studied. Approaches to image
segmentation can be roughly classified into four groups:

1) Local filtering approaches such as the Canny edge
detector [4],

2) Snake [19] and Balloon methods [6], [7], [37], [32],

3) Region growing and merging techniques [2], [1], [26],
and

4) Global optimization approaches based on energy
functions [28] or Bayesian [10], [3], [11] and MDL
(Minimum Description Length) criteria [23], [20], [18].

A common property of these approaches is that they all
make hypotheses about the image, fest features, and make
decisions by applying thresholds explicitly or implicitly. As
shown by the shadowed areas in Fig. 1, a major difference
between the four approaches lies in the domains on which
the hypotheses, tests, and decisions are based. These ap-
proaches all have certain drawbacks. The filtering approach
only makes use of local information and cannot guarantee
continuous closed edge contours. Snake/balloon models
make use only of information along the boundary and re-
quire good initial estimates to yield correct convergence.
An advantage of region growing is that it tests the statistics
inside the region, however it often generates irregular
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boundaries and small holes. In addition, all these three
methods lack a global criterion for segmenting the entire
image. By contrast, energy/Bayes/MDL have global crite-
ria but it is often very difficult to find their minima.
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Fig. 1. The shadowed areas show the image domains based on which
the hypotheses, tests, and decisions are made by (i) filtering, (ii)
snakes/balloons, (iii) region growing, and (iv) the energy/Bayes/MDL
approach.

In this paper we present a statistical framework for image
segmentation using a novel algorithm which we call region
competition. It is derived by minimizing a generalized
Bayes/MDL criterion which involves a sampling window
(whose size depends on the signal to noise ratio). The algo-
rithm combines the attractive geometrical features of
snake/balloon models and the statistical techniques of region
growing. Indeed we can derive the classic snake/balloon and
region growing algorithms directly from our framework. Our
approach can therefore be applied for finding individual im-
age regions, though we only show simulations for the harder
task of global segmentation.

The precision of the boundary location depends on the
size of the sampling windows. As for the Canny edge de-
tector [4], the desirable size of these windows depends on a
trade-off between the conflicting goals of maximizing the
signal to noise ratio and locating the boundaries accurately.
This gives rise to an uncertaincy principle [36]. We describe
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how optimally sized windows can be chosen to minimize
this uncertainty.

Like many algorithms, the performance of region com-
petition will depends on the initial conditions—more pre-
cisely on the choice of initial “seeds.” We discuss criteria for
choosing such seeds. We also describe an important dom-
ino effect whereby bad seeds are transformed into good
seeds.

Our approach is directly generalized to multiband seg-
mentation. First we extend it to color using a novel model
which, for certain types of materials, allows us to segment
the image based on the albedo of the material. This avoids
the key drawback of many approaches to image segmenta-
tion which only look for discontinuities in intensities, and
which can give misleading results. For example, clothes
typically have regions of homogeneous albedo or texture,
but will often have sharp shadows due to creases. Finally
we run our algorithm on texture images using filters to
provide multiband input.

This paper has some similarities to work described by
[29] and [26]. Both approaches use statistical tests to grow
multiple seed regions independently, and then use the
MDL criterion to compress the overlapping between re-
gions. By contrast, our method minimizes the MDL crite-
rion for the entire image directly. Our work also has some
similarities to ideas discussed in [28] and [22], [27]. These
works differ from ours by not using a statistical criterion.

This paper is organized as follows. Section 2 sets the
scene by briefly describing snakes and balloons, region
growing, and energy/Bayes/MDL. In Section 3, we intro-
duce our approach for gray level images and describe im-
plementation results. Section 4 discusses how the window
size affects the precision of boundary location and the in-
fluence of initial conditions. Section 5 describes the color
model and discusses how it can remove intensity gradients
and detect highlights. In Section 6, we apply our method to
texture images. Finally, Section 7 discusses several possible
extensions of our approach.

2 SNAKES, REGION GROWING, AND
ENERGY/BAYES/MDL

This section briefly reviews the properties of snakes/bal-
loons, region growing, and Energy/Bayes/MDL.

2.1 Snakes and Balloons

A snake [19] is an active contour defined by

T(s) = (x(s), y(s)),

where s can be the arc length of the contour.' Here we as-
sume that I'(s) is the closed boundary of a region R (i.e., I'(s)
=dR).

A typical energy for a snake is:

Hro)- | {;(amr +ﬁ|1"ss|z)—A‘VI‘vI|}ds M
T(s)

which is minimized by steepest descent:

1. The contour can also be represented parametrically, for example by B-
splines or Fourier coefficients, but we will not consider such variants in this

paper.

o _ % _ 5917
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where T = (¥(s), §i(s)), etc. This derivation requires taking
functional derivatives of the energy, see the Appendix.

The balloon models [6], [7], [37] are motivated by the de-
sire to drive the snake automatically to a good position
(thereby decreasing the dependence on the initial condi-
tions). They introduce an additional force term Vﬁ(s) to (2),
which pushes the contour out (or in) along its normal n.

This additional force term can be derived from an energy
function. It corresponds, see the Appendix, to an additional

energy term E,,[T(s)] = —v f fR dxdy. The complete energy
for the balloon is:

£ry=

it

(s)

Lo

Z] - Avr- WI]}ds -vf i dxdy
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Thus the balloon tries to maximize its area while smoothing
its bounding contour and maximizing the intensity gradient
along the contour.

2.2 Region Growing and Merging

The goal of region merging and region growing [16], [26] is
to divide the domain R of the image I into regions {R;:i=1,
... M} so that R = U?ﬁ Ry, RNR =¢ if i #f, and I satisfies
a homogeneity criterion on each R;.

Region merging builds up complicated regions by com-
bining smaller regions using a statistical similarity test. A
popular choice is Fisher’s test [33]. For example, suppose
there are two adjacent regions R; and R,, where ny, 1, i,
i, 6%, 6% are the sizes, sample means, and sample vari-

ances of R;, R, respectively. Then in order to decide
whether or not to merge them, we can look at the squared
Fisher distance:

~2

(m+m)fn -R,) 06

A2 A2 - A2 A2
1,07 + n,0, 0y + 1,0,

-1, 4)

where n = n; + n, and &* is the sample variance of the
mixture region (a generalization to the multidimensional
case is called Hotelling's test [17]). If this statistic is below a
certain threshold then the regions are merged.

Region growing can be considered as a special case of

region merging, where R; is the growing region and R, is a
single pixel at the boundary of Ry, i.e., n, =1 and n, is very
large (say #; > 100). In this case we can treat u= I,
o’ = 6’%, and y, = I, (the intensity at point (x, y)), and

approximate the squared Fisher distance [8] by: %—
A variant of region growing [26] is to fit the intensity
within each region to a parameterized model, such as a

plane or a quadratic form. Then tests like (4) can be applied
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to the residuals of the boundary pixels after fitting.
Although region growing algorithms are very intuitive
they can rarely be proven to converge to the minimum of a
global cost function, and the resulting regions may have
noisy boundaries. Another drawback results from the use
of Fisher’s test, see (4), which cannot distinguish between
two distributions with the same means but different vari-
ances. This problem will be discussed in a later section.

2.3 Energy, Bayes, and MDL

Both Bayes and MDL specify ways for segmenting images
using global energy function criteria. These two approaches
are motivated by different considerations but it is straight-
forward to transfer an MDL criterion into a Bayesian one
and vice versa.

The use of global energy criteria, derived from Bayesian
principles, is a common approach to image segmentation
[10]. The observed image is modeled as being a degraded
version of an ideal image which is assumed to be piecewise
smooth. For example, the energy function used in Mumford
and Shah [28], and in Blake and Zisserman [3] (i.e., the weak
membrane model) is:

E[f,T] = [ (F 1)y +

/’Lj J.”Vf”2 dxdy + V|
R-T )

where [ is the input image, f is the output image, and I" la-
bels the discontinuities. It is easy to see that when A — oo
this reduces to a cartoon model:

H{rhr]= ZH

. . . . 2 .
where f; is constant within each region R; and ¢~ = % 1s

dxdy + V[T (6)

constant over the entire image.

On the other hand, Leclerc [23] suggests that segmenting
images according to the above Bayesian model should be
equivalent to obtaining the minimum description length
(MDL) of it in terms of a previously specified description
language. Equation (6) is a special case where the image
description is in terms of piecewise constant values, the
standard deviation is assumed to be globally constant, and
a penalty is paid for encoding the boundary proportional to
its length I1T"I. A more typical MDL criterion occurs in (7)
(see next section). It differs from (6) by letting the o3 be
unknown variables which are assumed to be constant
within each region. !

It is usually very difficult to minimize the energy func-
tions resulting from Bayes or MDL. Algorithms such as
simulated annealing [10], graduated nonconvexity [3], and
deterministic annealing [9] are perhaps the most successful.

3 REeGION COMPETITION FOR GRAY LEVEL IMAGES

In this section, we first derive our region competition algo-
rithm from a global optimization criterion. Then we show
how the classic snake/balloon and region growing algo-

rithms can be derived as special cases. Next we do a gener-
alization to standard MDL which is more robust. Finally we
illustrate the region competition algorithm by simulations
on gray level images.

3.1 From MDL to a Unified Framework

The goal of image segmentation is to partition the image
into subregions with homogeneous intensity (color or tex-
ture) properties which will hopefully correspond to objects
or object parts. Before describing the algorithm we first
need a definition of homogeneity.

In this section a region R is considered to be homogene-
ous if its intensity values are consistent with having been
generated by one of a family of prespecified probability
distributions P(I! ), where « are the parameters of the dis-
tribution. We assume that the probability models may dif-
fer in different regions. Such an assumption will be neces-
sary if the application domain is human skin and clothes,
where different patches will typically have different prop-
erties and hence will need to be described by different dis-
tributions. In later sections we will describe how the prob-
ability distributions P(I! ¢) can be generalized to residuals
of fitting certain physical models or multiband features ex-
tracted from the images, in which cases & may includes the
parameters specifying those physical models. Now suppose
that the entire image domain R has been initially segmented

into M piecewise “homogeneous” underlying regions {R;}, i
=1,2,., M ie, R=U%R, R AR, =0,ifi#]. Let 0R; be
the boundary of region R; where we define the direction of
d R; to be counter-clockwise, i.e., when we travel along the
boundary, R; is on the left-hand side” Let T" = Ufﬁll“i be the
edges or segmentation boundaries of the entire image with
I';=0dR,.

Now consider an MDL criterion—a global energy func-

tional—which is the continuum limit of Leclerc’s [23] for an
appropriate choice of the family of probability distribu-

-tions. This gives:

Hr{o}]=
2 % J‘ds ~log P({I(x,y):(x,Y) € RLH Ol,-) +A

i=1 IR, (7)

]

where the first term within the braces is the length of the
boundary curve dR; for region R;. We simply assume that
the code length is proportional to the curve length where u
is the code length for unit arc length. Since all edge seg-
ments are shared by two adjacent regions, we divide the
first term by a factor of 2. The second term is the sum of the
cost for coding the intensity of every pixel (x, y) inside re-
gion R; according to a distribution P({I,, : (x, y) € R}l ).
A is the code length needed to describe the distribution and

code system for region R; and we simply assume 4 is com-

2. In case of holes, it will be clockwise.
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. 3
mon to all regions.

For the rest of this paper, for purpose of illustration, we
will assume independent probability models so that

log P({I(m): (xy) e R} oci) = [ [1og P(1,, ;| e Jaxdy.
Ri

Because the energy E in (7) depends on two groups of
variables—the segmentation I" and the parameters o ;s—we

propose a greedy algorithm which consists of two alter-
nating stages. The first stage locally minimizes the energy
with the number of regions fixed. It proceeds by iterating
two steps both of which cause the energy to decrease. The
second stage merges regions provided this decreases the
energy.

We now describe the first stage.

In the first step, we fix I. In other words, we fix R; and

iy Y(x, y) € R}, and we solve for the o, i=1,2, .., M to
minimize the description cost for each region. By Bayes rule
this corresponds to setting:4

o = arg n;m —J;!]og P(Ocl. I I(x’y))dxdy , Vi 8

In the discrete case:

*
o, = arg Il';ax H
T (xy)eR

Plei, ) Vi ©

In other words, the as are estimated by maximizing the
conditional probabilities. For many distributions this can be
done analytically. For example, if P(Il¢) is the Gaussian
distribution then the o;s are simply the sample mean and
variance of the pixels inside R;.

In the second step, we fix the {¢g} and do steepest de-
scent with respect to I'. For any point o = (x,y). On the
boundary I" we obtain:

@ e}

TS (10)
where the right-hand side is (minus) the functional deriva-
tive of the energy E.

Taking the functional derivative, see the Appendix,
yields the motion equation for point 7 :

i L iy +1 la, )i
3 i + 108 Pllp) 0 Jin - AV

2-3

keQps)
where Q(ﬁ) = {klz?lies on I"k}, i.e., the summation is done
over those regions R, for which 7 is on T}. K@) is the cur-

vature of T at point 7 and ii ;) is the unit normal to I at

point . We use the counter-clockwise convention that i,

3. It is possible to use coding theory to derive alternative costs [31], [20].
However, we argue that these costs should be determined by the properties
of real images, rather than from coding theory, and should be found em-
pirically [39], [40]. )

4. We assume ¢ has uniform a priori distribution.

887

points outward from Rk.5

Equation (11) has a simple intuitive interpretation. There
are two kinds of “forces” acting on the contour, both
pointing along the normal. The first term, the smoothing
force, is strongest at points of high curvature. Fig. 2a shows
the smoothing force at points along the region boundary.
This force is independent of the direction of the curve and it
tries to make the curve as straight as possible. The second
term is the statistics force, f = log P(Ila)ii. Since log P <0,
the statistics force always compresses the region. The better
the point ¥ satisfies the homogeneity requirement the
larger P(I| 0), and the weaker the statistics force.

a b

Fig. 2. The forces acting ‘on the contour: (a) the smoothing force, (b
the statistics force at a boundary point, (c) the statistics force at a junc
tion point.

For example, as shown in Fig. 2b, ¥ is a point on the
common boundary of regions R; and R;. Since curves I'; and

F]- have inverse normal vectors at 7, we have 11, = —ﬁj and

k1, = K 1,. The motion equation for ¥ is:

do B | .
7= —HK R+ (log P(Iw)l oci) —log P(I(ﬁ) aj))ni(i) 12)

= —UK,; R, +log (13)

It is easy to see that the smoothing term by itself is the
Euclidean geometric heat flow equation used for curve
smoothing and evolution, and it is equal to the following
heat diffusion equation.

ar T

@57 o

where s is the arc length of the curve I'. Detailed discus-
sions of properties of this equation are given in [12].
Besides the smoothing term, the motion of ¢ is deter-

mined by the likelihood ratio test. If P(I(z_))lai) > P(I(?.))Iaj)
—i.e,, if the intensity at ¥ fits better to the distribution of
region R; than to that of region R—then the boundary will

move along n,. This is the same for points which are shared
by several region boundaries, Fig. 2c shows the statistics
forces at a junction point. Intuitively, adjacent regions com-
pete for ownership of pixels along their boundaries, subject
to the smoothness constraint. This is why we call our algo-

5. Recently we noticed that a similar equation (11) was reported in [35].
But it was not derived from MDL and the statistical meaning was not ana-
lyzed there. )
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rithm region competition.

Both steps in the algorithm cause the energy function to
decrease.’ In addition the function is bounded below and so
the algorithm is guaranteed to converge to a local mini-
mum. This two step process, however, does not allow us to
alter the number of regions. Thus we add a second stage
where adjacent regions are merged if this causes the energy
to decrease. This is followed by the two step iteration stage
again, and so on. Overall each operation reduces the energy
and so a local minimum is reached.

We argue that region competition contains many of the
desirable properties of region growing, snakes and bal-
loons. Indeed we can derive many aspects of these models
as special cases of regmn competition.

Firstly, region growing with constant threshold can be
considered to be a degenerate case of region competition

where we treat the growing region as Ry, with P(I | ¢4) cho-
sen according to our desired homogeneity criterion, and the

background region as Ry (so that R; U Ry = R) with uniform

probability distribution Po. Then the motion equation for
each point 7 along the boundary is:

v | .
— = (log P(I )~ log PO)nO

where #i is the normal of the region contour. Discretizing
this equation corresponds to region growing where the

probability P(I locl) is calculated and compared with the
absolute threshold P,. Fisher’s test [33] and the y* test [26]

correspond to particular choices of P(I(ﬁ)l ocl).

Secondly, the underlying statistical assumption for the
balloon/snake model is even simpler; it treats both the cur-

rent region R; and the background R, as uniform distribu-

tions Py, Py with v = log P; — log Py. We obtain the snake
model as the special case where v = 0. According to the
balloon model, taking the derivatives of (3), the motion
equation for the boundary @ is:

Ay _
dr —OCFSS + ﬁrssss +

(log F, —log l%)ﬁ(

g+ 2¥[91- V1 (16)
This equation differs from region competition (13) in two
respects. The smoothing force for balloons—the first two
terms on the right-hand side of (16)—differs slightly from
the smoothing term for region competition. This is only a
minor modification and could easily be removed by an al-
ternative smoothness term in the energy function. The final
term in (16) is a threshold for deciding when to stop mov-
ing the contour and is provided by local edge measure-
ments. Such a term does not appear directly in region com-
petition, but a similar term can be obtained by including a
cost for encoding edges such as

6. This two step iteration process is similar to the well-known EM algo-
rithm which can be re-expressed as two steepest descent stages [14].

(15)

~far log P, | e)ds

where P(I,|e) is the probability of an edge measurement I,
conditional on an edge e being present. However, because
the balloon model relies only on edge information and does
not do statistics inside the regions it often fails to segment
images into homogeneous regions.

In summary, the region competition algorithm combines
the most attractive aspects of snakes/balloons and region
growing to minimize a global cost function.

3.2 Generalizing the MDL Criterion for
Region Competition
To proceed further we need to specify a family of probabil-

ity distributions P(I1 ¢). In this paper, for purposes of illus-
tration, we will consider Gaussian distributions. This means

we set a= (i, 0), and
2
1 [Iu,y) B ”)

v2ro =P 207

P(I(x,y)i (1, G)) =

This simplifies the equations though we stress that more
sophisticated models will usually be needed to deal with
real images.

However, an analysis of the motion (13) reveals some
underlymg disadvantages for the greedy algorithm that we
proposed.

First, the statistics force at each boundary point (x, y) will

depend on P(I,, | g 0), in other words on the probability
that I, on the boundary can be generated by a Gaussian
distribution N(u, 02)4 This force seems plausible but, since

only a single sample is taken from this distribution, there is

a reasonable chance that I, will lie on one of the tails of
the distribution. This can lead to the pixel being misclassi-
fied and the statistics force therefore may be overly sensi-
tive to fluctuations in the intensity. This can be seen intui-
tively in Fig. 3a, where the solid curves show two overlap-
ping Gaussian distributions and the region of misclassifica-
tion is indicated by the shadowed area. In Section 4, we
describe quantitative results showing the amount of fluc-
tuation of the statistics force.

Second, in an extreme case where two distributions have
the same mean but different variances, the classification
error will be intolerable, see Fig. 3b. One such image is
studied in Fig. 6. In such cases, we need to measure the sec-
ond order moments (the variances) near each boundary
point (x, y) in order to tell whether the point (x, y) should be
classified as belonging to one distribution or to the other.
As we mentioned earlier, this cannot be done by Fisher’s
test used in the region growing algorithm. Furthermore, if
the distribution P(I | ¢) is more sophisticated than the Gaus-
sian distribution then more complex statistics must be
computed in the neighborhood of (x, y).

We argue that these problems are due not only to our
greedy algorithm but also to the nature of the MDL crite-
rion. For example, if the data is generated by Gaussians and

7. Similar problems will arise for snakes and region growing.
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the variance is large, then any algorithm will have difficulty
in classifying pixels, because of sample fluctuations, and so
faulty segmentations may occur even if the global mini-
mum of the MDL has been reached. It can be shown, see
[41], that if the data in a region is generated by a Gaussian
with variance ¢” then the varlance of the sample variance in
the regwn is of order ¢*/N. For small regions, with
N << ¢*, it will often be energetically favourable, inde-
pendent of the minimization algorithm, to encode the re-
gion as two, or more, sets. Thus standard MDL cannot be
expected to give the correct solution for regions of this size
and will have a tendency to oversegment the image.

Hy =M X

(b)
Fig. 3. Two possible distributions for adjacent regions: (a) Solid lines
show two Gaussian distributions with large overlap due to noise fluc-
tuation, the shadowed area displays the classification errors. Dash
lines show the distribution after using window sampling. (b) Two Gaus-
sian distributions with same mean but different variances.

We propose dealing with these problems by using cir-
cular windows of m pixels around each point. We call these

pixels the neighbor set of (x, y) denoted by W, ). The effect
of this is to replace P(, |0) by the joint probability:

IT ) evyepP Uy | @) Correspondingly, we obtain a gener-
alized energy function:

S feffnl )

L, ) @ )udodxdy + 2}

E[F, {a

log P( 17)

The window W solves our problems. Firstly, we observe
that the larger m is then the bigger the chance that the win-
dow is representative of the distribution and the smaller _the

risk of misclassification. Secondly, the window enables us

to do higher order statistics over {I,, : (1, v) € 'W(x/y)} to
answer the second problem raised earlier: But the window
cannot be too large or we will not be able to locate bounda-
ries accurately. Thus there is a trade off and later in Section
4 we see that the optimal choice of i depends on the signal
to noise ratio. Observe that the original MDL (7) will be
obtained as a special case of the generalized energy when m
= 1. Our analysis will show this is the correct choice for
high signal to noise ratios. Moreover, the use of windows
will help reduce the oversegmentation problems due to
fluctuations by effectively smoothing the sample means
and variances, see [41].

How does our generalized energy relate to standard
MDL? First observe that we can rewrite (17) as:

E[F, {ai}] = ,ujg ds —
r
J.J.Zn' logP( (= y)lai)dxdy+ZM
R i=1 (18)
where
I'=UY R,
and
o
T I N 2 |
i(x,y) m
such that

M
,\é”f(x/y) =1

for all (x, y). In other words, we assume that each pixel
(x, ) has a multiplicative mixture distribution,

P(1, o)) = HP” (Tt )

As seen in Fig. 4, point A is totally inside region R;, so m;=1,
=0, Vj # i. Point B is near the boundary, so the corre-

sponding 7, 7; are shown by the shadow areas (similarly
for the point at the junction).

Fig. 4. Each pixel is coded by a multiplicative mixture distribution with
7; being the shaded proportions inside the window.
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If we assume Gaussian distributions for Py | o) then
the multiplicative mixture P(I,) | {og}) is still a Gaussian
with means and variances depending on the position (x, ).
For points in the interior of a region R; the means and vari-
ances will be those of the region. However, for points near
the boundary of regions R; and R; the means and variances
will be weighted averages of the means and variances of
the two regions. This softens the changes in the means and
the variances as we move from region to region, see Fig. 5,
and is a better model for realistic edge profiles, hence im-
proving performance. Moreover, we can obtain the gener-
alized energy (17) from a maximum entropy argumen’c8
using Bayes theorem, see [41], though with addition of an
extra term. We can show, however, that this extra term is
small and can be neglected. Hence, (17) can also be consid-
ered an MDL criterion.”

AEN0O]

Ky

—— > X
Mr-w/2 I' T+w/2

Fig. 5. We plot the means, E[/(x)], of the distributions of the pixels near
the boundary T between R;and R;. If we use standard MDL with Gaus-
sian distributions then there is a step edge in ¢ at I', see dashed line.
By constrast, our generalized energy softens the edge by allowing the
mean to change smoothly from uy to 4 5 within the window from T" —
@/2 to T" + @/2, see continuous curve. The variances will behave simi-
larly.

In the rest of this section, we will explore (17) by as-
suming Gaussian distributions.

Suppose we have window sample {1, : (4, v) € WV(W)},
with each I~ N{, 02) shown by the solid curves in

Fig. 3a, then we can calculate the quantities 7. . and S?
(x/y) (x.y)

as the sample mean, and sample variance for {I(,w)},10 then
T(x v~ N (.U, ¢/ m), the distribution shown by the dashed

lines in Fig. 3a. Because the variances have been divided by
m, the misclassification risk is greatly reduced.
We can rewrite the statistics force generated by a single

region R; at (x, y) in the direction of fi, as the following:

8. The maximum entropy derivation, see also [39] and [40], uses con-
straints about the expected number of regions, the expected lengths of the
regions, and the expected distributions of the region parameters.

9. Similar results would hold for many exponential distributions [39],
[401.

10. We define S° )= (] / m) 2 (I(u,v) - 1)2 .

(xy
(M/U)Ew(x'y]

%J. Ilog P(I(u,v)| O‘i) dudy =
’\’V(X )

1
7 log (u,v)ls_lwx,y) P(I(u,v)! i 0?)

-1 207 Ve “1)2
=— 1og(27ccri) +(M)EEW 26?

- 2
; log(Zﬂd?)+w S—

i i

(19)

In (19), the second term tests the mean, and the last term
tests the variance (i.e., the F-test). With the addition of this
“variance” force, we can detect two regions with the same
means but different variances, see Fig. 3b. Equation (19)
will be generalized to higher dimension in a later section
(see (35)).

Thus from (17), we can derive the motion equation for
point ¥ at the boundary I'; N T by plugging (19) info the
motion equation (13).

d5 A
@~ Hie e ©

=11

=1log—+ - — ——5 |1
2 2 2 2 1
o; o; o; o; 0;

_ _ 2
1 o’ (I ﬂui)z (I —/;Lj) . & &
(20)

Before describing the complete region competition algo-
rithm at the end of this section, we first explain how to de-
crease the energy by merging two adjacent regions. Sup-

pose that n;, n;, 1, L, 0, C; are the pixel number, intensity
mean, and intensity variance of two adjacent regions R, R;,
respectively. Let R; = R; U R; be the region after merging, let
€,-]- = 0R; N JR; be the common boundary between R; and R;,
and let o4 = (U 0y) be the mean and variance of R;. It is
easy to see that: ’

» 1
My = W(”i:ui + ”j/l]')

5 1 YL

= {0+l 5 -

1

Then the change of energy for merging R;, R; is:
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AE = —,ujds —A+ Hlog P(1lor,)dxdy +
" Ri

4

J J' log (10t )dxdy —J' jlog P(1ier, )dxdy
R/ Ru

1 Gf.
=—u‘8Rir‘.9Rj‘A/l+§ nlog—L +1
O

21

Equation (21) is a generalization of (4). If AE < 0, then
merging R; and R; will decrease the energy. A brief descrip-
tion of the algorithm is given in Table 1.

TABLE 1
THE REGION COMPETITION ALGORITHM

1. Initjalize the segmentation, we can put N seeds randomly
across the image, and all background (area not occu-
pied by any seed regions) is treated as a single region
with uniform probability distribution.

2. Fix the boundary I, compute the parameters {a;} by
maximizing P(I: o).

3. Fix {ay}, move the boundary I" by minimizing the energy
function. When two seed regions meet, edge is
formed at their common boundary, then these two
regions compete along this boundary.

4. execute step 2, 3 iteratively until the motion of boundary
I" converges. Then goto step 5.

5. If there is background region not occupied by any seed
regions, then put a new seed in the background, and
goto step 2; else goto step 6.

6. Merge two adjacent regions so that the merging causes
the largest energy decrease, goto step 2. If no merge
can decrease the energy, then goto step 7.

7. stop.

3.3 Simulations on Gray Level Images
In this subsection, we illustrate the region competition algo-
rithm on two typical gray level images.

Fig. 6a is a 100 x 100 image partitioned into two regions
by a S-shaped curve. The intensities in these two regions
are generated randomly from two Gaussian distributions
with identical means: N(128, 102) and N(128, 352). Suppose
the image is initially segmented by a slanted straight line,
see Fig. 6b. Then the motion of the regions at iteration steps
t =0, 20, 30, 50 are shown in Figs. 6b, 6¢, 6d, and 6e, respec-
tively. Finally, Fig. 6f shows how the boundary moves if we
drop the last term in (20). Thus if we do not test the vari-
ance then the edge just moves to the low-right corner and
disappears. This results in an incorrect segmentation with
the image being perceived as a single region. For this im-
age, we use a circular window ‘W which contains 32 pixels.

Fig. 7a is a 150 X 150 image consists of four regions
whose intensities are generated randomly from four Gaus-

sian distributions: N(50, 10%), N(80, 109, N(110, 11%), and

N(150, 15%). The segmentation is started by putting nine
seed regions (each has 80 pixels) on a grid, with four seeds
inside the four regions, four seeds straddling the bounda-
ries, and one seed lying on the intersection point of the four
regions. As we will define in the next section, the first four
regions are called the good seeds, while the later five ones the
bad seeds. The background (shown by the shadow) is treated
as a single region which has uniform probability distribu-
tion Py. As discussed earlier for balloons, P, provides the
forces causing the seed regions to grow.

a (image)

¢ (t=20)

d (t=30) f (without F-test)

Fig. 6. Two regions with identical means but different variances. See
text for interpretation.

The motion of regions at iteration steps t = 0, 10, 30, 42,
65, 120, 150 are shown in Figs. 7b, 7c, 7d, 7e, 7f, 7g, and 7h,
respectively. At t = 10 we observe that the good seeds grow
faster than the bad seeds. Where these regions meet edges
are formed, see Fig. 7d. The four good seeds keep com-
pressing the bad regions and taking over the background,
see Figs. 7e and 7f. During competition process some re-
gions may be squeezed out or split by their neighbors (see
step t = 42). Finally the competition converges at t = 120 in
Fig. 7g with all the bad seed regions being driven into one
of the four real regions. Then, in the second stage of the
algorithm, we merge the pairs of adjacent regions which
cause the energy function to decrease the most, and restart
the first stage of region competition. After 30 more itera- .
tives, the algorithm converges at ¢ = 150, see Fig. 7h.

The current implementation has two drawbacks. First,
observe that the bounding contours are sometimes jagged
and it appears that the smoothness term is not always do-
ing its job. Second, the good seeds in the four squares of
Fig. 7 all appear to grow at similar speeds even though the
variances in these regions differ. Both these effects can be
traced to the simple discretization used in our current im-
plementation of the algorithm. More sophisticated discreti-
zation, currently being investigated, would eliminate these
problems.
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¢ (t=10)

a (image)

d (¢=30) e (t=42) f (t=65)

e ™

g (t=120) h (t=150)

Fig. 7. The competition of good and bad seed regions. See text for
interpretation.

(a) image :
Fig. 8. (a) an image of uniform Gaussian N(128, 157) with small blobs
of 3 x 8 pixels and lines (gray value 200) of one pixel width superim-
posed on it. (b) the final segmentation after merging: Note the failure to
detect the small blobs and many of the edges.

(b) =180

Finally we show an image for which the algorithm gets a
wrong answer, see Fig. 8. The lines and spots are degener-
ate regions—i.e., they have one and zero dimensions—
which do not fit our assumptions about the image and
hence cause the algorithm to give the incorrect segmenta-
tion. It converges to a state where the left side of the image,
which has a high density of lines, is considered a separate
region from the right side of the image (where the lines are
sparse). It completely fails to locate the four blobs in the
right of the image because they are too small. To succeed
our algorithm would need to be modified to contain an
edge term, as discussed in Section 3.

4 ANALYSIS OF THE BOUNDARIES, WINDOWS,
AND SEEDS

To further understand the performance of the region com-
petition algorithm, it is crucial to analyze the precision of
the boundary and the effects of the initial seed configura-
tions. For reasons of space we summarize the results here
and refer interested readers to [41] for more details.

Firstly we show that there exists an uncertainty interval
U for the boundary, and show how to choose the size and
shape of the window W to minimize U. In the following,
we use square windows and assume Gaussian distributions
for mathematical convenience.

Fig. 9a shows two regions Ry, R, lying in the left and
right half-planes so x = 0 is the “true” boundary. The

dashed line is the boundary T, at a given moment. The
intensity distributions for R;, R, are N(M'G%) and

N ( Uy, oé), respectively, as shown in Fig. 9b. If R, and R, are

big enough then we can assume that the first stage of region
competition has found the true distribution parameters
(th, 01), (lhy, G»). Due to symmetry, and without loss of gen-

erality, we can reduce fi,,) to f, i.e, analyze it along the x-
axis only. It is easy to compute the statistics force as:

a o}
Ty =gt

2

2
; )y (I(u'v) _ ,uz) - (I(M,v) - 1)
2 2
Thdn, |2 ! 22)

where a = log,e is a constant. Obviously, f, is a random
variable depending on the focation (x). Since our algorithm

places the boundary I, at points where f,,, = 0, the distri-

bution of fi,) will indicate the precision of the boundary lo-
cation. To further simplify the discussion, we assume that

01 = 0y, and derive the expectation and variance of feyr With

A=ty 1y and 11 = L0058
= th =, and I1, el
Al 202
Hf] = (211, - 1)27 [f] = amgz

In Fig. 9¢, the solid lines show Elfyl, and the dashed
lines show the confidence interval E[f(x)}ioco D[f(x)], in

other words, upper and lower bounds for the force fluctua-

tions. For example, if ¢, = 1.95 then the probability that f,
falls between the dashed lines is 0.95.
From Fig. 9c we observe that

e Fact 1: Since Elfpl = 0, I' calculated by the region
competition algorithm is an unbiased estimate for the
true boundary.

e Fact 2: The confidence interval of I'y, is defined by the
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intersections of the two dashed lines with the x-axis,
shown by the thick line segment. The length of this
thick line segment is:

(23)

i
(-2

Btipa) ¢ (xo\J Difx)

(M=Hy: 01<6))
4 -4

Fig. 9. The expectations and variances of the statistics force f). See
text for interpretation of (a), (b). In (c) and (d), the solid lines show
E[f(x)], and the dashed lines show the confidence intervals, in other
words, upper and lower bounds for the force fluctuations.

Observe that, since the variance of the force, DIf,], will
be a monotonic decreasing function of the window size m,
thus the larger the window the less the force fluctuates
and the closer the dashed lines are to the solid line. From
Fig. 9c we see that window size m has to satisfy the fol-
lowing constraints:

Hfo]-eDlfn] 20 vi<-3 4)
Hf) @ Df] <0 > (25)

Otherwise, the uncertainty interval of the edge (ie. the
thick line segment) will be infinitely long, in other words,
the boundary may be located at any point with a certain
probability. For instance, in the case of Fig. 9¢, solving the

2.2 2
42”; . Notice that 24 is the

above inequalities gives m = =
signal-to-noise ratio (SNR); clearly in an image with high
contrast regions (i.e., high SNR) where Ay >> 0, we can
simply choose m = 1. This explains why region growing
algorithms work for certain images. But once the window is
big enough, U becomes a constant (see (23)) This corre-
sponds to the general uncertainty principle in image proc-
essing [36]. We choose the window size to be the smallest m
which satisfies the inequalities (24), (25).

Fig. 9d shows another special cases where i) = i, 07 # 0.

Since Elfg)] # 0, the resulting boundary will be a biased es-
timate of the true boundary. Thus the boundary will be
moved to the region which has less variance. This effect
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will be noticable in the texture segmentation of late section.

Further analysis suggests that the precision of the
boundary would be increased by using elliptical windows
with their major axes parallel to the boundary, see Fig. 10.
This would relate our approach more closely to standard
edge detectors. By using various surface models in the two
adjacent regions, our a2pproach could detect step edges,
crease edges, or even C~ edges. This is a subject of current
research.

B ¢ olp (e
————— ~
\
————— ~J 2
-2 \\ _____ x
[ —
(op=xm=0)

Fig. 10. When an ellipse window is used with the same size (area) m,
the uncertainty interval shown by the thick line segment becomes
smaller.

Secondly, the performance of region competition will
highly depend on the initial seeds configurations. In fact,
each initial seed is a hypothesis about the location of a cer-
tain probability distribution family (or a model). Therefore, we
define a seed to be “good” if:

1) it is completely inside a “true” region and
2) it picks the correct probability family (or model).

A seed is bad if it fails to satisfy either of these conditions,
typically because it straddles the boundary between two
regions.

Thus to decide whether a seed is good or not we must
test the sample characteristics. In [41], several tests are pro-
posed for the special case of Gaussian models, such as
skewness and Kkurtosis. It is illustrated that these tests
automatically select “good” seeds completely inside regions
and avoid selecting “bad” seeds which straddle boundaries.

Empirically we observe that a sufficient condition for an
optimal segmentation is that at the beginning each ‘true’
region includes at least one good seed. But this is not a nec-
essary condition. It can be shown by simulations that
“good” seeds can convert “bad” seeds by a type of domino
effect. In Fig. 11 we show several stages of region competi-
tion running on the image shown in Fig. 7. where seeds 1, 2,
3, and 4 are bad and seed 5 is good. At the first stage, all
bad seeds grow across the boundaries (see t = 20). After
they contact each other, seed 5 drives seeds 1 and 2 out of
the upper-left region (see t = 50). By time step t = 84, we
observe that seeds 1 and 2 have been completely expelled
from the upper-left region, and both become good seeds,
while seeds 3 and 4 remain bad seeds. Once seed 1 and 2
become good, they kick seeds 3 and 4 out from their territo-
ries until, at time step t = 126, both seeds 3 and 4 are driven
into the lower-right region and become good seeds. Finally
they are merged into a single region at t = 150. Such dom-
ino effects will continue when more regions are involved
and we think this is a key difference between the region
competition algorithm and conventional region growing
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approaches. If seed 5 was not present the segmentation
would be incorrect, see [41].

5 MuLTIVARIATE MODELS: COLOR

The previous sections have described segmentation tech-
niques where regions are considered to have homogeneous
intensity properties. But the image intensity is a function
both of the material properties of the object, its albedo, and
the surface orientation and lighting.

(@) t=0 (b) t=20 (c) t=50
5 1 5 1 5 1
4
2 o 4 2 3
3 3
(d) t=84 (e) t=126 (H t=150

Fig. 11. The domino effect converting bad seeds into good ones. The
image is in Fig. 7a.

For many applications image segmentation should be
based on the albedo and independent of the lighting condi-
tions or the geometric configuration of the material. For
example, if we are looking at a person then the skin or each
patch of the clothes will have constant albedo properties
but the intensity of the skin or clothes may change dramati-
cally due to the changes of the geometric configuration.

5.1 The Color Model

If we include specularity in the image formation process
then the standard color dichromatic reflection model is [21]:

(26)

where I is the image as function of the image position 7,
and wavelength 4, p is the surface albedo as a function of 4
and surface location 7., F is the geometric viewing term as a
function of A, the surface normal 7, and the light source
direction § , and E is the surface irradiance as a function of
A, i, and § . In general, the first term corresponds to the
body reflectance and the second term corresponds to
specularities (typically highlights). This model has been
tested over a range of materials [25] and is shown to be a

good approximation in many cases, though it fails for some
dielectrics.
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If we assume red, green, and blue color bands, then we
can simplify (26) at each point (x, y) to:

R v YS er
(x.9) b

b s 0 Jay)

where (r, g, b) is the (assumed) spatially constant body color
within each region, (r,, g, by is the (assumed) spatially con-
stant color of the light source, Iy is the illumination, Ig,

is the specular component, and the (e, e, €,),) are the re-
siduals (or noise).
Although there have been many attempts to separate the

body color (7, g, b) from the specular color (v, g, by [21],
[15], [34], these approaches have been demonstrated on
plastic and metal objects with nice illumination. If the noise
level is quite high and the intensity around the specular
regions are approximately saturated—conditions com-
monly observed for skin and clothes—it will be very diffi-
cult to separate out the specularity using these approaches.

For now we simply combine the highlights into the body
reflectance and the residuals (highlights can be detected,
see Fig. 12¢, from the form of the residuals) giving:

R ¥ €,
g = % I(x,y)+ e,
(xy) & (x.y)

We use no prior knowledge about the illumination I,
or the colors (r, g, b). This is equivalent to assuming that
they are coded by uniform probability distributions, rather
than the Gaussian models used in Section 3.

We now determine the residuals by assuming that they
are as small as possible, in the least squares sense, while
requiring that (28) is satisfied. The residuals, the albedo
(r, g, b) and the intensity I(x, y) can be found by minimizing
the sum of the squared error over all point (x, y) within re-
gion R;:

(28)

e e e o R ¥
(T '8 .b ’I(w)) - ars rngubnz 2 g B I(w) (29)
(x,y)eR; (x.y) b

We minimize this energy by steepest descent (though
SVD could also be used). The solutions, (1’*, g*, b, ng y)), at
the minimum must satisfy (minimizing (29)) with respect to

7 and I(&))

[ J 1 (R G B) dxdy

* * * _ Ri'
(r,g,b)— ijzx/y)zdx‘iy
R

= (},*l g*,b*) . (R, G, B)(Tw)

Leey) (30)

. _ )
where we have imposed the normalization constraint 7~ +
*:

*2

b +g2:1.
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In other words, as seen in Fig. 12a, we find a unit vector
", g*, b") in the RGB space and project each pixel color
vector (R, G, B),,) onto this vector. The projected length
(i.e., their inner product) is the intensity I, - Then the re-
sidual vector (e, e, €,)) is perpendicular to the color vec-
tor shown in Fig. 12a. Therefore all the residuals X lie on a
2D plane B whose normal is (r*, g*, b).

By analyzing the distribution (histogram) of residuals
{X} in plane 8 over our dataset of regions with constant
albedo,"'
say larger than 100 pixels, then these residuals can typi-
cally be modeled by a 2D normal distribution N(y, Z) with
U very close to zero. In our experiments, we calculate the 2
X 2 covariance matrix X. Z can be intuitively represented
by an ellipse in plane f with its eigenvalues 4;, 4, (4; 2 4,)
as the squared long and short axes of the ellipse, and the
rotational angle 6 as the orientation of the ellipse.

we found that if the region size is large enough,

(r"g'.b)
.

\
B

)
(-3
)

Fig. 12. The Color models: (a) fitting the irradiance equation, (b) re-
siduals distribution for homogeneous color regions, (c) residual distri-
bution for a highlight region.

Fig. 12b shows a typical residual distribution for a ho-
mogeneous color region. By contrast Fig. 12¢ is a typical
residual distribution for a highlight region. The difference
can be seen in the aspect ratio a = JA, / 4, . For a region

without a highlight we typically find 1 <4 <2, but in a
highlight region we usually find a2 2 4. In other words,
highlight residuals tend to have a larger component intro-
duced by the specularity vector, i.e., the second term in (27).
We therefore use this property to detect highlights. Here
again we see that the window at the boundary and the sec-
ond order moments are crucial for highlight detection.

This color model has allowed us to decompose the input
color image into a constant color term, a varying intensity
term, and the residuals on a 2D plane. Our method can be
contrasted to the currently existing approaches, for example
[34], which tries to eliminate the intensity term by normal-
izing the input color images, i.e., sending

R(w)

Rew P ®7G+ By

We claim that our method has advantages because the
standard normalization becomes very noise sensitive at

places where (R + G + B)<W) is small, but in our method

11. This dataset consisted of cloth and skin patches chosen from real images.

such points have little weight, see Fig. 12a where pixels 1
and 2 have the same color but different intensity I—the re-
sidual error is smaller for 1 and therefore 1 has less weight
in determining the region color (r, g, b). Both approaches,
however, share the disadvantage that they cannot detect
intensity boundaries, because they have factored out the
intensity.

Our work also differs from the approach in [18] who

- encode structured models for the red, green, and blue

components, which is similar to applying our gray-level
model directly to three color dimensions. For certain types
of illumination profiles this will be essentially the same as
our model. We argue, however, that it is important to
factor out the illuminant so as to get segmenation based
on albedo rather than color. Similarly our method for de-
tecting specularities is different from the one developed in
[21] which calculates the 3 X 3 covariance matrix on each
patch independently and classifies the color patches into
2° = 8 classes based on the size of the three eigenvalues.
We argue that this approach is not applicable to our ap-
plication and the physical meaning of the eigenvectors is
not always clear. For example, in a region with constant
color but heavy gradient shading the biggest eigenvalue
will correspond to illumination changes while in a region
with less shading but big noise fluctuations the largest
eigenvalue will instead correspond to noise fluctuations.
For these reasons we argue that the eigenvalue analysis
should be done in 2D instead of 3D.

By contrast, an alternative approach [15] works on nor-
malized color images but involves a separate edge detection
mechanism to help group the image into regions with con-
stant material properties. The test for specularity is differ-
ent from ours and we are unable to compare it directly.

5.2 Color Segmentation
As before, the region competition algorithm iterates two
steps. In the first step, we fix the boundary I', and compute

the best fit color (7, ( s gz ,b; ) for each region R;. Then we cal-
culate the fitting residuals X( 5 on the f; plane, whose
normal is (1 ,gl, l) for each (x, ) € R, We define the

mean and covariance of region R; (with |R;| = N) to be:

1 - Y Nt
L=y X (X(x,y)‘“z‘)(x(x,y)'“f)

_ (xy)eR; (31)

The second step involves moving the boundary I" by
minimizing the MDL criterion.

For a pixel p = (4, v) on the boundary of region R; we
calculate:

1) the projection of (R, G, B),,, onto the (r:, g: ,b: ) vec-
tor and
2) the fitting residual 17(11/”) in the 3 plane.
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Similarly to the gray level case, we sample a window
containing m pixels and obtain a set of measurements

(171, LY ) We define the probability for these pixels to

cordyy

belong to region R; to be:

ﬁp(l?jlﬁnzir(%*fngb:)) -
j=1
l 75 eXP ‘% > % ‘ﬁi)TZf_l(Yf ~H)

(vaz) [z = (32)

We modify (17) to include these distributions. Then the
update equations for the boundary are obtained by doing
steepest descent, as before.

Once again we can relate this approach to conventional
region growing using statistical tests. We define the win-
dow mean and co-variance by:

= 1 - 1 T VIV
Y=_ Y7, s=— (L-Y)Y-Y) (33)

These are sufficient statistics for the Gaussian distribu-
tion, thus:

71

TP =, (% 80 8)) =

=

sl 27~ 57 ) ro(s7) |

(34)

where C; = - and “#r(.)” denotes matrix trace.

1
/
(V2r) ="
Thus the statistics force generated by single R; at (x, y) is
f; -, with:

f = —%(log(Zﬂ:) +logls | + (¥ - )5 (T — i)+ tr(zfs)) (35)

Observe that (35) generalizes (19) to higher dimensions.

As for the gray level case we can identify the terms on
the right-hand side of (35) as the standard generalizations
of the T and F tests to higher dimensions.

Observe that we only introduce probabilities after fitting
(r, g, b). Ideally we would estimate (r, g, b) and I, by
maximizing a probability model

B0 )

see (9). However it turns out, see [41], that such a model is
harder to work with and requires more complex computa-
tions. Fortunately, our model is equivalent to the full prob-
ability model provided we assume that the components of
the residual vectors have zero mean and identical vari-
ances. These conditions are approximately satisfied by our
images, except at specularities, so we argue that our model
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is a good approximation which significantly reduces the
computation.

Cross Section: Band 0 Line: (156,45)->(219,62)

Pixel Value
8

Location Along Line

Cross Section: Band 0 Line: (121,35)->(177,97)

Pixel Value
&

Location Along Line

Cross Section: Band 0 Line: (99,16)->(124,100)

Pixel Value
=
O

Location Along Line

Fig. 13. Cross-sections for the woman image, see Fig. 14b. From top
to bottom, we show the cross-sections on the face, torso, and arms,
respectively.

5.3 Color Images Experiments

Fig. 14a shows the red band of a color image of 261 X 116
pixels. Observe the noise, shading in the cloth and the
highlights on several parts of the skin. Fig. 13 illustrates the
shading by plotting cross-sections in the gray level image,
Fig. 14b (obtained as a linear combination of the red, green,
and blue bands).

The algorithm was implemented as for the gray level
case. Fig. 14c shows the initial seeds at iteration step ¢ = 0.
Figs. 14d, 14e, 14f, 14g, and 14h show the sequence at steps
t = 10, 20, 60, 100, 135, respectively. The competition be-
tween the seed regions converged at t = 100 as shown in
Fig. 14g. The small shadow regions are the image spaces
which are not occupied by the 20 initial seeds. In such re-
gions we need to introduce additional seeds which can
compete with the initial ones. We observe that the eyes and
mouth are included in the face region because they are too
small (about 10 to 25 pixels) and thus are treated as noise.

Observe in Fig. 14g that the algorithm detects the high-
lights and labels them correctly. These highlight regions
are: ;
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1) on the neck and shoulder,
2) on the left arm,

3) on the left leg, and

4) on the breast.

a (red band) b (grey level) ¢ (t=0) d (t=10)

e (t=20) [ (1=60)

g (4=100) b (t=130)

Fig. 14. Segmentation of a color image of a woman. See text.

Fig. 14h shows the final segmentation after spreading
additional seeds and merging. In most case, it is desirable
for the color model to eliminate shading effects, but in some
cases, it become disadvantageous. For example, a black re-
gion like the hair will fit well to any color regions. In addi-
tion small regions like the eyes and teeth are incorrectly
merged.

In our implementation, we put a constraint in the
merging step so that two regions with enormous intensity
difference should not be merged. This prevents the hair
from being merged with other regions. We consider this
to be a naive way for integrating the color and intensity
clues. A more sophisticated data fusion algorithm is un-
der implementation.

We give two other examples of our algorithm. Fig. 15
shows a hand correctly segmented from a background of
red and white fabric with the donut correctly located. This
image shows that the algorithm works even if the back-
ground region is not Gaussian. The highlights on the nails,
and ring, are correctly detected (except for the second fin-
ger) when the A parameter is low but are merged with the
fingers when Ais increased. )

Fig. 16 shows a squirrel being successfully segmented
from a grassy background. The color of the squirrel, how-
ever, is not constant and the algorithm segments it into the

correct color parts. The color varies a lot on the tail and so
several regions are found.

(a) (b)

=D

(© (d)
Fig. 15. (a) The hand image shown in gray level. (b) After 70 iteration
steps. (c) The final segmentation, the highlight regions on the nails are
detected correctly except on the second finger. (d) Increasing A causes
the nails to merge into the hand.

(@) : (b)
Fig. 16. Left: A squirre! sitting on the grass displayed as gray image.
Right: The grass has very variable intensity but the final segmentation
is good.

Note that the images in this section can be viewed in
color on the first author's www home page:
http:/ /hrl.harvard.edu/people/students/ zhu/zhu.html.

6 TEXTURE SEGMENTATION

We can directly adapt our algorithm to perform texture
segmentation. First we apply a set of p texture filters to the
input image to obtain a set of p texture images. This gives
us a multi-band input (s, ..., ), at each pixel (x, y). Then

X = (51/ ey sp) is considered to be a p-dimensional random
variable at each pixel. We then apply our multi-band
mode], assuming multivariate Gaussian distributions, using
the X as input.

In this paper; for purposes of illustration, we set p = 2

and set X = (GG* I, Gg* Iy) where G, is a zero mean Gaus-
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sian with standard deviation ¢ and * denotes convolution,
(I, 1) = VI is the gradient of image I. This statistic captures
the local orientation of the texture elements (or textons).

Fig. 18a shows a texture image of 172 x 247 pixels. For
each region—such as the cheetah body, the grass and the
buffalo—we study the second order texture statistics:

— 1 N — 1 N - TN - =\7
S DR DI

The lower half of Fig. 17 shows the histograms of G * I,,

(36)

Gg * I, on the three regions. Such Gaussian-like histograms
indicate that the second order statistics are good discrimi-
nators. We found that the fis are very close to zero for all
regions. The sample covariance X can be simply character-
ized by its eigenvalues 4;, 4, and the direction 8 between
the largest eigenvector and the x axis. The upper half of Fig.
17 shows the ellipse corresponding to various texture re-
gions with 4, A,, 0 listed on the right-hand side.

6
2 | (degree)

grass 6.05 3.24 178.9

cheetah| 14.4 13.9 130.5

buffalo| 2.58 2.42 119.0

shadow

belly 112.4

rass
lundesBocy| 5-24 | 4.58| 96.6

Cheetah

Grass Buffalo

Inteasity Histogram (b2nd 0)

Intensity Histogram (band 0) Intensiuy Histogram (bend 0)

E 40
| A
2 Z°

s 0 4 2 o8 ow I

Intsiy nersiy easity

Intensity Histogram (band 0) Intensity Histogam (bond 0)

Iy

Fig. 17. The statistics and histograms of G * I,, Gg * Iy on several
regions of the texture image.

Our algorithm proceeds as in the color case using (34)
but with ', g, b° being set to zero. First we compute the
statistics (ﬁi,Zi) for each region R;. The means for all the
regions are close to zero, see Fig. 17, so the covariance is the
major discriminator. Then we sample in a window sur-
rounding a boundary pixel (x, y) and compute the sample
mean and the sample covariance. In order to obtain enough
data to calculate these sample covariances reliably we
choose the window size m to be large. We set m = 68 for our
experiments.

These sample means and covariances can be used to

compute the statistical forces exactly as in (35). As before
these forces, in conjunction with the smooth forces, will
update the positions of the contour boundaries. ‘

Fig. 18D is the final result after merging, where we ob-
serve that the belly of the cheetah, which is highly shad-
owed, is merged with the grass under the body. This is due
to the similarity of their covariance matrices, see the corre-
sponding ellipses shown in Fig. 17. Since the variances
change dramatically between regions, for example, the
variance in the cheetah region is about 6" times larger than
that in the buffalo region, it can be shown [41] that the bias
of the boundary location will be noticeable.

a b

Fig. 18. Segmentation of a texture.

This example has only used two texture filters. Recently
one of us [39] developed a novel texture model which in-
corporates Gabor features into a probability model and is
able to synthesize a large number of real textures. Hope-
fully, with this model it will be possible to perform a nor-
malization between texture bands, as we did for the color
bands, and reduce the effect of gradients caused by shad-
ows and geometric effects.

7 CONCLUSION

We have designed a novel algorithm, region competition, for
image segmentation by minimizing a generalized MDL
criterion. This algorithm combines some of the most attrac-
tive features of snakes/balloons and region growing. We
have successfully demonstrated our approach on gray level
images, color images, and texture images. For color images
we have developed new ways to:

1) eliminate intensity gradients due to shadows and
geometric factors and
2) to detect specularities. .

It is possible to extend this work by

1) integrating gray level, color, and texture cues,
2) integrating the filtering approaches to locate the edge
, more precisely.
3) using this algorithm as a front end for our object rec-
ognition systems [38].

APPENDIX

In the preceding sections, we took functional derivatives of
integrals along contours and integrals over regions. This Ap-
pendix shows how to perform these derivatives.

Consider:
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E[Tl =] [g ftx, y) dxdy,

where Ty = dR = (), V() is the boundary contour of the
region R, with 0 <s < £ is the arc-length.
Green's theorem'” states that: for a planar region R,

37)

(Piryy Qo) is any vector field with continuous first order
derivatives, then

J' J[aQ apP

oy
% %
where “” denotes differentiation with respect to s, and

oP
%‘W=f(x'y)'

.
vy = j Pdx +Qdy = j(Px +Qy)ds  (38)
dR 0

For example,
1 X
Qlxy) =5 | flt vt
0

and

f(x, tit

will satisfy the above requirement.
Thus, using (38), and let L(x, %, y,7) = Q(x, )% + P(x, y)y
we can write (37) as

1
P(x,y) = -

O C—

Hry|= jL(x, %,y,)ds 39)
0

By Euler-Lagrange equation, we get the gradient of
E[[,] with respect to any point (x(, ¥) € I

OE oL ddl
ST Kk  ds ok
E_A_do
oy~ dsdy (40)
We find:
o da (dQ P ,
E ey Ak
O ddL aQ+ap]. o)
— = |t X = —flx, y)x
oy ds oy o oy y @)

Since ﬁ(x 0= (y', —J'C) is the normal along the contour I,

let 7 = (x, y), thus we have:
OoC
% e @

To compute the functional derivative of an integral
along the boundary contour we need start the derivation at

12. Green’s thereom is a special case of Stokes theorem and should not be
confused with Green’s identities. See, for example, [13].

(39) by choosing L = V¥ + 9. It is straightforward, for
example, to check that the functional derivative of the line

integral jds is ~Kii.
. R
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