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In this paper, we study a special case of the Metropolis algorithm, the
Independence Metropolis Sampler (IMS), in the finite state space case. The
IMS is often used in designing components of more complex Markov Chain
Monte Carlo algorithms. We present new results related to the first hitting
time of individual states for the IMS. These results are expressed mostly in
terms of the eigenvalues of the transition kernel. We derive a simple form
formula for the mean first hitting time and we show tight lower and upper
bounds on the mean first hitting time with the upper bound being the prod-
uct of two factors: a “local” factor corresponding to the target state and
a “global” factor, common to all the states, which is expressed in terms of
the total variation distance between the target and the proposal probabili-
ties. We also briefly discuss properties of the distribution of the first hitting
time for the IMS and analyze its variance. We conclude by showing how
some non-independence Metropolis—Hastings algorithms can perform better
than the IMS and deriving general lower and upper bounds for the mean
first hitting times of a Metropolis—Hastings algorithm.

KEY WORDS: Eigenanalysis; expectation; first hitting time; independence
Metropolis Sampler; Metropolis—Hastings.

1. INTRODUCTION

In this paper, we study a special case of the celebrated Metropolis algo-
rithm — the Independence Metropolis Sampler (IMS), for finite state
spaces. The IMS is often used in designing components of more complex
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Markov Chain Monte Carlo algorithms. Using an acceptance-rejection
mechanism described in Section 3, the IMS simulates a Markov chain with
target probability p = (p1, p2, ..., pn), by drawing samples from a more
tractable probability ¢ =(q1,92, ... ,qn).

In the last two decades a considerable number of papers have been
devoted to studying properties of the IMS. Without trying to be compre-
hensive, we shall briefly review some of the results that were of interest to
us. For finite state spaces, Diaconis and Hanlon® and Liu‘” proved var-
ious upper bounds for the total variation distance between updated and
target distributions for the IMS. They showed that the convergence rate
of the Markov chain is upper bounded by a quantity that depends on the
second largest eigenvalue:

)»Slemzl—mjn{ﬂ}.
Lo Lpi

A complete eigenanalysis of the IMS kernel was performed by
Liu.®? He also compared the IMS with other two well known sampling
techniques, rejection sampling and importance sampling. By making use of
Liu’s results, Smith and Tierney!?) obtained exact m-step transition prob-
abilities for IMS, for both discrete and continuous state spaces.

In the continuous case, if denoting by

r*:l—inf{w},
x | px)

Mengersen and Tweedie® showed that if 7* is strictly less than 1, the
chain is uniformly ergodic, while if * is equal to 1, the convergence is not
even geometric anymore. Similar results were obtained by Smith and Tier-
ney. These results show that the convergence rate of the Markov chain for
the IMS is subject to a worst-case scenario. For the finite case, the state
corresponding to the least probability ratio ¢;/p; is determining the rate
of convergence, that is just one state from a potentially huge state space
decides the rate of convergence of the Markov chain. A similar situation
occurs in continuous spaces. To illustrate it, let us consider the following
simple example.

Example. Let ¢ and p be two Gaussians having equal variances
and the means slightly shifted. Then ¢, as proposal distribution, will
approximate the target p very well. However, it is easy to see that
inf,{g(x)/px)}=0 and therefore the IMS will not have a geometric rate
of convergence. This dismal behavior motivated our interest for studying
the mean first hitting time as a measure of “speed” for Markov chains.
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This is particularly appropriate when dealing with stochastic search algo-
rithms, when the focus could be on finding individual states rather than
on the global convergence of the chain. For instance, in computer vision
problems, one is often searching for the most probable interpretation of a
scene and, to this end, various Metropolis—Hastings type algorithms can
be employed. See Tu and Zhu!) for examples and discussions. In such a
context, knowledge of the behavior of the first hitting time of some states,
like the modes of the posterior distribution of a scene given the input
images, is of interest.

The IMS was thoroughly studied, but most of the analysis focused on
its convergence properties. Here, we analyze its first hitting time and derive
formulas for its expectation and variance. These formulas are expressed
mostly in terms of the eigenvalues of the transition kernel.

*  We first review some general formulas for first hitting times. Then,
we derive a formula for the mean f.h.t for ergodic kernels in terms
of its eigen-elements and show that when the starting distribution
of the chain is equal to one of the rows of the transition kernel,
the mean fh.t will have a particularly simple form.

Using this result together with the eigen-analysis of the IMS kernel (briefly
reviewed in Section 3), we prove the main result, which gives an analytical
formula for the mean fh.t of individual states, as well as bounds.

* We show that, if in running an IMS chain the starting distribu-
tion is the same as the proposal distribution ¢, then after ordering
the states according to their probability ratio, and if denoting by
A; the ith eigenvalue of the transition kernel, we have:

. N1 1
9) E[T?)]— =) 1 1
(i) min{g;, p;} SE[r(]s min{g;,p;} 1=lIp—qlv’

where (i) stands for the fh.t of i, and |p —¢q|lTv denotes the
total variation distance between the proposal and target distribu-
tions.

The result can be extended from individual sets to some subsets of
state space, as we shall see in Section 3. We then illustrate these results
by a simple example.

*  We conclude the section by proving that when starting from j #i,
the mean f.h.t of i are decreasing, with the smallest being equal to
the mean fh.t of i when starting from g:
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If g1/p1<q2/p2<-+-<qu/py then:

Eilt)] > Exlt@)]> -+ > E [t ()] > Erlt ()]
= =E[tO]=E[z()]. Vi

Next, in Sections 3.5 and 3.6 we focus on the tail distribution and the
variance of the fh.t for the IMS and we determine:

* An exponential upper bound on the tail: P(r(i) > m) <
exp{—m(p;w1)}, Ym > 0.
e If Z denotes the fundamental matrix associated with the IMS ker-
nel then:
2Z;i(1=2)=3pi(1 = X)) +2p; —1
pH(1—1)?

Var[t(i)]= , Vi

Various bounds on the variance are also presented.

Further, in Section 4 we show how a special class of Metropolis—
Hastings algorithms can outperform the IMS in terms of mean first hit-
ting times.

e We prove that if Q is a stochastic proposal matrix satisfying
Qji/pi =2 1,0ij/p; 2 1,Vi,¥j #1i, and R is the corresponding
Metropolis—Hastings kernel then, for any initial distribution g,

1_ .
ELe(i) <1+ —L,

i

and as a corollary,

EL[r (D))< <EM[@] Vi,

min{g;, p;}
where we denoted by E;MS[T(i)] the mean f.h.t of the IMS kernel
associated to ¢ and p.

*  We conclude by presenting lower and upper bounds on the hitting
times for general Metropolis—Hastings kernels.

2. GENERAL F.H.T FOR FINITE SPACES

Consider an ergodic Markov chain {X,,},, on the finite space Q=
{1,2,...,n}. Let K be the transition kernel, p its unique stationary proba-
bility, and ¢ the starting distribution. For each state i € 2, the first hitting
time is defined below.
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Definition 2.1. The first hitting time for a state i is the number of
steps for reaching i for the first time in the Markov chain sequence, t(i) =
min{m >1:X,, =i}.

E[t(i)] is the mean first hitting time of i for the Markov chain gov-
erned by K.

For any i, let us denote by K_; the (n — 1) x (n — 1) matrix
obtained from K by deleting the ith column and row, that is, K_;(k, j) =
Kk, j),Vk#i, j#i. Also let g_;i =(q1,---,49i—-1,9i+1,----qn). Then, it
is immediate that P(t(i) >m):q,iK’ff11, where 1:=(1,1,...,1). This
leads to the following formula for the expectation:

Eq[r(i)]=1+q,,-(I—K,l-)_11, 2.1

where I denotes the identity matrix. The existence of the inverse of I —K_;
is implied by the sub-stochasticity of K_; and the irreducibility of K
(Bremaud®).

More generally, the mean f.h.t of a subset A of Q is given by

E [t(A]=14+g-a01-K_»7 1, vVAcQ. (2.2)

A different route is to consider the first hitting times if starting from
a fixed j #i. Here, we should define a different stopping time, by not
counting starting from j as an initial step, but for simplicity, we will use
the same notation and refer to E;[r(i)] as the mean fh.t of i when start-
ing from state j. Then, for all j#i, one has E;[t()]=(Z;i —Zji)/pi. Z
denotes the fundamental matrix, which, we recall, is defined to be Z =
(I—K+ P)~!, where P denotes the matrix having all rows equal to p.
When starting from ¢ instead from a fixed state j, one has:

Elt]=14) q;Ejlt@]=1+— Zq,(z”—zj». (23)
i P

For the rest of the paper we shall drop the subscript ¢ whenever this will
not create any notation confusion.

The variance of the fh.t can also be derived from the fundamental
matrix Z. It is known that the second moment of t(i), when starting from
J, 1s determined by:

2 2
Ej[r(i)]zzz(zizi )_ ( ll_Zji)'i‘FZu( ii — /1) Vj#ia

2.4)
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where the first term refers to the matrix Z2. Hence, it is immediate that
the second moment of the fh.t when starting from ¢ is just:

1
E[r(i)’]=1+— Zq]@,%—zjz-i)—;Zq,-(zﬁ—zﬁ)
L
2zl
l Zq;(zu —Zji)s 2.5)

which readily leads to a formula for the variance. For more on the proper-
ties of the fundamental matrix Z and its connections to hitting times refer
to Kemeny and Snell.®®

Next, we will show how knowing the eigenstructure of the transition
matrix allows the direct computation of the mean fh.t.

Let {X;}o<j<n—1 be the eigenvalues of K and let vy = {vii}o<i<n—1,
and uy = {up}ogign—1 be their corresponding right and left eigenvectors,
such that U’V =1, where U’ ={u}x, V ={v;}x. As K is a stochastic matrix
with stationary probability p, we have Ao =1 and we can fix vg=1 and
ug = p, respectively. Moreover, all the eigenvalues have real values and
Ihjl<1,¥j>0.

Proposition 2.1. Using the same notations as before, for any ergodic
kernel K and any initial distribution ¢, the mean first hitting time of i € Q
is

n—1
1 1
E[t()]=14+— E ui | vk — E qivi | -
pi i 1 — X ;

In particular, if ¢ is chosen to be row jth of K for arbitrary j € Q, then

-1

E[t()]= Z

Y=

uki(vki —Ugj) +—.
pPi
Proof-  Using (2.3),

Efr@l=1+— Zq,(z” —Zji). (2.6)
Lji

Let us recall that Z and K share the same system of eigenvectors, while
the eigenvalues of Z are Bo=1,8;=1/(1—-1;),V1 < j<n—1. Therefore,
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we can apply the spectral decomposition theorem (see Bremaud®), to get:

n—1 n—1 n—1
Zii=)_ Brvwti =voioi + T, vk =pi +Z PRULEE vi,i.
k=0 k=1
Therefore,
n—1 1
Zi—Zji=) m(vki — Vkj) Ui - 2.7
k=1
From (2.7) and (2.6), we get
Elt(D)]=14+— ZCI/(ZH_ j!)_1+ ZCI]Z (vki_vkj)uki,
P Pz ko
which, by changing the summation order, turns into
1 1
E[rd)]=1+—=Y_ ki Y q; (ki = Vij)- 2.8)
P b=

Noting that Z#i q;j(vki —vxj) can be rewritten as vg; — Y ; givx, the first
part of the proof is completed. For the second part, assume that g =K;.
This implies that )", gjviy =), Kjivww = (Kvi) . But as vy is a right eigen-
vector for Ax, we get D ; v =Axvi; and by plugging this into the general
formula just proved,

n—1 n—1

1 1
E[t()]=14+— gl_kkuki(vk, Avgj) =1+ — gl_Akuki(Uki_Ukj
+(I = Ap)vg)).
Or
1 _ n—1
E[t()]= —Z ukz(vkz_vk])+ Zukzvk, 2.9)

Pi T
We have to consider two cases:

(i) j=i. In this case, ZZ;% Ui Vkj = ZZ;(I) ugivgi — pi =1 — p; since
ZZ;(I) urivg; = 1. Therefore, from (2.9) it follows that E[t(i)]=
1/p;, the first sum cancelling for j=i.

(i) j#i. Then, again, Y{Z| upivej = S f—g kiVij — pi =8ij — pi =
—pi. Now, using (2.9)
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1t
Elt@)]=14+— ugi (Vi — vg) — 1
[c ()] pik;l_kk 0k = vy
121
= — Ui (Vi — Vi) O
Pigl—?»k e /

3. HITTING TIME ANALYSIS FOR THE IMS

Here, we shall capitalize on the previous result to prove our main the-
orem. But first, let us set the stage by briefly introducing the IMS.

3.1. The Independence Metropolis Sampler

The IMS is a Metropolis—Hastings type algorithm with the proposal
independent of the current state of the chain. It has also been called
Metropolized Independent Sampling (Liu(”). The goal is to simulate a
Markov chain {X,,},,>0 taking values in € and having stationary distribu-
tion p (the target probability). To do this, at each step a new state j e Q
is sampled from the proposal probability ¢ = (g1, g2, ... ,q,) according to
j~qj, which is then accepted with probability

a(i, j)=min {1, 2&} .
pi q;
Therefore, the transition from X, to X,y is decided by the transi-
tion kernel having the form

. qjo(i, j), J#i
K 9 = . . .
@) {I—Zk#K(t,k), j=i.

The initial state could be either fixed or generated from a distribution
whose natural choice in this case is g. In Section 3.3, we show why it is
more efficient to generate the initial state from ¢ instead of choosing it
deterministically.

It is easy to show that p is the invariant (stationary) distribution of
the chain. In other words, pK = p. Since from ¢ > 0 it follows that K is
ergodic, then p is also the equilibrium distribution of the chain. Therefore,
the marginal distribution of the chain at step m, for m large enough, is
approximately p.

However, instead of trying to sample from the target distribution p,
one may be interested in searching for a state i* with maximum probabil-
ity: i* =argmax;cq p;. Here is where the mean fh.t can come into play.
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E[z(i)] is a good measure for the speed of search in general. As a special
case we may want to know E[t(i*)] for the optimal state.

As it shall become clear later, a key quantity to the analysis is the
probability ratio w; =g;/p;. It measures how much knowledge the heuris-
tic ¢; has about p;, or in other words how informed is ¢ about p for state
i. Therefore we define the following concepts.

Definition 3.1. A state i is said to be over-informed if ¢; > p; and
under-informed if ¢; < p;.

There are three special states defined below.

Definition 3.2. A state i is exactly-informed if ¢; = p;. A state i is
most-informed (or least-informed) if it has the highest (or lowest) ratio
W; *imax =argmax;co{w;}, imin =argmin;co{w;}.

Liu noticed that the transition kernel can be written in a simpler
form by reordering the states increasingly according to their informedness.
Since for i # j, K;; =¢; min{l, w;/w;}, if wi <wy<---<w, it follows that

w;p; i<}j,
Kij=11-> i iqk—wi) 1oipx i=],
gi=w;p; i>].

Without loss of generality, we shall assume for the rest of the paper
that the states are indexed such that w; <w; <---<w,, to allow for this
more tractable form of the transition kernel.

Proposition 2.1 can be used to compute mean first hitting times
whenever an eigen-analysis for the transition kernel is available. In prac-
tice, this situation is quite rare though. However, such an eigen-analysis is
available for the IMS. We review these results below and then proceed with
our results.

3.2. The Eigenstructure of the IMS

A first result concerns the eigenvalues and right eigenvectors of the
IMS kernel.

Theorem 3.1. (J. Liu®7). Let T} = Zl)k gi and Sy = Zi>k pi. Then,
the eigenvalues of the transition matrix K are Ay = Ty — wy - Sk, V1 <
k<n—1,1 =1, and they are decreasing as Ag>A; =Ay>--->A,_1 =>0.
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Moreover, the right eigenvector corresponding to Ag, k>0 is vy =(0,...,0,
Sk+1> —Pk»--- »—Ppk), with the first k — 1 entries being 0 and vy = (I,
’ 1)/

Remark. It is easy to see now that the eigenvalues of K are “incorpo-
rated” in the diagonal terms of K through the equality K;; =X; +¢;, which
will be often used later on.

Smith and Tierney!” computed the exact k-step transition probabil-
ities for the IMS. One of their results reveals in fact the very structure of
the left eigenvectors. Suppose ;. is the unit vector with 1 in the k’th posi-
tion (1<k<n) and 0 everywhere else. They showed that:

Proposition 3.2. (Smith and Tierney!?). For 1<k<n—1,

k—1
1
8k = pkvo+ < vk — Pk
Sk ZSJ j+l
while for k=n,
n—1 v
Sp = prvo — L
n = PnV0 pn;Sij+l

As a corollary, the left eigenvectors of K are given by:

Corollary 3.3.

l T
uozp,ukz(o,o,...,0,—,—M,...,— Pr > . 1<k<n—1,
Sk SkSk+1 SieSk+1

where for k> 0 the first k — 1 entries are 0.

3.3. Main Result

We are now able to compute the mean f.h.t for the IMS and provide
bounds for it, by making use of the eigenstructure of the IMS kernel as
well as of Proposition 2.1.

Theorem 3.4. Assume a Markov chain starting from ¢ is simulated
according to the IMS transition kernel having proposal ¢ and target prob-
ability p. Then, using previous notations:
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@) E[r(z)] - VieQ

1
< E[t()]< mm{q, pi} I=Tp—=qliTv°

(ll) W
where we define A, to be equal to zero and ||p —¢|Tv denotes the total
variation distance between p and g. Equality is attained for the three spe-
cial states from Definition 3.2.

Proof. (1) Let us first note that we are in the situation from
the second part of Proposition 2.1. That is, after reordering the
states according to their probability ratios, our initial distribu-
tion g is equal to the nth row of K as it can easily be seen.
Then, from Proposition 2.1, one has:

E[t()]= Z

D=

6.
uki(vki — V) + —. (3.1
pi
From Theorem 3.1, vx; = vy, Vk < i, while from Corollary 3.3,
up; =0 for k>i. Hence ug; (vg; — vin) =0,Vk #£i. If i =n, then
E[t()]=6in/pi=1/[pn(1 —1,)], while for i <n one has

uii (Vii — Vin)

Efr@)="""

Using the eigen-analysis for the IMS, we can write u;;(v;; —
Vin) = (Si+1 — (= pi))/Si =1, so the expectation becomes E[7(i)]=
1/[pi(1 —A;)], and the proof of (i) is completed.

(i) By using (i) it is obvious that E[t(i)] > 1/p; since 0 < A; < 1.
Therefore, we only need to show that 1 —A; < w; which would
imply that E[t(i)]>1/q;. Noting that A; =¢q; +qj+1+--+gn —
(pi + pis1+---+ pn)w;, we need to prove that

611+612+ “t+qi-1
Di p1+p2+ +pi-1

w,~=

This is follows quickly since for any j <i,w; <w; <= g; < pjw;.

To prove the upper bound, let us first get a more tractable form for
lp —qllTv. We partition the state space into two sets: under-informed and
over-informed with the exactly-informed states in either set: Q = Qunder U
Qover- As the states are sorted, let k <n be their dividing point

Qunder =i <k : ¢i<pi}, Qover={i>k : qi > pi},

where Qover can be the empty set if ¢ = p. By definition, |p —¢q|Tv =
Z |pi —qgil. Since Y ;.o (pi —qi) =0, we have
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1 1 1
Ip=alirv =35> Ipi—ail=5 >, i—a)+5 Y @—p)

i€ [ €Qunder i €Qover
= Y @ —p)=Ter1— Sks1, (3.2)
i€Qover

where we define 7,1 =S,+1=0. We prove the upper bound for the under-
informed and over-informed states, respectively.

Case I. upper bound for under-informed states i <k.

For under-informed states, ¢; = min{p;, ¢;}. As A; =T; — w;S;, it fol-
lows that:

pill—=%) = pi(1=T;)+q;Si = pi(1 = Ti11) — pigi
+4¢iSiv1+qipi=pi(1 = Tiy1) +¢qiSiy1.

Therefore, p;(1 — A;) > q;(1 — T;41 + S;+1). By using (3.2), we get
min {p;,q;}(1 —|lp —qlltv) =i (1 — Tiy1 + Sk41). Thus, we only need to
show that S;11 — Sg+1 = Tiy1 — Tx+1. By definition, this is equivalent to
Pi+1 + piv2 + -+ Pk = qiv1 + giv2 + - -+ + gk, which is obviously true
because states i + 1,...,k are under-informed. Equality is attained for
pj=gqj, Yje€li, k], which is at the exactly-informed states.

Case II. upper bound for over-informed states i > k.

As min{p;, g;} = p;, it suffices to show that p;(1—X;) > p;(1 — Ty +
Sk+1), or A < Try1 — Sp+1. Because A; < Ag4p, it suffices to prove that
M1 S T 1 — Skr1> OF T ] — Wrt 1 Sk1 < Ti1 — Sk+1, Which is trivial since
wiy1 =1 for over-informed states. Equality in this case is obtained if A; =
Ai—1=---=2Aky1 and wiy; =1 which is equivalent to wi| =wiy2="--=
w; = 1.

Theorem 3.4 can be extended by considering the first hitting time of
some particular sets. The following corollary holds true.

Corollary 3.5. Let ACQ of the form A={i+1,i+2,...,i+k}, with
wp Swy <o <wyp. Denote pa = pig1 + piga + -+ pitk, gA == git1 +
qi+2+ -+ Gitk, wa :=qa/pa and Aq = (qgiv1 + -+ qn) — (Pig1 + -+
prn)w4. Then (i) and (ii) from Theorem 3.4 hold ad-literam with i replaced
by A.

Proof. We will only prove part (i) since the proof of (ii) is analogous
to the one in Theorem 3.4.

Let A={i+1,i+2,...,i +k}. We notice that w; <wy <---<w; <
WA < Witk+1 < --- < wy. Therefore, if we consider A to be a singleton,
the problem of computing the mean f.h.t of A reduces to computing the
mean f.h.t of the singleton A in the “reduced” space Q4:={1,2,...,i,{A},
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i+k+1,...,n}. The new proposal (respectively target) probability would
be ¢ restricted to the space Q24 by putting mass g4 on the state {A} (sim-
ilarly for p).

It is easy to check that K_4 =K_;4;, where the last matrix is obtained
if we consider A to be a singleton (it is essential that the ordering of the
states according to the probability ratios is the same in Q as in €4). Now,
we can apply (2.2) to obtain

Eg[t(A)]=1+q-a(0—K_2)"'1'=14q_4yI-K_ap~'1,

and by using Theorem 3.4 for Qu, Eq[t(A)]= Eq,[t({AD]=1/[pa(l —
Aa)]. We used the subscripts Q or Q24 to indicate which space we are
working on. UJ

In the introduction part we hinted at showing why generating the ini-

tial state from ¢ is preferable to starting from a fixed state j#i. The fol-
lowing result attempts to clarify this issue.

Proposition 3.6. Assuming that w; < wy < --- < wy, the following
inequalities hold true:

Ei[t()] = Ex[t@] =2 Ei1[t ()] = Eiv1[r ()]
= .=E,[t()]=E[t()], VieQ.

Proof. We saw that

n—1
1 1

Eﬂr(z‘)]z;i l_kk“ki(vki_vkj)v Vj#i
k=1

(i) j>i. Then one has wu;(vi; — vij) = uki (ki — Vi), Yk > 0 and
therefore,

uki(vki —Ugn) = E[T ()]

E[t()]= iz

pi iz

(i) j <i. Let us compute the difference E;[r(i)] — E;1[r(i)] for
arbitrary j.
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——z
-5

If j<i—1 then for k < j we have vi(j4+1)=0=wy;, while for j+1<k<
I, Vk(j+1)=—Pk =Vkj, SO in both cases the difference is zero, which cancels
the corresponding terms in (3.3). The terms for k >i cancel too, because
uy; =0. The only remaining terms are those for k= j, j + 1. Therefore,

Ej[t()] = Ej+1[t()]
1 1
N L U O I
i |:1 % j(+1) —vjuji+ I— 41 WG+ (+D (/+1)/)“(/+1)ti|
We note that (vj(j+1) —vjuji = (=pj = Sj+1D)(=pi/(S;Sj+1) = pi/
Sjy1. Similarly, (vii+nG+1 — v+ UG+ = Sj+2(=pi/(Sj+15j42)) =
—pi/Sj+1. Hence,

Ei[t()]— Ejp1[r ()]

(Vki — Vkj) Uk
_)"k

(Ukt Vk(j+1)) Uki

(Uk(j+1) —vgj)ugi. (3.3)

1 1 1 i
Ej[‘[(i)]—Ej+1[T(i)]__<1_k._1 )Sp
J

Di —Ajy1/) Sj+1

1 < 1 1 )
>0.
Sjr1 \I=4j  T—=hj4

Equality case is obtained if w;=w;; which implies A;=A ;. There-
fore, if states j and j+ 1 have the same informedness, it would make no
difference from which one of them the sampler would start.

The only thing left to prove is that E; _{[t(i)]> E[t(i)]. To do this, we
note that one can write (3.3) with i —1 in the place of j and i +1 instead
of j+1. This gives

Ei[t(D] = Eip1[t(D]=

1 (vk(i+l) — Uk(i—1))Uki-

As before, all the terms cancel except for k=i —1,i and analogously,

1 1
Ei [t@]—-Eiq[t@)]=— (1_ . o 1_)\.) >0.

As E;[t(D)]=E;[t()]=E[t(i)],Vj > i, the proof of Proposition 3.6 is
completed. 0
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3.4. Example

We can illustrate the main results in Theorem 3.4 through a simple
example. We consider a space with n=1000 states. Let p and ¢ be mix-
tures of two discretized Gaussians with tails truncated and then normal-
ized to one. They are plotted as solid (p), dashed (¢) curves in Fig. la
and b plots the logarithm of the expected first hitting-time In E[z(i)]. The
lower and upper bounds from Theorem 3.4 are plotted in logarithm scale
as dashed curves which almost coincide with the hitting-time plot. For bet-
ter resolution we focused on a portion of the plot around the mode, the
three curves becoming more distinguishable in Fig. 1c. We can see that the
mode x*=333 has p(x*)~0.012 and it is hit in E[zr,+]~ 162 times on aver-
age for ¢g. This is much smaller than n/2=2500 which would be the average
time for exhaustive search. In comparison, for an uninformed (i.e., uni-
form) proposal the result is E[zy+]=1000. Thus, it becomes visible how a
“good” proposal g can influence the speed of such a stochastic sampler.

3.5. Tail Distribution

It is known (Abadi and Galves()) that the distribution of first hitting
times is generally well approximated by an exponential distribution. This
can be illustrated on a small example.

Consider a state space with N =10 states, with p and ¢ being dis-
cretized mixtures of Gaussians as before. Figure 2a plots the tail distribu-
tions of the fh.t for all the states of the space. It is apparent that their
shapes generally resemble exponential tails. In Fig. 2b, we plotted both the
tail distribution of the fh.t (in solid) and the corresponding exponential
distribution (dashed) for an arbitrary state (i =3). Even though we are
not able to quantify the approximation error in general, we can give an
exponential upper bound on the tail distribution of the fh.t. The bound
is shown in Fig. 2c.

Proposition 3.7. For all i € Q, P(z(i) > m) < (1 — ¢g;))(1 — pjw)™ <
exp{—m(p;wy)}, Ym > 0.

Proof. For all j#i we can write K;; = p; min{w;, w;}. This shows
that K;; > p;wy, Vj#i. Or, equivalently, 1 —K;; <1— p;wy,Vj#i. By writ-
ing this set of inequalities in matrix form, one gets K_;1 < (1 — p;wy)1.
Now, we can iterate this inequality and therefore, K. A< - piw)'1,Vi.

We recall that P(z (i) >m)=q_,~KTl._11. Hence, by taking [=m —1 we
shall obtain P(z(i)>m) < (1 — pjw)" 'g_;1, or finally, P(z(i) >m) < (1 —
g (1 = prwp)™ .
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p (solid) vs. g (dashed) logarithm of the expected hit-time: InE
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Fig. 1. Mean fh.t and bounds.

For the second of the inequalities we note that w; > wi, so 1 —¢; <
1 — p;wy, which readily gives P(t(i) >m) <(l — p;w1)™. But (1 — pjw)™ <
exp{—m(p;w1)}, since exp{—x}>1—x,Vx, and the proof is completed. []

Remarks. (1) We note that the last of the inequalities in
Proposition 3.7 holds also for the exponential distribution
wu(i), having mean equal to E[t(i)]. That is, P(u(i) > m) <
exp{—m(p;w1)}, Ym > 0. To see why, note that ; <A;=1—w,
so E[t(i)]=1/[pi(1 = A)]< 1/(pjwy) or 1/E[t(D)]> piwi. Then,
obviously, P(u(i) >m)=exp{—m/E[t ()]} <exp{—m(piw1)}.

(2) We can always use Markov’s inequality to upper bound the tail
distribution with respect to the expectation of the fh.t of some
i. That is, for any k positive integer, one has:

-

P(z(i) > kE[t()]) <



Hitting Time Analysis for IMS

Tail distrib of the f.h.t and the corresponding
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Fig. 2. Tails, exponential approximation and the upper bound.

If we were to avoid the use of eigenvalues, whose values might be too diffi-

cult to compute, we could rely on the upper bound from Theorem 3.4
which combined with the above gives:

1 1
P ) >k - < -,
(’(’) (mm{pi,qi}a—np—mnb Kk

3.6. Variance

In this section, we derive a formula for the variance of the fh.t for
the IMS. We show that:

Theorem 3.8. If Z is the fundamental matrix associated to the IMS
kernel and using the same notations as before, the variance of the first
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hitting time of i is given by:
2Zii(1 =) —=3pi(1 =) +2p; — 1

,Vie.
pr(1—)?

Var[z(i)]=

Proof. Already knowing the expectation of the fh.t reduces the
problem of computing the variance to finding E(t(i)%). This is given by
(2.5):

1
E[t()]=1+= Zq,@%—Z§,~>—;Zq/~<zn—zﬂ>
J
ZZ,,
ZQJ(ZH_Zji)-

We can rewrite the above as:

1
[r(z)]—l—l—— Zq, —; Zii_ZCIiji
l .
J
27
+p—£l Zii—ZCIiji . (3.4)
‘ J

Let us note that Zj q;Zji =Zj K, Zji=(KZ)ni. Also, recall that
KZ=7Z+P-1 (3.5)

Thus, Z q;jZji = Zni + pi — 8y Similarly, Z q;Z Z KnJZ]l =
(KZ?*),i. From (3.5) it also follows that KZ? = 22 + P — Z, hence
Zj qu?i :Zﬁi + pi — Z,;. By transforming (3.4) we get

E[t(i)*] = 1+ (Z2 _Pi‘i‘Zni)_%(Zii — Zni — pi +ni)
+_”(Zii Zni = pi +8ni),
which further reduces to
Elx(i)"] = 3_(2,%- ,”)— ( = Zoi)+ 2 - 42— Zu)
pi p;

Sni (2Z;;
+— (— — 1) . 3.6)
Di DPi
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For i =n (3.6) becomes E[t(n)*]=(2Z, —pn)/p,%, so Var[r(n)]= E[t(n)?]—
(E[t(m)? = (2Zun — pn)/ s —1/p3 or finally,

2Zpwn—pn—1
Var[t(n)]= %,

n
which is what I wanted since A, =0.
If i <n, let us rewrite (3.6), for clarity:
2 3 27Z;i
E[r<i>2]=;(zl%- —Zy) - o i = Zi) + = Zi—Zw). (3
1

i D;
We use the spectral decomposition theorem for Z2 and obtain

n—1
1
lei =pi +Z 3 Vkilki, Vi
o (=20

Therefore, we have

n—1
1
Zi—27y=Y T ki (Vki — Vkn)»
k=1 k

which, just as before, leads to
wii (Vii —vin) _ 1
(1—2:)? (1—=2x)?
It is also noted that Z;; — Z,; = p; E,[t(i)]. At the same time, from Prop-
osition 3.6, E,[t(i)]=E[t(i)]=1/[p;(1 —4;)]. Therefore,
Zij—Zpi = 1_;)\1 (3.9
Now using (3.8) and (3.9) in (3.7) we obtain
2 3 2Zii
pi(l—x)2  pi(l—h;) + pr1—1)

2 2 _
Zi—2,=

(3.8)

E[t(i)*]=

Or
2Z;i(1—=x;) =3pi(1—21;)+2p;

E[z(i)’]= )

Since Var[r(i)] = E[t())*] — E[t()]? and E[t()] = 1/(pi(1 — A;)), it is
immediate that

2Z;i(1—=x) =3pi(1—=A)+2p; —1

Var[t(i)]= 2002
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3.6.1. Bounds for the Variance

Two corollaries of Theorem 3.8 will offer bounds on the variance of
the fh.t.

By bounding the term Z;; in Theorem 3.8, we obtain Corollary 3.9,
which gives bounds for the variance mainly in terms of the expectation of
the f.h.t:

Corollary 3.9. Let us denote E;:= E[t(i)], for any i € Q2. Then,
2(1 ;
Ei(E; — 1) < Eil(1+ 2 E: — 3] < Varlz ()] < Ei [M—Ei —3],
wi pi
with equality if w;=w;_1=---=w;.

Proof. For the proof we first need to prove the following lemma.

Lemma 3.10.

1 =i 1 .
S i} Szii<—+ql b
1—A; wi
with equality if and only if w;=w;_1=---=wy.

Proof of the lemma. We use again the identity

n—1
1
7. — p: E Vrillpi.
ii Pz+k_1 I—Ak ki Uki

As 1/(1 = ) =1+t /(1 —Ag), we can rewrite Z;; as

n—1 n—1 A n—1 A
Zii=pi+ Y viittki+ Y T Okittki = 1+)° T Okittki
j=1 k=1 k=1

Y
= 1+Z 1 —k)\,k VkiUki -
k=1
Note that 1/(1-4;)<1/(1—=x;)<1/(1—=Ay1), V1< j<i, which gives

1 < 1 <
1+ T Zkkvkiuki SZi <1+ T—n I;?»kvkiuki-

b=l
Since Zi:l Ak Vki Uki =ZZ;% Mvkiug =K — pi=qi +A; — p;, it follows that
1+ (gi +xi —pi) /(A =A) < Zi; <1+(qi +*i — pi)/(1 = A1), or further, (1+
qi—pi)/ A=A < Zi < +qi —pi+ri —21) /(1= A1)
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The lemma is proved if, for the right hand side term, we use 1 — A =
wy and A; <Aj. Clearly, equality on both sides is obtained if and only if
W =w_| = -=W.

Going back to the proof of Corollary 3.9, we note that, starting from
the left side, the first inequality is trivial since E; >1/q;. Also, proving that
Ei[(1424g;)E; —3]< Var[t(i)] is just a matter of applying Lemma 3.10 and
regrouping the terms.

For the upper bound we notice that w; =1—A; <1—2;, which gives
pi < pi(1=2x;)/wy. This combined with the upper bound for Z;; will show
that

I+qgi—p)(1—A; i(1—A; I+g)(1—A;
Zii(l—)»i)+]9i<(+q pi)( )\)+p( A)=(+q)( )\)‘

wi wi wi

Since from Theorem 3.8, Var[t(i)]=[2Z;;(1 —X;) =3p;i(1 —X;)+2p; —
11/[p?(1 — 1), it follows that Var{z ()] <[2(1 +¢;)(1 — A;)/wi —3pi (1 —
Ai) — 1]/[pi2(1 — 2)?], which easily turns into the pursued upper bound
since, from Theorem 3.4, E; =1/[p;(1 — X;)]. The equality case shows up
if A;=A;_1=---=A1, which is equivalent to w; =w;_1=---=wj.

The bounds given by Corollary 3.9 can be further simplified, but
weakened at the same time, if one uses the known lower bound for E;
on the left and maximizes the upper bound with respect to E;. Thus, one
gets:

Corollary 3.11. If M;:=1/min{g;, p;}, for any i € 2, then

1+C]i 3)2
wipi 2)

M;(M; —1) < M;[M; (14 2q;) — 3] < Var[t(i)] < (

Proof-  Obviously, for the lower bounds we apply inequality E; > M;
to the previous corollary. To prove the upper bound, we refer again to
Corollary 3.9 and for simplicity, let us denote

2(1+4i)
w1 pi

—3:=a.

Then, Corollary 3.9 gives Var[t(i)]< E;(a — E;). Consequently, a > E; >0,
and since the maximum value of function f(x):=x(a —x) on (0,a) is
obtained for x =a/2, we conclude that f(E;) <a?/4, which is the upper
bound.
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4. IMS VS. A SPECIAL CLASS OF METROPOLIS-HASTINGS
KERNELS

We have seen that for the IMS the mean fh.t is always bounded
below by 1/p;, for all proposal probabilities ¢. We shall prove that for
more general Metropolis kernels, the mean fh.t can be lower than 1/p;,
and thus show formally, what was otherwise clear intuitively, that, because
of its independence from the current state, the IMS kernel can be inferior
to other samplers in terms of speed of hitting a certain state.

Firstly, we recall that a Metropolis—Hastings kernel R, induced by a
proposal stochastic matrix Q can be written as R;; = Q;; min{l, Q;;p;/
(Qijpi)}, for any i # j (Hastings®).

Theorem 4.1. Let Q be a stochastic proposal matrix satisfying the
condition Qj; > p;,Vj#i. Then, for any initial distribution g, the Metrop-
olis—Hastings Markov chain that uses Q as a proposal matrix has the
property that

1_ .
ELr()]<1+—L vieg,
o

l

with equality for Q equal to the stationary matrix.

Proof. Let R be the Metropolis—Hastings kernel associated to the
proposal Q and the target probability p. Let i€ Q. As Q;; > p; and Q;; >
pj, it follows that R;; =min{Qj;, Qi;pi/p;} = pi,Vj #i. This implies that
1-Rj;<1—p; or R;.1,_1<1—p;. As the previous inequality holds true
for all j#i, we get that R_;1<(1— p;)1 or equivalently (I— R_;)1> p;1.

The inverse of I — R_; exists and it is equal to ), R™ and there-
fore (I— R_;)~' >0. This said, we can multiply the inequality (I— R_;)1>
pil by g¢_id—R_)~" and get g_;(I—R_)H™'1< (1 —gq;)/p; or finally,
EqQ[r(i)]g 14+ (1 —g;)/pi, where we have used formula (2.1) for the mean
fh.t when starting from g. We have equality if R;; = p;,Vj #i, which is
fulfilled if Q equals the stationary matrix. Naturally, there are also other
Q’s that accomplish equality, the condition being that either Q;; = p; or
Qij=pj.Vi#i. 0

Combining Theorems 3.4 and 4.1, one gets:

Corollary 4.2. For any initial distribution ¢ and Q satisfying the
assumption in Theorem 4.1,

EL[r()] <max{i, 1} <EgPlra),

Pi qi
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where we denoted by E;Ms[r(i )] the mean fh.t of the IMS kernel associ-
ated to g and p.

Proof. The proof is immediate since, obviously, 1 + (1 — ¢;)/p; <
max{1l/p;, 1/g;}, with equality if and only if ¢; = p; or, in other words, if
i 1s an exactly-informed state for gq. O

The above corollary thus gives a simple way to construct Metropolis—
Hastings samplers that would perform better than a corresponding IMS
sampler in terms of first hitting times.

It is worth noting that there are known examples of samplers that sat-
isfy the condition in Theorem 4.1. Such a sampler is the “Metropolized
Gibbs Sampler” (Lin©) or simply MGS. A recent application of this sam-
pler is described in Tu and Zhu.('D

For the MGS, the proposal matrix Q is defined as: Q;; =p;/(1— p;),
Vi # j which satisfies the above mentioned condition.

Interestingly, the MGS can also be viewed as a particular case of the
IMS. To see this, let us remark that after metropolizing Q through the
usual acceptance—rejection mechanism, one gets the transition kernel hav-
ing elements:

= if i <j,
Rij= I_Zk;ﬁiRki ifi:j,
pj [P .
=57 if i>j.

Without loss of generality, we assume that p; < py <---< p,. Now, if
we denote by ¢; :==p;/(1—p;),Vi<n and ¢,:=1-)",;_, gi, we note that R
has the same form as the IMS transition matrix corresponding to p and ¢
for wy <wjy <---<w,. Therefore, if using as initial distribution the newly
defined ¢, all the previous results pertaining to the IMS apply also to the
MGS.

Remark. The MGS is a modified Gibbs sampler, the main difference
being that it will never propose the current state. Thus, it travels through
the state space in a more efficient manner. However, a M-H acceptance
probability needs to be introduced to maintain the correct invariant distri-
bution. Rejections could still cause the sampler to stay in the same state.
Nevertheless, Liu® showed that the MGS is more efficient than the ordi-
nary Gibbs sampler in the sense that the asymptotic variance of the esti-
mators based on the Markov chain samples is smaller for the MGS than
for the Gibbs sampler. Thus, the expected gain in efficiency would justify
metropolizing the stationary probability p.
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A recent review of various types of “efficiency” definitions for MCMC
samplers as well as theoretical results linking these types of efficiency
notions can be found in Mira.®) Our approach is to consider the mean
first hitting time as an indicator of efficiency when the focus is on search-
ing for a few states through a finite state space.

5. GENERAL BOUNDS FOR EXPECTED F.H.TS FOR
METROPOLIS-HASTINGS KERNELS

It turns out that one can get lower and upper bounds on the expected
f.h.t for any Metropolis—Hastings kernel by a reasoning similar to the one
in Theorem 4.1 as shown with the result below.

Theorem 5.1. Let p and Q be the target probability and the pro-
posal matrix, respectively for a Metropolis—Hasting sampler. Let M =
max; ; Q;;/p; and m=min; ; Q;;/p; . We assume m >0. Then for any ini-
tial distribution ¢, the expected f.h.ts are bounded by

it — < pEL ()< pi+ — L, Vi
M m

Equality is attained if Q;; =p;,Vi, j.

Proof. The proof is similar to the one for Theorem 4.1 so it will
only be sketched. Firstly one shows that mp; < K;; <Mp; which then leads
to (mmp;))1 < A—K_;)1 < (Mp;)1, which in turn, by an argument analo-
gous to the one in Theorem 4.1, gives (1 —¢q;)/Mp; gq_i(I—K_i)—ll <
(1 — gij)/mp;. Now using the corresponding identity for expected f.h.t,
EqQ[r(i)]: 14+¢_iI—K_;)~'1, one immediately gets the result stated in
Theorem 5.1. 0

For some particular choices of ¢, the bounds can be made more
“concrete.” Two particular choices seem both intuitive and convenient:

) Qi:ZjO‘jQjS»Via (Qjaj=0
.. L max_,~ ji .

(i) ¢i= S max, 05 Vi.

It is immediate to check that both (i) and (ii) are valid probability dis-
tributions. The first one is just a linear combination of the elements on
the ith column, which in the particular case when the proposal does not
depend on the current state (the IMS), reduces to the proposal distribu-
tion for the IMS. The second distribution described above would use the
maximum value of the proposal matrix on each column as an initial step,
after normalization.
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Using them as initial distributions for the Markov chain and applying
Theorem 5.1 one can derive the corollary below:

Corollary 5.2. Within the setup from Theorem 5.1, the following
hold:

(1) If the initial distribution is given by (i) then 1/M < p; EqQ [t()]<
1/m,Vi.

(2) If the initial distribution is given by (ii), then max{1/n, 1/ M} <
PiEL[t()] < 1+1/m,Vi.

Proof. To prove (1), let us first notice that from the way M and m
where defined it follows that mp; <¢; < Mp;. Therefore

1—g; 1— Mp; 1
p1+712pi+—l=—

M M
and analogously
1—g; l—mp; 1
pit —L S py b P = —
m m m

which proves (1) by means of Theorem 5.1.
For (2), we first need to show that mp;/n <q; < Mp;, Vi. We note that

1=ZQ1k<Zm}axQﬂ(<ZI=n
k k k

Therefore,

man jS o man Qj,‘

i <max Qj;

S ymax; Qi
Hence mp;/n <q; < Mp;,Vi. Now, as for (2), one will get

i<171'EQ[T(1')]<1?71'-|-1p—lm/n<1+l
M 4 m m

The only thing left to prove is that p,-EqQ[r(i)] > 1/n. In order to
show this, we employ the second basic identity for the kernel K, which
is pK=p. If we denote by u the n —1 dimensional vector obtained from
row i of K after deleting component K;;, we can write p_;K_; + pju=p_;
or p_;(I—K_;)=p;u. We note that K;; < Q;; <max; Q;j <nq;,Vj. There-
fore, u <ng_; so p_i(I—K_;) < (np;)q—;. As before, it follows that p_;1 <
(npi)g—iA—K_)'1 or 1 — p; < (ap)(EZ[t ()] - 1). Hence p;EZ[t(i)]>
pi + (1 — p;)/n, implying that p; EqQ[r(i)] > 1/n which concludes the proof
of the corollary. 0
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Naturally, because of their generality the bounds developed in this
section are quite weak in general, as m and M can take very extreme val-
ues in practice, rendering the bounds useless for such cases.

6. CONCLUSION

We were able to perform a detailed first hitting analysis of one special
type of Metropolis—Hastings sampler, the Independence Metropolis Sam-
pler. More practical general non-independence Metropolis—Hastings sam-
plers seem to be too complex to allow for a detailed analysis. In the spirit
of this paper, such an analysis could only be done if the eigenstructure
of the kernel matrix would be available. This is typically not the case for
most of the practical applications. However, even when the eigenstructure
is unknown, insights into the behavior of mean first hitting time are pos-
sible, as seen in Theorem 4.1. Also, we have derived lower and upper
bounds for the expected first hitting time for general Metropolis—Hastings
algorithms. We are hoping that future work will allow obtaining better
bounds in the case of the tail distribution for the IMS and further for
more general cases. This would make our results more useful and amena-
ble for using them in practice.
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