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Abstract. Statistical analysis of images reveals two interesting properties: (i) invariance of image
statistics to scaling of images, and (ii) non-Gaussian behavior of image statistics, i.e. high kurtosis, heavy
tails, and sharp central cusps. In this paper we review some recent results in statistical modeling of
natural images that attempt to explain these patterns. Two categories of results are considered: (i) studies
of probability models of images or image decompositions (such as Fourier or wavelet decompositions),
and (ii) discoveries of underlying image manifolds while restricting to natural images. Applications of
these models in areas such as texture analysis, image classification, compression, and denoising are also
considered.
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1. Introduction

In recent years, applications dealing with static or dynamic images (movies) have become
increasingly important and popular. Tools for image analysis, compression, denoising,
transmission, and understanding have become widely involved in many scientific and
commercial endeavors. For instance, compression of images is important in transmission
or storage, and automatic recognition of people from their camera images has become
important for security purposes. Development of tools for imaging applications starts
with mathematical representations of images. Many of these applications need to “learn”
some image patterns or tendencies before the specific data can be analyzed. The area of
natural image statistics has resulted from efforts to observe, isolate, and explain patterns
exhibited by natural images. Lately, there has been a greater emphasis on explicit proba-
bility models for images. Perhaps one reason for that is the growing appreciation for the
variability exhibited by the images, and the realization that exact mathematical/physical
models may not be practical, and a statistical approach needs to be adopted. Any statis-
tical approach will need probability models that capture “essential” image variability and
yet are computationally tractable. Another motivation for pursuing image statistics has
been to understand sensory coding as a strategy for information storage/processing in
animal vision. An understanding of image statistics may provide clues to the architecture
of animal visual system (Simoncelli and Olshausen, 2001).

There are several paths to understanding image statistics. Even though images are
expressed as elements of a large vector space (e.g. the space of rectangular arrays of
positive numbers), referred to as the image space here, the subset of interesting images
is rather small and restricted. So one path is to isolate this subset, called an image
manifold here, and learn a simplistic probability model, such as a uniform or a Gaussian-
like model, on it. Given the image manifolds and probability distributions on them,
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statistical tools for imaging applications follow. The other path is to derive probability
models that are defined on the larger image space but put any significant mass only on
the image manifold. We have divided this paper along these two categories.

In search for statistical descriptions of images, mathematical and physical ideas are
not abandoned but are intimately involved. For example, harmonic analysis of image
intensities is used to decompose images into individual components that better lend
to the model building than the original images. Since image spaces are rather high
dimensional, and common density estimation techniques apply mostly to small sizes, one
usually starts by decomposing images into their components, and then learning lower
order statistics of these components individually. Also, imaging is a physical process
and physical considerations often contribute to the search for statistical descriptors in
some form. Physical models have been the motivation of many studies that have led to
interesting statistical characterizations of images.

This paper is laid out as follows: In Section 2 we start with a historical perspective on
spectral analysis of images and some discoveries that followed. An important achievement
was the discovery of non-Gaussianity in image statistics. In the next two sections we
present some recent results categorized into two sets: Section 3 studies probability models
for images decomposed into their spectral components, while Section 4 looks at methods
for discovering/approximating image manifolds for natural images. A few applications of
these methods are outlined in Section 5, and some open issues are discussed in Section
6.

2. Image Decompositions & Their Statistical Properties

For the purpose of statistical modeling, an image is treated as a realization of a spatial
stochastic process defined on some domain in IR2. The domain is assumed to be either a
(continuous) rectangular region or a finite, uniform grid. A common assumption in image
modeling is that the underlying image process is stationary, i.e. image probabilities are
invariant to translations in the image plane.

2.1. Classical Image Analysis

In case the image process is modeled as a second order spatial process, the spectral
analysis becomes a natural tool. Defining the covariance function, for two arbitrary pixel
values, as C(x) where x is the difference between two pixel locations, one can define
the power spectrum as P (w) =

∫
IR2 C(x)e−jwxdx, and where w denotes the 2D spatial

frequency. Since a Fourier basis is also an eigen basis for circulant matrices, which is the
case for C(x) under the stationarity assumption, Fourier analysis also coincides with the
popular principal component analysis (discussed later in Section 4). Also, the Fourier
representation guarantees uncorrelated coefficients. Images are then represented by their
Fourier coefficients, image statistics are studied via coefficient statistics, and one can
inherit a stochastic model on images by imposing a random structure on the Fourier
coefficients. Specification of means and covariances of the coefficients completely specifies
a second order image process. Early studies of spatial power spectra indicated that the
power P (w) decays as A

|w|2−η where |w| is the magnitude of the spatial frequency. This
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property, called the power law spectrum for images, was first observed by television
engineers in the 50’s (Kretzmer, 1952; Deriugin, 1956) and discovered for natural im-
ages in late 80s by (Field, 1987) and (Burton and Moorhead, 1987). As summarized in
(Mumford and Gidas, 2001), the value of η changes with the image types but is usually
a small number.

Although Fourier analysis is central to classical methods, other bases have found
popularity for a variety of reasons. For instance, in order to capture the locality of objects
in images, decomposition of images using a wavelet basis has become an attractive tool.
In particular, it is common to use Gabor wavelets (Gabor, 1946) for decomposing the
observed images simultaneously in space and frequency. In addition, Marr (Marr, 1982)
suggested using the Laplacian of Gaussian filter to model early vision. If one considers
images as realizations on a finite, uniform grid in IR2, the image space becomes finite-
dimensional, and one can linearly project images into low-dimensional subspaces that are
optimal under different criteria. Some of these linear projections are covered in Section
4. Once again image statistics are studied via the statistics of the projected coefficients.

2.2. Scale Invariance of Image Statistics

A discovery closely related to the power law is the invariance of image statistics when
the images are scaled up or down (Field, 1987; Burton et al., 1986). In other words, the
marginal distributions of statistics of natural images remain unchanged if the images
are scaled. The power law is a manifestation of the fractal or scale invariant nature
of images. By studying the histograms of the pixel contrasts (log(I(x)/I0)) at many
scales, Ruderman et al (Ruderman and Bialek, 1994) showed its invariance to scaling.
Independently, Zhu et al. (Zhu and Mumford, 1997) showed a broader invariance by
studying the histograms of wavelet decompositions of images. Ruderman (Ruderman,
1994; Ruderman, 1997) also provided evidence of scale invariance in natural images and
proposed a physical model for explaining them. Turiel et al. (Turiel and Parga, 2000)
investigated the multi-fractal structure of natural images and related it to the scale
invariance. Scaling of different types of scenes was studied by Huang (Huang, 2000). In
(Turiel et al., 2000), Turiel et al. showed that hyperspectral images (color images) also
demonstrate multiscaling properties and the statistics are invariant to scale. Scaling of
order statistics of pixel values in small windows was studied by Geman et al. (Geman
and Koloydenko, 1999). In addition to pixel statistics, scaling of topological statistics
obtained from morphological operations on images was demonstrated by Alvarez et al.
(Alvarez et al., 1999).

It must be emphasized that only the statistics of large ensembles of images are
scale invariant; statistics of individual images vary across scales. Theoretical models
that seek probabilistic description of image ensembles aim for scale invariance, while
application driven models that work with individual images aim to capture individual
image variability.

2.3. Non-Gaussianity of Marginal Statistics

Classical methods assume that images are second order processes but the observations
do not support this assumption. Higher order statistics of natural images were found
to exhibit interesting patterns and the researchers focused next on these higher order
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moments. One implication is that image statistics do not follow Gaussian distribution
and require higher order statistics. For example, a popular mechanism for decomposing
images locally - in space and frequency - using wavelet transforms leads to coefficients
that are quite non-Gaussian, i.e. the histograms of wavelet coefficients display heavy
tails, sharp cusps at the median and large correlations across different scales. To our
knowledge, Field (Field, 1987) was the earliest to highlight the highly kurtotic shapes
of wavelet filter responses. Mallat (Mallat, 1989) pointed out that coefficients of multi-
scale, orthonormal wavelet decompositions of images could be described by generalized
Laplacian density (given later in Section 3.2). This non-Gaussian behavior of images has
also been studied and modeled by Ruderman (Ruderman, 1994), Simoncelli & Adelson
(Simoncelli and Adelson, 1996), Moulin & Liu (Moulin and Liu, 1999), and Wainwright
(Wainwright and Simoncelli, 2000). Recent work of Thomson (Thomson, 2001) studies
the statistics of natural images using phase-only second spectrum, a fourth order statistic,
and demonstrates both the power law and the scale invariance for this statistic. In
fact, projection onto any localized zero-mean linear kernel seems to produce kurtotic
responses (Zetzsche, 1997). Huang (Huang, 2000) showed that images when filtered by
8×8 random mean-0 filters have distributions with high kurtosis, a sharp cusp at zero and
long exponential tails. This suggests a role for linear decompositions that maximize the
kurtosis or some another measure of non-Gaussianity. Such efforts (Bell and Sejnowski,
1997; Olshausen and Field, 1996; van Hateren, 1998) have resulted in bases that are
spatially oriented with (spatial) frequency bandwidths being roughly one octave, similar
to many multiscale decompositions. Similar results were obtained by minimizing the inde-
pendence of coefficients, under linear decompositions, leading to independent component
analysis (Cardoso, 1989; Comon, 1994; Hyvarinen et al., 2001). These observations justify
widespread use of orthonormal wavelets in general image analysis applications. Use of
Gabor wavelets is also motivated by the fact that the receptive fields of simple cells
in the visual cortex of animals have been found to resemble Gabor functions (Miller,
1994). Note, however, that most wavelet decompositions of images are based on sepa-
rable application of one-dimension filters, which leads to non-oriented (mixed diagonal)
subbands. Alternate representations that provide better orientation decomposition, and
thus higher kurtosis response, include (Daugman, 1985; Watson, 987a; Simoncelli et al.,
1992; Donoho and Flesia, 2001).

2.4. Non-Gaussianity of Joint Statistics

In addition to the non-Gaussian behavior of marginal statistics, a number of authors
have studied joint statistics of filter responses. In particular, the local structures present
in most images lead to dependencies in the responses of local linear operators. A study of
joint histograms of wavelet coefficients shows dependency across scales, orientations and
positions. Zetzsche and colleagues noted that the joint density of projections onto even-
and odd-symmetric Gabor filters have circular symmetry. If the density were Gaussian,
this would correspond to independent (correlated) marginals, but the highly kurtotic
marginals imply that the responses are strongly dependent (Wegmann and Zetzsche,
1990). Shapiro developed a heuristic method for taking advantage of joint dependencies
between wavelet coefficients that revolutionized the field of image compression (Shapiro,
1993). Simoncelli and colleagues studied and modeled the dependency between responses
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to pairs of bandpass filters and found that the amplitudes are strongly correlated, even
when the signed responses are not (Simoncelli, 1997; Buccigrossi and Simoncelli, 1999).
This is illustrated in Figure 1, which shows conditional histograms for several pairs of
coefficients. Note that unlike second-order correlations, these dependencies can not be
eliminated with a linear transform.
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Figure 1. Bivariate histograms of wavelet coefficients associated with different basis functions. Top row
shows contour plots, with lines at equal intervals of log probability. Left two cases are for different
spatial offsets (same scale and orientation), third is for different orientation (same scale and nearly same
position), and the rightmost corresponds to a pair at adjacent scales (same orientation and nearly same
position). Bottom row shows some conditional distributions: brightness corresponds to larger frequency.

Observed statistics of an image patch can be described by joint histograms of co-
efficients under several filters. For jointly Gaussian coefficients equiprobable contours
in joint histograms would all be ellipsoidal, but in the case of natural images the 2D
and 3D contour surfaces display striking polyhedra-like shapes. Huang (Huang, 2000)
showed that the peaks and cusps in the contours correspond to occurrences of simple
geometries in images with partially constant intensity regions and sharp discontinuities.
These results points to the ubiquity of “object-like” structures in natural images and
underline the importance of object-based models. Grenander (Grenander and Srivastava,
2001) also has attributed non-Gaussianity to the presence of objects in images and has
used that idea for model building. Lee et al. have shown that images synthesized from
occlusion models (Section 3.1) show irregular polyhedra-like shapes in contour surfaces
of histograms.

3. Emerging Statistical Models on Image Space

Earliest, and still widely used, probability models for images were based on Markov
random field models (MRFs) (Winkler, 1995). An image field is as a collection of random
variables, each denoting a pixel value on a uniformly spaced grid in the image plane. In
MRFs, the conditional probability of a pixel value given the remaining image is reduced
to a conditional probability given a neighborhood of that pixel. Efficiency results if
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the neighborhood of a pixel is small, and furthermore, stationarity holds if the same
conditional density is used at all pixels. Ising and Potts model are the simplest examples
of this family. Besag (Besag, 1974; Besag, 1986) expressed the joint density of image
pixels as a product of conditional densities, and ignored the normalizer to obtain a
pseudo-likelihood formulation. Clifford-Hammersely theorem, see for example (Winkler,
1995), states that full conditionals completely specify the joint density function (under
a positivity assumption) and enabled the analysis of images using a Gibbs sampler.
Geman and Geman (Geman and Geman, 1984) utilized the equivalence of MRFs and
Gibbs distributions to sample from these distributions. Kersten (Kersten, 1987) worked
on computing the conditional entropies of the pixel values, given the neighboring pixels
in an MRF framework. Zhu et al. (Zhu and Mumford, 1997) used a Gibbs model on
images and estimated model parameters using a minimax entropy criterion. Let H(I)
be a concatenation of the histograms of coefficients, under several wavelet bases, then
the maximum entropy probability takes the form: P (I|λ) ∝ e−<λ,H(I)>. The vector
λ is estimated by setting the mean histograms to equal the observed histograms, i.e.∫

H(I)P (Iλ)dI = Hobs, and reduces to the maximum likelihood estimation of λ under
P (Iobs|λ).

3.1. Models Motivated by Physics

A number of researchers have studied image statistics from a physical viewpoint, trying
to capture the phenomena that generates images in the first place. A common theme to
all these models is random placements of planar shapes (lines, templates, objects, etc)
in images according a Poisson process. Different models differ in their choice of shapes
(e.g. primitive versus advanced), and their interaction (e.g. some favor occlusion while
others favor superposition). Here we summarize a few of these models:
1. Superposition Models: In order to capture scale invariance and non-Gaussianity of
images, Mumford et al. (Mumford and Gidas, 2001) utilized a family of infinitely divisible
distributions. They showed that such distributions arise when images are modeled as
superpositions of random placements of objects. To achieve self-similarity, it was proposed
that the sizes of objects present in images be distributed according to density function
Zr−3 over a subset of IR+ (Z is the normalizing constant). Using this model, Chi (Chi,
1998) described a Poisson placement of objects with sizes sampled according to the
1/r3-law. Additionally, he assumed a surface process that models the texture variation
inside the 2D views of the objects. Grenander et al. (Bitouk et al., 2001; Grenander and
Srivastava, 2001) have also assumed that images are made up of 2D appearances of the
objects gis placed at homogeneous Poisson points zis. The objects are chosen randomly
from an object space (arbitrary sizes, shapes or texture). A weighted superposition, with
weights (or contrasts) given by independent standard normals ais, is used to form an
image; it allows for expressing the linearly filtered images as a superposition of filtered
objects. This formulation leads to an analytical (parametric) probability for individual
images with the final form given in Section 3.2.
2. Occlusion Models: In more sophisticated models, objects are placed randomly
as earlier but now the objects in the front occlude those in the back. An example
is the dead leaves (also called a random collage) model which assumes that images
are collages of approximately independent objects that occlude each other. One gen-
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erates images from the model by placing an ordered set of elementary 2D shapes gis
(in layers) at locations zis with sizes ris that are sampled from a probability density.
For gray level images, the random sets or “leaves” Ti = gi(z − zi) are furthermore
associated with intensities ai. The leaves are typically placed front-to-back 1 according

to I(i)(z) =

{
ai if z 6∈ Tj ,∀j < i

I(i−1)(z) otherwise
, where i = 1, 2, . . .. Left two panels in Figure

2 show two samples of a dead leaves model with elliptical and square random shapes,
respectively. The final model is defined in the limit limi→∞ I(i)(z), or equivalently, when
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Figure 2. Left two pictures: Two different versions of the dead leaves model with elliptical (left) and
square (middle) random shapes, respectively. Right panel: Derivative statistic and scaling of a dead leaves
model with disks distributed according to a cubic law of sizes. The curves correspond to the marginal
distribution of the differences between adjacent pixels after contrast normalization at four different scales
(N = 1, 2, 4, 8).

the finite image domain Ω ⊂ IR2 is completely covered. The dead leaves model dates back
to Matheron (Matheron, 1975) and Serra (Serra, 1982) in mathematical morphology.
They showed that the probability of any compact set K ⊂ Ω belonging to the same
leaf and not being occluded by other leaves equals the ratio E[ν(X0ªK̆)]

E[ν(X0⊕K̆)]
. Here, X0 is

the random shape used in the model, E[ν(·)] is the expected Lebesque measure, and
X0 ª K̆ = {x : x + K ∈ X0} and X0 ⊕ K̆ = {x : X0 ∩ (x + K) 6= ∅} represent the erosion
and the dilation, respectively, of X0 by K. Early applications of this model include studies
of inhomogeneous materials and the size distribution of grains in powder (Jeulin et al.,
1995). More recently, researchers have applied different versions of the dead leaves model
to natural scenes. In (Ruderman, 1997), Ruderman proposed that a random collage
description with statistically independent ‘objects’ can explain scaling of correlations in
images. Using an occluding object model and the difference function of hand-segmented
images, he infers a power law for the probability of two points belonging to the same
object. This result is consistent with (Alvarez et al., 1999) that uses level sets and the
original dead leaves formalism of Matheron and Serra. Here, Alvarez et al analyze the
morphological structure of natural images — in particular, the effect of occlusions on the
area, perimeter and intercept lengths of homogeneous, connected image regions.

Lee et al. (Lee and Mumford, 2001) have used a dead leaves model with statistically
independent objects and the measure of a marked Poisson process to show that 1/r3

1 see (Kendall and Thonnes, 1998) for a discussion on “forward” and “backward” dead leaves
algorithms
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power law in object sizes also leads to approximate full scale invariance when occlu-
sions are taken into account. Provided that synthesized images are block averaged, their
statistics match those observed in large data sets of calibrated natural images. Scale
invariance of histograms of filter responses, full co-occurrence statistics of two pixels,
and joint statistics of Haar wavelet coefficients are studied in this paper. Figure 2 (right
panel) shows a histogram of the derivative statistic, under scaling, in a dead leaves model
with smoothing.

In addition, there have been some analogies drawn from other sciences to explain self-
similarity of natural images. For example, Ruderman et al. (Ruderman, 1994; Ruderman
and Bialek, 1994) pointed to the statistics of turbulent flows. In (Turiel et al., 1998),
Turiel et al. formally connected the statistical modeling of turbulent flows to that of
images. In turbulent flows, if the second moment of the energy dissipation is proportional
to rτ for some τ , where r is the box size, then self-similarity holds. Using a measure based
on edges to compute energy dissipation in images, the authors showed self-similarity of
edge statistics.

3.2. Analytical Densities: Univariate Case

An important requisite of statistical models is that they be computationally efficient
for real-time, or near real-time, applications, and one obvious way to accomplish that is
via parametric densities. We want to represent statistical nature of images by means of
parametric densities, using only limited parameters. In this section, we discuss a general
family of parametric densities that seems to capture the variability in low-dimensional
representations of images. Rather than explaining scale-invariance of a large collection
of images, the goal here is to capture variability of individual images. For an image I and
a linear filter F , this section deals with characterizing the marginal density of the pixel
values in I ∗ F .
1. Generalized Laplacian model: Marginal densities of image coefficients are well
modeled by a generalized Laplacian density (also called generalized Gaussian or stretched
exponential) f1(x; c, p) = e−|x/c|p

Z1(p,c) , (Mallat, 1989; Simoncelli and Adelson, 1996; Moulin
and Liu, 1999), where the normalizer is Z1(p, c) = 2 c

pΓ(1
p). The parameters, {p, c}, may

be fit to the subbands of specific images using maximum likelihood or the method of
moments. Another way of estimating them is via the (linear) regression of log(log(h(x)+
h(−x))− 2 log(h(0))) versus log(|x|), where h(x) is the histogram value at x and x is the
variable for bin centers. Values for the exponent p are typically within the range [0.5, 0.8],
and the width parameter c varies monotonically with the size of the basis functions,
producing higher variance for coarser-scale components (Simoncelli and Adelson, 1996).
2. Gaussian Scale Mixtures: Observed statistics of filtered images have pointed to-
wards a rich family of univariate densities that are highly kurtotic and heavy tailed. In
statistics literature, there is a wide usage of the variables defined as normal variance-
mean mixture; X is called a normal variance-mean mixture if the conditional density
function of X given u is normal with mean µ + uβ and variance u∆, and u is called
the mixing variable. Generalized hyperbolic distributions were introduced by Barndorff-
Nielsen (Barndorff-Nielsen, 1977) as specific normal variance-mean mixtures that result
when the mixing variable u is of certain class. For µ = β = 0 and ∆ = 1, the resulting
family is also called Gaussian scale mixture (Andrews and Mallows, 1974) and has seen
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applications in financial mathematics (Bollerslev et al., 1994) and speech processing
(Brehm and Stammler, 1987). Furthermore, if u is a scaled Gamma density then Bessel
K density results.

Under Grenander’s formulation of a superposition model (item 1, Section 3.1), if the
random variable u(z) ≡ ∑n

i=1((gi ∗ F )(z − zi))2 is assumed to have a scaled-Gamma
density, then the univariate density of the filtered pixel has been shown in (Grenander
and Srivastava, 2001) to be: for p > 0, c > 0, f2(x; p, c) = 1

Z2(p,c) |x|p−0.5K(p−0.5)(
√

2
c |x|),

where K is the modified Bessel function of third kind, and Z2 is the normalizing constant.
(Its characteristic function is of the form 1/(1 + 0.5cω2)p which for p = 1 becomes the
characteristic function of a Laplacian density.) This parametric family of densities has
been called Bessel K forms with (p, c) referred to as Bessel parameters. Earlier, Wain-
wright et al. (Wainwright et al., 2001) also investigated the application of the Gaussian
scale mixture family to image modeling and referred to f2 as the symmetrized Gamma
density (without reaching its analytic, parametric form). As described in (Grenander
and Srivastava, 2001), p and c are easily estimated from the observed data, with p̂ =

3
SK(I(j))−3

and ĉ = SV(I(j))
p̂ , where SK is the sample kurtosis and SV is the sample

variance of the filtered image. A distinct advantage of this model is that parameters can
be related mathematically to the physical characteristics of the objects present in the
image. If a filter F is applied to an image I to extract some specific feature—vertical
edges, say—then, the resulting p has been shown in (Srivastava et al., 2002) to depend on
two factors: (i) distinctness and (ii) frequency of occurrence of that feature in I. Objects
with sharper, distinct edges have low p values, while scenes with many objects have large
p values.

Shown in Figure 3 are some examples of estimating this density function: natural
images from van Hateren databse are filtered using arbitrary Gabor filters (not shown),
and the resulting pixel values are used to form the histogram h(x). Bottom panels of this
figure show the plots of log(h(x)), log(f1(x)), and log(f2(x)) with parameters estimated
from the corresponding images.
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Figure 3. Estimated Bessel K and generalized Laplacian densities compared to the observed histograms
for the images in top. Plain lines are histograms, lines with large beads are Bessel K, and lines with small
beads are generalized Laplacian. These densities are plotted on a log scale.
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There are several ways to judge the performance of any proposed probability model.
The simplest idea is to compare the observed frequencies to the frequencies predicted by
the model, using any metric on the space of probability distributions. Two commonly
used metrics are the Kolmogorov-Smirnov distance: maxx∈IR | ∫ x

−∞(f1(y)− f2(y))dy| and
the Kullback-Leibler divergence:

∫
IR f1(x) log(f1(x)

f2(x))dx. Both the generalized Laplacian
and the Bessel K form perform well in capturing univariate image statistics under these
metrics. In general, for small values of p (sharper features and less number of objects in
image) the generalized Laplacian performs better while for larger p the Bessel K density
better matches the observed densities.

3.3. Bivariate Probability Models

So far we have discussed only univariate models but the complexity of observed images
points to statistical interactions of high orders. As a first extension, we look at the mod-
els for capturing pairwise interactions between image representations, i.e. the bivariate
probability densities. For instance, these models may involve a pair of wavelet coefficients
at different scales, positions, or orientations.
1. Variance Dependency and Gaussian Scale Mixtures: As described in Section
2.4, pairs of wavelet coefficients corresponding to basis functions at nearby positions,
orientations, or scales are not independent, even when the responses are (second-order)
decorrelated. Specifically, the conditional variance of any given coefficient depends quite
strongly on the values of surrounding coefficients (Simoncelli, 1997). As one considers
coefficients that are more distant (either in spatial position, orientation, or scale), the
dependency becomes weaker. This dependency appears to be ubiquitous, and may be
observed across a wide variety of image types.

What sort of probability model can serve to explain the observations of variance
dependency? One candidate is the Gaussian scale mixture model described earlier for
the univariate case. In this scheme, wavelet coefficients are modeled as the product
of a Gaussian random variable and a hidden “multiplier” random variable (same as
mixing variable u earlier) that controls the variance. To explain pairwise statistics shown
in Figure 1, one can prescribe a relationship between the hidden multiplier variables
of neighboring coefficients. That is, the hidden variables now depend on one another,
generating the variance scaling seen in the data. Modeling of this dependency remains
an ongoing topic of research. One possibility is to link these variables together in a
Markov tree, in which each multiplier is independent of all others when conditioned on
its parent and children in the tree (Wainwright et al., 2001).
2. Bivariate Extension of Bessel K Forms: The univariate Bessel K form has been
extended by Grenander to specify bivariate densities of the filtered images. The basic
idea is to model all linear combinations of the filtered pixels by Bessel K forms and
then invoke the Cramer-Wold device, see (Billingsley, 1995) for a definition, which states
that specification of densities of all linear combinations of a number of random variables
specifies uniquely their joint density. The use of the Cramer-Wold device here assumes
that there exists a 2D distribution whose Radon-like marginals (for half spaces, not
on lines) behave according to Bessel K densities. An imposition of Bessel K forms on
marginals seems to agree well with the data qualitatively but its performance remains
to quantified over large datasets.
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Let I1 = I ∗ F (1) and I2 = I ∗ F (2) for two wavelet filters F (1) and F (2), and for
a1, a2 ∈ IR, let J(a1, a2, z) ≡ a1I1(z) + a2I2(z). The Cramer-Wold idea is to compute
the characteristic functions of J(a1, a2, z), for all pairs (a1, a2), using Bessel parameter
estimation, and then take an inverse Fourier transform to obtain an estimate of the
joint density f(I1(z), I2(z)). This estimate is parametrized by eight joint moments:
µ0,2, µ1,1, µ2,0, µ4,0, µ3,1, µ2,2, µ1,3, µ0,4, where µi,j =

∫ ∫
Ii
1I

j
2f(I1, I2)dI1dI2. Shown in

Figure 4 is an example of this bivariate density estimation. For the image shown in
left, consider the bivariate density of its two filtered versions under two Gabor filters at
the same scale but orientations 20 degrees apart. Top two panels show the mesh and
the contour plots of the estimated density while the bottom panels show the observed
bivariate histogram. The densities are all plotted on a log scale.
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Figure 4. Bivariate extension of Bessel K form: For the image shown in left panel, the estimated (top)
and observed (bottom) bivariate densities plotted as meshes and contours, on a log scale.

4. Discovering Image Manifolds

It has been well highlighted that in the space of rectangular arrays of positive numbers,
only a small subset has images of natural scenes. One seeks to isolate and characterize
this subset for use in image analysis applications. The main idea is to identify this set as
a low-dimensional, differentiable manifold and use its geometry to characterize images.
Having defined this manifold, a simplistic probability model can help capture the image
variability. We now present a summary of some commonly used methods for estimating
image manifolds:
1. Approximating Image Manifolds by Linear/Locally-Linear Subspaces: Per-
haps the easiest technique to approximate the image manifold is to fit a linear subspace
through the observations. The fitting criterion will specify the precise subspace that is
selected. For example, if one intends to minimize the cumulative residual error (Euclidean
distance between the observation points and the subspace), then the optimal subspace
is the dominant (or principal) subspace of the data matrix, and is easily computed using
eigen decomposition or singular value decomposition. A common application of PCA is
in recognition of people from their facial images (Kirby and Sirovich, 1990) or study of
natural images (Hancock et al., 1992). Instead, if the goal is to minimize the statistical
correlation between the projected components, or to make them as independent as pos-
sible, then the independent component basis results (Comon, 1994; Bell and Sejnowski,
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1997; van Hateren, 1998). Other criteria lead to similar formulations of the subspace basis
such as sparsity (Olshausen and Field, 1997), Fisher discrimination (Belhumeur et al.,
1997), and non-negative factorization (Lee and Seung, 1999). The use of sparseness is
often motivated by the scale invariance of natural images.

Approximating the image manifold by a flat subspace is clearly limiting in general
situations. In (Zetzsche and Rohrbein, 2001), the authors argue that linear processing
of images leaves substantial dependencies between the components, and a nonlinear
technique is required. One extension is to seek a “local linear embedding” approxima-
tion of the image manifold by fitting neighboring images by low dimensional subspaces
(Roweis and Saul, 2000; Tenenbaum et al., 2000). Definition of a neighborhood is through
Euclidean metric but that deserves further study. Another idea is to combine local basis
elements, such as wavelet bases, into higher level structures that provide a better repre-
sentation of the image manifold. For instance, Zhu et al (Zhu et al., 2002) have combined
placements of transformed basis elements to form structures called textons in order to
better characterize images and their manifolds. Shown in the left panel of Figure 5 is an
example of building a “star” texton to match the given image.
2. Deformable Template Characterization of Image Manifold: Grenander’s pat-
tern theoretic framework for image understanding is motivated by physical models and
leads to probabilistic, algebraic representations of scenes. Objects appearing in the scenes
are represented by 3D models of shape, texture, and reflectivity, and their occurrences in
scenes are captured by group transformations on the typical occurrences or templates.
A strong feature of this approach is the logical separation between the actual, physical
scenes and the resulting images. Variability of scenes is better modeled in a 3D coordinate
system as it is guided by the physical principles, rather than the image space where the
Euclidean representations do not work well. Since the two, 3D scenes and 2D images,
are related by a projection (orthographic or perspective) map, manifolds formed by
images can be generated by projecting the manifolds formed using 3D representations.
As described in (Grenander, 1993; Miller and Younes, 2002), occurrences of physical
objects in 3D system are modeled as the orbits of groups acting on the configurations of
objects in the scenes. These orbits are projected into the image space to form manifolds
on which the images lie. Let Cα be a CAD model of a 3D object labeled by α and let S be
the group of transformations (3D rotation, translation, deformation, etc.) that change
the object occurrences in a scene. Let, for s ∈ S, sCα denote the action of s on the
template. Then, {sCα : s ∈ S} is a 3D orbit associated with object α. Further, if T is
the imaging projection from a 3D scene to the image plane, then {T (sCα) : s ∈ S} is the
image manifold generated by this object, and dimension of this image manifold equals
dim(S). Geometry of this manifold, such as the tangent spaces or the exponential maps,
can also be obtained by projecting their counterparts in the bigger space.
3. Empirical Evidence of Manifolds for Image Primitives: In contrast to a physical
specification, as advocated by the deformable template theory, one can also study image
manifolds directly using the observed images. This image based search is also inspired
by Marr’s idea ((Marr, 1982)) of representing early vision by converting an array of raw
intensities into a symbolic representation — a so called “primal sketch” — with primitives
such as edges, bars, blobs and terminations as basic elements. An important issue in com-
puter and human is: How are Marr’s primitives represented geometrically and statistically
in the state space of image data? As stated in (Pedersen and Lee, 2002; Lee et al., 2002),
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the geometrical model that arises from Marr’s hypothesis is a set of continuous manifolds
of the general form M(s) = [F (1)(·) ∗ sCα, F (2)(·) ∗ sCα, . . .], F (j)(j = 1, . . . , n) form a
bank of filters, and sCα is an image of a primitive α parameterized by s ∈ S. Dimension
of resulting image manifold M(s) is determined by an intrinsic dimensionality of the
primitives; it is usually a small number (2 for contrast-normalized edges, 3 for bars and
circular curves etc.). Furthermore, the manifolds generated by planar primitives form
an hierarchical structure: The 2D manifold of straight edges, for example, is a subset of
both the 3D manifold of bars and the 3D manifold of circular edges.

In (Lee et al., 2002), Lee et al. found that the state space of 3 × 3 natural image
patches is extremely sparse with the patches densely concentrated around a non-linear
manifold of blurred edges. For the top 20% highest contrast patches in natural images,
half of the data lie within a neighborhood of the edge manifold that occupies only 9%
of the total volume. Estimated probability density, as a function of the distance to the
manifold, takes the form f(dist) ∼ 1/distβ with β = 2.5; it has an infinite density at
the image manifold where dist = 0. The paper (Pedersen and Lee, 2002) extends these
results by considering filtered patches with the filters being (up to third order) derivatives
of Gaussian kernels. Figure 5 right panel shows the estimated probability density as a
function of the distance to the edge manifold for multiscale representations of natural
images. The density is approximately scale invariant and seems to converge toward the
functional form p(dist) ∼ 1/dist0.7.
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Figure 5. Left panel: To model an image of stars, some wavelet bases are combined to form a star
texton. Right Panel: Natural images have an infinite probability density at a manifold in state space
that corresponds to blurred edges. The figure shows the empirical probability density as a function of
the distance to the manifold of Gaussian scale-space edges in jet space, with curves corresponding to jet
representations of natural images at scales s = 1, 2, 4, 8, 16, 32.
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5. Applications of Statistical Models

Main reason for developing formal statistical models is to apply them in image process-
ing/analysis applications. There is a large array of applications that continually benefit
from advances in modeling of image statistics. Here we have selected an important subset:
1. Texture Synthesis: Use of newer statistical models has revolutionized the area of
texture analysis. In 1980 Faugeras et al. (Faugeras and Pratt, 1980) suggested using the
marginals of filtered images for texture representations. Bergen et al (Bergen and Landy,
1991), Chubb et al. (Chubb et al., 1994), and Heeger et al. (Heeger and Bergen, 1995)
also advocated the use of histograms. Zhu et al. (Zhu et al., 1997) showed that marginal
distributions of filtered images, obtained using a collection of filters, sufficiently char-
acterize homogeneous textures. Choice of histograms implies that only the frequencies
of occurrences are retained and the locations are discarded. Exploiting periodicity of
these textures, one extracts features using wavelet decompositions at several scales and
orientations, and uses them to represent images. Many schemes have been proposed, two
of them are: (i) Julesz ensemble that impose equivalence on all images that lead to the
same histograms, and (ii) Gibbs model stated earlier in Section 3. Shown in Figure 6 are
some examples of texture synthesized under these models: the top row shows the real
images and the bottom row shows corresponding synthesized textures. It must be noted
that this synthesis framework holds well even when the raw histograms are replaced by
parametric analytical forms, as shown in (Srivastava et al., 2002).

Figure 6. Texture synthesis using Julesz ensemble model (first two columns) and the Gibbs model (last
two columns). Top panels: observed real images and bottom panels: synthesized images.

Beyond the use of marginals, Portilla et al. (Portilla and Simoncelli, 2000) developed
a model based on a characterization of joint statistics of filter responses. Specifically,
they measured the correlations of raw coefficients as well as the correlations of their
magnitudes, and developed an efficient algorithm for synthesizing random images, subject
to these constraints, by iteratively updating the image and forcing the constraints.
2. Image Compression: Compression seems to be a natural application for emerging
statistical image models. In a typical implementation, the image is decomposed using a
linear basis, the coefficients of this representation are quantized to discrete values, and
these values are then efficiently encoded by taking advantage of their relative probability
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of occurrence. In this context, the statistical models considered here provide estimates
of these probabilities. Most widely used compression scheme for images is the JPEG
standard, which is based on a block-by-block frequency decomposition. In early 80s,
it was recognized that multi-scale wavelet-style representations offer more flexibility
and better compression performance (Burt and Adelson, 1983; Vetterli, 1984). Early
coders were based on marginal models of coefficients, but this changed abruptly with
the development of the first contextual coder by Shapiro (Shapiro, 1993). This coder,
and many that followed (Rinaldo and Calvagno, 1995; Chrysafis and Ortega, 1997), took
heuristic advantage of the joint statistical properties of wavelets. Some subsequent coders
have been based more explicitly on such models (LoPresto et al., 1997; Buccigrossi and
Simoncelli, 1999).
3. Image Classification: An interesting application is to classify images into some
pre-defined categories. If certain lower order statistics of images are found sufficient for
this purpose, some level of efficiency can be achieved. We start the discussion with the
classical methods for classification.

− Multiple Hypothesis Testing: A classical technique for classification, given the
probability models associated with the classes, is hypothesis selection (Grenander
et al., 2000). Given an observation, the goal is to select the hypothesis that is
most likely to have generated that observation. Let H1, H2, . . . , Hn correspond to
the n image classes, and let P (I|Hi) be the likelihood of image I belonging to
class Hi, then hypothesis selection can be accomplished as a sequence of binary

hypothesis tests: P (I|Hi)
P (I|Hj)

Hi

>
<
Hj

νij , where νij is a threshold value generally taken to be

one. Neyman-Pearson lemma provides optimality to hypothesis testing in a certain
sense. In case of a Bayesian selection, the threshold νij is given by the ratio of
priors νi,j = P (Hj)/P (Hi). For all these tests, one needs the likelihood function
P (I|Hi) which will depend upon the choice of statistical models. For example, if a
parametric form is chosen to model the image probability, then the classes can be
directly related to the parameter values. Typical values (“average values”) of the
parameter represent a class and the likelihood P (I|Hi) is written in the parametric
form with the typical parameter values for each class. Deformable templates (Section
4), has been successfully applied to object recognition. The inference is obtained by
hypothesis testing for α in presence of nuisance variables s ∈ S. Here, the likelihood is
computed via the nuisance integral P (I|Hi) =

∫
S P (I, s|Hi)γ(ds). Nuisance variable

estimation on a group S and estimation error bounds are derived in (Grenander
et al., 1998), while the hypothesis testing for α and recognition error bounds are
derived in (Grenander et al., 2000).

− Metrics for Image Comparison: A broader goal in image analysis is to quan-
tify differences between two given images. Given such a metric one can perform
image clustering, image retrieval, image classification, and even recognition of ob-
jects in given images. If the probability models are parametric, one can derive a
distance measure on the image space that takes a parametric form. If f(x|p1, c1)
and f(x|p2, c2) are two univariate density functions parameterized by (p1, c1) and
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(p2, c2) respectively, then the distance measure takes the form: d(p1, c2, p2, c2) =
d̃(f(x|p1, c1), f(x|p2, c2)), where d̃ is a metric on the space of univariate densities.
Several forms have been proposed for d̃ including geodesic length (Riemannian
metric), Earth Mover’s distance (Cohen and Guibas, 1999), Kullback-Leibler di-
vergence, Renyi’s α-divergence (Hero et al., 2001), Jensen-Renyi divergence (He
et al., 2002; Hamza et al., 2001), χ2-distance, and the Lp norm for p = 1, 2, . . . ,.
The choice of metric depends upon the application and the desired computational
simplicity. Srivastava et al. (Srivastava et al., 2002) have derived a parametric form
of L2 metric between two Bessel K forms. Two densities can be compared directly
using their estimated parameters without requiring to compute full histograms.

4. Image Denoising: A common approach here is to decompose image into bands of
spatial frequency and to threshold the coefficients after some nonlinear transformation,
proposed first by Bayer et al. (Bayer and Powell, 1986) and later by Donoho (Donoho,
1995). The nonlinear transformation is used essentially to shrink all wavelet coefficients
towards zero. This shrinking is based on thresholding which can implemented as a hard
threshold or a soft threshold. For applying statistical approaches, such as Bayesian or
MAP techniques, an explicit prior model on the image pixels is required. Simoncelli et al.
(Simoncelli and Adelson, 1996) studied image denoising in a Bayesian framework while
Moulin et al. (Moulin and Liu, 1999) reported the use of generalized Laplacian models
in statistical denoising approaches. The fact that statistics of decomposed images are
easier to characterize, than that of the original images, has led to many pyramid-based
approaches to image denoising. Images are decomposed into multi-scale representations
and statistics of coefficients are used for denoising (Leporini et al., 1999; Portilla et al.,
2001; Simoncelli, 1999) in individual frequency bands. Also, the Gaussian scale mixture
model for joint statistics can be used in a Bayesian framework (Portilla et al., 2001),
producing results that are significantly better than those achieved with a marginal model.
5. Other Applications: There are a number of other image analysis/synthesis applica-
tions that have benefited from statistical ideas. (Yendrikhovskij, 2001) uses a clustering
of color statistics to model the perceived color environment and to compute categories of
coloring. A bidirectional radiosity distribution function (BRDF) of an object completely
specifies its appearance under arbitrary illumination conditions. Dror et al. (Dror et al.,
2001) have shown that statistics of these illumination maps are similar to the statistics
of natural images, and hence the proposed image models can apply there as well (Weiss,
2001).

6. Discussion

In this paper we have discussed some recent advances in statistical modeling of natural
images. Not only these models provide a better match than the traditional models but
also have lead to significant improvements in a number of imaging applications.

Although substantial progress has been made over the past twenty years in under-
standing complex statistical properties of natural images, we are still quite far from a
full probability model. For example, samples drawn from existing models are unable to
capture the variety and complexity of real world images, except in the restricted case of
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homogeneous textures. Beyond univariate and bivariate densities of the image statistics,
the computational complexity increases exponentially. An important question is: In the
context of a specific imaging application, say face recognition from video images, what
order densities are required to ensure a reasonable success? For homogeneous textures,
univariate models have been successful but how much more is needed for more general
applications. The notion of sufficient statistics needs to be made precise for different
application contexts. Even among the proposed models, several issues remain open. For
instance, one issue in dead leaves model is how to incorporate texture and dependencies
of objects. At this point, there are few analytical results for realistic dead leaves models.

Many of the models described in this paper model statistics of an ensemble of images;
their applications for analysis of individual images needs to be clarified.

Beyond applications, such as synthesis and compression of images, an important
reason for developing statistical models is image understanding, an area with many
outstanding problems. One such problem is: Given an image outside a rectangle, find
the most probable interpolation of it inside of the rectangle. Lack of Markovity disallows
the classical harmonic analysis, and points to more powerful pattern-theoretic structures
underlying the image ensembles.
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