

Learning Social Affordance for Human-Robot Interaction Tianmin Shu¹ M. S. Ryoo² Song-Chun Zhu¹

¹Center for Vision, Cognition, Learning, and Autonomy, UCLA ²Indiana University, Bloomington

Introduction

Objective:

Learning explainable knowledge from the noisy observation of human interactions in RGB-D videos to enable human-robot interactions.

Key idea:

Beyond traditional object and scene affordances, we propose a weakly supervised learning of social affordances for HRI.

Learning

Goal:

Obtain the optimal joint selection and grouping Z_c and interaction parsing results $\mathcal{G} = \{G^n\}_{n=1,...,N}$ by maximizing the joint probability.

Algorithm:

Initialization Skeleton clustering for initial sub-event parsing **Outer loop**

A Metropolis-Hasting algorithm for latent sub-event parsing Dynamics: splitting/merging/relabeling

Inner loop A Gibbs sampling for our modified CRP

$$z_{ai}^{s} \sim p(\mathcal{G}|Z_{c}')p(z_{ai}^{s}|Z_{-ai}^{s}) \\ \begin{cases} \beta \frac{\gamma}{M-1+\gamma} & \text{if } z_{ai}^{s} > 0, M_{z_{ai}^{s}} = 0 \\ \beta \frac{M_{z_{ai}}^{s}}{M-1+\gamma} & \text{if } z_{ai}^{s} > 0, M_{z_{ai}^{s}} = 0 \end{cases}$$

Contributions:

- First formulation and hierarchical representation of social affordance
- Weakly supervised learning from noisy skeleton input
- Efficient motion synthesis based on learned hierarchical affordances

Model

$\begin{pmatrix} M - 1 + \gamma & a_i & \gamma & \gamma_{a_i} \\ 1 - \beta & \text{if } z_{a_i}^s = 0 \end{pmatrix}$

Motion Synthesis

Goal: Given the initial 10 frames (25 fps), synthesize the motion of an agent given the motion of the other agent and the interaction type.

Algorithm:

At time t,

Synthesized agent

Human agent

-) Estimate the current sub-event by DP
- 2) Predict the ending time t' and the corresponding joint positions
- 3) Obtain the joint positions at t + 5 through interpolation

Experiment

UCLA Human-Human-Object Interaction Dataset

- Five types of interactions; on average, 23.6 instances per interaction performed by totally 8 actors. Each lasts 2-7 s presented at 10-15 fps.
- RGB-D videos, skeletons and annotations are available: <u>http://www.stat.ucla.edu/~tianmin.shu/SocialAffordance</u>

Examples of discovered latent sub-events and their sub-goals

Shake Hands	High-Five	Throw and Catch	Pull Up	Hand Over a Cup

sub-event transition sub-event prior

 $p(\{J^t\}_{t\in\mathcal{T}}|Z^s, s, c) = \Psi_g(\{J^t\}_{t\in\mathcal{T}}, Z^s, s)\Psi_m(\{J^t\}_{t\in\mathcal{T}}, Z^s, s)$

$p(Z_c) = \prod_{s \in \mathcal{S}} p(Z^s | c)$

For one instance of category c: $p(G, Z_c) = p(G|Z_c)p(Z_c)$

For *N* training examples of category *c* ($\mathcal{G} = \{G^n\}_{n=1,...,N}$):

 $p(\mathcal{G}, Z_c) = p(Z_c) \prod_n^N p(G^n | Z_c)$

Exp 1: Average joint distance in meters (compared with GT skeletons)

Method	Shake Hands	Pull Up	High-Five	Throw Catch	Hand Over	Average
HMM	0.362	0.344	0.284	0.189	0.229	0.2816
V1	0.061	0.144	0.079	0.091	0.074	0.0899
V2	0.066	0.231	0.090	0.109	0.070	0.1132
Ours	0.054	0.109	0.058	0.076	0.068	0.0730

Exp 2: User study (14 subjects)

Q1: Successful? Q2: Natural? Q3: Human vs. robot? From 1 (worst) to 5 (best)

	Source	Shake Hands	Pull Up	High-Five	Throw & Catch	Hand Over	
Q1	Ours	4.60 ± 0.69	3.90 ± 0.70	4.53 ± 0.30	4.31 ± 0.89	4.40 ± 0.37	
	GT	4.50 ± 0.82	4.29 ± 0.58	4.64 ± 0.33	4.20 ± 0.76	4.64 ± 0.30	
Q2	Ours	$\textbf{4.23} \pm 0.34$	2.80 ± 0.75	3.70 ± 0.47	4.06 ± 0.83	3.89 ± 0.38	
	GT	4.20 ± 0.47	4.23 ± 0.48	4.64 ± 0.17	3.86 ± 0.53	4.24 ± 0.46	C
Q3	Ours	4.23 ± 0.50	2.63 ± 0.60	3.57 ± 0.73	4.03 ± 0.88	3.69 ± 0.64	
	GT	4.30 ± 0.60	3.71 ± 1.15	4.40 ± 0.63	3.97 ± 0.74	4.40 ± 0.24	

 S_2

t t + 5 t'

 $\frac{\overline{4}}{\overline{4}}$ Frequencies of high scores (4 or 5) for Q3

Synthesis Examples

Acknowledgment

This research has been sponsored by grants DARPA SIMPLEX project N66001-15-C-4035 and ONR MURI project

