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Objective:
Learning explainable knowledge from the noisy observation of human
interactions in RGB-D videos to enable human-robot interactions.
Key idea:
Beyond traditional object and scene affordances, we propose a weakly
supervised learning of social affordances for HRI.
Contributions:
• First formulation and hierarchical representation of social affordance
• Weakly supervised learning from noisy skeleton input
• Efficient motion synthesis based on learned hierarchical affordances

Introduction
Goal:
Obtain the optimal joint selection and grouping and interaction parsing
results by maximizing the joint probability.
Algorithm:
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For one instance of category c:

Inner loop A Gibbs sampling for our modified CRP

Initialization Skeleton clustering for initial sub-event parsing

Motion Synthesis
Goal: Given the initial 10 frames (25 fps), synthesize the motion of an agent
given the motion of the other agent and the interaction type.
Algorithm:
At time ,
1) Estimate the current sub-event by DP
2) Predict the ending time and the corresponding joint positions
3) Obtain the joint positions at through interpolation

Experiment
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Exp 2: User study (14 subjects)
Q1: Successful? Q2: Natural? Q3: Human vs. robot?
From 1 (worst) to 5 (best)
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Exp 1: Average joint distance in meters (compared with GT skeletons)

Examples of discovered latent sub-events and their sub-goals

Synthesis Examples

Frequencies of high
scores (4 or 5) for Q3
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For N training examples of category c ( ) :G = {Gn}n=1,...,N
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UCLA Human-Human-Object Interaction Dataset
• Five types of interactions; on average, 23.6 instances per interaction 

performed by totally 8 actors. Each lasts 2-7 s presented at 10-15 fps.
• RGB-D videos, skeletons and annotations are available: 

http://www.stat.ucla.edu/~tianmin.shu/SocialAffordance
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