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Abstract

This article proposes an active basis model and a shared
pursuit algorithm for learning deformable templates from
image patches of various object categories. In our genera-
tive model, a deformable template is in the form of an active
basis, which consists of a small number of Gabor wavelet
elements at different locations and orientations. These el-
ements are allowed to slightly perturb their locations and
orientations before they are linearly combined to generate
each individual training or testing example. The active ba-
sis model can be learned from training image patches by
the shared pursuit algorithm. The algorithm selects the el-
ements of the active basis sequentially from a dictionary
of Gabor wavelets. When an element is selected at each
step, the element is shared by all the training examples, in
the sense that a perturbed version of this element is added
to improve the encoding of each example. Our model and
algorithm are developed within a probabilistic framework
that naturally embraces wavelet sparse coding and random
field.

1. Introduction

1.1. Model, algorithm and theory

The concept of deformable templates [10] is an impor-
tant element in object recognition. In this article, we present
a generative model and a model-based algorithm for learn-
ing deformable templates from image patches of various
object categories. The machinery we adopt is the wavelet
sparse coding model [7] and the matching pursuit algorithm
[5]. Our method is a very simple modification of this ma-
chinery, with the aim of coding specific ensembles of image
patches of various object categories.

We call our model the active basis model, which repre-
sents a deformable template in the form of an active basis.
An active basis consists of a small number of Gabor wavelet
elements at different locations and orientations, and these
elements are allowed to slightly perturb their locations and
orientations before they are linearly combined to generate

Figure 1. Active basis formed by 60 Gabor wavelet elements. The
first plot displays the 60 elements, where each element is repre-
sented by a bar. For each of the other 7 pairs, the left plot is the
observed image, and the right plot displays the 60 Gabor wavelet
elements resulting from locally shifting the 60 elements in the first
plot to fit the corresponding observed image.

each individual training or testing example.
Figure (1) illustrates the basic idea. It displays 7 im-

age patches of cars at the same scale and in the same pose.
These image patches are defined on a common image lat-
tice, which is the bounding box of the cars. These image
patches are represented by an active basis consisting of 60
Gabor wavelet elements at different locations and orienta-
tion, as displayed in the first plot of figure (1). Each wavelet
element is represented symbolically by a bar at the same lo-
cation and with the same length and orientation. The length
of each element is about 1/10 of the length of the image
patch. These elements are automatically selected from a
dictionary of Gabor wavelet elements at a dense collection
of locations and orientations. The selected elements do not
have much overlap and are well connected. They form a
template of the training image patches.

The 60 elements of the active basis in the first plot are
allowed to locally perturb their locations and orientations
when they are linearly combined to encode each training
or testing example, as illustrated by the remaining 7 pairs
of plots of figure (1). For each pair, the left plot displays
the observed car image, and the right plot displays the 60



Gabor wavelet elements that are actually used for encoding
the corresponding observed image. These 60 elements are
perturbed versions of the 60 elements of the active basis dis-
played in the first plot, so these elements form a deformed
template. The deformation of the template is encoded by
the local perturbations of the elements of the active basis.

The active basis can be learned from training image
patches by a shared pursuit algorithm. The algorithm se-
lects the elements of the active basis sequentially from the
dictionary of Gabor wavelets. When an element is selected
at each step, the element is shared by all the training ex-
amples in the sense that a perturbed version of this element
is added to improve the encoding of each example. It is
worth noting that for the last two examples in figure (1), the
strong edges in the background are not encoded, because
these edges are not shared by other examples. Therefore
they are ignored by the shared pursuit algorithm.

Our model and algorithm are developed within a theoret-
ical framework that naturally embraces sparse coding and
random fields. Specifically, we rewrite the sparse coding
model so that the probability distribution of the image in-
tensities can be rigorously defined in terms of tilting a sta-
tionary random field by a probability ratio term involving
the sparse coding variables.

1.2. Contributions and past work

The contributions of this paper are: (1) An active basis
model for representing deformable templates. (2) A shared
pursuit algorithm for learning deformable templates. (3) A
theoretical framework that integrates sparse coding and ran-
dom fields.

To credit past work, the active basis model is inspired
by the biologically motivated schemes of Riesenhuber and
Poggio [8] and Mutch and Lowe [6]. The difference is that
we keep track of the deformation of the active basis and
maintain the linear additive representation. The shared pur-
suit algorithm is inspired by the adaboost method of Viola
and Jones [9]. The difference is that we work within the
framework of generative model. The name “active basis”
is clearly derived from “active contours” [4] and “active ap-
pearance model.” [1] The difference is that our method does
not involve control points. Or more precisely, the elements
of the active basis play the double role of both control points
and linear basis vectors. Lastly, our work is a revision of the
texton model [11].

2. Active basis representation

2.1. A dictionary of Gabor wavelets

A Gabor function is of the form: G(x, y) ∝
exp{−[(x/σx)2 + (y/σy)2]/2}eix. We can translate, ro-
tate, and dilate G(x, y) to obtain a general form of Ga-
bor wavelets: Bx,y,s,α(x′, y′) = G(x̃/s, ỹ/s)/s2, where

x̃ = (x′ − x) cos α − (y′ − y) sin α, ỹ = (x′ − x) sin α +
(y′ − y) cos α. s is the scale parameter, and α is the orien-
tation. The central frequency of Bx,y,s,α is ω = 1/s.

We normalize the Gabor sine and cosine wavelets to have
zero mean and unit l2 norm. For an image I, the projec-
tion coefficient of I onto Bx,y,s,α or the filter response is
〈I, Bx,y,s,α〉 =

∑
x′,y′ I(x′, y′)Bx,y,s,α(x′, y′).

Let {(Im(x, y), (x, y) ∈ D),m = 1, ...,M} be a sample
of training image patches defined on a domain D of rectan-
gular lattice, and D is the bounding box of the objects of the
same category and in the same pose. Our method is scale
specific. We fix s so that the length of Bx,y,s,α (e.g., 17
pixels) is about 1/10 of the length of D.

The dictionary of Gabor wavelet elements is Ω =
{Bx,y,s,α,∀(x, y, s, α)}, where (x, y, s, α) are densely dis-
cretized: (x, y) ∈ D with a fine sub-sampling rate (e.g.,
every 2 pixels), and α ∈ {kπ/K, k = 0, ...,K − 1} (e.g.,
K = 15).

2.2. Active basis

The backbone of the active basis model is

Im =
n∑

i=1

cm,iBm,i + εm, (1)

Bm,i ≈ Bi, i = 1, ..., n. (2)

where Bi ∈ Ω, Bm,i ∈ Ω, and (cm,i, i = 1, ..., n) are
coefficients. To define Bm,i ≈ Bi, suppose

Bi = Bxi,yi,s,αi
, (3)

Bm,i = Bxm,i,ym,i,s,αm,i
, (4)

then Bm,i ≈ Bi if and only if there exists (dm,i, δm,i) such
that

xm,i = xi + dm,i sin αi, (5)

ym,i = yi + dm,i cos αi, (6)

αm,i = αi + δm,i, (7)

dm,i ∈ [−b1, b1], δm,i ∈ [−b2, b2]. (8)

That is, we allow Bi to shift its location along its normal di-
rection, and we also allow Bi to shift its orientation. b1 and
b2 are the bounds for the allowed displacement in location
and turn in orientation (e.g., b1 = 6 pixels, and b2 = π/15).

In the above notation, the deformable template is the ac-
tive basis B = (Bi, i = 1, ..., n). The deformed template
or the activated basis is Bm = (Bm,i, i = 1, ..., n) ≈ B.
See figure (1) for illustration.

2.3. Shared matching pursuit for least squares

Given the examples {Im,m = 1, ...,M}, we can
learn the template B and its deformed versions {Bm ≈



B,m = 1, ...,M}. We may use the least squares crite-
rion

∑M
m=1 ‖Im−

∑n
i=1 cm,iBm,i‖2 to drive the following

shared matching pursuit algorithm.

(0) For m = 1, ...,M , let εm ← Im. Let i← 1.

(1) For each putative candidate Bi ∈ Ω, do the following:
For m = 1, ...,M , choose the optimal Bm,i that max-
imizes |〈εm, Bm,i〉|2 among all possible Bm,i ≈ Bi.
Then choose that particular candidate Bi with the max-
imum corresponding

∑
m |〈εm, Bm,i〉|2.

(2) For m = 1, ...,M , let cm,i ← 〈εm, Bm,i〉, and let
εm ← εm − cm,iBm,i.

(3) Stop if i = n. Otherwise let i← i + 1, and go to (1).

In this article, we choose to adopt the more general prob-
abilistic formulation, where the least squares criterion is a
special case of the log-likelihood.

3. Probabilistic formulation

With the active basis representation (1) and (2) as the
backbone, we can put probability distributions on the vari-
ables in the representation in order to construct a generative
model. With such a model, learning can be based on likeli-
hood.

3.1. Rewriting sparse coding model

Given template B = (Bi, i = 1, ..., n), we assume that
(dm,i, δm,i) ∼ uniform(∆ = [−b1, b1] × [−b2, b2]) in or-
der to generate the deformed template Bm = (Bm,i, i =
1, ..., n) according to (3)-(8).

Given deformed template Bm = (Bm,i, i = 1, ..., n),
we need to specify the distribution of the foreground coeffi-
cients cm = (cm,i, i = 1, ..., n), and the distribution of the
background residual εm, in order to generate Im according
to (1). The commonly assumed model is

(cm,1, ..., cm,n) ∼ g(cm,1, ..., cm,n), (9)

εm(x, y) ∼ N(0, σ2) independently, (10)

(cm,1, ..., cm,n) is independent of εm. (11)

There are two problems with the above specification. (1) A
white noise model does not capture the texture properties of
the background. (2) The foreground distribution g cannot be
estimated in closed form because we must deconvolve the
additive noise εm. The following observation helps solve
these two problems.

Theorem 1 For the representation (1), given Bm =
(Bm,i, i = 1, ..., n), under the assumptions (9), (10) and
(11), the distribution of Im is

p(Im | Bm) = q(Im)
p(rm,1, ..., rm,n)
q(rm,1, ..., rm,n)

, (12)

where rm,i = 〈Im, Bm,i〉, i = 1, ..., n. q(Im)
is the density of white noise model, i.e., Im(x, y) ∼
N(0, σ2) independently. q(rm,1, ..., rm,n) is the density of
(rm,1, ..., rm,n) under q(Im). p(rm,1, ..., rm,n) is the den-
sity of (rm,1, ..., rm,n) under p(Im | Bm).

The proof is given in the appendix. The basic idea of the
proof is very simple. By adding

∑
i cm,iBm,i to the white

noise background εm, we only change the dimensions of
εm within the subspace spanned by (Bm,i, i = 1, ..., n),
without disturbing the rest of the dimensions. This can
be accomplished by multiplying q(Im) by the probabil-
ity ratio p(rm,1, ..., rm,n)/q(rm,1, ..., rm,n), which changes
the distribution of (rm,1, ..., rm,n) from q(rm,1, ..., rm,n) to
p(rm,1, ..., rm,n), without changing the distribution of the
remaining dimensions.

We may use the compact matrix notation. Let Im be the
|D|×1 vector, where |D| is the number of pixels in domain
D. Let Bm = (Bm,1, ..., Bm,n) be the |D| × n matrix,
where each column is a vectorized version of Bm,i. Let
rm = (rm,1, ..., rm,n)′ be the n× 1 vector of sparse coding
variables. Then rm = B′

mIm.
The foreground p(rm) can be estimated directly by pool-

ing the sample {rm = B′
mIm,m = 1, ...,M}, which are

responses of Gabor wavelets at fixed locations (subject to
local perturbations Bm ≈ B), so we do not need to esti-
mate g, which involves unnecessary deconvolution of the
additive noise εm.

Under the white noise model q(Im) where Im(x, y) ∼
N(0, σ2) independently, we have rm ∼ N(0,B′

mBmσ2),
so q(rm) is in closed form.

Log-likelihood and KL-divergence. We can estimate the
template B and its deformed versions {Bm ≈ B,m =
1, ...,M} by maximizing the log-likelihood

M∑

m=1

log[p(Im | Bm)/q(Im)] =
M∑

m=1

log
p(rm)
q(rm)

. (13)

As M →∞, the log-likelihood per observation

1
M

M∑

m=1

log
p(rm)
q(rm)

→ KL(p(rm)|q(rm)), (14)

which is the Kullback-Leibler divergence from p(rm) to
q(rm).

Equivalence to least squares. Under white noise
q(Im), rm = B′

mIm ∼ N(0,B′
mBmσ2). If we as-

sume p(rm) is such that rm ∼ N(0,B′
mBmσ2

0) with
σ2

0 > σ2, then log[p(rm)/q(rm)] is positively linear in
r′m(B′

mBm)−1rm = I′mBm(B′
mBm)−1B′

mIm, which is
the squared norm of the projection of Im onto the subspace
spanned by Bm, which equals to ‖Im‖2 − mincm

‖Im −
Bmcm‖2, where cm = (cm,1, ..., cm,n)′. So maximizing



the log-likelihood (13) with such p(rm) is equivalent to the
least squares criterion.

Orthogonality. The norm I′mBm(B′
mBm)−1B′

mIm nat-
urally favors the selection of orthogonal Bm. In this ar-
ticle, we enforce that B′

mBm ≈ 1, m = 1, ...,M, for
simplicity, where “1” denotes the identity matrix. That
is, we enforce that the elements in the deformed template
Bm = (Bm,i, i = 1, ..., n) are approximately orthogonal to
each other, or do not have much overlap. The precise defini-
tion of B′

mBm ≈ 1 is: 〈Bm,i, Bm,j〉 < ζ for i �= j, where
ζ is a small threshold (e.g., ζ = .1).

Random field tilting. Equation (12) is actually more gen-
eral than is defined in Theorem 1: (1) The background
q(Im) can be any random field. (2) The sparse cod-
ing variables (rm,i, i = 1, ..., n) can be any determinis-
tic transformations of Im. In this more general context,
(12) is a random field tilting scheme, which consists of
(1) Replacing background q(rm,1, ..., rm,n) by foreground
p(rm,1, ..., rm,n). (2) Retaining the conditional distribu-
tion of the remaining |D| − n dimensions of Im given
(rm,1, ..., rm,n). The remaining |D|−n dimensions are im-
plicit. This is a generalized version of projection pursuit [3].
The following are some perspectives to view this scheme:

(1) Hypothesis testing. q(Im) can be considered the null
hypothesis. p(rm,1, ..., rm,n) can be considered the test
statistics to reject q(Im). The above scheme modifies the
null hypothesis to an alternative hypothesis.

(2) Classification. q(Im) can be considered the ensemble
of negative examples. p(Im) is the ensemble of positive
examples. The sparse coding variables (rm,i, i = 1, ..., n)
are the features that distinguish the two ensembles.

(3) Coding. Instead of coding (rm,i, i = 1, ..., n) by q,
we code them by p. The gain in coding length is the KL-
divergence (14).

3.2. Model specification

Sparse coding variables. Given Bm = {Bm,i, i =
1, ..., n}, with B′

mBm ≈ 1, we choose to use rm,i =
hm(|〈Im, Bm,i〉|2), i = 1, ..., n, as sparse coding vari-
ables. |〈Im, Bm,i〉|2 is the local energy, which is the sum
of squares of the responses from the pair of Gabor cosine
and sine wavelets. We ignore the local phase information,
which is unimportant for shapes. hm() is a monotone nor-
malization transformation that is independent of object cat-
egories.

To specify the model, we need to (1) specify the back-
ground q(Im) and derive hm() and q(rm,1, ..., rm,n). (2)
specify the foreground p(rm,1, ..., rm,n). Figure (2) illus-
trates the idea. The shaded rectangles are training images.
We can pool these images to estimate p(rm,1, ..., rm,n),
as illustrated by the vertical arrows at specific locations.
p(rm,1, ..., rm,n) is to be contrasted against the background
q(rm,1, ..., rm,n), which is not location specific, as illus-

Figure 2. p(rm,1, ..., rm,n) is pooled over training images (shaded
rectangles) at specific locations. q(rm,1, ..., rm,n) is derived from
stationary background q(Im).

trated by the horizontal arrow, because q(Im) is stationary.
We use the ambiguous notation p(r) and q(r) in figure (2)
to mean either the joint distribution of rm,1, ..., rm,n or the
marginal distributions of individual components. The tem-
plate B and its deformed versions {Bm ≈ B} should be
chosen to maximize the KL-divergence from p to q, as dic-
tated by equation (14).

Background model q(Im) and q(rm,1, ..., rm,n). The
most natural q(Im) from the classification perspective is the
generic ensemble of natural image patches. In the follow-
ing, we derive hm() and q(rm,1, ..., rm,n) by gradually gen-
eralizing from the white noise model.

(1) White noise Im(x, y) ∼ N(0, σ2
m), where σ2

m can be
estimated by the marginal variance of Im. |〈Im, Bm,i〉|2
is the sum of squares of two independent normal ran-
dom variables of variance σ2

m, so |〈Im, Bm,i〉|2 ∼
σ2

mχ2
2 ∼ 2σ2

m exp(1), i.e., the exponential distribution,
and |〈Im, Bm,i〉|2/2σ2

m ∼ exp(1). If B′
mBm = 1, then

|〈Im, Bi〉|2/2σ2
m are independent for i = 1, ..., n.

(2) Stationary isotropic Gaussian q(Im). Let s be the
common scale of Bm = (Bm,i, i = 1, ..., n). Bm,i can
sense Im only within a limited frequency band around 1/s.
Let σ2

m,s = E[|〈Im, Bx,y,s,α〉|2], and assume that the spec-
trum of the Gaussian process is locally flat within the above-
mentioned frequency band, then as far as Bm can sense,
q(Im) is no different than white noise N(0, σ2

m,s/2). There-
fore, |〈Im, Bi〉|2/σ2

m,s ∼ exp(1), and this is a whiten-
ing transformation. |〈Im, Bi〉|2/σ2

m,s are independent for
i = 1, ..., n if B′

mBm = 1. σ2
s,m can be estimated by

σ̂2
m,s =

1
|D|K

∑

x,y∈D

∑

α

|〈Im, Bx,y,s,α〉|2, (15)

where K is the total number of orientations. The tail of
the distribution is Pr(|〈Im, Bi〉|2/σ2

m,s > r) = exp(−r),
which is short.

(3) Generic ensemble of natural image patches. If we
pool the marginal distribution of |〈Im, Bm,i〉|2/σ2

m,s over
the ensemble of natural image patches, and let F (r) =
Pr(|〈Im, Bm,i〉|2/σ2

m,s > r) be the tail of this marginal
distribution, then F (r)  exp(−r) for large r, because
there are strong edges in this ensemble. The transformation
that equates the tails F (r) = exp(−r0) is r0 = − log F (r),



so − log F (|〈Im, Bm,i〉|2/σ2
m,s) ∼ exp(1). − log F is a

non-linear whitening transformation. Therefore, we have

rm,i = hm(|〈Im, Bm,i〉|2) = − log F (|〈Im, Bm,i〉|2/σ2
m,s).

We assume that the generic ensemble inherits from Gaus-
sian process the property that (rm,i, i = 1, ..., n) are in-
dependent under B′

mBm = 1. So q(rm,1, ..., rm,n) =
exp{−∑n

i=1 rm,i}, i.e., rm,i ∼ exp(1) independently for
i = 1, ..., n.

One can learn F (r) by the tail proportions in the
marginal histogram of natural images. In our current imple-
mentation, we use a crude but simple approximation. Be-
cause − log F (r) � r for large r, we assume a saturation
threshold ξ > 0, and approximate − log F (r) ≈ min(r, ξ)
(e.g., ξ = 16).

Foreground model p(rm,1, ..., rm,n). We assume the
simplest model for p(rm,1, ..., rm,n): rm,i ∼ exp(λi) in-
dependently for i = 1, ..., n, with λi < 1. The density of
rm,i is p(r) = λi exp(−λir). This is the maximum entropy
model under the constraint Ep(rm,i) = 1/λi.

Log-likelihood is

log[p(Im | Bm)/q(Im)] =
n∑

i=1

log
p(rm,i)
q(rm,i)

=
n∑

i=1

[(1− λi)rm,i + log λi]. (16)

Given B, the prior distribution of Bm is uniform: p(Bm |
B) = 1/|∆|n, where ∆ = [−b1, b1] × [−b2, b2] is the al-
lowed range of shifting in location and orientation for each
Bi, and |∆| is the size of ∆. So the posterior distribution
p(Bm | Im,B) ∝ p(Im | Bm)/q(Im). Thus, Bm,i can be
estimated by maximizing rm,i or |〈Im, Bm,i〉|2 among all
possible Bm,i ≈ Bi, subject to that (Bm,i, i = 1, ..., n) are
approximately non-overlapping.

Given {Bm,m = 1, ...,M}, λi can be estimated by
pooling {rm = B′

mIm,m = 1, ...,M}. The max-
imum likelihood estimate is λ̂i = 1/r̄i, where r̄i =∑M

m=1 rm,i/M is the average response. Replacing λi by
λ̂i, the log-likelihood or coding gain per image

1
M

M∑

m=1

log[p(Im,Bm | B)/q(Im)]

=
n∑

i=1

(r̄i − 1− log r̄i)− n log |∆|,

where p(Im,Bm | B) = p(Im | Bm)p(Bm | B). log |∆|
is the cost for coding the shifting from Bi to Bm,i. We
can sequentially introduce the elements of B = (Bi, i =
1, ..., n) by maximizing r̄i subject to

r̄i − 1− log r̄i > log |∆|, (17)

and the elements in Bm = (Bm,i, i = 1, ..., n) are approx-
imately non-overlapping.

3.3. Shared pursuit for maximum likelihood

We use the notation ∂Bm,i to denote all the B ∈ Ω, such
that 〈B,Bm,i〉 > ζ, i.e., those elements that overlap with
Bm,i.

(0) For m = 1, ...,M , and for each B ∈ Ω, compute
[Im, B] = − log F (|〈Im, B〉|2/σ2

m,s) with σ2
m,s esti-

mated by (15). Set i← 1.

(1) For each putative candidate Bi ∈ Ω, do the follow-
ing: For m = 1, ...,M , choose the optimal Bm,i that
maximizes [Im, Bm,i] among all possible Bm,i ≈ Bi.
Then choose that particular candidate Bi with the
maximum corresponding

∑
m[Im, Bm,i]. Set λi =

M/
∑

m[Im, Bm,i].

(2) For m = 1, ...,M , for each B ∈ ∂Bm,i, set [Im, B]←
0, to enforce approximate non-overlapping constraint.

(3) Stop if i = n. Otherwise let i← i + 1, and go to (1).

The stopping criterion can also be based on (17).
Find and sketch. We can used the learned model, in

particular, B = (Bi, i = 1, ..., n), and λ = (λi, i =
1, ..., n), to find the object in a new testing image Im,
m /∈ {1, ...,M}. Suppose Im is defined on domain Dm,
which can be much larger than the bounding box D. We
slide D over Dm. Let Dx,y ⊂ Dm be the bounding
box centered at (x, y) ∈ Dm. Within each Dx,y , for
i = 1, ..., n, choose the optimal Bm,i ≈ Bi that maximizes
rm,i = [Im, Bm,i]. Then compute the log-likelihood score
lm(x, y) =

∑n
i=1[(1 − λi)rm,i + log λi]. Choose (x, y)

with maximum log-likelihood score lm(x, y). The corre-
sponding Bm = (Bm,i, i = 1, ..., n) is the sketch of the
object. If the size of the object in the testing Im is different
than the size of objects in the training images, we can scale
Im to obtain a sequence of zoomed versions of Im. Then
we can choose the optimal scale based on the maximum
log-likelihood scores obtained over multiple scales.

4. Active mean vector and active correlation

The deformable template B = (Bi, i = 1, ..., n) in the
above section is parametrized by λ = (λi, i = 1, ..., n). The
log-likelihood score is

∑n
i=1[(1− λi)rm,i + log λi], which

is non-linear in λ. This motivates us to introduce a simpler
linear score without explicit probabilistic assumptions.

4.1. Linear scoring

We parametrizes the deformable template B = (Bi, i =
1, ..., n) by θ = (θi, i = 1, ..., n), where θ is a unit vec-
tor with ‖θ‖2 = 1. We replace the log-likelihood score



Figure 3. The first plot is B = {Bi, i = 1, ..., n}, n = 48, where each Bi is represented by a bar. For the rest M = 37 examples, the left
is Im, and the right is Bm = (Bm,i, i = 1, ..., n). The M examples are listed in the descending order of log-likelihood.

by 〈θ, r1/2
m 〉 =

∑n
i=1 θir

1/2
m,i, where r

1/2
m = (r1/2

m,i, i =
1, ..., n). Given B, Bm = (Bm,i ≈ Bi, i = 1, ..., n) can

be chosen by maximizing 〈θ, r1/2
m 〉, subject to the approx-

imate non-overlapping constraint. We call this maximum
the active correlation, which filters out local deformation as
well as local phase information. B and θ can be estimated
by maximizing

∑M
m=1〈θ, r1/2

m 〉. θ is the mean vector in the
active basis. If M = 2, the maximum of

∑n
i=1(r1,ir2,i)1/2

is the pairwise active correlation between I1 and I2.

4.2. Shared pursuit for maximum correlation

(0) The same as maximum likelihood.

(1) For each putative candidate Bi ∈ Ω, do the follow-
ing: For m = 1, ...,M , choose the optimal Bm,i

that maximizes [Im, Bm,i] among all possible Bm,i ≈
Bi. Then choose that particular candidate Bi with
the maximum corresponding

∑
m[Im, Bm,i]1/2. Set

θi =
∑

m[Im, Bm,i]1/2/M .

(2) The same as maximum likelihood.

(3) If i = n, normalize θ so that ‖θ‖2 = 1, then stop.
Otherwise let i← i + 1, and go to (1).

We can also use the active correlation score for find-and-
sketch.

5. Experiments

Parameter values. Size of Gabor wavelets = 17 × 17.
(x, y) is sub-sampled every 2 pixels. The orientation α
takes K = 15 equally spaced angles in [0, π]. The satu-
ration threshold in approximation − log F (r) ≈ min(r, ξ)
is ξ = 16. The shift along the normal direction dm,i ∈
[−b1, b1] = {−6,−4,−2, 0, 2, 4, 6} pixels. The shift of
orientation δm,i ∈ [−b2, b2] = {−1, 0, 1} angles out of
K = 15 angles. So |∆| = 21. The orthogonality toler-
ance is ζ = .1.

Experiment 1: Learning active basis. We apply the
shared pursuit algorithm to a training set of M = 37 car im-
ages. The car images are 82 × 164. Figure (3) displays the

results from the algorithm. The algorithm returns n = 48
elements using the stopping criterion (17). The first plot
displays the learned active basis B = {Bi, i = 1, ..., n}
where each Bi is represented symbolically by a bar at the
same location with the same length and orientation as Bi.
The intensity of the bar Bi is the average r̄i. For the re-
maining M pairs of plots, the left plot shows Im, and the
right plot shows Bm = (Bm,i, i = 1, ..., n). The intensity

of each Bm,i is r
1/2
m,i. These M examples are arranged in de-

scending order by their log-likelihood scores (16). All the
examples with non-typical poses are in the lower end. We
obtained similar result using active correlation. The exam-
ples displayed in figure (1) are produced after we force the
algorithm to select 60 elements.

Experiment 2: Find and sketch. Using the learned model
in experiment 1, we can find the car in the testing image
shown in figure (4). The upper left plot is the testing image.
The upper right plot displays the sketch of the car at the
maximum likelihood scale and location. The lower left plot
displays the maximum log-likelihood score over scale. The
lower right plot displays the map of the log-likelihood at the
optimal scale. We obtained similar result based on active
correlation.

One issue that concerns us is normalization. In this ex-
periment, we normalize within the whole image instead of
normalizing within the sliding bounding box. We also tried
the latter normalization scheme. Active correlation still se-
lects the correct scale. However, for log-likelihood, the cor-
rect scale is near a local maximum instead of the global
maximum. Another issue revealed by more experiments
is that the maximum likelihood position is not always the
correct position. We shall investigate these issues in future
work.

Experiment 3: ROC comparison. Figure (5) displays
12 of the 43 training examples paired with their Bm =
(Bm,i, i = 1, ..., n), n = 40, obtained by maximum likeli-
hood.

Figure (6.a) and (b) display the active bases B =
(Bi, i = 1, ..., n), n = 40, selected by the shared pursuit,
using log-likelihood and active correlation scoring respec-



Figure 4. find and sketch. Lower left: the maximum log-likelihood
score over scale. Lower right: the map of log-likelihood score at
the optimal scale.

Figure 5. Some training examples and the corresponding Bm.

tively. We also built an adaboost classifier [9] using the
same set of training examples plus 157 negative examples,
which are randomly cropped from natural scenes both with
and without human figures, to represent enough diversity.
The weak classifiers are obtained by thresholding the re-
sponses from the same dictionary of Gabor wavelets. Fig-
ure (6.c) displays the 80 Gabor elements selected by ad-
aboost, where the red ones are those whose responses are
greater than the corresponding selected thresholds, and the
blue ones are otherwise.

(a) (b) (c)
Figure 6. (a) B = (Bi, i = 1, ..., 40) selected by active cor-
relation. (b) B selected by log-likelihood. (c) 80 weak classi-
fiers (from the same dictionary of Gabor wavelets) selected by ad-
aboost. The red ones are the weak classifiers whose responses are
larger than thresholds, while the blue ones are otherwise.

We then test on a separate data set with 88 positives and
474 negatives. Figure (7) displays the three ROC curves
for active basis models learned by log-likelihood and active
correlation, and the adaboost. The AUC (area under curve)
for adaboost is .936. The AUC for log-likelihood scoring
is .941. The AUC for active correlation scoring is .971.
We did not implement cascade for adaboost. This example

shows that our method is comparable to adaboost.
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Figure 7. ROC curves for active basis models learned by active
correlation and log-likelihood respectively, and adaboost. AUC
means area under ROC curve.

Experiment 4: Mixture and EM. Suppose there are two
categories in the training examples. We may assume a
mixture model p(rm,1, ..., rm,n) = ρp(1)(rm,1, ..., rm,n) +
(1 − ρ)p(0)(rm,1, ..., rm,n), where p(k)(rm,1, ..., rm,n) =∏n

i=1 λ
(k)
i exp{−λ

(k)
i rm,i}, k = 0, 1. We can fit the model

by the EM algorithm. Then we classify the examples into
the two categories based on posterior probabilities produced
by the last iteration of the E-step. After that, we re-learn the
active basis model for each category separately.

Figure 8. Top row: clustering result by EM. Bottom row: re-
learned templates for the two clusters.

Figure (8) displays the 37 training examples. We first
learn a common B = (Bi, i = 1, ..., n) with n = 80. Then
we fit the mixture model on the coefficients of the 80 ele-
ments. The EM algorithm separates the examples into two
clusters, as shown in figure (8), where there are 2 mistakes.
Then we re-learn active basis models on the two clusters
separately, with n = 60. The bottom row of figure (8) dis-
plays the learned templates. We can also re-learn the active
basis models within the M-step in each iteration.

Experiment 5: Find and learn. By combining the codes
in the first two experiments, our method has the potential
to handle training images that are not aligned, as suggested
by the following preliminary experiment. There are five im-
ages of cats that are of the same size but at different loca-
tions. The only supervision is to give the bounding box for



Figure 9. Find and learn. The first plot is the learned active basis.
The rest of the plots sketch the identified cat faces.

the first image. We then fit the model on this single image,
and use it to find the cats in the other images. Then we
re-learn the model, and re-find the cats using the re-learned
model. Figure (9) shows the results after 3 iterations, where
the first plot is B = (Bi, i = 1, ..., n), n = 40.

Reproducibility: Data and source codes can be down-
loaded from the webpage listed on the title page.

6. Discussion

Residual image and inhibitive features. After activating
basis (Bm,i, i = 1, ..., n) and modeling (rm,i, i = 1, ..., n),
we can also pool the texture statistics on the residual image
that is not covered by (Bm,i, i = 1, ..., n), and tilt q(Im) on
residual image. Along the same theme, we can also intro-
duce inhibitive features on the residual image.

Center versus boundary. Even though one may view
model (12) from a classification perspective, the model is
trained by maximizing likelihood, which targets the center
of the data, instead of the classification boundary. The ad-
vantage of targeting the center is that it is more efficient for
small training samples, and more convenient for unsuper-
vised learning.

Maximum entropy or minimum divergence. Model (12)
is a special computable case of maximum entropy or
minimum divergence principle [2], which tilts q(Im) to
p(Im) = exp{〈λ,H(Im)}q(Im)/Z(λ), for some statistics
H(), where Z(λ) is normalizing constant. If H is the his-
togram of (rm,i, i = 1, ..., n), we get model (12) for shapes.
If H consists of spatially pooled histograms, we get the
Markov random field model [12] for textures.

Appendix

Proof of Theorem 1 Let B̄m be the matrix whose columns
are orthogonal to the columns of Bm, so that B′

mB̄m = 0.
We can write εm = Bmτm + B̄mτ̄m, where τm and τ̄m

are n-dimensional and |D| −n dimensional vectors respec-
tively. Let cm = (cm,1, ..., cm,n)′, then Im = Bm(τm +
cm) + B̄mτ̄m = Bmγm + B̄mτ̄m, where γm = cm + τm.

Under assumption (10), τm and τ̄m are independent
because of the orthogonality between Bm and B̄m, so
q(τm, τ̄m) = q(τm)q(τ̄m). Because of assumption (11),

γm = cm + τm and τ̄m are also independent, so
p(γm, τ̄m) = p(γm)q(τ̄m), where p(γm) =

∫
g(γm −

τm)q(τm)dτm is the convolution of g(cm) with the Gaus-
sian noise τm.

Under the linear mapping Im = (Bm, B̄m)(γ′
m, τ̄ ′

m)′,
p(Im)/q(Im) = p(γm, τ̄m)/q(γm, τ̄m) = p(γm)/q(γm)
because the Jacobian terms get canceled. Let rm =
B′

mIm = (rm,1, ..., rm,n)′. Then under the mapping
rm = B′

mBmγm, p(γm)/q(γm) = p(rm)/q(rm), because
again the Jacobian terms are canceled. So p(Im)/q(Im) =
p(rm)/q(rm). �
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