
Digital Intelligence vs Biological Intelligence

Ying Nian Wu, UCLA

On the occasion of Prof. Alan Yuille’s 70th birthday



Moving Beyond Past Debates

We won’t focus on past debates (still meaningful and important though):
▶ How the brain implements backpropagation
▶ Spiking networks vs. artificial neurons
▶ Neural symbolic
▶ System 2 vs system 1
▶ Scaling laws

Instead, we’ll examine a fundamental distinction:

Learning for Reaction vs. Learning for Planning

This perspective illuminates core differences between digital and biological intelligence



Two Learning Paradigms

Learning for Reaction

Maps inputs directly to outputs/actions

Relies on extensive training examples

Essentially interpolative look-up table

Muscle memory, reflex

Struggles with novel scenarios

Performance degrades when conditions
differ from training

Learning for Planning

Builds representations that support
planning and reasoning

Creates cognitive maps that can be
traversed mentally

Enables navigation through
never-explored state spaces

Adapts to new goals without retraining

Generalizes robustly to novel scenarios



Hippocampal Place Cells: A Concrete Example

Figure: Place cells and grid cells (from internet).



Hippocampal Place Cells: A Concrete Example

Place cells in the hippocampus fire at specific locations as animals navigate

Traditional view: Individual cells encode specific locations

Our approach: Population of place cells collectively encode transition probabilities

We reconceptualize place cells as position embeddings of multi-time random walk kernels

Key mathematical formulation:

⟨h(x , t), h(y , t)⟩ = p(y |x , t) (1)

where:

h(x , t) ∈ Rn is the embedding at location x and scale t, hi (x , t) ≥ 0.

p(y |x , t) is the transition probability.

Symmetric random walk → heat equation with reflective boundary condition
√
t defines a spatial scale (like dorsoventral axis)

Exploration or mapping policy, not a navigation policy



Matrix Squaring: From Local to Global

We compute multi-time transition probabilities efficiently:

P2t = P2
t (2)

This matrix squaring process:
▶ Requires only local exploration (P1) to build global knowledge
▶ Needs no successful trajectories for learning
▶ Implicitly encodes the recursions in dynamic programming
▶ Enables hippocumpal preplay

Learning reduces pairwise adjacency relationships to individual embeddings (map):

L =
∑
x ,y

[p(y |x , t)− ⟨h(x , t), h(y , t)⟩]2 (3)



Path Planning via Adaptive Gradient Following

Planning becomes straightforward gradient following

∇xp(y |x , t) = ∇x⟨h(x , t), h(y , t)⟩ = −∇x∥h(x , t)− h(y , t)∥2 (4)

Adaptive scale selection for optimal guidance

t∗ = argmax
t∈T

∥∇x⟨h(x , t), h(y , t)⟩∥ (5)

= argmax
t∈T

∥∇x∥h(x , t)− h(y , t)∥2∥ (6)

Planning is “straightforward” (following “straight” path in embedding space).



Multi-Scale Representation

Time parameter
√
t defines spatial scale

Resembles dorsoventral organization in
hippocampus

Small t: geodesic distance

Large t: topological connectivity

Adaptive selection during navigation

Non-negative → symbols-like

Adaptive scale selection (colors) dynamically adjusts based on distance to goal

Larger scales (red/orange) for distant planning, smaller scales (blue/green) for precision



Navigation in Complex Environments

Our model achieves 100% success rate in complex mazes

Gradient fields naturally create diffraction-like patterns around obstacles

Smooth, continuous paths through complex environments



Learning for Planning vs. Learning for Reaction

Key insight: Learning for planning requires no successful trajectories at all
▶ Random walks suffice to build planning representations
▶ No goal-directed behavior needed during training
▶ No reward functions or reward shaping required

Planning-centric learning advantages:
▶ Zero-shot adaptation to new goals
▶ Local-to-global emergence through matrix squaring
▶ Simple and Efficient planning through gradient following
▶ Robust to environmental changes with fine-tuning



Shortcut Discovery Experiment

After just 50 iterations of fine-tuning:
▶ Model successfully identifies and utilizes the newly available shortcuts
▶ Adapts planning based on new transition probabilities
▶ Learning for reaction would require extensive retraining



Learning for Reaction

Evaluating the World Model Implicit
in a Generative Model

Keyon Vafa
Harvard University

Justin Y. Chen
MIT

Ashesh Rambachan
MIT

Jon Kleinberg
Cornell University

Sendhil Mullainathan
MIT

Abstract

Recent work suggests that large language models may implicitly learn world models.
How should we assess this possibility? We formalize this question for the case
where the underlying reality is governed by a deterministic finite automaton. This
includes problems as diverse as simple logical reasoning, geographic navigation,
game-playing, and chemistry. We propose new evaluation metrics for world model
recovery inspired by the classic Myhill-Nerode theorem from language theory. We
illustrate their utility in three domains: game playing, logic puzzles, and navigation.
In all domains, the generative models we consider do well on existing diagnostics
for assessing world models, but our evaluation metrics reveal their world models
to be far less coherent than they appear. Such incoherence creates fragility: using
a generative model to solve related but subtly di!erent tasks can lead to failures.
Building generative models that meaningfully capture the underlying logic of the
domains they model would be immensely valuable; our results suggest new ways
to assess how close a given model is to that goal.

1 Introduction

Large language models (LLMs) appear to have capacities that far exceed the next-token prediction
task they were trained to perform [17, 39, 35]. Recent work suggests a reason: they are implicitly
recovering high-fidelity representations of the underlying domains they are trained on [1, 20].
An algorithm that recovers a “world model” from sequence data would be extremely valuable. As
an example, consider how one might build a navigation tool today: meticulously map each street and
intersection, and then use a search algorithm to provide directions. The success of language models
suggests an alternative approach: collect turn-by-turn sequences from trips in a city (e.g. “East
North...”) and then train a sequence model on them. If the sequence model successfully recovers
the world model, we would obtain a map of the city without ever mapping it and a routing algorithm
simply by predicting the next turn. This example is not far-fetched: it is the reason language models
are used in scientific domains such as protein generation, genetics and chemistry [7, 21, 3, 14, 6].
All of this relies on the presumption that the sequence model has recovered the true world model;
but how can we test whether it actually has? Answering this question requires first defining what
we mean by the true world model. Toshniwal et al. [36] and Li et al. [20] proposed a concrete and
influential approach: study whether sequence models trained on board game transcripts (e.g. chess
and Othello) recover the underlying game rules. Inspired by this approach, we consider the case where
the underlying world can be summarized by a finite collection of states and rules governing transitions
between the states; this includes many domains such as logic [19], location tracking [28, 9], games
[36, 20], and several of the scientific applications described above. As a result, the “world” in these
domains can be modeled as a deterministic finite automaton (DFA).

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

ar
X

iv
:2

40
6.

03
68

9v
3 

 [c
s.C

L]
  1

0 
N

ov
 2

02
4

precision, averaged over states sampled uniformly at random (we say a generative model’s precision
is 1 if its boundary is correctly empty).
Sequence distinction metric. To evaluate sequence distinction, we sample distinct state pairs, i.e.
𝐿1 ω 𝐿2. Here, there must be a true boundary, so we test how well a generative model recovers it. We
report both precision and recall averaged over state pairs sampled uniformly at random.
Both metrics are depicted in Figure 2. Although we have defined a generative model as accepting all
sequences it assigns positive probability to, in practice sequence models are regularized to assign all
sequences nonzero probability. Our evaluation metrics therefore depend on an acceptance threshold
parameter 𝑀 > 0. In practice, we explore sensitivity to di!erent values of 𝑀 and other acceptance
mechanisms. We present ablations and other details in more depth in Section 3 and Appendix E.

3 Illustration: Do Transformers Recover the Street Map of New York City?

To illustrate these metrics, we create a dataset consisting of taxi rides in New York City. We process
each ride into sequences of turn-by-turn directions and train transformers to predict the next direction.
We show that transformers trained on these sequences have surprising route planning abilities: they
not only find valid routes between two intersections but usually find the shortest path.
We then examine the underlying world model of the trained models. Despite the route planning
capabilities of these models, our metrics reveal that their underlying world models are incoherent. Using
a graph reconstruction technique, we show that each model’s implicit street map of New York City bears
little resemblance to the actual map. Finally, we demonstrate that the route planning capabilities of these
models break down when detours are introduced, a consequence of their incoherent world models.

3.1 Data and models

We base our analysis on a dataset of taxi rides released by the NYC Taxi & Limousine Commission,
containing the latitude and longitude of each ride’s pickup and dropo! location in Manhattan. Each
taxi ride obeys a true world model: the weighted graph corresponding to the system of intersections and
streets in New York City. The graph is defined as 𝑁 = (𝑂 , 𝑃 ,𝑄), where 𝑂 is the set of intersections,
𝑃 the set of streets, and 𝑄 : 𝑃 → R+ a weighting function containing the distance of each street.2

Each edge is labeled corresponding to its cardinal direction, represented as a function 𝑅 : 𝑂 ↑𝑂 →
{↭, N, S, E, W, NE, NW, SE, SW} with↭ indicating that the edge does not exist. Each intersection has at most
one edge in each direction. The graph has 4580 nodes (i.e. intersections) and 9846 edges (i.e. streets).
A traversal is a sequence of nodes where an edge exists between each consecutive node in the
sequence. To study how the construction of traversals a!ects the resulting generative model, we
consider three di!erent approaches. Shortest paths constructs traversals by finding the shortest
path between two nodes. Since these may not be reflective of real-world traversals due to tra"c
conditions, noisy shortest paths constructs multiple shortest paths by perturbing the magnitude of
each edge weight in the underlying graph. Finally, random walks samples random traversals instead
of approximating shortest paths. See Appendix F for details.
We convert each traversal into a sequence of directions. Each sequence begins with the origin
and destination, followed by the cardinal directions in the traversal, and concludes with a special
end-of-sequence token. Figure 5 gives an example of a set directions and the corresponding path.
Since this language corresponds to a DFA 𝑄 with |𝑂 |2 + 1 accept states, corresponding to all
combinations of current intersection/destination intersection pairs and an additional end state, we can
apply the evaluation metrics in Section 2.4.
We randomly split data into train and test splits, ensuring no origin-destination pair is in both train and
test sets. We include all sequences containing less than 100 directions. Our training sets consist of 2.9M
sequences (120M tokens) for shortest paths; 31M sequences (1.7B tokens) for noisy shortest paths; and
91M sequences (4.7B tokens) for random walks. We train two types of transformers [38] from scratch
using next-token prediction for each dataset: an 89.3M parameter model consisting of 12 layers, 768
hidden dimensions, and 12 heads; and a 1.5B parameter model consisting of 48 layers, 1600 hidden
dimensions, and 25 heads. We follow the architecture of GPT-2 for each model [29]. We train models on

2A real-world intersection may be represented as multiple intersections here. For example, if a turn is only
valid from one direction, it is represented as two di!erent nodes.

6

(a) World model (b) World model with noise (c) Transformer

Figure 3: Reconstructed maps of Manhattan from sequences produced by three models: the true world model
(left), the true world model corrupted with noise (middle), and a transformer trained on random walks (right).
Edges exit nodes in their specified cardinal direction. In the zoomed-in images, edges belonging to the true graph
are black and false edges added by the reconstruction algorithm are red. We host interactive reconstructed maps
from transformers at the following links: shortest paths, noisy shortest paths, and random walks.

distinguishes separate states at a high rate fails to recognize that two prefixes that lead to the same
state should have the same valid continuations.

3.3 Reconstructing implicit maps

Our evaluation metrics point to deficiencies in recovering world models. We now show that these
metrics reveal underlying incoherence. In the maps setting, the state structure of the true world model
is easy to interpret and visualize: it is defined by the map itself. We attempt to “reconstruct” the map
implied by sequences sampled from each generative model.
Reconstruction is an open-ended problem: the generative model produces directions between an origin
and destination that do not necessarily correspond to a fixed graph over the intersections in Manhattan.
To narrow the scope, our goal is to produce a visually interpretable reconstructed map. To that end, we
fix the reconstructed graph to have the same set of vertices as the true world model, corresponding to
intersections in Manhattan, and ensure that the reconstruction algorithm returns a map consistent with
the true model whenever it is run on valid sequences. Further, (a) we enforce each node has at most one
outgoing edge of any direction, (b) we limit the maximum degree of each node, and (c) we limit the
Euclidean distance spanned by any edge. Altogether, our reconstruction algorithm gives the generative
model the benefit of the doubt, attempting to reconstruct edges belonging to the true map until forced
to do otherwise in order to map a generated sequence. The algorithm is detailed in Appendix B.
Figure 3 shows three reconstructed maps using sequences generated by the transformer trained on
random walks. The sequences underlying each map are generated by randomly sampling 6400 (origin,
destination) pairs and then sampling the model’s traversal for each pair (Appendix G shows similar
results for when the distribution of origin/destination pairs follows the sampling distribution used
to train each model). On the left is the reconstructed map on only sequences which are valid under
the true world model. On the right is the reconstructed map using the transformer’s sequences.
The transformer’s underlying world model is incoherent; it recovers streets whose orientations are
physically impossible (e.g. labeled NW but facing east) and require flyovers above other streets.
To show that this map is not the product of a model that has the right world model but makes a few tran-
scription errors, we artificially corrupt sequences drawn from the true model. With probability equal to
the probability of an error for the random walks transformer, we randomly re-label an edge in a sequence
consistent with the world model. The middle panel of Figure 3 shows the reconstructed graph. It is much
closer to the true world model than the transformer (which makes errors at the same rate). While these
results are for random walks and one setting of graph reconstruction, Appendix G shows maps for the
other models and di!erent reconstruction settings. All settings recover incoherent underlying maps.

8



Why Digital Intelligence is Successful

Not just about scaling laws or computational resources

The Power of the Residual Stream:
▶ Creates an implicit iterative algorithm
▶ No explicit objective function or gradient calculation
▶ Yet produces sophisticated multi-step computation

This implicit algorithm may:
▶ Replicate planning-like or reasoning-like processes
▶ Discover computational shortcuts
▶ Make ”muscle memory” surprisingly comparable to planning

But fundamental limitations remain:
▶ Struggles with environmental changes
▶ Limited generalization to out-of-distribution scenarios
▶ Requires extensive training examples



Biological vs. Digital Intelligence

Biological Intelligence Digital Intelligence

Learning for planning Learning for reaction
Explicit planning through representations Implicit algorithm through residual stream
Efficient from limited data Data-hungry
Zero-shot adaptation to new environments Requires extensive training examples
Robust to environmental changes Brittle to distribution shifts
Balances exploration and exploitation Often poor at exploration

“Understanding”: enabling planning or reasoning with pre-defined algorithm
Digitalize biological intelligence



Latent Thought Language Models

Figure: LTM architecture.

Reasoning = optimization in latent space



Latent Plan Models

Figure: Box catching by human and robot.

Planning = optimization in latent space



Stochastic Parrot?

Mimicking human speech: learning for reaction.
Finding food: learning for planning



Zhao, M*; Xu, D*; Kong, Deqian*; Zhang, W; Wu, Y N, Place Cells as Position
Embeddings of Multi-Time Random Walk Transition Kernels for Path Planning, 2025.

Kong, Deqian*; Zhao, M*; Xu, D*; Pang, B; Wang, S; Honig, E; Si, Z; Li, C; Xie, J†;
Xie, S†; Wu, Y N†, Latent Thought Models with Variational Bayes Inference-Time
Computation. ICML 2025.

Noh, D*; Kong, Deqian*; Zhao, M; Lizzaraga, A.; Xie, J, Wu, Y N†, Hong, D†, Latent
Adaptive Planner for Dynamic Manipulation, 2025.


