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Moving Beyond Past Debates

@ We won't focus on past debates (still meaningful and important though):

» How the brain implements backpropagation
Spiking networks vs. artificial neurons
Neural symbolic

System 2 vs system 1

Scaling laws
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o Instead, we'll examine a fundamental distinction:
Learning for Reaction vs. Learning for Planning

@ This perspective illuminates core differences between digital and biological intelligence



Two Learning Paradigms

Learning for Reaction Learning for Planning

@ Builds representations that support

@ Maps inputs directly to outputs/actions ; }
planning and reasoning

@ Relies on extensive training examples .
o Creates cognitive maps that can be

o Essentially interpolative look-up table traversed mentally

© Muscle memory, reflex @ Enables navigation through

o Strugg|es with novel scenarios never_explored state spaces

o Performance degrades when conditions Y Adapts to new goals without retraining

differ from trainin . .
g @ Generalizes robustly to novel scenarios



Hippocampal Place Cells: A Concrete Example
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Figure: Place cells and grid cells (from internet).



Hippocampal Place Cells: A Concrete Example

@ Place cells in the hippocampus fire at specific locations as animals navigate
@ Traditional view: Individual cells encode specific locations
@ Our approach: Population of place cells collectively encode transition probabilities

@ We reconceptualize place cells as position embeddings of multi-time random walk kernels

Key mathematical formulation:
<h(X7 t)vh(ya t)> :p(y|X7 t) (1)

where:
h(x, t) € R" is the embedding at location x and scale t, hj(x,t) >0

p(y|x, t) is the transition probability.
Symmetric random walk — heat equation with reflective boundary condition

V't defines a spatial scale (like dorsoventral axis)

Exploration or mapping policy, not a navigation policy



Matrix Squaring: From Local to Global

@ We compute multi-time transition probabilities efficiently:

Por = P¢

@ This matrix squaring process:

>
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@ Learning reduces pairwise adjacency relationships to individual embeddings (map):

Requires only local exploration (P;) to build global knowledge
Needs no successful trajectories for learning

Implicitly encodes the recursions in dynamic programming
Enables hippocumpal preplay

L= Z [p(y\X, t) - <h(X7 t)7 h(}/7 t)>]2



Path Planning via Adaptive Gradient Following

@ Planning becomes straightforward gradient following

Vp(ylx, t) = Vi(h(x, 1), h(y. t)) = =Vx||h(x, t) = h(y, 1)]> (4)

@ Adaptive scale selection for optimal guidance

t* = argmax ||V (h(x, t), h(y, t))|| (5)
teT

= argmax || V[ h(x, t) — h(y, t)||?| (6)
teT

@ Planning is “straightforward” (following “straight” path in embedding space).



Multi-Scale Representation
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o Large t: topological connectivity

o Adaptive selection during navigation
o

Non-negative — symbols-like

e Adaptive scale selection (colors) dynamically adjusts based on distance to goal

o Larger scales (red/orange) for distant planning, smaller scales (blue/green) for precision



Navigation in Complex Environments

@ Our model achieves 100% success rate in complex mazes

o Gradient fields naturally create diffraction-like patterns around obstacles
@ Smooth, continuous paths through complex environments




Learning for Planning vs. Learning for Reaction

o Key insight: Learning for planning requires no successful trajectories at all
» Random walks suffice to build planning representations
» No goal-directed behavior needed during training
» No reward functions or reward shaping required
@ Planning-centric learning advantages:
» Zero-shot adaptation to new goals
» Local-to-global emergence through matrix squaring
» Simple and Efficient planning through gradient following
» Robust to environmental changes with fine-tuning



Shortcut Discovery Experiment
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o After just 50 iterations of fine-tuning:
» Model successfully identifies and utilizes the newly available shortcuts
» Adapts planning based on new transition probabilities
» Learning for reaction would require extensive retraining
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Learning for Reaction

Evaluating the World Model Implicit
in a Generative Model

Keyon Vafa Justin Y. Chen Ashesh Rambachan
Harvard University MIT MIT

Jon Kleinberg Sendhil Mullainathan
Cornell University
‘We randomly split data into train and test splits, ensuring no origin-destination pair is in both train and
test sets. We include all sequences containing less than 100 directions. Our training sets consist of 2.9M
sequences (120M tokens) for shortest paths; 31M sequences (1.7B tokens) for noisy shortest paths; and
91M sequences (4.7B tokens) for random walks. We train two types of transformers [38] from scratch
using next-token prediction for each dataset: an 89.3M parameter model consisting of 12 layers, 768
hidden dimensions, and 12 heads; and a 1.5B parameter model consisting of 48 layers, 1600 hidden
dimensions, and 25 heads. We follow the architecture of GPT-2 for each model [29]. We train models on

(a) World model (b) World model with noise (c) Transformer



Why Digital Intelligence is Successful

Not just about scaling laws or computational resources
@ The Power of the Residual Stream:

> Creates an implicit iterative algorithm
» No explicit objective function or gradient calculation
> Yet produces sophisticated multi-step computation

This implicit algorithm may:

> Replicate planning-like or reasoning-like processes
» Discover computational shortcuts
» Make "muscle memory” surprisingly comparable to planning

But fundamental limitations remain:

» Struggles with environmental changes
» Limited generalization to out-of-distribution scenarios
» Requires extensive training examples



Biological vs. Digital Intelligence

Biological Intelligence Digital Intelligence

Learning for planning Learning for reaction

Explicit planning through representations Implicit algorithm through residual stream
Efficient from limited data Data-hungry

Zero-shot adaptation to new environments Requires extensive training examples
Robust to environmental changes Brittle to distribution shifts

Balances exploration and exploitation Often poor at exploration

“Understanding”: enabling planning or reasoning with pre-defined algorithm
Digitalize biological intelligence



Latent Thought Language Models
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Figure: LTM architecture.

Reasoning = optimization in latent space



Latent Plan Models

Human Demonstration Video Robot (LAP)

Figure: Box catching by human and robot.

Planning = optimization in latent space



Stochastic Parrot?

Mimicking human speech: learning for reaction.
Finding food: learning for planning
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