
Learning FRAME Models Using CNN Filters

Yang Lu, Song-Chun Zhu, Ying Nian Wu
Department of Statistics, University of California, Los Angeles, USA

Abstract

The convolutional neural network (ConvNet or CNN)
has proven to be very successful in many tasks such
as those in computer vision. In this conceptual paper,
we study the generative perspective of the discrimina-
tive CNN. In particular, we propose to learn the gen-
erative FRAME (Filters, Random field, And Maximum
Entropy) model using the highly expressive filters pre-
learned by the CNN at the convolutional layers. We
show that the learning algorithm can generate realistic
and rich object and texture patterns in natural scenes.
We explain that each learned model corresponds to a
new CNN unit at a layer above the layer of filters em-
ployed by the model. We further show that it is possible
to learn a new layer of CNN units using a generative
CNN model, which is a product of experts model, and
the learning algorithm admits an EM interpretation with
binary latent variables.

1 Introduction
The breakthrough made by the convolutional neural net-
work (ConvNet or CNN) (Krizhevsky, Sutskever, and Hin-
ton, 2012; LeCun et al., 1998) on the ImageNet dataset
(Deng et al., 2009) was a watershed event that has trans-
formed the fields of computer vision and speech recognition
as well as related industries. While CNN has proven to be a
powerful discriminative machine, researchers have recently
become increasingly interested in the generative perspec-
tive of CNN. An interesting example is the recent work of
Google deep dream (http://deepdreamgenerator.com/). Al-
though it did not smash any performance records, it did cap-
ture people’s imagination by generating interestingly vivid
images.

In this conceptual paper, we explore the generative per-
spective of CNN more formally by defining generative mod-
els based on CNN features, and learning these models by
generating images from the models. Adopting the metaphor
of Google deep dream, we let the generative models dream
by generating images. But unlike the google deep dream,
we learn the models from real images by making the dreams
come true.

Specifically, we propose to learn the FRAME (Filters,
Random field, And Maximum Entropy) models (Zhu, Wu,
and Mumford, 1997; Xie et al., 2015a) using the highly non-

linear filters pre-learned by CNN at the convolutional lay-
ers. A FRAME model is a random field model that defines
a probability distribution on the image space. The model is
generative in the sense that images can be generated from
the probability distribution defined by the model. The prob-
ability distribution is the maximum entropy distribution that
reproduces the statistical properties of filter responses in the
observed images. Being of the maximum entropy, the dis-
tribution is the most random distribution that matches the
observed statistical properties of filter responses, so that im-
ages sampled from this distribution can be considered typ-
ical images that share the statistical properties of the ob-
served images.

There are two versions of FRAME models in the litera-
ture. The original version is a stationary model developed for
modeling texture patterns (Zhu, Wu, and Mumford, 1997).
The more recent version is a non-stationary extension de-
signed to represent object patterns (Xie et al., 2015a). Both
versions of the FRAME models can be sparsified by select-
ing a subset of filters from a given dictionary.

The filters used in the FRAME model are the oriented
and elongated Gabor filters at different scales, as well as the
isotropic Difference of Gaussian (DoG) filters of different
sizes. These are linear filters that capture simple local image
features such as edges and blobs. With the emergence of the
more expressive nonlinear filters learned by CNN at various
convolutional layers, it is only natural to replace the linear
filters in the original FRAME models by the CNN filters in
the hope of learning more expressive models.

We use the Langevin dynamics to sample from the prob-
ability distribution defined by the model. Such a dynamics
was first applied to the FRAME model by Zhu and Mumford
(1998), and the gradient descent part of the dynamics was
interpreted as the Gibbs Reaction And Diffusion Equations
(GRADE). When applied to the FRAME model with CNN
filters, the dynamics can be viewed as a recurrent generative
form of the model, where the reactions and diffusions are
governed by the CNN filters of positive and negative weights
respectively.

Incorporating CNN filters into the FRAME model is not
an ad hoc utilitarian exploit. It is actually a seamless mesh-
ing between the FRAME model and the CNN model. The
original FRAME model has an energy function that consists
of a layer of linear filtering followed by a layer of point-

wise nonlinear transformation. It is natural to follow the
deep learning philosophy to add alternative layers of lin-
ear filtering and nonlinear transformation to have a deep
FRAME model that directly corresponds to a CNN. More
importantly, the learned FRAME model using CNN filters
corresponds to a new CNN unit at the layer directly above
the layer of CNN filters employed by the FRAME model.
In particular, the non-stationary FRAME becomes a single
CNN node at a specific position where the object appears,
whereas the stationary FRAME becomes a special type of
convolutional unit. Therefore, the learned FRAME model
can be viewed as a generative version of CNN unit.

In addition to learning a single CNN unit, we can also
learn a new layer of multiple convolutional units from non-
aligned images, so that each convolutional unit represents
one type of local pattern. We call the resulting model the
generative CNN model. It is a product of experts model
(Hinton, 2002), where each expert models a mixture of acti-
vation and inactivation of a local pattern. The rectified linear
unit can be justified as an approximation to the energy func-
tion of this mixture model. The learning algorithm admits
an interpretation in terms of the EM algorithm (Dempster,
Laird, and Rubin, 1977) with a hard-decision E-step that de-
tects the local patterns modeled by the convolutional units.

The main purpose of this paper is to establish the concep-
tual correspondence between the generative FRAME model
and the discriminative CNN, thus providing a formal genera-
tive perspective for CNN. Such a perspective is much needed
because it may eventually lead to unsupervised learning of
CNN in a generative fashion without the need for image la-
beling.

2 Past work
Recently there have been many interesting papers on visual-
izing CNN nodes, such as deconvolutional networks (Zeiler
and Fergus, 2014), score maximization (Simonyan, Vedaldi,
and Zisserman, 2015), and the recent artful work of Google
deep dream (http://deepdreamgenerator.com/) and painting
style (Gatys, Ecker, and Bethge, 2015). Our work is differ-
ent from these previous methods in that we learn a rigor-
ously defined generative model from training images, and
the learned models correspond to new CNN units. This work
is a continuation of the recent work on generative CNN (Dai,
Lu, and Wu, 2015).

There have also been recent papers on generative models
based on supervised image generation (Dosovitskiy, Sprin-
genberg, and Brox, 2015), variational auto-encoders (Hin-
ton et al., 1995; Kingma and Welling, 2014; Rezende, Mo-
hamed, and Wierstra, 2014; Mnih and Gregor, 2014; Kulka-
rni et al., 2015; Gregor et al., 2015), and adversarial net-
works (Denton et al., 2015). Each of these papers learns
a top-down multi-layer model for image generation, but
the parameters of the top-down generation model are com-
pletely separated from the parameters of the bottom-up
recognition model. Our work seeks to learn a generative
model based on the knowledge learned by the bottom-up
recognition model, i.e., the image generation model and the
image recognition model share the same set of weight pa-
rameters.

3 FRAME models based on linear filters
This section reviews the background on the FRAME models
based on linear filters.

Let I be an image defined on a square (or rectangular)
domain D. Let {Fk, k = 1, ...,K} be a bank of linear fil-
ters, such as elongate and oriented Gabor filters at different
scales, as well as isotropic Difference of Gaussian (DoG)
filters of different sizes. Let Fk ∗ I be the filtered image or
feature map, and [Fk ∗ I](x) be the filter response at posi-
tion x (x is a two-dimensional coordinate). A linear filter Fk
can be written as a two-dimensional function Fk(x), so that
[Fk ∗I](y) = Fk(x)I(y+x), which is a translation invariant
linear operation.

The original FRAME model (Zhu, Wu, and Mumford,
1997) for texture patterns is a stationary or spatially homo-
geneous Markov random field or Gibbs distribution of the
following form:

p(I;λ) =
1

Z(λ)
exp

[
K∑
k=1

∑
x∈D

λk ([Fk ∗ I](x))

]
, (1)

where λk() is a nonlinear function to be estimated from the
training images, λ = (λk(), k = 1, ...,K), and Z(λ) is the
normalizing constant to make p(I;λ) integrate to 1. In the
original paper of Zhu, Wu, and Mumford (1997), each λk()
is discretized and estimated as a step function, i.e., λk(r) =∑B
b=1 wk,bhb(r), where b ∈ {1, ..., B} indexes the equally

spaced bins of discretization, and hb(r) = 1 if r is in bin
b, and 0 otherwise, i.e., h() = (hb(), b = 1, ..., B) is a 1-
hot indicator vector, and

∑
x h([Fk ∗ I](x)) is the marginal

histogram of filter map Fk ∗I. The spatially pooled marginal
histograms are the sufficient statistics of model (1).

Model (1) is stationary because the function λk() does
not depend on position x. This stationary model is used to
model texture patterns. In model (1), the energy function
U(I;λ) = −

∑
k

∑
x λk([Fk ∗ I](x)) involves a layer of

linear filtering by {Fk}, followed by a layer of pointwise
nonlinear transformation by {λk()}. Repeating this pattern
recursively (while also adding local max pooling and sub-
sampling) will lead to a generative version of CNN.

The non-stationary or spatially inhomogeneous FRAME
model for object patterns (Xie et al., 2015a) is of the follow-
ing form:

p(I;λ) =
1

Z(λ)
exp

[
K∑
k=1

∑
x∈D

λk,x([Fk ∗ I](x))

]
q(I), (2)

where the function λk,x() depends on position x, and λ =
(λk,x(),∀k, x). AgainZ(λ) is the normalizing constant. The
model is non-stationary because λk,x() depends on position
x. It is impractical to estimate λk,x() as a step function at
each x, so λk,x() is parametrized as a one-parameter func-
tion

λk,x(r) = wk,xh(r), (3)

where h() is a pre-specified rectification function, and w =
(wk,x,∀k, x) are the unknown parameters to be estimated.
In the paper of Xie et al. (2015a) , they use h(r) = |r|

for full wave rectification. One can also use rectified linear
unit h(r) = max(0, r) (Krizhevsky, Sutskever, and Hinton,
2012) for half wave rectification, which can be considered
an elaborate two-bin discretization. q(I) is a reference dis-
tribution, such as the Gaussian white noise model

q(I) =
1

(2πσ2)|D|/2 exp

[
− 1

2σ2
||I||2

]
, (4)

where |D| counts the number of pixels in the image domain
D.

In the original FRAME model (1), q(I) is assumed to be
a uniform measure. In model (2), we can also absorb q(I),
in particular, the 1

2σ2 ||I||2 term, into the energy function, so
that the model is again defined relative to a uniform mea-
sure as in the original FRAME model (1). We make q(I) ex-
plicit here because we shall specify the parameter σ2 instead
of learning it, and use q(I) as the null model for the back-
ground. In models (2) and (3), (wk,x,∀x, k) can be consid-
ered a second-layer linear filter on top of the first layer filters
{Fk} rectified by h().

Both models (1) and (2) can be sparsified. Model (1) can
be sparsified by selecting a small set of filters Fk using
the filter pursuit procedure (Zhu, Wu, and Mumford, 1997).
Model (2) can be sparsified by selecting a small number of
filters Fk and positions x, so that only a small number of
wk,x are non-zero. The sparsification can be achieved by a
shared matching pursuit method (Xie et al., 2015a) or a gen-
erative boosting method (Xie et al., 2015b).

4 FRAME models based on CNN filters
Instead of using linear filters, we can use the filters at various
convolutional layers of a pre-learned CNN. Suppose there
exists a bank of filters {Fk, k = 1, ...,K} (e.g., K = 512)
at a certain convolutional layer of a pre-learned CNN. For
an image I defined on the square image domainD, let Fk ∗ I
be the feature map of filter Fk, and let [Fk ∗ I](x) be the
filter response of I to Fk at position x (again x is a two-
dimensional coordinate). We assume that [Fk ∗ I](x) is the
response obtained after applying the rectified linear transfor-
mation h(r) = max(0, r). Then the non-stationary FRAME
model becomes

p(I;w) =
1

Z(w)
exp

[
K∑
k=1

∑
x∈D

wk,x[Fk ∗ I](x)

]
q(I), (5)

where q(I) is again the Gaussian white noise model (4) , and
w = (wk,x,∀k, x) are the unknown parameters to be learned
from the training data. Z(w) is the normalizing constant.
Model (5) shares the same form as model (2) with linear
filters, except that the rectification function h() in model (2)
is already absorbed in the CNN filers {Fk} in model (5) with
h(r) = max(0, r). We shall use model (5) for generating
object patterns.

The stationary FRAME model is of the following form:

p(I;w) =
1

Z(w)
exp

[
K∑
k=1

∑
x∈D

wk[Fk ∗ I](x)

]
q(I), (6)

which is almost the same as model (5) except that wk is the
same across x. w = (wk,∀k). We shall use model (6) for
generating texture patterns.

Again, both models (5) and (6) can be sparsified, either by
forward selection such as filter pursuit (Zhu, Wu, and Mum-
ford, 1997) or generative boosting (Xie et al., 2015b), or by
backward elimination.

5 Learning and sampling algorithm
The basic learning algorithm for object model estimates the
unknown parameters w from a set of aligned training im-
ages {Im,m = 1, ...,M} that come from the same object
category, whereM is the total number of training images. In
the basic learning algorithm, the weight parameters w can
be estimated by maximizing the log-likelihood function

L(w) =
1

M

M∑
m=1

log p(Im;w), (7)

where p(I;w) is defined by (5). L(w) is a concave function.
The first derivatives of L(w) are

∂L(w)

∂wk,x
=

1

M

M∑
m=1

[Fk ∗ Im](x)− Ew ([Fk ∗ I](x)) , (8)

where Ew denotes the expectation with respect to p(I;w).
The expectation can be approximated by Monte Carlo in-
tegration. The second derivative of L(w) is the variance-
covariance matrix of ([Fk∗I](x),∀k, x).w can be computed
by a stochastic gradient ascent algorithm (Younes, 1999):

w
(t+1)
k,x = w

(t)
k,x+

γ

[
1

M

M∑
m=1

[Fk ∗ Im](x)− 1

M̃

M̃∑
m=1

[Fk ∗ Ĩm](x)

]
(9)

for every k ∈ {1, ...,K} and x ∈ D, where γ is the learn-
ing rate, and {Ĩm} are the synthesized images sampled from
p(I;w(t)) using MCMC. M̃ is the total number of indepen-
dent parallel Markov chains that sample from p(I;w(t)). The
learning rate γ can be made inversely proportional to the
observed variance of {[Fk ∗ Im](x),∀m}, as well as being
inversely proportional to the iteration t as in stochastic ap-
proximation.

In order to sample from p(I;w), we adopt the Langevin
dynamics. Writing the energy function

U(I, w) = −
K∑
k=1

∑
x∈D

wk,x[Fk ∗ I](x) +
1

2σ2
||I||2. (10)

The Langevin dynamics iterates

Iτ+1 = Iτ −
ε2

2
U ′(Iτ , w) + εZτ , (11)

where U ′(I, w) = ∂U(I, w)/∂I. This gradient can be com-
puted by back-propagation. In (11), ε is a small step-size,
and Zτ ∼ N(0,1), independently across τ , where the
bold font 1 is the identify matrix, i.e., Zτ is a Gaussian

white noise image whose pixel values follow N(0, 1) inde-
pendently. Here we use τ to denote the time steps of the
Langevin sampling process, because t is used for the time
steps of the learning process. The Langevin sampling pro-
cess is an inner loop within the learning process. Between
every two consecutive updates of w in the learning process,
we run a finite number of iterations of the Langevin dynam-
ics starting from the images generated by the previous itera-
tion of the learning algorithm, a scheme called “warm start”
in the literature. The Langevin equation was also adopted
by Zhu and Mumford (1998), who called the corresponding
gradient descent algorithm the Gibbs reaction and diffusion
equations (GRADE).

Algorithm 1 Learning and sampling algorithm

Input:
(1) training images {Im,m = 1, ...,M}
(2) a filter bank {Fk, k = 1, ...,K}
(3) number of synthesized images M̃
(4) number of Langevin steps L
(5) number of learning iterations T

Output:
(1) estimated parameters w = (wk,x,∀k, x)

(2) synthesized images {Ĩm,m = 1, ..., M̃}

1: Calculate observed statistics:
Hobs
k,x ← 1

M

∑M
m=1[Fk ∗ Im](x),∀k, x.

2: Let t← 0, initialize w(0)
k,x ← 0,∀k, x.

3: Initialize Ĩm ← 0, for m = 1, ..., M̃ .
4: repeat
5: For each m, run L steps of Langevin dynamics to up-

date Ĩm, i.e., starting from the current Ĩm, each step
updates Ĩm ← Ĩm − ε2

2 U
′(Ĩm, w

(t)) + εZ, where
Z ∼ N(0,1).

6: Calculate synthesized statistics:
Hsyn
k,x ←

1
M̃

∑M̃
m=1[Fk ∗ Ĩm](x),∀k, x.

7: Update w(t+1)
k,x ← w

(t)
k,x + γ(Hobs

k,x −H
syn
k,x), ∀k, x.

8: Let t← t+ 1
9: until t = T

Algorithm 1 describes the details of the learning and
sampling algorithm. Algorithm 1 embodies the principle of
“analysis by synthesis,” i.e., we generate synthesized images
from the current model, and then update the model param-
eters based on the difference between the synthesized im-
ages and the observed images. If we consider the synthe-
sized images as “dreams” of the current model (following
the metaphor used by Google deep dream), then the learn-
ing algorithm is to make the dreams come true.

From the MCMC perspective, Algorithm 1 runs non-
stationary parallel Markov chains that sample from a Gibbs
distribution with a changing energy landscape, like in sim-
ulated annealing or tempering. This may help the chains to
avoid the trapping of local modes. We can also use “cold
start” scheme by initializing Langevin dynamics from white
noise images in each learning iteration and allowing the dy-

namics enough time to relax.
For learning stationary FRAME (6), usually M = 1, i.e.,

we observe one texture image, and we update the parameters

w
(t+1)
k = w

(t)
k +

γ

|D|

[
1

M

M∑
m=1

∑
x∈D

[Fk ∗ Im](x)− 1

M̃

M̃∑
m=1

∑
x∈D

[Fk ∗ Ĩm](x)

]
(12)

for every k ∈ {1, ...,K}, where there is a spatial pool-
ing across positions x ∈ D. The sampling is again accom-
plished by Langevin dynamics. The learning and sampling
algorithm for the stationary model (6) only involves minor
modifications of Algorithm 1.

6 Generative CNN units
On top of the convolutional layer of filters {Fk, k =
1, ...,K}, we can build another layer of filters {Fj , j =
1, ..., J} (with F in bold font, and indexed by j), so that

[Fj ∗ I](y) = h

∑
k,x

w
(j)
k,x[Fk ∗ I](y + x) + bj

 , (13)

where h() is a rectification function such as the rectified lin-
ear unit h(r) = max(0, r), and where the bias term bj is
related to − logZ(w). For simplicity, we ignore the layers
of local max pooling and sub-sampling.

Model (5) corresponds to a single filter in {Fj} at a par-
ticular position y (e.g., the origin y = 0) where we assume
that the object appears. The weights (w

(j)
k,x) can be learned

by fitting model (5) using Algorithm 1, which enables us to
add a CNN node in a generative fashion.

The log-likelihood ratio of the object model p(I;w) in (5)
versus the background model q(I) is log(p(I;w)/q(I)) =∑
k

∑
x wk,x[Fk∗I](x)−logZ(w). It can be used as a score

for detecting the object versus the background. If the score
is below a threshold, no object is detected, and the score is
rectified to 0. The rectified linear unit h() in Fj in (13) ac-
counts for the fact that at any position y, the object either
appears or not. More formally, consider a mixture model
p(I) = αp(I;w)+(1−α)q(I), where α is the frequency that
the object is activated, and 1 − α is the frequency of back-
ground. log(p(I)/q(I)) = log(1 + exp(

∑
k

∑
x wk,x(Fk ∗

I)(x)− logZ(w) + log(α/(1− α)) + log(1− α). We can
approximate the soft max function log(1 + er) by the hard
max function max(0, r). Thus we can identify the bias term
as b = log(α/(1 − α)) − logZ(w), and the rectified linear
unit models a mixture of “on” and “off” of an object pattern.

Model (5) is used to model images where the objects are
aligned and are from the same category. For non-aligned im-
ages that may consist of multiple local patterns, we can ex-
tend model (5) to a convolutional version with multiple fil-
ters

p(I;w) =
1

Z(w)
exp

 J∑
j=1

∑
x∈D

[Fj ∗ I](x)

 q(I), (14)

Figure 1: Generating object patterns. For each category, the
first row displays 4 of the training images, and the second
row displays generated images.

Figure 2: Generating texture patterns. For each category, the
first image is the training image, and the next 2 images are
generated images.

Figure 3: Generating hybrid object patterns. For each exper-
iment, the first row displays 4 of the training images, and the
second row displays generated images.

where {Fj} are defined by (13). This model is a product
of experts model (Hinton, 2002), where each [Fj ∗ I](x) is
an expert about a mixture of an activation or inactivation of
a local pattern of type j at position x. We call model (14)
with (13) the generative CNN model. The model can also
be considered a dense version of the And-Or model (Zhu
and Mumford, 2006), where the binary switch of each expert
corresponds to an Or-node, and the product corresponds to
an And-node.

The stationary model (6) corresponds to a special case of
generative CNN model (14) with (13), where there is only
one j, and [F ∗ I](x) =

∑K
k=1 wk[Fk ∗ I](x), which is a

special case of (13) without rectification. It is a singleton
filter that combines lower layer filter responses at the same
position.

More importantly, due to the recursive nature of CNN, if
the weight parameters wk of the stationary model (6) are
absorbed into the filters Fk by multiplying the weight and
bias parameters of each Fk by wk, then the stationary model
becomes the generative CNN model (14) except that the
top-layer filters {Fj} are replaced by the lower layer filters
{Fk}. The learning of the stationary model (6) is a simplified
version of the learning of the generative CNN model (14)
where there is only one multiplicative parameterwk for each
filterFk. The learning of the stationary model (6) is more un-
supervised and more indicative of the expressiveness of the
CNN features than the learning of the non-stationary model
(5) because the former does not require alignment.

Suppose we observe {Im,m = 1, ...,M} from the
generative CNN model (14) with (13). Let L(w) =
1
M

∑M
m=1 log p(Im;w) be the log-likelihood where p(I;w)

Figure 4: Generating hybrid texture patterns. The first 2 im-
ages are training images, and the last 2 images are generated
images.

is defined by (14) and (13), then

∂L(w)

∂w
(j)
k,x

=
1

M

M∑
m=1

∑
y∈D

δj,y(Im)[Fk ∗ Im](y + x)

− Ew

∑
y∈D

δj,y(I)[Fk ∗ I](y + x)

 , (15)

where

δj,y(I) = h′

∑
k,x

w
(j)
k,x[Fk ∗ I](y + x) + bj

 (16)

is a binary on/off detector of the local pattern of type j
at position y on image I, because for h(r) = max(0, r),
h′(r) = 0 if r ≤ 0, and h′(r) = 1 if r > 0. The gradi-
ent (15) admits an EM (Dempster, Laird, and Rubin, 1977)
interpretation which is typical in unsupervised learning al-
gorithms that involve latent variables. Specifically, δj,y() de-
tects the local pattern of type j modeled by Fj . This step can
be considered a hard-decision E-step. With the local patterns
detected, the parameters of Fj are then updated in a similar
way as in (9), which can be considered the M-step. That is,
we learn Fj only from image patches where we detect pat-
tern j. Such a scheme was used by Hong et al. (2014) to
learn codebooks of active basis models (Wu et al., 2010).

Model (14) with (13) defines a recursive scheme, where
the learning of higher layer filters {Fj} is based on the lower
layer filters {Fk}. We can use this recursive scheme to build
up the layers from scratch. We can start from the ground
layer of the raw image, and learn the first layer filters. Then
based on the first layer filters, we learn the second layer fil-
ters, and so on.

After building up the model layer by layer, we can con-
tinue to refine the parameters of all the layers simultane-
ously. In fact, the parameter w in model (14) can be in-
terpreted more broadly as multi-layer connection weights
that define all the layers of filters. The gradient of the log-
likelihood is

∂L(w)

∂w
=

1

M

M∑
m=1

J∑
j=1

∑
x∈D

∂

∂w
[Fj ∗ Im](x)

− Ew

 J∑
j=1

∑
x∈D

∂

∂w
[Fj ∗ I](x)

 , (17)

where ∂[Fj∗I](x)/∂w involves multiple layers of binary de-
tectors. The resulting algorithm also requires partial deriva-
tive ∂[Fj ∗ I](x)/∂I for Langevin sampling, which can be

Figure 5: Learning without alignment. In each row, the first
image is the training image, and the next 2 images are gen-
erated images.

considered a recurrent generative model driven by the bi-
nary switches at multiple layers. Both ∂[Fj ∗ I](x)/∂w and
∂[Fj ∗ I](x)/∂I are readily available via back-propagation.
See Hinton et al. (2006); Ngiam et al. (2011) for earlier work
along this direction. See also Dai, Lu, and Wu (2015) for
generative gradient of CNN.

Finally, we can also learn a FRAME model based on the
features at the top fully connected layer,

p(I;W) =
1

Z(W)
exp

[
N∑
i=1

Wi[Ψi ∗ I]

]
q(I), (18)

where Ψi is the i-th feature at the top fully connected
layer, N is the total number of features at this layer (e.g.,
N = 4096), and Wi are the parameters, W = (Wi,∀i).
Ψi can still be viewed as a filter whose filter map is 1 × 1.
Suppose there are a number of image categories, and sup-
pose we learn a model (18) for each image category with a
category-specific W . Also suppose we are given the prior
frequency of each category. A simple exercise of the Bayes
rule then gives us the soft-max classification rule for the pos-
terior probability of category given image, which is the dis-
criminative CNN.

7 Image generation experiments
In our experiments, we use VGG filters (Simonyan and Zis-
serman, 2015), and we use the Matlab code of MatConvNet
(Vedaldi and Lenc, 2014).

Experiment 1: generating object patterns. We learn the
non-stationary FRAME model (5) from images of aligned
objects. The images are collected from the internet. For each

Figure 6: Learning from non-aligned images. The first row
displays 3 of the training images, and the second row dis-
plays 3 generated images.

category, the number of training images is around 10. We use
M̃ = 16 parallel chains for Langevin sampling. The num-
ber of Langevin iterations between every two consecutive
updates of the parameters is L = 100. Fig. 1 shows some
experiments using filters from the 3rd convolutional layer of
VGG. For each experiment, the first row displays 4 of the
training images, and the second row displays 4 of the syn-
thesized images generated by Algorithm 1.

Experiment 2: generating texture patterns. We learn
the stationary FRAME model (6) from images of textures.
Fig. 2 shows some experiments. Each experiment is dis-
played in one row, where the first image is the training im-
age, and the other two images are generated by the learning
algorithm.

Experiment 3: generating hybrid patterns. We learn
models (5) and (6) from images of mixed categories, and
generate hybrid patterns. Figs. 3 and 4 display a few exam-
ples.

Experiment 4: learning a new layer of filters from non-
aligned images. We learn the generative CNN model (14)
with (13). Fig. 5 displays 3 experiments. In each row, the
first image is the training image, and the next 2 images are
generated by the learned model. In the first scenery experi-
ment, we learn 10 filters at the 4th convolutional layer (with-
out local max pooling), based on the pre-trained VGG filters
at the 3rd convolutional layer. The size of each Conv4 filter
to be learned is 11 × 11 × 256. In the sunflower and egret
experiments, we learn 20 filters of size 7 × 7 × 256 (with
local max pooling). Clearly these learned filters capture the
local patterns and re-shuffle them seamlessly. Fig. 6 displays
an experiment where we learn a layer of filters from a small
training set of non-aligned images. The first row displays 3
examples of training images and the second row displays the
generated images. We use the same parameter setting as in
the sunflower experiment. These experiments show that it
is possible to learn generative CNN model (14) from non-
aligned images.

8 Conclusion
In this paper, we learn the FRAME models based on pre-
trained CNN filters. It is possible to learn the multi-layer
FRAME model or the generative CNN model (14) from
scratch in a layer by layer fashion without relying on pre-
trained CNN filters. The learning will be a recursion of
model (14) , and it can be unsupervised without image la-
beling.

Code and data
The code, data, and more experimental results can be
found at http://www.stat.ucla.edu/˜yang.lu/
project/deepFrame/main.html

Acknowlegements
The code in our work is based on the Matlab code of Mat-
ConvNet (Vedaldi and Lenc, 2014), and our experiments
are based on the VGG features (Simonyan and Zisserman,
2015). We are grateful to these authors for sharing their code
and results with the community.

We thank Jifeng Dai for earlier collaboration on gener-
ative CNN. We thank Junhua Mao and Zhuowen Tu for
sharing their expertise on CNN. We thank one reviewer for
deeply insightful comments. The work is supported by NSF
DMS 1310391, ONR MURI N00014-10-1-0933, DARPA
SIMPLEX N66001-15-C-4035, and DARPA MSEE FA
8650-11-1-7149.

Appendix 1. Maximum entropy justification
The FRAME model (5) can be justified by the maximum
entropy or minimum divergence principle. Suppose the true
distribution that generates the observed images {Im} is
f(I). Let w? solve the population version of the maximum
likelihood equation:

Ew([Fk ∗ I](x)) = Ef ([Fk ∗ I](x)), ∀k, x. (19)

Let Ω be the set of all the feasible distributions p that share
the statistical properties of f as captured by {Fk}:

Ω = {p : Ep([Fk ∗ I](x)) = Ef ([Fk ∗ I](x)) ∀k, x}. (20)

Then it can be shown that among all p ∈ Ω, p(I;w?)
achieves the minimum of KL(p||q), i.e., the Kullback-
Leibler divergence from p to q (Della Pietra, Della Pietra,
and Lafferty, 1997). Thus p(I;w?) can be considered the
projection of q onto Ω, or the minimal modification of the
reference distribution q to match the statistical properties of
the true distribution f . In the special case where q is a uni-
form distribution, p(I;w?) achieves the maximum entropy
among all distributions in Ω. For Gaussian white noise q, as
mentioned before, we can absorb the ‖I‖2

2σ2 term into the en-
ergy function as in (10), so model (5) can be written relative
to a uniform measure with ‖I‖2 as an additional feature. The
maximum entropy interpretation thus still holds if we opt to
estimate σ2 from the data.

Appendix 2. Julesz ensemble justification
The learning algorithm seeks to match statistics of the syn-
thesized images to those of the observed images, as indi-
cated by (9) and (12), where the difference between the
observed statistics and the synthesized statistics drives the
update of the parameters. If the algorithm converges, and
if the number of the synthesized images M̃ is large in the
case of object patterns or if the image domain D is large in
the case of texture patterns, then the synthesized statistics
should match the observed statistics. Assume q(I) to be the
uniform distribution for now. We can consider the following
ensemble in the case of object patterns:

J =

{
(Ĩm,m = 1, ..., M̃) :

1

M̃

M̃∑
m=1

[Fk ∗ Ĩm](x)

=
1

M

M∑
m=1

[Fk ∗ Im](x),∀k, x
}
.

(21)

Consider the uniform distribution over J . Then as M̃ →
∞, the marginal distribution of any Ĩm is given by model
(5) with w being estimated by maximum likelihood. Con-
versely, model (5) puts uniform distribution on J if Ĩm are
independent samples from model (5) and if M̃ →∞.

As for the texture model, we can take M̃ = 1, but let the
image size go to ∞. First fix the square domain D. Then
embed it at the center of a larger square domainD. Consider
the ensemble of images defined on D:

J =

{
Ĩ :

1

|D|

∑
x∈D

[Fk ∗ Ĩ](x)

=
1

|D|
1

M

M∑
m=1

∑
x∈D

[Fk ∗ Im](x),∀k
}
.

(22)

Then under the uniform distribution on J , as |D| → ∞, the
distribution of Ĩ restricted to D is given by model (6). Con-
versely, model (6) defined onD puts uniform distribution on
J as |D| → ∞.

The ensemble J is called the Julesz ensemble by Wu,
Zhu, and Liu (2000), because Julesz was the first to pose the
question as to what statistics define a texture pattern (Julesz,
1962). The averaging across images in equation (21) enables
re-mixing of the parts of the observed images to generate
new object images. The spatial averaging in equation (22)
enables re-shuffling of the local patterns in the observed im-
age to generate a new texture image. That is, the averaging
operations lead to exchangeability.

For object patterns, define the discrepancy

∆k,x =
1

M̃

M̃∑
m=1

[Fk ∗ Ĩm](x)− 1

M

M∑
m=1

[Fk ∗ Im](x). (23)

One can sample from the uniform distribution on J in (21)
by running a simulated annealing algorithm that samples
from p(Ĩm,m = 1, ..., M̃) ∝ exp(−

∑
k,x ∆2

k,x/T) by
Langevin dynamics while gradually lowering the tempera-
ture T , or simply by gradient descent as in Gatys, Ecker,

http://www.stat.ucla.edu/~yang.lu/project/deepFrame/main.html
http://www.stat.ucla.edu/~yang.lu/project/deepFrame/main.html

and Bethge (2015) by assuming T = 0. The sampling algo-
rithm is very similar to Algorithm 1. One can use a similar
method to sample from the uniform distribution over J in
(22). Such a scheme was used by Zhu, Liu, and Wu (2000)
for texture synthesis.

In the above discussion, we assume q(I) to be the uniform
distribution. If q(I) is Gaussian, we only need to add the
feature ‖I‖2 to the pool of features to be matched. The above
results still hold.

The Julesz ensemble perspective connects statistics
matching and the FRAME models, thus providing another
justification for these models in addition to the maximum
entropy principle.

References
Dai, J.; Lu, Y.; and Wu, Y. N. 2015. Generative modeling of

convolutional neural networks. In ICLR.

Della Pietra, S.; Della Pietra, V.; and Lafferty, J. 1997. In-
ducing features of random fields. PAMI 19(4):380–393.

Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Max-
imum likelihood from incomplete data via the em algo-
rithm. Journal of the royal statistical society. Series B
(methodological) 1–38.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In CVPR, 248–255. IEEE.

Denton, E.; Chintala, S.; Szlam, A.; and Fergus, R. 2015.
Deep generative image models using a laplacian pyramid
of adversarial networks. ArXiv e-prints.

Dosovitskiy, E.; Springenberg, J. T.; and Brox, T. 2015.
Learning to generate chairs with convolutional neural net-
works. In CVPR.

Gatys, L. A.; Ecker, A. S.; and Bethge, M. 2015. A neural
algorithm of artistic style. ArXiv e-prints.

Gregor, K.; Danihelka, I.; Graves, A.; Rezende, D. J.; and
Wierstra, D. 2015. DRAW: A recurrent neural network
for image generation. In ICML, 1462–1471.

Hinton, G.; Dayan, P.; Frey, B. J.; and Neal, R. M. 1995. The
wake-sleep algorithm for unsupervised neural networks.

Hinton, G.; Osindero, S.; Welling, M.; and Teh, Y.-W. 2006.
Unsupervised discovery of nonlinear structure using con-
trastive backpropagation. Cognitive science 30(4):725–
731.

Hinton, G. E. 2002. Training products of experts by
minimizing contrastive divergence. Neural Computation
14(8):1771–1800.

Hong, Y.; Si, Z.; Hu, W.; Zhu, S.; and Wu, Y. 2014. Unsu-
pervised learning of compositional sparse code for natural
image representation. Quarterly of Applied Mathematics
79:373–406.

Julesz, B. 1962. Visual pattern discrimination. IRE Trans-
actions on Information Theory 8(2):84–92.

Kingma, D. P., and Welling, M. 2014. Auto-encoding vari-
ational bayes. ICLR.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In NIPS, 1097–1105.

Kulkarni, T. D.; Whitney, W.; Kohli, P.; and Tenenbaum,
J. B. 2015. Deep Convolutional Inverse Graphics Net-
work. ArXiv e-prints.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.

Mnih, A., and Gregor, K. 2014. Neural variational inference
and learning in belief networks. In ICML.

Ngiam, J.; Chen, Z.; Koh, P. W.; and Ng, A. Y. 2011. Learn-
ing deep energy models. In ICML.

Rezende, D. J.; Mohamed, S.; and Wierstra, D. 2014.
Stochastic backpropagation and approximate inference in
deep generative models. In Jebara, T., and Xing, E. P.,
eds., ICML, 1278–1286. JMLR Workshop and Confer-
ence Proceedings.

Simonyan, K., and Zisserman, A. 2015. Very deep convolu-
tional networks for large-scale image recognition. ICLR.

Simonyan, K.; Vedaldi, A.; and Zisserman, A. 2015. Deep
inside convolutional networks: Visualising image classifi-
cation models and saliency maps. ICLR.

Vedaldi, A., and Lenc, K. 2014. Matconvnet – convolutional
neural networks for matlab. CoRR abs/1412.4564.

Wu, Y. N.; Si, Z.; Gong, H.; and Zhu, S.-C. 2010. Learn-
ing active basis model for object detection and recognitio.
IJCV 90:198–235.

Wu, Y. N.; Zhu, S.-C.; and Liu, X. 2000. Equivalence of
julesz ensembles and frame models. IJCV 38:247–265.

Xie, J.; Hu, W.; Zhu, S.-C.; and Wu, Y. N. 2015a. Learn-
ing sparse frame models for natural image patterns. IJCV
114:91–112.

Xie, J.; Lu, Y.; Zhu, S.-C.; and Wu, Y. N. 2015b. Inducing
wavelets into random fields via generative boosting. Jour-
nal of Applied and Computational Harmonic Analysis.

Younes, L. 1999. On the convergence of markovian stochas-
tic algorithms with rapidly decreasing ergodicity rates.
Stochastics: An International Journal of Probability and
Stochastic Processes 65(3-4):177–228.

Zeiler, M. D., and Fergus, R. 2014. Visualizing and under-
standing convolutional neural networks. ECCV.

Zhu, S., and Mumford, D. 1998. Grade: Gibbs reaction and
diffusion equations. In ICCV.

Zhu, S. C., and Mumford, D. 2006. A stochastic grammar
of images. Foundations and Trends in Computer Graphics
and Vision 2(4):259–362.

Zhu, S. C.; Liu, X.; and Wu, Y. N. 2000. Exploring tex-
ture ensembles by efficient markov chain monte carlo -
towards a ‘trichromacy’ theory of texture. PAMI 22:245–
261.

Zhu, S. C.; Wu, Y. N.; and Mumford, D. 1997. Minimax
entropy principle and its application to texture modeling.
Neural Computation 9(8):1627–1660.

	Introduction
	Past work
	FRAME models based on linear filters
	FRAME models based on CNN filters
	Learning and sampling algorithm
	Generative CNN units
	Image generation experiments
	Conclusion

