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A recent Cell paper (Chang & Tsao, 2017) reports an interesting discovery.
For the face stimuli generated by a pretrained active appearance model
(AAM), the responses of neurons in the areas of the primate brain that
are responsible for face recognition exhibit a strong linear relationship
with the shape variables and appearance variables of the AAM that gen-
erates the face stimuli. In this letter, we show that this behavior can be
replicated by a deep generative model, the generator network, that as-
sumes that the observed signals are generated by latent random variables
via a top-down convolutional neural network. Specifically, we learn the
generator network from the face images generated by a pretrained AAM
model using a variational autoencoder, and we show that the inferred
latent variables of the learned generator network have a strong linear re-
lationship with the shape and appearance variables of the AAM model
that generates the face images. Unlike the AAM model, which has an ex-
plicit shape model where the shape variables generate the control points
or landmarks, the generator network has no such shape model and shape
variables. Yet it can learn the shape knowledge in the sense that some of
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the latent variables of the learned generator network capture the shape
variations in the face images generated by AAM.

1 Introduction

Recently, a paper published in Cell (Chang & Tsao, 2017) reports an interest-
ing discovery about the neurons in the middle lateral (ML)/middle fundus
(MF) and anterior medial (AM) areas of the primate brain that are responsi-
ble for face recognition. Specifically, this letter is concerned with how these
neurons respond to and encode the face stimuli generated by a pretrained
active appearance model (AAM) (Cootes, Edwards, & Taylor, 2001; Cootes,
Roberts, Babalola, & Taylor, 2015). In AAM, explicit shape variables and
appearance variables generate the positions of the control points and the
nominal face image, respectively, and the output image is then generated
by wrapping the nominal face image using the control points. Chang and
Tsao (2017) discovered that the responses of the neurons to the face image
generated by the AAM exhibit a strong linear relationship with the shape
and appearance variables of the AAM that generate the face image. In fact,
the shape and appearance variables of the AAM can be recovered from the
neuron responses so that the face image can be reconstructed by the AAM
using the recovered shape and appearance variables.

In this letter, we investigate whether this phenomenon can be replicated
by deep generative models. In particular, we focus on a popular deep gener-
ative model, the generator network (Goodfellow et al., 2014), which can be
considered a nonlinear generalization of the factor analysis model. Recall
that in the factor analysis model, the signal is generated by latent factors
that are assumed to be independent gaussian random variables, and the
signal is a linear transformation of the latent variables (plus observational
noises). In the generator network, the latent variables still follow a simple
known prior distribution such as independent gaussian or uniform distri-
bution, but the mapping from the latent variables to the observed signal is
modeled by a convolutional neural network (ConvNet), which has proven
to be an exceedingly powerful approximator of high-dimensional nonlinear
mappings.

Both the AAM and the generator network are latent variable models
where the signal is obtained by transforming the latent variables. In the
AAM, the latent variables consist of explicit shape and appearance variables
that generate the control points and the appearance image by linear map-
pings learned by principal component analysis (PCA). The output image is
generated by a highly nonlinear but known warping function of the control
points and the nominal image. In contrast, the generator network is more
generic; it does not assume any prior knowledge about shape and defor-
mation, and it does not have any explicit shape variables and shape model.
We are interested in whether the generator model can replicate the AAM
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in the sense that whether the generator network can learn from the images
generated by a pretrained AAM, so that the latent variables of the learned
generator network are closely related to the latent shape and appearance
variables of the AAM, and the nonlinear mapping from the latent variables
to the output image in the generator network accounts for the highly nonlin-
ear warping function of the AAM. As it is impossible for the latent variables
of the learned generator network to be the same as the latent variables of
the AAM, a strong linear relationship between the two sets of latent vari-
ables (or codes) is the best we can hope for. We show that such a linear
relationship indeed exists, thus qualitatively reproducing the behavior of
the neuron responses (or neural code) observed by Chang and Tsao (2017).

The generator network can be trained by various methods, includ-
ing the wake-sleep algorithm (Hinton, Dayan, Frey, & Neal, 1995), varia-
tional autoencoder (VAE; Kingma & Welling, 2014; Rezende, Mohamed, &
Wierstra, 2014; Salimans, Kingma, & Welling, 2015), generative adversarial
networks (GAN; Goodfellow et al., 2014; Radford, Metz, & Chintala, 2016;
Denton, Chintala, Szlam, & Fergus, 2015), moment matching networks
(Li, Swersky, & Zemel, 2015), alternating backpropagation (ABP; Han, Lu,
Zhu, & Wu, 2017), and other related methods (Oord, Kalchbrenner, &
Kavukcuoglu, 2016; Dinh, Sohl-Dickstein, & Bengio, 2016). They have led
to impressive results in a wide range of applications, such as image/video
synthesis (Dosovitskiy, Springenberg, & Brox, 2015), disentangled feature
learning (Chen et al., 2016; Higgins et al., 2017), and pattern completion
(Han et al., 2017).

In this letter, we adopt the VAE method to train the generator network.
Unlike GAN, the VAE complements the generator network with an infer-
ence network that transforms the observed image to the latent variables.
The inference network seeks to approximate the posterior distribution of
the latent variables given the observed image. That network and the gener-
ator network form an autoencoder, where the inference network plays the
role of the encoder that encodes the signal into the latent variables (or latent
code) and the generator network plays the role of the decoder that decodes
the latent variables (or latent code) back to the signal. The parameters of
the two networks can be learned by maximizing a variational lower bound
of the log likelihood (Blei, Kucukelbir, & McAuliffe, 2017). We show that
the latent variables computed by the inference network from the observed
face image are highly correlated with the latent variables of the AAM that
generates the face image.

This letter is phenomenological in nature. It is our hope that this work
is of interest to both the neuroscience community and the deep learning
community. This letter makes the following contributions:

• We study the linear relationship between the latent code learned by
the generator network and the AAM code that generates the face
stimuli. Our experiments suggest that the deep generative model ex-
hibits behavior similar to that of the primate neural system.
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• We show that the latent variables learned by the generator network
can be separated into a shape-related part and an appearance-related
part, and the generator network is expressive enough to replicate the
AAM model.

2 Active Appearance Model

The active appearance model (AAA; Cootes et al., 2001, 2015) is a generative
model for representing face images. It has a shape model and an appearance
model. Both models are learned by principal component analysis (PCA).

The shape model is based on a set of landmarks or control points. In the
training stage, the control points are given for each training image. Let x
denote the coordinates of all the control points. The shape model is

x = x̄ + Psbs, (2.1)

where x̄ is the average shape, Ps is the matrix of eigenvectors, and bs is the
vector of shape variables. (x̄, Ps) are shared across all the training examples,
while x and bs are different for different examples. The model can be learned
from the given control points of the training images by PCA, where the
number of eigenvectors is determined empirically.

The appearance model generates the nominal image before shape defor-
mation. To learn the model, we can wrap each training image to the shape-
normalized image so that its control points match those of the mean shape
x̄. Then a PCA is performed on the shape-normalized training images. Let
g denote the vector of the gray-level image. The appearance model is

g = ḡ + Paba, (2.2)

where ḡ is the mean normalized gray-level image, Pa is the matrix of eigen-
vectors, and ba is the vector of appearance variables. (ḡ, Pa) are shared by all
the training examples, while g and ba are different for different examples.
For colored images with RGB channels, we then concatenate three channels
into a single vector, then perform the PCA as in gray-level images.

We can learn (Ps, Pa) from the training images with given control points.
We concatenate the shape and appearance variables to form the face repre-
sentation or the latent code: ZAAM = [bs, ba]. Given ZAAM, we can generate
face image Y by generating x and g first, and then warping g according to
x using a warping function to output the image Y = h(g, x). The warping
function h is given and is highly nonlinear in g and x.

3 Generator Network

The generator network is a deep generative model of the following form:

Z ∼ N(0, Id ), (3.1)
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Y = fθ (Z) + εi, (3.2)

where Z is the vector of latent variables (or latent code) and d is the dimen-
sion of Z, that is, the number of latent variables. Z is assumed to follow a
simple prior distribution where each component is a gaussian N(0, 1) ran-
dom variable (Id is the d-dimensional identity matrix). The latent vector Z
generates the output image Y by a nonlinear mapping fθ , which is mod-
eled by a top-down convolutional neural network (ConvNet), where θ col-
lects all the weight and bias parameters of the top-down ConvNet. ε is the
noise vector whose elements are independent N(0, σ 2) random variables.
Even though Z follows a simple distribution, the model can generate Y with
complex distribution and rich patterns because of the expressiveness of fθ .
The generator model, equation 3.1 is a generalization of the factor analysis
model, where the mapping from Z to Y is assumed linear.

Compared to the AAM, the generator network has no explicit shape
model such as equation 2.1 with control points x and shape variables bs, nor
does it have the explicit nonlinear warping function Y = h(g, x). The gener-
ator network relies on the highly expressive ConvNet fθ to account for the
linear shape model and the nonlinear warping function. Although no prior
knowledge of shape and warping is built into the generator network, it can
learn such knowledge by itself.

Specifically, we use a pretrained AAM as a teacher model, and we let the
generator network be the student model. The AAM generates training im-
ages, and the generator network learns from the training images. We show
that the inferred Z from the face image Y has a strong linear relationship
with the corresponding ZAAM that the AAM uses to generate Y.

4 Variational Autoencoder

Given a set of N training images {Yi, i = 1, . . . , N} generated by AAM, we
train the generator network by variational autoencoder (VAE; Kingma
& Welling, 2014; Rezende et al., 2014; Salimans et al., 2015). Let p(Z) be
the prior distribution of Z. Let pθ (Y|Z) be the conditional distribution
of the image Y given the latent vector Z. Then the marginal distribu-
tion of Y is pθ (Y) = ∫

pθ (Z,Y)dZ = ∫
p(Z)pθ (Y|Z)dZ. The log likelihood

is
∑N

i=1 log pθ (Yi), and in principle, θ can be estimated by maximizing
the log likelihood. However, this is intractable because pθ (Z) involves
an intractable integral. The EM algorithm (Dempster, Laird, & Ru-
bin, 1977) is also impractical because the posterior distribution
pθ (Z|Y) = p(Z)pθ (Y|Z)/pθ (Y) is intractable. The basic idea of VAE is
to approximate the posterior distribution pθ (Z|Y) by a tractable inference
model qφ (Z|Y) with a separate set of parameters φ, such as a gaussian
distribution with independent components N(μφ (Y), σ 2

φ (Y)), where μφ (Y)
is the vector of means of the components of Z and σ 2

φ (Y) is the vector of
variances of the components of Z. Both μφ (Y) and σφ (Y) can be modeled
by bottom-up ConvNets.
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The parameters (θ, φ) can be learned by jointly maximizing the varia-
tional lower bound of the log likelihood,

L(θ, φ) =
N∑

i=1

[
log pθ (Yi) − KL(qφ (Zi|Yi)||pθ (Zi|Yi))

]
, (4.1)

where KL(q||p) denotes the Kullback-Leibler divergence from q to p. L(θ, φ)
is computationally tractable as long as the inference model qφ (Z|Y) is
tractable. (See Kingma & Welling, 2013, for more details.) qφ (Z|Y) is the en-
coder, and pθ (Y|Z) is the decoder. After learning (θ, φ), we can estimate Z
from Y by the learned posterior mean vector ZG = μφ (Y). In our work, we
use ZG as the code of Y.

We can understand VAE as follows. Let qdata(Y) be the data dis-
tribution. Then the maximum likelihood is equivalent to minimizing
KL(qdata(Y)||pθ (Y)) over θ . VAE is equivalent to minimizing

KL(qdata(Y)||pθ (Y)) + KL(qφ (Z|Y)||pθ (Z|Y))

= KL(qdata(Y)qφ (Z|Y)||p(Z)pθ (Y|Z)) (4.2)

= KL(qφ (Z,Y)||pθ (Z,Y)) (4.3)

over both θ and φ, where qφ (Z,Y) = qdata(Y)qφ (Z|Y) and pθ (Z,Y) =
p(Z)pθ (Y|Z). Unlike the maximum likelihood objective function
KL(qdata(Y)||pθ (Y)), which is the KL divergence between the marginal
distributions, the variational objective function KL(qφ (Z,Y)||pθ (Z,Y)) is
the KL divergence between the joint distributions. While the marginal
distribution pθ (Y) is intractable, the joint distribution pθ (Z,Y) is
tractable.

Let Q = {qφ (Z,Y),∀φ} and P = {pθ (Z,Y),∀θ} be the two families
of joint distributions, where qφ (Z,Y) = qdata(Y)qφ (Z|Y) and pθ (Z,Y) =
p(Z)pθ (Y|Z). We can view VAE as the joint minimization of KL(q||p) over
Q and P. Such joint minimization can be accomplished by alternating pro-
jection, as illustrated in Figure 1, where Q and P are illustrated by two lines
and each distribution in Q and P is illustrated by a point. Starting from
p = p0 ∈ P, we project p0 onto Q by minimizing KL(q||p) over q ∈ Q to ob-
tain q1. Then we project q = q1 onto P by minimizing KL(q||p) over p ∈ P
to obtain p1, and so on. This process will converge to a local minimum of
KL(q||p). In Figure 1, the two projections are illustrated by different colors
because they are of different natures. minq∈Q(q|p) is a variational projec-
tion that minimizes over the first argument, while minp∈P(q|p) is a model-
fitting projection that minimizes over the second argument. As is commonly
known, the former has mode-seeking behavior, while the latter has moment
matching behavior.

A precursor to VAE is the wake-sleep algorithm (Hinton et al., 1995),
which amounts to replacing minimizing KL(q||p) over q ∈ Q by minimiz-
ing KL(p||q) over q by switching the order of p and q. The minimization
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Figure 1: VAE as the joint minimization of KL(q||p) over Q and P via alternating
projection.

of KL(p||q) can be accomplished by generating data from p in the sleep
phase and learn qφ from the generated data. Because of the switched order,
the wake-sleep algorithm does not have a single objective function. How-
ever, in the wake-sleep algorithm, both projections are of the model-fitting
type.

The generator network can also be trained by GAN (Goodfellow et al.,
2014). However, GAN does not have an inference model or an encoder,
which is crucial for our work.

5 Experiments

We conduct experiments to investigate whether the generator network can
replicate or imitate the AAM, where the AAM serves as the teacher model
and the generator network plays the role of the student model. In the learn-
ing stage, the generator network has access only to the images generated
by the AAM. It does not have access to the shape and appearance variables
(latent code) that the AAM uses to generate the images. After learning the
generator network, we investigate the relationship between the latent code
of the learned generator network and the latent code of the AAM.

5.1 Experiment Setting.

5.1.1 Data Generation. We consider models on both gray-scaled and col-
ored face images to show the generalizability of our work. For gray-scaled
images, we pretrain the AAM using approximately 200 frontal face images
with given landmarks or control points. Coordinates of the landmarks are
first averaged; then PCA is performed where the first 10 principal com-
ponents (PCs) for shape (see equation 2.1) are retained. The landmarks of
each training image are then smoothly morphed into the average shape,
so that the resulting image carries only shape-free appearance information.
Another PCA is then performed on the shape-normalized training images,
where the first 10 PCs for appearance (see equation 2.2) are retained. This
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Figure 2: Top and third row: Training images with landmarks labeled for AAM.
Second and bottom row: Synthesized AAM images for training the generator
network.

results in a 20-dimensional latent face space. Similarly, for color images,
we pretrain the AAM on 800 images from multiple views with given land-
marks. Since the color face data set contains more data and more view in-
formation than the gray face data set, we retain 50 PCs for the shape and
another 50 PCs for the appearance, which results in a 100-dimensional latent
space. Every face has a corresponding AAM code denoted as ZAAM, which
encodes its shape and appearance variables. ZAAM has 20 dimensions for
gray-scaled images and 100 dimensions for colored ones.

To generate face stimuli for our experiments, we randomly generate
20,000 gray-scaled face images of size 256 × 256 and 10,000 colored ones
of size 128 × 128 from the above pretrained AAMs. Specifically, for each di-
mension of the latent code, we record the standard deviation of the training
responses of that dimension and sample the variable from the gaussian dis-
tribution with the same standard deviation as the real training faces. After
that, these sampled variables are combined with the learned eigenvectors
Ps and Pa to generate the synthesized images. The obtained images are then
used as our training data for the generator network. Figure 2 shows some
examples of training images to pretrain the AAM and the synthesized face
images generated by the trained AAM.

5.1.2 VAE Training. The training images obtained in Figure 2 are scaled
so that the intensities are within the range [−1, 1]. No further preprocessing
steps are needed.

For the generator network, we adopt the structure similar to Radford
et al. (2016) and Dosovitskiy et al. (2015). The network consists of multiple
deconvolution (a.k.a convolution-transpose) layers interleaved with ReLU
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Figure 3: Reconstruction of the VAE training. In each pair, left: training images;
right: reconstructed images after VAE training.

nonlinearity and batch normalization (Ioffe & Szegedy, 2015). For gray-
scaled images, we learn a seven-layer top-down convNet. The first decon-
volutional layer has 512 filters with kernel size 4 × 4 and stride 1. There are
512, 384, 256, 128, 64, and 1 filters with kernel size 4 × 4 and stride 2 for the
following deconvolution layers, respectively. For colored images, we learn
a six-layer top-down convNet, where the first layer has 512 filters with ker-
nel size 4 × 4 of stride 1, and the rest of the layers have 512, 256, 128, 64, 3
filters, which have the same kernel size as the first layer but with stride 2.
Each deconvolution layer is followed by ReLU nonlinearity and batch nor-
malization except the last deconvolution layer, which is instead followed
by the tanh nonlinearity.

For the inference model or the encoder network of VAE, we use the
mirror structure of the generator network (which is the decoder network)
where we use convolutional layers instead of deconvolutional ones. We also
use the ReLU with leaky factor 0.2 as our nonlinearity. The mean and vari-
ance networks of the inference model share the same network structure ex-
cept the top fully connected layer. We also adopt the batch normalization in
the inference model as in the generator network.

We tried different dimensionalities for the latent code Z, including 20,
100, and 200 dimensions for gray-scaled images as well as 100, 200 di-
mensions for colored ones. We used the Adam optimizer (Kingma & Ba,
2014) with initial learning rate 0.0002 for 500 iterations. The outputs of the
mean network of the inference model are used as the learned latent code
and are denoted as ZG. Both the generator model and inference model can
be well learned by VAE training, which can be indicated by accurate and
faithful reconstruction (see Figure 3). The per pixel l1 reconstruction er-
ror is 0.005 for 20,000 gray-scale images and 0.011 for 10,000 color images.
The range of the pixel intensities is [0, 1]. Realistic synthesized images can
also be generated by the trained generator network. (See Figure 4 for some
examples.)

We design four experiments to examine the relationship between the
AAM code ZAAM for generating the face images and the code learned by
the generator network, ZG.
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Figure 4: Synthesized images generated by the trained generator network.

5.2 Linear Relationship. Chang and Tsao (2017)) discovered that if a
neuron has ramp-shaped tuning to different facial features, then its neural
response can be approximated by a linear combination of the facial features.
That is, the neural code for face patches ML/MF and AM has a linear re-
lationship with the AAM code of the presented face stimuli. In our first
experiment, we check the strength of linearity between the code learned by
the generator network and the underlying AAM code.

The codes for AAM (i.e., ZAAM) are used to predict the corresponding
codes learned by generator network: ZG, and vice versa. Specifically, we fit
linear model A and linear model B, respectively:

ZG ≈ AZAAM, (5.1)

ZAAM ≈ BZG. (5.2)

We also include interception terms in both models. The goodness of fit of the
model is determined by the percentage of variance in data that is explained
by the fitted linear model—the so-called R2,

R2 = 1 −
∑

i ‖Zi − Ẑi‖2
∑

i ‖Zi − Z̄‖2
, (5.3)

where Zi is the given code for image i, Ẑi denotes the fitted value, and Z̄ is
the average of the code. Higher R2 indicates stronger linear strength.

The R2 values for different dimensionalities of ZG are shown in Tables 1
and 2. The models show strong linear relations on both gray-scaled and
colored images. This is nontrivial and surprising, because when presented
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Table 1: Strength of Linearity (R2) for Models A and B on Gray-Scaled Face
Images.

Dimension d for ZG d = 20 d = 100 d = 200

R2 (A) 0.9749 0.9332 0.9641
R2 (B) 0.9728 0.9926 0.9951

Table 2: Strength of Linearity (R2) for Models A and B on Colored Face Images.

Dimension d for ZG d = 100 d = 200

R2 (A) 0.6578 0.6627
R2 (B) 0.7604 0.7983

with only synthesized face stimuli, the VAE training of the highly nonlinear
generator network (Montufar, Pascanu, Cho, & Bengio, 2014) can automat-
ically learn the code that is linearly related to the underlying AAM code
that generates the given face stimuli. That is, the learned generator network
shares behavior similar to that of the face patch systems ML/MF and AM
in the primate brain.

5.3 Decoding. As Chang and Tsao (2017) argued, we should be able
to linearly decode the facial features from the neural responses if there is
a linear relationship between them. If so, we can accurately predict what
the primate brain sees by knowing only the neural responses of the brain.
Knowing that our learned code of the generator network ZG shows strong
linear relationship with the facial features ZAAM from the above experiment,
we expect that our automatically learned code ZG can accurately predict the
facial features ZAAM, which can then be used to reconstruct the input face
image via the AAM. Therefore, we further examine the decoding quality in
this section.

To proceed, for training, we use ZAAM and ZG obtained during the learn-
ing process to fit model B. Denote the estimated coefficients as B�. To test the
decoding quality, we carry out the following two steps. We first randomly
sample a new set of AAM-generated face images, which are used as the
testing set. We then use the trained encoder network (i.e., mean network)
of VAE to get a point estimate of the latent code of the generator network
(i.e., Ztest

G ). Second, we use the optimal B� to get the predicted AAM code:

Ẑtest
AAM = B�Ztest

G . (5.4)

The predicted AAM code is then projected onto the previously learned
AAM eigenvectors Ps and Pa to get the reconstructed image.
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Figure 5: (Left) Test faces. (Right) Reconstructed faces using linear decoding.
(Top) Results for gray-scaled face images. (Bottom) Results for colored images.

For model fitting for B�, we use the obtained 20,000 ZAAM during train-
ing for gray-scaled images and use 10,000 ZAAM for colored ones. Two thou-
sand newly generated testing images are used for both cases. Figure 5 shows
some testing images and the reconstructed ones. It can be seen that the lin-
ear model between the learned code by VAE and the AAM code gives us
high decoding quality. In this experiment, as well as the subsequent exper-
iments, we set the dimensionality of ZG to be 100. Other dimensionalities
give similar results.

5.4 Shape and Appearance Separation. The latent code ZG learned by
the deep generative model is mixed with shape and appearance informa-
tion. It would be useful to separate the shape and appearance parts of ZG. In
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Figure 6: Normalized bar plot for R2 values of shape and appearance. Each ver-
tical bar corresponds to a dimension of the latent code.

this experiment, we further identify the strengths of shape and appearance
parts of the learned code ZG.

From the first two experiments, we show that ZG is linearly related to the
AAM code ZAAM, which contains both the shape and appearance parts. We
can identify these two parts by projecting each dimension of ZG onto the
shape code bs and the appearance code ba. We can then obtain the relative
R2 for each part. A higher R2 for one part indicates the stronger response for
this part. Recall that ZAAM = [bs, ba]. We fit the linear models on the shape
part bs and the appearance part ba respectively:

ZG ≈ Asbs, (5.5)

ZG ≈ Aaba. (5.6)

Figures 6 and 7 show the R2 values for each dimension of ZG. We show
only the plots for gray-scaled images here to illustrate the idea; similar
plots can be obtained for colored images as well. Specifically, Figure 6 indi-
cates the normalized R2 for shape and appearance parts, R2

s
R2

s +R2
a

versus R2
a

R2
s +R2

a
,

where R2
s and R2

a are R2 values for shape and appearance, respectively. It
shows that each dimension of ZG responds differently to shape and ap-
pearance. To further verify and visualize our analysis, we first choose four
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Figure 7: Scatter plot for R2 values of shape and appearance. Each point cor-
responds to a dimension of the latent code. The red dashed line indicates the
equal R2 values for shape and appearance.

dimensions with the top R2 for shape and four dimensions with the top R2

for appearance. Then we simultaneously traverse the selected four shape
dimensions from [−3, 3] (±3 SD) in an equally spaced manner, denoted
as [v s

1, . . . , v
s
10]. Similarly, for the selected four appearance dimensions, we

have [va
1, . . . , v

a
10]. For unselected dimensions, we use randomly but fixed

values drawn from N(0, 1) and denote them as v f ix. In order to show the
shape change (e.g., horizontal tth row in Figure 8), we traverse four shape
dimensions from v s

1 to v s
10, fix the four selected appearance dimensions to

be va
t , and keep the other dimensions to be v f ix. The appearance change is

similar, except that we traverse the four selected appearance dimensions
but fix the shape dimensions to be corresponding values. It is clear that if
we only vary the shape dimensions of the code (horizontally in the figure),
the generated images mainly change their shapes, while the appearances
tend to remain similar. If we vary only the appearance dimensions of the
code (vertically in the figure), the generated images mainly change their
appearances instead of shapes. Similarly, for colored images, we estimate
the corresponding shape and appearance strength for each dimension of
their latent factors ZG. We select the dimensions that have a relatively high
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Figure 8: Vertical: Appearance variation. Horizontal: Shape variation.

R2 value for appearance and a low R2 for shape and vary the dimension
by ±3 SD while keeping other dimensions fixed. The first two rows of Fig-
ure 9 show that the dimension mainly controls the appearance variations.
Dimensions that have a high R2 value for shape but a low R2 for appear-
ance mainly control the shape variations The last two rows of Figure 9 show
examples.

5.5 Replicating AAM by Supervised Learning. So far the generator
network learns from the AAM in an unsupervised manner, where the gen-
erator network has access only to the training images, not the latent code
of the AAM. We now examine whether the generator network has enough
expressive power to replicate the AAM in the supervised setting, where we
also provide the latent code of the AAM to the generator.
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Figure 9: Top two rows: Appearance variations (first row: identity and expres-
sion changes; second row: color changes). Bottom two rows: shape variations
(third row: the width of the face changes; fourth row: view points change.)

In this experiment, the synthesized face images and their AAM codes are
given, and we use these pairs to learn the generator network. To be more
specific, we also consider two cases that include the gray-scaled images and
more realistic colored images. We first train the generator network using
the 20,000 gray-scaled images (or 10,000 colored images) and their codes.
We denote the trained generator as G�. Then we prepare a new set of 2,000
synthesized images Ytest and their AAM code Ztest

AAM as our testing set. Ztest
AAM

is fed into G� to get Ŷtest . If the generator network is capable of replicat-
ing the AAM, then Ŷtest should be close to Ytest ; that is, the generated im-
ages by the trained generator network should be similar to the testing face
images.

We use the same generator network structure as in the VAE training.
We use the Adam optimizer to train the generator network for supervised
learning. The learning rate is 0.0002 with 800 epochs. Figure 10 shows the
ground-truth testing images generated by the AAM and the reconstructed
images generated by the trained generator network for both gray-scaled
and colored face images. We also calculate the per pixel �1 reconstruction
error, which is 0.0068 for gray-scaled images and 0.0420 for colored faces.
The range of the pixel intensities is [0, 1].
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Figure 10: Left: Test face images generated by AAM. Right: Reconstructed face
images by the generator network trained by supervised learning.

6 Conclusion

The recent work in neuroscience by Chang and Tsao (2017) shows that face
images can be reconstructed using the cell responses from face patches
ML/MF and AM. To investigate whether the widely used generator net-
work has a similar property, we design and conduct experiments to examine
the relationship between the AAM code that generates the face stimuli and
the automatically learned code by the generator network. Through the lin-
earity analysis and the decoding quality analysis, we find that the biological
observations of Chang and Tsao (2017) can be qualitatively reproduced by
the generator network; the learned code shows a strong linear relationship
with the AAM code. We can also use this relationship to further separate
the shape and appearance parts of the learned code. Again, this is similar to
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the neural system as it is found that ML/MF and AM carry complementary
information about shape and appearance. Furthermore, we show that the
generator network is capable of replicating AAM, and we demonstrate this
through supervised learning. In our current work, we consider neurons in
ML/MF and AM as a whole and do not distinguish them. As Stevens (2018)
pointed out, the AM face patches specifically have AM neuron rates that are
exponential distribution and have the same mean for all face stimuli. As one
of our future directions, we would like to study the relation between the
learned latent codes and the specific areas of face patches to gain a deeper
understanding of the generator model.

In this letter, we distill the knowledge of a pretrained AAM to the gener-
ator network. It will also be interesting to distill the knowledge of a learned
generator network to an AAM in order to interpret the generator network.
The learned deep generator model, despite its powerful modeling ability,
is in general a black box and hard to interpret, while the AAM model is ex-
plainable in the sense that it has explicit shape and appearance variables.
It would be interesting to learn a generator model with explicit variables
for shape and appearance explicitly. A recent paper has explored this idea
(Xing, Han, Gao, Zhu, & Wu, 2019) to disentangle the appearance and geo-
metric knowledge by a deformable generator network in an unsupervised
way. The basic rationale is to use simple and explainable models to repre-
sent the complex and uninterpretable models based on which more reliable
decisions and predictions can be made. We leave it to future work.
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