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1. Bayesian Inference

Two major tasks of statistical inference is (i) to estimate unknown model pa-
rameters from data; (ii) to quantify the uncertainty in the estimates. Suppose
we have collected data:

y1, y2, · · · , yn
iid∼ f(y | θ),

where f(y | θ) is a pdf (or pmf) of a distribution parameterized by θ. Then we
want to estimate θ and/or build a confidence interval for θ.

In general, denote the observed data by y = (y1, y2, · · · , yn). A common estima-
tion method is the maximum likelihood estimate (MLE). Define the likelihood
of θ give data y as

L(θ | y) := p(y1, · · · , yn | θ) =
n∏

i=1

f(yi | θ).

The MLE θ̂MLE is the maximizer of L(θ | y) over θ:

θ̂MLE = argmax
θ

L(θ | y).

Moreover, we often estimate the standard error of the MLE, denoted by ŝe, and
construct an approximate 95% confidence interval as

(θ̂MLE − 2ŝe, θ̂MLE + 2ŝe)

as a way to quantify the uncertainty in our estimate. The interpretation of the
interval is

P[θ ∈ (θ̂MLE − 2ŝe, θ̂MLE + 2ŝe)] = 0.95.

Here, θ̂MLE is regarded as a random variable as a function of the random sample
y, while θ is an unknown constant.

1.1. Main steps

Bayesian inference relies on posterior distributions to provide solutions to the
two inferential tasks (i) and (ii). The unknown parameter θ is regarded as a
random variable and thus we need to specify a marginal distribution for θ,
denoted by p(θ), which is called a prior distribution. Here, “prior” means before
observing any data, as the prior distribution does not depend on the data y.
Therefore, a Bayesian model for the data y is set up by two distributions:

Prior: θ ∼ p(θ), (1)

Data: y = (y1, . . . , yn) | θ
iid∼ f(y | θ). (2)
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Together, they define a joint distribution for (θ,y):

p(θ,y) = p(θ)p(y | θ) = p(θ) ·
n∏

i=1

f(yi | θ). (3)

Based on (3), we find the conditional distribution [θ | y] to perform inference
on θ. This conditional distribution of θ given the data y is called the posterior
distribution, where “posterior” means the distribution of θ is now updated after
observing the data and thus depends on y. Applying Bayes formula,

p(θ | y) = p(θ,y)

p(y)
=

p(θ)p(y | θ)
p(y)

=
p(θ) ·

∏n
i=1 f(yi | θ)
p(y)

,

where the marginal density p(y) =
∫
p(θ,y)dθ does not depend on θ and can

be regarded as a normalizing constant. Consequently, it is more convenient to
work with an unnormalized posterior density:

p(θ | y) ∝ p(θ)p(y | θ) = p(θ) ·
n∏

i=1

f(yi | θ). (4)

We may either recognize the posterior distribution via the unnormalized den-
sity on the right side or use Monte Carlo methods to draw samples given the
unnormalized density.

A Bayesian estimate of θ is usually constructed as the mean of the posterior
distribution,

θ̂B :=E(θ|y) =
∫

θ · p(θ | y)dθ. (5)

A (1 − 2α) Bayesian interval for θ can be constructed by the quantiles of the
posterior distribution: (θ(α), θ(1−α)), where θ(α) is the α-quantile for α ∈ (0, 1).
The interpretation of a Bayesian interval is

P(θ ∈ (θ(α), θ(1−α)) | y) = 1− 2α, (6)

where θ is a random variable following the posterior distribution p(θ | y).

θ

p(θ | y)

θ̂B
( )
θ(α) θ(1−α)

θ̂B = E(θ | y)
P(θ(α) < θ < θ(1−α) | y) = 1− 2α
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For complicated problems, Monte Carlo simulation, such as MCMC, is applied
to draw samples of θ from the posterior distribution p(θ | y), regarding (4) as
the target density. From the Monte Carlo samples, one can easily calculate the
sample mean and sample quantiles to approximate θ̂B and (θ(α), θ(1−α)).

In summary, the main steps of Bayesian inference are:

1. Choose a prior distribution p(θ).
2. Find the posterior distribution p(θ | y) by (4).
3. Apply a Monte Carlo algorithm to draw samples from p(θ | y).
4. Construct Bayesian estimates and intervals from the Monte Carlo samples.

1.2. Some basic models

We will demonstrate the main steps of Bayesian inference with a few simple
examples.

Example 1 (Binomial distribution). Consider independent coin tossing with
θ ∈ (0, 1) being the probability of heads. Suppose we toss n times and observe
heads x times. How to estimate θ?

Let X (random variable) be the number of times we observe heads. The distri-
bution of X given θ is

X | θ ∼ Bin(n, θ).

Thus, the likelihood

P(X = x | θ) =
(
n
x

)
θx(1− θ)n−x.

MLE: θ̂MLE =
x

n
.

Bayesian inference:

1. Choose a prior distribution for θ: Without any prior knowledge on θ, we
usually choose a flat prior,

θ ∼ Unif(0, 1), i.e. p(θ) = 1, θ ∈ (0, 1).

2. Then find the posterior distribution:

p(θ | X = x) ∝ p(θ) · P(X = x | θ)

=

(
n
x

)
θx(1− θ)n−x

∝ θx(1− θ)n−x, (7)

where θ is the random variable.
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3. From (7), we recognize that it is an unnormalized Beta density. Therefore,
the posterior distribution is

θ | x ∼ Beta(x+ 1, n− x+ 1). (8)

As a reference, the pdf of Beta(α, β) is

Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1,

and its mean is E(θ) = α
α+β .

4. Given (8), we find Bayesian estimate

θ̂B = E(θ|x) = x+ 1

n+ 2
.

To construct a 95% Bayesian interval, we use the 2.5% and 97.5% quantiles
of Beta(x + 1, n − x + 1). For example, if n = 10, x = 3, the posterior
distribution is Beta(4, 8), for which the two quantiles are

> qbeta(c(0.025,0.975),4,8)

[1] 0.1092634 0.6097426

So the 95% Bayesian interval is (0.109, 0.610). If n = 20, x = 6, the poste-
rior distribution is Beta(7, 15) with the quantiles given by

> qbeta(c(0.025,0.975),7,15)

[1] 0.1458769 0.5217511

In this case, Bayesian interval is (0.146, 0.522), which is shorter than the
first case as the sample size n is larger.

The following figure shows the shape of the prior (black) and the posterior
distributions: red for n = 10, x = 3 and blue for n = 20, x = 6.
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A Bayesian interval can be used to do hypothesis test. Suppose we want to
decide whether the coin is fair

H0 : θ = 0.5.

Based on the data n = 20, x = 6, the 95% Bayesian interval (0.146, 0.522)
covers 0.5, and therefore we will accept the null hypothesis H0. If we collect
more data and observe n = 50, x = 15, then θ | x ∼ Beta(16, 36) and a 95%
Bayesian interval will be (0.191, 0.438). Because 0.5 falls outside this interval,
we conclude with 95% probability that the coin is not fair (reject H0).

The uniform distribution Unif(0, 1) is equivalent to Beta(1, 1). We may choose
other Beta distribution as the prior for θ:

θ ∼ Beta(α, β), p(θ) ∝ θα−1(1− θ)β−1.

Then the posterior distribution

p(θ | X = x) ∝ p(θ) · P(X = x | θ)

∝ θα−1(1− θ)β−1 ·
(
n
x

)
θx(1− θ)n−x

∝ θx+α−1(1− θ)n−x+β−1,

and thus,

θ | x ∼ Beta(x+ α, n− x+ β).

We see that the posterior is in the same family of the prior, both Beta distribu-
tions, in which case we say the prior is a conjugate prior. That is, Beta prior is
conjugate to the Binomial distribution. The Bayesian estimate, i.e. the posterior
mean, under this prior is

θ̂B =
x+ α

n+ α+ β
. (9)

Compared to the MLE θ̂MLE = x/n, the prior parameters (α, β) may be regarded
as pseudo counts added to the two possible outcomes (heads or tails). If there
is no prior knowledge about θ, we choose small pseudo counts, α, β ∈ (0, 1]. If
there is strong prior for θ, say from historical data, one may choose larger values
of α, β to reflect such prior knowledge.

Example 2 (Multinomial distribution). We generalize Example 1 to multino-
mial data. Let θ = (θ1, θ2, · · · , θk) be the probabilities of k possible outcomes

in a random experiment, θj > 0,
∑k

j=1 θj = 1. Suppose we have done this ex-
periment n times independently and observed the jth outcome xj times. So the
observations follow a multinomial distribution:

x = (x1, x2, · · · , xk) | θ ∼ M(n, θ),
∑

xj = n.
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The likelihood is

p(x | θ) ∝ θx1
1 θx2

2 · · · θxk

k , (10)

and the MLE
(θ̂j)MLE =

xj

n
, j = 1, . . . , k.

To do Bayesian inference, let us first find a conjugate prior.

Definition 1 (Dirichlet distribution). Let θ = (θ1, · · · , θk) ∈ Rk be a random

vector such that θj ≥ 0 for all j = 1, . . . , k and
∑k

j=1 θj = 1. Then θ follows the
Dirichlet distribution Dir(α1, . . . , αk), αj > 0 for all j, if the pdf of θ is

p(θ) =
Γ(α1 + α2 + · · ·+ αk)

Γ(α1)Γ(α2) · · ·Γ(αk)
θα1−1
1 θα2−1

2 · · · θαk−1
k .

The mean of θ is

E(θj) =
αj

α1 + α2 + · · ·+ αk
, j = 1, . . . , k. (11)

How to sample θ from Dir(α1, . . . , αk)?

1. Draw vj ∼ Gamma(αj , 1) independently for j = 1, . . . , k.

2. Put S =
∑k

j=1 vj and define

θj =
vj
S

=
vj

v1 + · · ·+ vk
, j = 1, . . . , k.

Then θ = (θ1, θ2, · · · , θk) ∼ Dir(α1, α2, · · · , αk).

It turns out the Dirichlet is a conjugate prior for multinomial distribution. To
see that, let us assume the prior is θ ∼ Dir(α1, · · · , αk), i.e.

p(θ) ∝ θα1−1
1 θα2−1

2 · · · θαk−1
k . (12)

Then the posterior distribution, by multiplying (12) and (10),

p(θ | x) ∝ p(θ)p(x | θ)
∝ θx1+α1−1

1 θx2+α2−1
2 · · · θxk+αk−1

k ,

which is an unnormalized density of Dir(x1 + α1, . . . , xk + αk). Therefore,

θ | x ∼ Dir(x1 + α1, . . . , xk + αk). (13)

Put α0 =
∑k

j=1 αj . By (11), we find the Bayesian estimate of θ by the posterior
mean:

(θ̂j)B =
xj + αj

n+ α0
, j = 1, . . . , k.
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Similar to (9), here α1, · · · , αk are also interpreted as pseudo counts for the
k possible outcomes. Without any prior knowledge, we choose αj ∈ (0, 1]. In
particular, if αj = 1 for all j, the prior is a uniform distribution (p(θ) ∝ 1).

If we wish to build a Bayesian interval for θj , we can do so using the quantiles
of the posterior distribution [θj | x], which is simply a marginal distribution
of the Dirichlet distribution (13). By properties of Dirichlet distributions, the
marginal distribution is a Beta distribution:

θj | x ∼ Beta(xj + αj , n− xj + α0 − αj).

Then we can use the same procedure in Example 1 to construct a Bayesian
interval for each θj .

Example 3 (Normal data with known variance). Suppose we have observed

y1, · · · yn | θ iid∼ N (θ, σ2),

where σ2 is known. Our goal is to make inference on θ. The likelihood of θ is

p(y1, · · · , yn | θ) =
n∏

i=1

1√
2πσ

exp

{
− 1

2σ2
(yi − θ)2

}

∝ exp

{
− 1

2σ2

n∑
i=1

(yi − θ)2

}
.

The MLE θ̂MLE = ȳ = 1
n

∑
i yi. The standard error (standard deviation) of ȳ is

se = σ/
√
n. Thus, we can construct a 95% confidence interval (ȳ ± 2σ/

√
n).

Now consider Bayesian inference. A conjugate prior for θ is θ ∼ N (µ0, τ
2
0 ). Let

us consider a flat prior by choosing τ0 → ∞:

p(θ) ∝ exp

{
− 1

2τ20
(θ − µ0)

2

}
→ 1, as τ0 → ∞.

Then, the posterior distribution [θ | y = (y1, . . . , yn)] is

p(θ | y) ∝ p(θ)p(y|θ) ∝ exp

{
− 1

2σ2

n∑
i=1

(θ − yi)
2

}
.

Recall that θ is the random variable and y is constant. Using the equality

n∑
i=1

(θ − yi)
2 =

∑
i

(θ − ȳ + ȳ − yi)
2

= n(θ − ȳ)2 +

n∑
i=1

(yi − ȳ)2,
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we get

p(θ | y) ∝ exp

{
− 1

2σ2
n(θ − ȳ)2

}
= exp

{
− (θ − ȳ)2

2σ2/n

}
.

This shows that the posterior distribution

θ | y ∼ N (ȳ, σ2/n).

Then, the Bayesian estimate is θ̂B = E(θ|y) = ȳ and a 95% Bayesian interval,
constructed by the quantiles (qℓ, qu) of N (ȳ, σ2/n), is

(ȳ − 2σ/
√
n, ȳ + 2σ/

√
n).

See below for illustration:

θ

p(θ | y)

ȳ
( )
qℓ qu

E(θ | y) = ȳ

P(qℓ < θ < qu | y) = 0.95

Again, the interval length (4σ/
√
n) shrinks when n increases. For this example,

the Bayesian point and interval estimates both coincide with the MLE and the
confidence interval.



Zhou, Q./Advanced Modeling and Inference 10

2. Missing Data Problems

Suppose we have data

y1,y2, · · · ,yn
iid∼ f(y | θ),

where each data point yi = (yi1, yi2, · · · , yip) ∈ Rp. Put them into a data matrix
Y = (yij)n×p. However, some data points contain missing elements, shown as
‘?’ in the following table, such as y2p and yn1.

1 2 . . . p
y1

y2 ? ?
. . .
yn ? ?

?: missing value (e.g. y22, y2p, · · · , yn2)
Yobs: observed elements of Y (observed data).
Ymis: missing elements of Y (missing data).
Y = (Yobs, Ymis): complete data.

Denote by Yobs the observed elements of Y and Ymis the missing elements of Y .
We call Yobs the observed data, Ymis the missing data, and Y = (Yobs, Ymis) the
complete data.

Assume the missing data mechanism is ignorable (Chapter 1, §1.1). Our goal is
to estimate the model parameter θ based on the observed data Yobs.

2.1. Data augmentation

Bayesian inference for missing data problems (1) estimates θ and (2) predicts
missing data Ymis based on the joint posterior distribution of (θ, Ymis):

p(θ, Ymis|Yobs) ∝ p(θ)p(Yobs, Ymis | θ),

where p(θ) is the prior for θ and

p(Yobs, Ymis | θ) = p(Y | θ) =
∏
i

f(yi | θ)

is the complete-date likelihood.

Usually there are no closed-form formulas for posterior mean or quantiles of the
posterior distribution of θ:

p(θ | Yobs) ∝ p(θ)p(Yobs | θ)

= p(θ)

∫
p(Yobs, Ymis | θ)dYmis,

which involves marginalization over the missing data Ymis. We need to draw
samples of (θ, Ymis) from the joint posterior distribution [θ, Ymis | Yobs] to per-
form Bayesian inference. To do that, we develop a two-block Gibbs sampler, one
iteration of which contains two conditional sampling steps:
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1. Given θ(t), draw Y
(t+1)
mis ∼ p(Ymis | Yobs, θ

(t));

2. Given Y
(t+1)
mis , draw θ(t+1) ∼ p(θ | Yobs, Y

(t+1)
mis ) = p(θ | Y (t+1)), where

Y (t+1) = (Yobs, Y
(t+1)
mis ) is a complete data matrix with missing values imputed

as Y
(t+1)
mis .

This two-block Gibbs sampler is illustrated by the following diagram:

θ(0)

Y
(1)
mis

θ(1)

Y
(2)
mis

θ(2)

· · ·

θ(t)

Y
(t+1)
mis

θ(t+1)

· · ·

Remark 1. This two-block Gibbs sampler can be viewed as a stochastic version
of the EM algorithm and was first developed under the name of data augmen-
tation by Tanner and Wong (1987).

For many commonly used models, both conditional sampling steps are easy to
implement, as shown by the following examples.

2.2. Discrete data example

Example 4. Suppose x1, x2, · · · , xn
iid∼ Discrete(θ1, θ2, θ3):

P(xi = k) = θk, k = 1, 2, 3.

As shown in the following table, the data is coarsened, in which x1, x2, x3 are
only partially classified: x1 ∈ {2, 3}, x2 ∈ {1, 3} and x3 ∈ {1, 2}, while the other
data points are fully classified: x4 = 1, . . . , xn = 2.

1 2 3
x1 × ? ?
x2 ? × ?
x3 ? ? ×
x4 ✓
...
xn ✓

?: possible categories for an observation;

✓: observed category for an observation.

Prior: θ ∼ Dir(α1, α2, α3), (θ1 + θ2 + θ3 = 1)

p(θ1, θ2, θ3) ∝ θα1−1
1 θα2−1

2 θα3−1
3 .

Missing data in x1, x2, x3, and Yobs = (x1 ̸= 1, x2 ̸= 2, x3 ̸= 3, x4, . . . , xn). Let
Cobs

j =
∑n

i=4 I(xi = j): observed counts for the jth category from x4 to xn.
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1. Given θ = (θ1, θ2, θ3), P(x1 = j|θ) = θj for j = 1, 2, 3,

⇒ P(x1 = j|x1 ̸= 1, θ) =
θj

θ2 + θ3
, j = 2, 3.

Similarly,

P(x2 = j|x2 ̸= 2, θ) =
θj

θ1 + θ3
, j = 1, 3.

P(x3 = j|x3 ̸= 3, θ) =
θj

θ1 + θ2
, j = 1, 2.

Draw x1, x2, x3 independently according to the above conditional proba-
bilities.

2. Given (x1, x2, x3), C
(mis)
j =

3∑
i=1

I(xi = j),

then p(θ|x1, · · · , xn) ∝
3∏

j=1

θ
C

(Obs)
j +C

(mis)
j +αj−1

j . Draw θ from

θ|x ∼ Dir(C
(obs)
1 +C

(mis)
1 +α1, C

(obs)
2 +C

(mis)
2 +α2, C

(obs)
3 +C

(mis)
3 +α3),

where x = (x1, . . . , xn) is complete data.

Iterate between steps 1 and 2 to generate (θ(t), x
(t)
1,2,3) for t = 1, . . . ,m.

Bayesian estimates: θ̂B ≈ 1
m

∑
t θ

(t) and histogram of θ
(t)
j .

2.3. Gaussian data example

Example 5. y1, y2, · · · , yn
iid∼ N2(µ,Σ), yi = (yi1, yi2).

µ =

(
µ1

µ2

)
, Σ︸︷︷︸
known

=

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

Y1 Y2

y1 ? ✓
y2 ✓ ?
y3 ✓ ✓
y4 ✓ ✓
...

...
...

yn ✓ ✓

? : missing value,
✓: observed value.
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Improper flat prior: p(µ) ∝ 1.

Missing data Ymis = (y11, y22) and observed data Yobs = (y12, y21, y3, . . . , yn).

Data augmentation for this problem:

1. Given µ, sample y11 and y22, [y11|y12, µ, Σ] ∼? Recall y1 = (y11, y12).

p(y11|y12, µ,Σ) ∝ p(y11, y12|µ,Σ) ∝ exp

[
−1

2
(y1 − µ)TΣ−1(y1 − µ)

]
= exp

{
− 1

2(1− ρ2)

[
(y11 − µ1)

2

σ2
1

− 2ρ(y11 − µ1)(y12 − µ2)

σ1σ2
+

(y12 − µ2)
2

σ2
2

]}
∝ exp

{
− 1

2(1− ρ2)σ2
1

[
(y11 − µ1)

2 − 2ρσ1

σ2
(y12 − µ2)(y11 − µ1)

]}
= exp

{
− 1

2(1− ρ2)σ2
1

[
y11 − µ1 −

ρσ1

σ2
(y12 − µ2)

]2
+ C

}
.

∴ y11|y12, µ,Σ ∼ N
(
µ1 +

ρσ1

σ2
(y12 − µ2), (1− ρ2)σ2

1

)
.

Similarly, y22|y21, µ,Σ ∼ N
(
µ2 +

ρσ2

σ1
(y21 − µ1), (1− ρ2)σ2

2

)
.

Given µ, draw y11 and y22 independently from the two normal distributions.

2. Given y11 and y22, sample µ?

p(µ|y1, y2, · · · , yn,Σ) ∝ p(y1, · · · , yn|µ,Σ)

= |2πΣ|−n
2 exp

[
−1

2

n∑
i=1

(yi − µ)TΣ−1(yi − µ)

]

∝ exp

[
−1

2

n∑
i=1

(yi − µ)TΣ−1(yi − µ)

]
.

Let ȳ =
∑

i yi/n.∑
i

(µ− yi)
TΣ−1(µ− yi)

=
∑
i

(µ− ȳ + ȳ − yi)
TΣ−1(µ− ȳ + ȳ − yi)

=
∑
i

[
(µ− ȳ)TΣ−1(µ− ȳ) + 2(µ− ȳ)TΣ−1(ȳ − yi) + (ȳ − yi)

TΣ−1(ȳ − yi)
]

= n(µ− ȳ)TΣ−1(µ− ȳ) + C.

Therefore, µ|y1, · · · , yn ∼ N2(ȳ,
1
nΣ).

Iterate between steps 1 and 2.
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