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1. Mixture models

1.1. Definition

Model the distribution of y = (y1, y2, · · · , yn) as a mixture of K components:

P(yi|θ, λ) =
K∑

m=1

λmfm(yi|θm), (1)

where λm is the proportion of themth component,
∑K

m=1 λm = 1, and fm(yi|θm)
is the distribution of mth component (usually from the same parametric family).

Now let us introduce missing indicator variables zi = (zi1, · · · , ziK):

zim =

{
1 if yi is drawn from the mth mixture component

0 otherwise
.

Thus, we have the following two-layer model:

zi ∼ M(1, (λ1, · · · , λK)),

yi|zi ∼ fm(yi|θm), if zim = 1.

∗UCLA Department of Statistics (email: zhou@stat.ucla.edu).
†I thank Elvis Cui for typesetting part of this chapter in LaTex.

1

http://www.stat.ucla.edu/~zhou/courses/Stats201C/


Zhou, Q./Advanced Modeling and Inference 2

It is easy to see that the marginal distribution [yi|θ, λ] is given by the mixture
distribution (1):

P(yi|θ, λ) =
∑
zi

P(yi, zi | λ, θ) =
K∑

m=1

λmfm(yi|θm),

by summing over the range of zi ∈ {e1, . . . , eK}, where em’s are the standard
basis vectors in RK , e.g. e1 = (1, 0, . . . , 0).

We may formulate this as a missing data problem:

• y = (y1, · · · , yn)T: n× p matrix, observed data (p is the dimension of yi);
• z = (z1, z2, · · · , zn)T: n×K matrix, missing data.

Write the pdf of [yi|zi] as
∏K

m=1(f(yi|θm))zim . Therefore, the complete-data
likelihood is:

P(y, z|θ, λ) =
n∏

i=1

K∏
m=1

(λmf(yi|θm))
zim .

Remark 1. For a distribution Pθ = P(x|θ), the parameter θ is identifiable if the
mapping θ 7→ Pθ is one-to-one. For P(y|θ, λ) in (1), the parameters (θ, λ) are
not identifiable due to permutation of the group labels {1, . . . ,K}. However,
the non-identifiability of a mixture model is usually not an issue in practice,
since most methods will produce an estimate of the parameters defined by an
arbitrary permutation of the group labels.

1.2. MLE by the EM

Log-likelihood of complete data:

log(P(y, z|θ, λ)) =
n∑

i=1

K∑
m=1

zim[log λm + log f(yi|θm)].

Taking expection w.r.t. [z|y, θ(t), λ(t)]:

E
[
log(P(y, z|θ, λ))|y, θ(t), λ(t)

]
=

n∑
i=1

K∑
m=1

E(zim|yi, θ(t), λ(t))[log λm + log f(yi|θm)].

Calculate the conditional expectation:

E(zim|yi, θ(t), λ(t)) = P(zim = 1|yi, θ(t), λ(t))

=
P(yi|zim = 1, θ

(t)
m )P(zim=1|λ(t))∑K

j=1 P(yi|zij = 1, θ
(t)
j )P(zij=1|λ(t))

=
λ
(t)
m f(yi|θ(t)m )∑K

j=1 λ
(t)
j f(yi|θ(t)j )

≜ w
(t)
im : weight of yi from f(·|θm).
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Note that
∑

m w
(t)
im = 1. The wim = P(zim = 1 | yi) are posterior probabilities

of zim = 1, while λm = P(zim = 1) are prior probabilities.
Thus, given (λ(t), θ(t)), one iteration if the EM algorithm can be described as

follow:

• E-step: Calculate the weights w
(t)
im for m = 1, . . . ,K and i = 1, . . . , n.

Then

Q(θ, λ|θ(t), λ(t)) = E
[
log(P(y, z|θ, λ))|y, θ(t), λ(t)

]
=

K∑
m=1

{(
n∑

i=1

w
(t)
im

)
︸ ︷︷ ︸

≜w
(t)
·m

log λm +

(
n∑

i=1

w
(t)
im log f(yi|θm)

)}

=

K∑
m=1

w
(t)
·m log λm +

K∑
m=1

[
n∑

i=1

w
(t)
im log f(yi|θm)

]
.

• M-step: Let

w
(t)
·· ≜

K∑
m=1

w
(t)
·m = n,

Qm(θm|θ(t), λ(t)) ≜
n∑

i=1

w
(t)
im log f(yi|θm).

Then, for m = 1, . . . ,K,

λ(t+1)
m =

w
(t)
·m

w
(t)
··

=
w

(t)
·m

n
; (2)

θ(t+1)
m = argmax

θ
Qm(θm|θ(t), λ(t)). (3)

The update of λ by (2) is the same for all models. In the following examples,
we show how to update θm.

Example 1 (Mixture exponential). Assumptions:

yi|(zim = 1, θm) ∼ E(θm),

f(yi|zim = 1, θm) =
1

θm
exp

(
− yi
θm

)
.

Thus E(yi | zim = 1, θm) = θm.
Calculating Q function:

Qm(θm|θ(t), λ(t)) =

n∑
i=1

w
(t)
im log

[
1

θm
exp

(
− yi
θm

)]

= −w
(t)
·m log θm −

∑n
i=1 w

(t)
imyi

θm
.
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Taking derivative and set it to zero:

∂Qm

∂θm
= 0 ⇒ θ(t+1)

m =

∑n
i=1 w

(t)
imyi

w
(t)
·m

,

which is a weighted average of yi.

Example 2 (Exponential family). Suppose

f(yi|θm, zim = 1) = h(yi)c(θm) exp[ϕ(θm)Tt(yi)], m = 1, . . . ,K.

• E-step:

Qm(θm|θ(t), λ(t)) =

n∑
i=1

w
(t)
im

[
log h(yi) + log c(θm) + ϕ(θm)Tt(yi)

]
= w

(t)
·m log c(θm) + ϕ(θm)T

(
n∑

i=1

w
(t)
imt(yi)

)
+ const.

• M-step: θm
(t+1) is the solution (for θ) to

n∑
i=1

w
(t)
imt(yi) = Eθm

[
n∑

i=1

w
(t)
imt(yi)

]
= w

(t)
·mEθm [t(y1)].

Remark: Compare to complete data, where θ̂MLE satisfies

n∑
i=1

t(yi) = nEθ[t(y1)].

2. Model-based clustering

Clustering problem: Suppose we observe y1, · · · , yn (yi ∈ Rp) from K groups.
Now we want to group them into K clusters. This problem can be illustrated
by Figure 1.

Assumptions: Denote by zi as the cluster label of yi, which is hidden (or
latent variable).

zi ∼ M(1, λ), λ = (λ1, · · · , λK)

yi|zim = 1 ∼ Np(µm,Σm).

Estimation: We want to find MLE of parameters θ = (λ, µm,Σm,m = 1, . . . ,K).

Then predict cluster label according to P(zim = 1|yi, θ̂).

• E-step: For i = 1, . . . , n and m = 1, . . . ,K, calculate

w
(t)
im =

λ
(t)
m ϕp(yi;µ

(t)
m ,Σ

(t)
m )∑K

j=1 λ
(t)
j ϕp(yi, µ

(t)
j ,Σ

(t)
j )

.
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Fig 1: Scatter plot of three clusters of data points.

• M-step: Update λ(t+1) by (2). For m = 1, · · · ,K, solve∑
i

w
(t)
imyi = w

(t)
·mµm∑

i

w
(t)
imyiy

T
i = w

(t)
·m
(
Σm + µmµT

m

)
for µm and Σm to update

µ(t+1)
m =

∑
i w

(t)
imyi

w
(t)
·m

,

Σ(t+1)
m =

∑
i w

(t)
imyiy

T
i

w
(t)
·m

− µ(t+1)
m (µ(t+1)

m )T.

Prediction: After EM converges, the predicted cluster label

ẑi = argmax
1≤m≤K

P(zim = 1|yi, θ̂) = argmax
1≤m≤K

w
(T )
im ,

where T indexes the last iteration and θ̂ = θ(T ).
Simplification: When p is big, Σm(p × p) has too many parameters, and we

may simplify the model by assuming Σm = σ2
mIp. This links us to K-means

clustering.

Theorem 1. Assume Σ1 = · · · = ΣK = σ2Ip, and σ2 is known. If σ2 → 0+,
then the above EM algorithm is equivalent to K-means clustering.

Proof. If Σm = σ2Ip, the E-step simplifies to

w
(t)
im =

λ
(t)
m exp

(
−∥yi−µ(t)

m ∥2
2

2σ2

)
∑K

j=1 λ
(t)
j exp

(
−∥yi−µ

(t)
j ∥2

2

2σ2

) .
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As σ2 → 0+,

w
(t)
im =

{
1 if m = argminj∥yi − µ

(t)
j ∥22

0 otherwise
,

i.e., assigning yi to the closest center. Let C(t)
m = {i : w

(t)
im = 1} be the mth

cluster, and |C(t)
m | its size, in the current iteration. Then, the updated parameter

in the M-step becomes

µ(t+1)
m =

∑
i∈C(t)

m
yi

|C(t)
m |

,

i.e., update µm by the sample mean of C(t)
m .

3. Motif discovery

3.1. Problem formulation

In genomics and molecular biology, a sequence motif is a nucleotide or amino-
acid sequence pattern that is widespread and has, or is conjectured to have, a
biological significance. Figure 2 illustrates a DNA sequence motif that is recog-
nized by a transcription factor (TF). After the TF binds to the DNA sequence,
the downstream gene can be activated or suppressed. Review of sequence motifs
and motif finding methods can be found in Jensen et al. (2004).

Fig 2: Sequence motif. (A) Upstream sequences of genes that share a common
motif recognized by a TF. (B) Examples of the TF binding sites (motif se-
quences). (C) Count matrix from the motif sequences. (D) Logo plot for the
motif.

Given a set of sequences, we want to identify the motif sites in these sequences.
This is the motif finding problem (Figure 3), which can be formulated as a
mixture model with two component distributions:
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Motif site

Fig 3: Motif finding problem, one motif site (at Zi) in each sequence Si.

Observed Data Missing Data Parameters
S = (S1, · · · , Sn) Z = (Z1, · · · , Zn) Θ: motif pattern, θ0: background

• S = (S1, S2, . . . , Sn): sequences on alphabet {A,C,G, T} (observed data).
• Z = (Z1, Z2, · · · , Zn): motif site locations, that is, Zi is the beginning
location of the motif site in Si. Z is unobserved (missing data).

• Motif model: X = (x1, · · · , xw), motif of length w, xi ∈ {A,C,G, T}
and xi ⊥ xj . Each component xi of X follows a multinomial distribution
with unknown parameter θi = (θiA, θiC , θiG, θiT ). Thus, X can be viewed
as a 4× w counting (indicator) matrix.
Put Θ = (θ1, · · · , θw): unknown parameters. The distribution of X is a
product multinomial distribution with parameter Θ.
Example: P{X = (AATGC)|Θ} = θ1Aθ2Aθ3T θ4Gθ5C .

• Background model: x̃ ∼iid M(θ0), θ0 = (θ0A, θ0C , θ0G, θ0T ). That is,
P(x̃ = j|θ0) = θ0j , j ∈ {A,C,G, T}. Assume that θ0 is known.

3.2. Maximum likelihood via EM

Define

Si(j, w) := the segment of Si starting at jth position with length w.

Note that j ranges from 1 to ℓi := Li − w + 1, where Li = |Si| (total length of
ith sequene). The MLE for Θ is given by

Θ̂ = argmax
Θ

P(S|Θ)︸ ︷︷ ︸
obs-data lik

= argmax
Θ

∑
Z

P(S,Z|Θ)︸ ︷︷ ︸
comp-data lik

.

Now look at one sequence (recall that background model θ0 is known). As-
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sume Zi is uniform in priori:

P(Si, Zi = j|Θ) = P(Zi = j)P(Si|Zi = j,Θ)

=
1

ℓi
P(Si(j, w)|Θ)P(Si \ Si(j, w)|θ0)

=
1

ℓi

P(Si(j, w)|Θ)

P(Si(j, w)|θ0)
P(Si|θ0)

∝ P(Si(j, w)|Θ)

P(Si(j, w)|θ0)
≡ rij(Θ) (likelihood ratio). (4)

Therefore, the posterior probability of [Zi = j|Si] is

wij(Θ) := P(Zi = j|Si,Θ) =
P(Si, Zi = j|Θ)∑ℓi
k=1 P(Si, Zi = k|Θ)

=
rij(Θ)∑ℓi
k=1 rik(Θ)

.

Since [Si|Zi] is an exponential family (product multinomial), as long as we
derive the sufficient statistic for Θ, it can be used to compute MLE for Θ by
the EM algorithm. (Recall the EM for exponential families).

The count matrix is a sufficient statistic for Θ. For example,

Si(j, w) = A C C T G

C(Si(j, w)) :=


1 0 0 0 0
0 1 1 0 0
0 0 0 0 1
0 0 0 1 0


A
C
G
T

.

If X1, · · · , Xn are the count matrices of the n motif sequences (Z known),
then the MLE of Θ is

Θ̂ =
1

n

n∑
i=1

Xi :=
1

n
X. (5)

For example, the (total) count matrix of n = 15 motif sequences

X :=

n∑
i=1

Xi =


10 1 · · · 1
1 10 · · · 2
1 3 · · · 7
3 1 · · · 5


4×w

.
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Thus, the EM algorithm can be done by iterating between:

• (E-step) Given Θ(t), find E(X|S,Θ(t)):

E(Xi|Si,Θ
(t)) =

ℓi∑
j=1

C[Si(j, w)]P(Zi = j|Si,Θ
(t))

=

ℓi∑
j=1

wij(Θ
(t))C[Si(j, w)],

=⇒ X(t) := E(X|S,Θ(t))

=

n∑
i=1

E(Xi|Si,Θ
(t))

=

n∑
i=1

ℓi∑
j=1

wij(Θ
(t))C[Si(j, w)].

• (M-step) Regarding X(t) as the sufficient statistic, find MLE as in (5):

Θ(t+1) =
X(t)

n
.

3.3. Bayesian inference via Gibbs sampler

Assume a conjugate prior θj ∼ Dir(α, . . . , α) independently for j = 1, . . . , w. In
short, we say the prior of Θ is product-Dirichlet,

Θ ∼ Prod-Dir(α). (6)

Let X•j be the jth column of the count matrix X: X•j | θj ∼ M(n, θj). Then
the posterior distribution

θj | X•j ∼ Dir(X•j + α), j = 1, . . . , w ⇐⇒ Θ | X ∼ Prod-Dir(X + α). (7)

The posterior mean

E(Θ | X) =
X + α

n+ 4α
.

Under this prior, we develop a Gibbs sampler to draw [Z1, . . . , Zn | S] to
predict the motif locations. The Gibbs sampler cycles through conditional dis-
tributions [Zi | Z−i, S] for i = 1, . . . , n in each iteration. The key is to calculate

P(Zi = j | Z−i, S) ∝ P(Si, Zi = j | Z−i, S−i)

=

∫
Θ

P(Si, Zi = j | Θ) p(Θ | X−i)dΘ,
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where the count matrix X−i is computed from (S−i, Z−i) and the posterior
distribution Θ | X−i ∼ Prod-Dir(X−i + α) as in (7). Plugging (4),

P(Zi = j | Z−i, S) ∝
∫
Θ

P(Si(j, w)|Θ)

P(Si(j, w)|θ0)
p(Θ | X−i)dΘ = rij(Θ̂−i),

where Θ̂−i is the posterior mean

Θ̂−i = E(Θ | X−i) =
X−i + α

n− 1 + 4α
. (8)

After normalization,

P(Zi = j | Z−i, S) =
rij(Θ̂−i)∑ℓi
k=1 rik(Θ̂−i)

= wij(Θ̂−i), j = 1, . . . , ℓi. (9)

In summary, each iteration of this Gibbs sampler consists of the following
loop.
For i = 1, . . . , n:

1. Compute the posterior mean Θ̂−i = E(Θ | X−i) by (8).
2. Draw [Zi | Z−i, S] according to (9).

4. Problem set

Datasets can be downloaded from the course site.

1. Suppose that X follows a two-component mixture distribution with mix-
ture proportions λ1 and λ2 (λ1 + λ2 = 1). The mean and the variance of
the mth component distribution are µm and σ2

m, respectively, for m = 1, 2.
Find E(X) and Var(X).

2. Dataset 1 consists of data points from three clusters. Suppose the data
points in the mth (m = 1, 2, 3) cluster are iid from Np(µm, σ2

mIp), where
p = 2 is the dimension of the data.

(a) Derive an EM algorithm to find the MLE of the unknown parameters.

(b) Implement the EM algorithm to cluster these data points into three
groups. Report the estimated parameters and make a scatterplot of
the data points with your predicted cluster labels.

3. We have observed n = 10 sites of a motif, summarized into a count matrix
Xobs shown in Table 1. A position-specific weight matrix Θ is used as the
model for the motif sites. Assume an known iid background model with
θ0 = (0.24, 0.26, 0.26, 0.24) for {A,C,G, T}. In addition to Xobs, we know
that the sequence

S = ACCATTATCCCTGT

contains another site of this motif and let Z ∈ {1, . . . , 10} be its start
position. Assume that the marginal probability P(Z = i) is identical for
all possible i.
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Table 1
Observed count matrix Xobs

Position 1 2 3 4 5
A 1 9 0 0 8
C 3 0 0 0 0
G 6 1 0 0 1
T 0 0 10 10 1

(a) Let Θ̂obs =
1

n+4α (Xobs+α), where α = 1 is a pseudo count. Find the
most likely start position of the site in S by

max
1≤i≤10

P(Z = i | S, Θ̂obs).

(b) Regarding both Xobs and S as our data, develop a method to find
the MLE of Θ, i.e.,

Θ̂MLE = argmax
Θ

P(S,Xobs | Θ).

Implementation is not required. Just write down the main steps.

(c) Hereafter, we consider this problem in a Bayesian way, assuming a
Product-Dirichlet prior for Θ as in (6) with α = 1. Find the posterior
distribution of Θ given the observed count matrix, [Θ | Xobs].

(d) Implement a Monte Carlo method to draw 2000 samples of Θ from the
posterior distribution [Θ | Xobs, S]. Use the samples to approximate

the posterior mean Θ̂B = E[Θ | Xobs, S] and the posterior probabili-
ties P(θjk > 0.5 | Xobs, S) for j = 1, . . . , 5 and k ∈ {A,C,G, T}.
Hint:

p(Θ | Xobs, S) =
∑
i

p(Θ | Xobs, S, Z = i)P(Z = i | Xobs, S).
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