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1. The Gibbs Sampler

The target distribution is π(x) = π(x1, x2, · · · , xd), x ∈ Rd. Following the no-
tation in Chapter 4 (§5.3), define

x(t) = (x
(t)
1 , x

(t)
2 , · · · , x

(t)
d ),

x
(t)
i (y) = (x

(t)
1 , · · · , x

(t)
i−1, y, x

(t)
i+1, · · · , x

(t)
d ),

x
(t)
[−i] = (x

(t)
1 , · · · , x

(t)
i−1, x

(t)
i+1, · · · , x

(t)
d ).

1.1. Algorithms

The Gibbs sampler iteratively samples from the conditional distribution π(·|x[−i])
for a chosen coordinate i ∈ {1, . . . , d}. There are two ways to pick a coordinate,
corresponding to random-scan versus systematic-scan Gibbs sampler:

Algorithm 1 (Random-scan Gibbs sampler). Pick an initial value x(1).

For t = 1, . . . , n:

1. Randomly select a coordinate i from {1, 2, · · · , d};
2. Draw y from the conditional distribution π(xi|x(t)

[−i]). Let x
(t+1) = x

(t)
i (y)

(i.e. x
(t+1)
i = y, x

(t+1)
[−i] = x

(t)
[−i]).

Algorithm 2 (Systematic-scan Gibbs sampler). Pick an initial value x(1).

For t = 1, . . . , n: Given the current sample x(t) = (x
(t)
1 , · · · , x(t)

d ),

for i = 1, 2, · · · , d,

draw x
(t+1)
i ∼ π(xi|x(t+1)

1 , · · · , x
(t+1)
i−1 , x

(t)
i+1, · · · , x

(t)
d ).

By default, we use systematic-scan (Algorithm 2) unless noted otherwise. Given
samples {x(t) : t = 1, . . . , n} generated by the Gibbs sampler, we estimate
Eπh(x), the expectation of h(x) with respect to π, by the sample average:

h̄ =
1

n

n∑
t=1

h(x(t)). (1)

Similar to the MH algorithm, we often throw away samples generated during the
burn-in period, say the first 1000 iterations, and calculate h̄ from post burn-in
samples.

To design a Gibbs sampler for a joint distribution π(x), the key is to derive
conditional distributions [xi | x[−i]] for all i. We will demonstrate how to find
such conditional distributions in a few examples.
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Example 1. Design a Gibbs sampler to simulate from a bivariate Normal dis-
tribution:

X = (X1, X2) ∼ N2

((
0
0

)
,

(
1 ρ
ρ 1

))
,

i.e. the pdf of the target distribution is

π(x1, x2) =
1

2π
√
1− ρ2

exp

{
−x2

1 − 2ρx1x2 + x2
2

2(1− ρ2)

}
.

Use the samples to estimate E(X1X2) and the correlation coefficient cor(X1, X2).

Find the conditional distribution [x1 | x2] as follows: Regarding x2 as a constant,

π(x1 | x2) ∝ π(x1, x2) ∝ exp

[
−x2

1 − 2ρx2x1

2(1− ρ2)

]
, (2)

where any multiplicative factor that only depends on x2 is regarded as a constant
and absorbed into the proportion sign. Now complete squares:

x2
1 − 2ρx2x1 = (x1 − ρx2)

2 − (ρx2)
2,

and plug it into (2),

π(x1 | x2) ∝ exp

[
− (x1 − ρx2)

2

2(1− ρ2)

]
,

which is an unnormalized density for N (ρx2, 1− ρ2). Thus,

x1 | x2 ∼ N (ρx2, 1− ρ2).

Similarly, x2 | x1 ∼ N (ρx1, 1− ρ2).

Gibbs sampler (one iteration): Given x(t) = (x
(t)
1 , x

(t)
2 ),

x
(t+1)
1 |x(t)

2 ∼ N (ρx
(t)
2 , 1− ρ2). (3)

x
(t+1)
2 |x(t+1)

1 ∼ N (ρx
(t+1)
1 , 1− ρ2). (4)

x1

x2

(x
(t+1)
1 , x

(t+1)
2 )

(x
(t)
1 , x

(t)
2 ) (x

(t+1)
1 , x

(t)
2 )
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#R code: Gibbs sampler for Example 5 (bivariate normal)

rho=0.8;

n=6000;

X=matrix(0,n,2);

X[1,]=c(10,10);

for(t in 2:n)

{

X[t,1]=rnorm(1,rho*X[t-1,2],sqrt(1-rho^2));

X[t,2]=rnorm(1,rho*X[t,1],sqrt(1-rho^2));

}

#estimate E(X1X2)

B=1001; #post burn-in

h=X[,1]*X[,2];

acf(h)

h_hat=mean(h[B:n])

#estimate cor(X1,X2)

r=cor(X[B:n,1],X[B:n,2])

Using the post burn-in samples t ≥ B, the estimates of E(X1X2) and cor(X1, X2)
were:

> h_hat

[1] 0.7448093

> r

[1] 0.7851272

The samples generated in the first 100 iterations and the autocorrelation plot

for h(t) = x
(t)
1 x

(t)
2 are shown below:
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For this Gibbs sampler, we can use induction to work out the distribution of

x(t) for any t ≥ 1, assuming we initialize the algorithm at (x
(0)
1 , x

(0)
2 ):(

x
(t)
1

x
(t)
2

)
∼ N2

((
ρ2t−1x

(0)
2

ρ2tx
(0)
2

)
,

(
1− ρ4t−2 ρ− ρ4t−1

ρ− ρ4t−1 1− ρ4t

))
t→∞−−−→ N2

((
0
0

)
,

(
1 ρ
ρ 1

))
. (5)

In particular, (5) shows that the limiting distribution is indeed π(x).

Example 2. Consider a joint distribution between a discrete and a continuous
random variables:

π(x, y) ∝
(
n

x

)
yx+α−1(1− y)n−x+β−1

for x = 0, 1, · · · , n and y ∈ [0, 1]. The two conditional distributions are derived
as follows:

π(x|y) ∝
(
n

x

)
yx(1− y)n−x ⇒ x|y ∼ Bin(n, y).

π(y|x) ∝ yx+α−1(1− y)n−x+β−1 ⇒ y|x ∼ Beta(x+ α, n− x+ β).

The pdf of the Beta(α, β) distribution (α > 0, β > 0) is

f(y|α, β) = Γ(α+ β)

Γ(α)Γ(β)
yα−1(1− y)β−1 y ∈ [0, 1].

If Y ∼ Beta(α, β), then E(Y ) =
α

α+ β
.

If two independent random variablesX1 ∼ Gamma(α, 1) andX2 ∼ Gamma(β, 1),
then

X1

X1 +X2
∼ Beta(α, β).



Zhou, Qing/Monte Carlo Methods: Chapter 5 6

Example 3 (Gibbs sampler for 1-D Ising Model). The joint distribution for
the 1-D Ising model (§3.1, Ch 4) with temperature T > 0 is given by

π(x) ∝ exp

(
1

T

d−1∑
i=1

xixi+1

)
, xi ∈ {1,−1}.

To develop a Gibbs sampler for this problem, we find the conditional distribution
[xi | x[−i]] for each i = 1, . . . , d:

π(xi | x[−i]) ∝ π(x1, . . . , xi, . . . , xd)

∝ exp

{
1

T
(x1x2 + . . .+ xi−1xi + xixi+1 + . . .+ xd−1xd)

}
∝ exp

{xi

T
(xi−1 + xi+1)

}
, xi ∈ {1,−1}. (6)

Since xi ∈ {1,−1}, put

Zi = exp

{
1

T
(xi−1 + xi+1)

}
+ exp

{
− 1

T
(xi−1 + xi+1)

}
.

We have

π(xi | x[−i]) =
1

Zi
exp

{xi

T
(xi−1 + xi+1)

}
for xi ∈ {1,−1}.

For i = 1 or d, plug in x0 = xd+1 = 0.

Note that π(xi | x[−i]) = P(Xi = xi | x[−i]), xi ∈ {1,−1}, is simply a binary
discrete distribution. Let θ1 = π(xi = 1 | x[−i]), θ2 = π(xi = −1 | x[−i]) and put
theta = (θ1, θ2). To sample from [xi | x[−i]]:

x[i]=sample(c(1,-1),size=1,replace=TRUE,prob=theta);

where the vector x stores the current sample. In fact, we do not need to normalize
π(xi | x[−i]) in the above code. Instead, we may set θ1 and θ2 by (6):

θ1 = exp

{
1

T
(xi−1 + xi+1)

}
, θ2 = exp

{
− 1

T
(xi−1 + xi+1)

}
,

since the sample function will normalize theta anyway.
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1.2. Stationary distribution and detail balance

As a special case of the MH algorithm, the detail balance condition is satisfied
for the Gibbs sampler, which implies that π is a stationary distribution.

It is also easy to verify the detail balance condition directly. To do this, we regard
each conditional sampling step as a one-step transition of the underlying Markov
chain. Let x = (x1, · · · , xd) and y = xi(y). Then the one-step transition kernel
K(x,y) = π(y|x[−i]). Our goal is to show that π(x)K(x,y) = π(y)K(y,x).

Proof.

π(x)K(x,y) = π(x) · π(y|x[−i]) =
π(x) · π(y)
π(x[−i])

.

π(y)K(y,x) = π(y) · π(x|x[−i]) =
π(x) · π(y)
π(x[−i])

.
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2. Examples of the Gibbs Sampler

2.1. The slice sampler

Suppose we want to simulate from π(x) ∝ q(x), where x ∈ Rd. The slice sampler
simulates from a uniform distribution over the region under the surface of q(x)
by the Gibbs sampler, based on the following result:

Lemma 1. Suppose a pdf π(x) ∝ q(x), x ∈ Rd. Denote the region under the
surface of q(x) by

S = {(x, y) ∈ Rd+1 : y ≤ q(x)}.

If (X, Y ) ∼ Unif(S), then the marginal distribution of X is π, i.e. X ∼ π.

y

q(x)

S

x

Proof. Let |S| denote the volume of S:

|S| =
∫

q(x)dx. (7)

Since (X, Y ) ∼ Unif(S), their joint pdf is

fX,Y (x, y) = 1/|S|, (x, y) ∈ S.

If X = x, the range of Y is (0, q(x)). Then the marginal density at x is

pX(x) =

∫ q(x)

0

fX,Y (x, y)dy =

∫ q(x)

0

1

|S|
dy =

q(x)

|S|
= π(x).

The last equality in the above is due to the fact that |S| is the normalizing
constant for q(x) as in (7).

The slice sampler uses a Gibbs sampler to simulate from Unif(S) by iterating
between [Y | X] and [X | Y ]. Then, according to Lemma 1, the marginal
distribution of X is the target distribution π(x). It is easy to see that

Y | X = x ∼ Unif(0, q(x)).
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Let X (y) = {x ∈ Rd : q(x) ≥ y} be the set of x with q(x) ≥ y, i.e. a super-level
set of q(x). Then as shown in the following figure,

X | Y = y ∼ Unif(X (y)).

x

y

S

x(t)

q(x(t))

y(t+1)

Consequently, one iteration of the slice sampler consists of two conditional sam-
pling steps: Given x(t),

1. Draw y(t+1) ∼ Unif[0, q(x(t))] (vertical blue dashed line);
2. Draw x(t+1) uniformly from region X (t+1) = {x ∈ Rd : q(x) ≥ y(t+1)}

(horizontal red dashed line).

Then when t is large, (x(t), y(t)) ∼ Unif(S) and x(t) ∼ π, achieving the goal of
sampling from π.

Example 4 (td-distribution). Use slice sampler to simulate from t-distribution
with d degree of freedom:

π(x) ∝ (1 + x2/d)−(d+1)/2 := q(x), x ∈ R.

Suppose the sample at iteration t is xt. The two steps to generate xt+1 are:

1. Draw yt+1 ∼ Unif[0, q(xt)], where q(xt) = (1 + x2
t/d)

−(d+1)/2.
2. Draw xt+1 uniformly from the interval

Xt+1 = {x ∈ R : q(x) ≥ yt+1} = [−b(yt+1), b(yt+1)],

where b(y) =
√

d(y−2/(d+1) − 1). Note that ±b(y) are the two roots of the
quadratic equation q(x) = y.
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2.2. Blocked Gibbs sampler

Partition {1, . . . , d} into two blocks, A and B: A∪B = {1, . . . , d} and A∩B = ∅.
For x = (x1, . . . , xd), let xA = (xj : j ∈ A) and xB = (xj : j ∈ B) denote two
subvectors with components in the sets A and B, respectively. A two-block
Gibbs sampler iteratively sample from [xA | xB ] and [xB | xA] in each iteration

of Algorithm 2: Given the current sample (x
(t)
A , x

(t)
B ),

draw x
(t+1)
A ∼ π(xA|x(t)

B ),

draw x
(t+1)
B ∼ π(xB |x(t+1)

A ).

Consider the Ising model on a graph G = (V,E), where V = {1, . . . , d} is the
vertex set and E ⊂ V × V is the edge set of the graph G: There is an edge
between two vertices i, j if and only if (i, j) ∈ E. Given G, define a Boltzmann
distribution for (X1, . . . , Xd) at temperature T > 0:

π(x1, . . . , xd) ∝ exp

 1

T

∑
(i,j)∈E

xixj

 , xi ∈ {1,−1}. (8)

Definition 1. For three random vectors X,Y, Z, we say X is conditionally
independent of Z given Y , denoted by X ⊥⊥ Z | Y , if

P(X ∈ A | Y, Z) = P(X ∈ A | Y )

for any set A in the sample space of X. That is, the conditional distribution of
[X | Y,Z] does not depend on Z.

If (X,Y, Z) follows a joint distribution, then X ⊥⊥ Z | Y ⇔ Z ⊥⊥ X | Y . The
joint distribution (8) implies the following conditional independence statements
among X1, . . . , Xd:

Theorem 1. Let Ni denote the set of neighbors of vertex i in the graph G, i.e.
Ni = {j ∈ V : there is an edge between i and j}. If k /∈ Ni and k ̸= i, then

Xi ⊥⊥ Xk | {Xj : j ∈ Ni}.

Proof. It follows from (8) that the conditional density of Xi given X[−i] is

π(xi | x[−i]) ∝ exp

xi

T

∑
j∈Ni

xj


= π(xi | xj , j ∈ Ni),

which only depends on xj , j ∈ Ni.
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This theorem shows that the graph G (the neighborhoods of vertices) encodes
conditional independence statements among the random variables.

A few common examples of graphs G:

• Chain, E = {(1, 2), (2, 3), . . . , (d− 1, d)}: 1-D Ising model (Example 3).
• Complete graph, E = {(i, j) : i < j}, i.e. there is an edge between every
pair of nodes i, j. For example, a complete graph over four nodes (d = 4):

X1 X2

X3X4

• Star topology, E = {(1, i) : i = 2, . . . , d}: X1 is the hub node (vertex) and
is the only neighbor of all other nodes X2, . . . , Xd.

Xi ⊥⊥ Xj | X1 for all i ̸= j ∈ {2, . . . , d}. (9)

X1

X2

X3

X4X5

X6

Example 5. If G has a star topology, we can develop a two-block Gibbs sampler
to sample from (8) by letting A = {1} and B = {2, . . . , d}. The two conditional
sampling steps in one iteration of the Gibbs sampler are:

1. Sample from [xA | xB ] = [x1 | x2, . . . , xd]: Since

π(x1 | x2, . . . , xd) ∝ exp

[
1

T
(x2 + . . .+ xd)x1

]
,

for x1 ∈ {1,−1}, after normalization we have

π(x1 | x2, . . . , xd) =
exp

[
1
T (x2 + . . .+ xd)x1

]
exp

[
1
T (x2 + . . .+ xd)

]
+ exp

[
− 1

T (x2 + . . .+ xd)
] ,

x1 ∈ {1,−1}.

2. Sample from [xB | xA] = [x2, . . . , xd | x1]: We start from

π(x2, . . . , xd | x1) ∝ exp

[
1

T
x1(x2 + . . .+ xd)

]
=

d∏
j=2

exp
(x1xj

T

)
,



Zhou, Qing/Monte Carlo Methods: Chapter 5 12

which shows that X2, . . . , Xd are independent given X1 = x1 (9) and

π(xj | x1) ∝ exp
(x1xj

T

)
, xj ∈ {1,−1}, j = 2, . . . , d.

Thus, we draw xj from [xj | x1] for all j = 2, . . . , d independently accord-
ing to:

π(xj | x1) =
exp

(
1
T x1xj

)
exp

(
x1

T

)
+ exp

(
−x1

T

) , xj ∈ {1,−1}.
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3. Missing Data Problems

Suppose we have data

y1,y2, · · · ,yn
iid∼ f(y | θ),

where each data point yi = (yi1, yi2, · · · , yip) ∈ Rp. Put them into a data matrix
Y = (yij)n×p. However, some data points contain missing elements, shown as
‘?’ in the following table, such as y2p and yn1.

1 2 . . . p
y1

y2 ? ?
. . .
yn ? ?

?: missing value (e.g. y22, y2p, · · · , yn2)
Yobs: observed elements of Y (observed data).
Ymis: missing elements of Y (missing data).
Y = (Yobs, Ymis): complete data.

Denote by Yobs the observed elements of Y and Ymis the missing elements of
Y . We call Yobs the observed data, Ymis the missing data, and Y = (Yobs, Ymis)
the complete data. Our goal is to estimate the model parameter θ based on the
observed data Yobs.

3.1. Two-block Gibbs sampler

Bayesian inference for missing data problems (1) estimates θ and (2) predicts
missing data Ymis based on the joint posterior distribution of (θ, Ymis):

p(θ, Ymis|Yobs) ∝ p(θ)p(Yobs, Ymis | θ),

where p(θ) is the prior for θ and

p(Yobs, Ymis | θ) = p(Y | θ) =
∏
i

f(yi | θ)

is the complete-date likelihood.

Usually there are no closed-form formulas for posterior mean or quantiles of the
posterior distribution of θ:

p(θ | Yobs) ∝ p(θ)p(Yobs | θ)

= p(θ)

∫
p(Yobs, Ymis | θ)dYmis,

which involves marginalization over the missing data Ymis. We need to draw
samples of (θ, Ymis) from the joint posterior distribution [θ, Ymis | Yobs] to per-
form Bayesian inference. To do that, we develop a two-block Gibbs sampler, one
iteration of which contains two conditional sampling steps:
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1. Given θ(t), draw Y
(t+1)
mis ∼ p(Ymis | Yobs, θ

(t));

2. Given Y
(t+1)
mis , draw θ(t+1) ∼ p(θ | Yobs, Y

(t+1)
mis ) = p(θ | Y (t+1)), where

Y (t+1) = (Yobs, Y
(t+1)
mis ) is a complete data matrix with missing values imputed

as Y
(t+1)
mis .

This two-block Gibbs sampler is illustrated by the following diagram:

θ(0)

Y
(1)
mis

θ(1)

Y
(2)
mis

θ(2)

· · ·

θ(t)

Y
(t+1)
mis

θ(t+1)

· · ·

For many commonly used models, both conditional sampling steps are easy to
implement, as shown by the following examples.

3.2. Discrete data example

Example 6. Suppose x1, x2, · · · , xn
iid∼ Discrete(θ1, θ2, θ3):

P(xi = k) = θk, k = 1, 2, 3.

As shown in the following table, the data is coarsened, in which x1, x2, x3 are
only partially classified: x1 ∈ {2, 3}, x2 ∈ {1, 3} and x3 ∈ {1, 2}, while the other
data points are fully classified: x4 = 1, . . . , xn = 2.

1 2 3
x1 ? ?
x2 ? ?
x3 ? ?
x4 ✓
...
xn ✓

?: possible categories for an observation;

✓: observed category for an observation.

Prior: θ ∼ Dir(α1, α2, α3), (θ1 + θ2 + θ3 = 1)

p(θ1, θ2, θ3) ∝ θα1−1
1 θα2−1

2 θα3−1
3 .
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Missing data in x1, x2, x3, and Yobs = (x1 ̸= 1, x2 ̸= 2, x3 ̸= 3, x4, . . . , xn).

p(θ, x1, x2, x3|x4, · · · , xn) ∝ p(θ)p(x1, x2, x3, x4, · · · , xn|θ)

∝

 3∏
j=1

θ
αj−1
j

( 3∏
i=1

p(xi|θ)

) 3∏
j=1

θ
C

(obs)
j

j


∝

 3∏
j=1

θ
C

(obs)
j +αj−1

j

( 3∏
i=1

p(xi|θ)

)
,

where Cobs
j =

∑n
i=4 I(xi = j): observed counts for the jth category from x4 to

xn.

1. Given θ = (θ1, θ2, θ3), P(x1 = j|θ) ∝ θj for j = 1, 2, 3,

⇒ P(x1 = j|x1 ̸= 1, θ) =
θj

θ2 + θ3
, j = 2, 3.

Similarly,

P(x2 = j|x2 ̸= 2, θ) =
θj

θ1 + θ3
, j = 1, 3.

P(x3 = j|x3 ̸= 3, θ) =
θj

θ1 + θ2
, j = 1, 2.

Draw x1, x2, x3 independently according to the above conditional proba-
bilities.

2. Given (x1, x2, x3), C
(mis)
j =

3∑
i=1

I(xi = j),

then p(θ|x1, · · · , xn) ∝
3∏

j=1

θ
C

(Obs)
j +C

(mis)
j +αj−1

j . Draw θ from

θ|x ∼ Dir(C
(obs)
1 +C

(mis)
1 +α1, C

(obs)
2 +C

(mis)
2 +α2, C

(obs)
3 +C

(mis)
3 +α3),

where x = (x1, . . . , xn) is complete data.

Iterate between steps 1 and 2 to generate (θ(t), x
(t)
1,2,3) for t = 1, . . . ,m.

Bayesian estimates: θ̂B ≈ 1
m

∑
t θ

(t) and histogram of θ
(t)
j .



Zhou, Qing/Monte Carlo Methods: Chapter 5 16

3.3. Gaussian data example

Example 7. y1, y2, · · · , yn
iid∼ N2(µ,Σ), yi = (yi1, yi2).

µ =

(
µ1

µ2

)
, Σ︸︷︷︸
known

=

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

Y1 Y2

y1 ? ✓
y2 ✓ ?
y3 ✓ ✓
y4 ✓ ✓
...

...
...

yn ✓ ✓

? : missing value,
✓: observed value.

Improper flat prior: p(µ) ∝ 1.

Missing data Ymis = (y11, y22) and observed data Yobs = (y12, y21, y3, . . . , yn).

Data augmentation for this problem:

1. Given µ, sample y11 and y22, [y11|y12, µ, Σ] ∼? Recall y1 = (y11, y12).

p(y11|y12, µ,Σ) ∝ p(y11, y12|µ,Σ) ∝ exp

[
−1

2
(y1 − µ)TΣ−1(y1 − µ)

]
= exp

{
− 1

2(1− ρ2)

[
(y11 − µ1)

2

σ2
1

− 2ρ(y11 − µ1)(y12 − µ2)

σ1σ2
+

(y12 − µ2)
2

σ2
2

]}
∝ exp

{
− 1

2(1− ρ2)σ2
1

[
(y11 − µ1)

2 − 2ρσ1

σ2
(y12 − µ2)(y11 − µ1)

]}
= exp

{
− 1

2(1− ρ2)σ2
1

[
y11 − µ1 −

ρσ1

σ2
(y12 − µ2)

]2
+ C

}
.

∴ y11|y12, µ,Σ ∼ N
(
µ1 +

ρσ1

σ2
(y12 − µ2), (1− ρ2)σ2

1

)
.

Similarly, y22|y21, µ,Σ ∼ N
(
µ2 +

ρσ2

σ1
(y21 − µ1), (1− ρ2)σ2

2

)
.

Given µ, draw y11 and y22 independently from the two normal distributions.
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2. Given y11 and y22, sample µ?

p(µ|y1, y2, · · · , yn,Σ) ∝ p(y1, · · · , yn|µ,Σ)

= |2πΣ|−n
2 exp

[
−1

2

n∑
i=1

(yi − µ)TΣ−1(yi − µ)

]

∝ exp

[
−1

2

n∑
i=1

(yi − µ)TΣ−1(yi − µ)

]
.

Let ȳ =
∑

i yi/n.∑
i

(µ− yi)
TΣ−1(µ− yi)

=
∑
i

(µ− ȳ + ȳ − yi)
TΣ−1(µ− ȳ + ȳ − yi)

=
∑
i

[
(µ− ȳ)TΣ−1(µ− ȳ) + 2(µ− ȳ)TΣ−1(ȳ − yi) + (ȳ − yi)

TΣ−1(ȳ − yi)
]

= n(µ− ȳ)TΣ−1(µ− ȳ) + C.

Therefore, µ|y1, · · · , yn ∼ N2(ȳ,
1
nΣ).

Iterate between steps 1 and 2.
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