Introduction to Monte Carlo Methods
Lecture Notes

Chapter 5
The Gibbs Sampler and Applications
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1. The Gibbs Sampler

The target distribution is 7(x) = 7(x1, 22, -+ ,74), x € R Following the no-
tation in Chapter 4 (§5.3), define
X(t) = (xgt)’ x(2t)7 Tty ‘ngt))a
t t t t
XE)(y) = (xg)a B %(i)p Y, xl(‘+)1a"' B xt(i))v
t t t t t
4% = @ 2 a0 ),

1.1. Algorithms

The Gibbs sampler iteratively samples from the conditional distribution (-|x[_;)
for a chosen coordinate i € {1,...,d}. There are two ways to pick a coordinate,
corresponding to random-scan versus systematic-scan Gibbs sampler:

Algorithm 1 (Random-scan Gibbs sampler). Pick an initial value x(1).

Fort=1,...,n:

1. Randomly select a coordinate i from {1,2,--- ,d};
2. Draw y from the conditional distribution 7r(x1|xft_)l]) Let x(*+1) = xgt)(y)
(e i =y, Xftj;]l) = Xﬁ)i])-

Algorithm 2 (Systematic-scan Gibbs sampler). Pick an initial value x().
For t =1,...,n: Given the current sample x(*) = (argt), e ,xfit)),

fori=1,2,---,d,

(t+1)

%

t+1 t+1 t t
~7r($z|$§ )7 ) xg_l )7 9554217"' ) x(d))

draw x
By default, we use systematic-scan (Algorithm 2) unless noted otherwise. Given
samples {x(¥) : ¢t = 1,...,n} generated by the Gibbs sampler, we estimate
E,h(x), the expectation of h(x) with respect to m, by the sample average:

E:%ﬁémﬂ%. (1)

Similar to the MH algorithm, we often throw away samples generated during the
burn-in period, say the first 1000 iterations, and calculate h from post burn-in
samples.

To design a Gibbs sampler for a joint distribution m(x), the key is to derive
conditional distributions [z; | x[_;] for all i. We will demonstrate how to find
such conditional distributions in a few examples.
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Example 1. Design a Gibbs sampler to simulate from a bivariate Normal dis-

tribution:
!

i.e. the pdf of the target distribution is
1 exp {_x% — 2px179 + X5 }
2w/ 1 — p? 2(1—p?)

Use the samples to estimate E(X; X2) and the correlation coefficient cor(X7, X3).

7T(£C1,IE2) =

Find the conditional distribution [z} | 2] as follows: Regarding x5 as a constant,
2
r{ — 2px
S G L (2)
20— )
where any multiplicative factor that only depends on x5 is regarded as a constant
and absorbed into the proportion sign. Now complete squares:

7(o1 | 22) o 721, 22) o exp [—

2} = 2prawy = (11 — pr2)” — (p32)?,
and plug it into (2),

(w1 — pl‘z)z}
2(1—=p%) |’

which is an unnormalized density for N'(pza, 1 — p?). Thus,

w1 | 22) oc exp [—

x| 2o ~ N(px2, 1 - p?).
Similarly, z2 | 21 ~ N(pz1,1 — p?).

Gibbs sampler (one iteration): Given x(*) = (mgt),x(;)),

V2l ~ Npal) 1 - p?). (3)
ey Y ~ N (pa Y 1 p?). (4)
)

,,# ,,,,,

t+1) (t
(a1, 4




Zhou, Qing/Monte Carlo Methods: Chapter 5 4
#R code: Gibbs sampler for Example 5 (bivariate normal)

rho=0.8;

n=6000;
X=matrix(0,n,2);
X[1,]1=c(10,10);

for(t in 2:n)

{
X[t,1]=rnorm(1l,rho*X[t-1,2],sqrt(1-rho~2));
X[t,2]=rnorm(l,rho*X[t,1],sqrt(1-rho"2));

X

#estimate E(X1X2)

B=1001; #post burn-in
h=X[,1]*X[,2];

acf (h)

h_hat=mean(h[B:n])

#estimate cor(X1,X2)
r=cor (X[B:n,1],X[B:n,2])

Using the post burn-in samples ¢t > B, the estimates of E(X; X5) and cor(X7, X3)
were:

> h_hat

[1] 0.7448093
>r

[1] 0.7851272

The samples generated in the first 100 iterations and the autocorrelation plot
for h() = xgt)xét) are shown below:
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For this Gibbs sampler, we can use induction to work out the distribution of

x®) for any t > 1, assuming we initialize the algorithm at (:ESO), :L'go)):

xgt) N p2t71x;0) (1 . p4t72 p— p4t1)
l’ét) pgtzg()) ’ p— p4t—1 1— p4t
e, ((8) , C} g’)) . (5)

In particular, (5) shows that the limiting distribution is indeed 7(x).

Example 2. Consider a joint distribution between a discrete and a continuous
random variables:

m(z,y) o (n) y rom (1 — y)netht
X

forz =0,1,--- ,n and y € [0, 1]. The two conditional distributions are derived
as follows:

n x n—x .
) o (7)o (1= )" = aly ~ Binr ),
m(ylz) oc y® o711 — )" = y|z ~ Beta(z + a,n — x + B).
The pdf of the Beta(a, ) distribution (o > 0,5 > 0) is

FlanB) = o =P el
I£Y ~ Beta(a, 8), then E(Y) = — j‘_ 5

If two independent random variables X; ~ Gamma(a, 1) and X2 ~ Gamma(/, 1),
then
X1

—— ~ Bet .
X1+X2 ea(a7ﬁ)



Zhou, Qing/Monte Carlo Methods: Chapter 5 6

Example 3 (Gibbs sampler for 1-D Ising Model). The joint distribution for
the 1-D Ising model (§3.1, Ch 4) with temperature T > 0 is given by

d—1
1
m(x) o< exp (T inxi-&-l) » o €{1,-1}
i=1

To develop a Gibbs sampler for this problem, we find the conditional distribution
[x; | w—] for each i =1,...,d:
(@i | w—q)) < w(21,. -, iy, Ta)

1
o exp {T (v122+ ...+ Ti1@ + X201 + ..+ md1xd)}

ocexp{%(xiq —I—xi+1)}, x; € {1,—1}. (6)

Since z; € {1,—1}, put

1 1
Z; = exp {T (l'i—l + xi+1)} + exp {—T (CL’i,1 + ZL’iJrl)} .

We have

1 .
(@i | 2—q) = 7 €Xp {% (i1 + xi+1)} for x; € {1, —-1}.

For i =1 or d, plug in zg = z44+1 = 0.
Note that m(z; | 2(_y) = P(X; = x5 | 21_3), x5 € {1, -1}, is simply a binary

discrete distribution. Let 6y = 7(z; = 1 | #—y)), 02 = 7(2; = —1 | x—;)) and put
theta = (01, 0:). To sample from [z; | z[_;]:

x[i]=sample(c(1,-1),size=1,replace=TRUE,prob=theta) ;

where the vector x stores the current sample. In fact, we do not need to normalize
7(x; | x—;)) in the above code. Instead, we may set 1 and 6 by (6):

1 1
01 = exp {T (w1 + $i+1)} , 2 = exp {T (i1 +x¢+1)} ,

since the sample function will normalize theta anyway.
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1.2. Stationary distribution and detail balance

As a special case of the MH algorithm, the detail balance condition is satisfied
for the Gibbs sampler, which implies that 7 is a stationary distribution.

It is also easy to verify the detail balance condition directly. To do this, we regard
each conditional sampling step as a one-step transition of the underlying Markov
chain. Let x = (z1, -+ ,2z4) and y = x;(y). Then the one-step transition kernel
K(x,y) = m(y|x[—i). Our goal is to show that 7(x)K(x,y) = 7(y) K (y,x).

Proof.
T(X) K (x,y) = m(x) - 7(ylxi-q) = W
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2. Examples of the Gibbs Sampler
2.1. The slice sampler

Suppose we want to simulate from 7(x) o g(x), where x € R%. The slice sampler
simulates from a uniform distribution over the region under the surface of g(x)
by the Gibbs sampler, based on the following result:

Lemma 1. Suppose a pdf n(x) < q(x), x € R%. Denote the region under the
surface of q(x) by

§={(x,y) € R™ 1y < ()},

If (X,Y) ~ Unif(S), then the marginal distribution of X is m, i.e. X ~ 7.

Y

S

/

Proof. Let |S| denote the volume of S:

|
I
I
I
I
I
I
I
1

X

S1= [ axlax. )
Since (X,Y) ~ Unif(S), their joint pdf is

fX,Y(X7y) = 1/|S|’ (va) S S.
If X = x, the range of Y is (0, ¢(x)). Then the marginal density at x is
a(x) a(x) q
q(x
px(x) :/ fx,y (x,y)dy =/ oy = i) _ m(x).
0 o IS] S|
The last equality in the above is due to the fact that |S| is the normalizing
constant for ¢(x) as in (7). O

The slice sampler uses a Gibbs sampler to simulate from Unif(S) by iterating
between [Y | X] and [X | Y]. Then, according to Lemma 1, the marginal
distribution of X is the target distribution 7w (x). It is easy to see that

Y | X = x ~ Unif(0, ¢(x)).
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Let X(y) = {x € R?: q(x) > y} be the set of x with g(x) >y, i.e. a super-level
set of ¢(x). Then as shown in the following figure,

X |Y =y~ Unif(X(y)).

Consequently, one iteration of the slice sampler consists of two conditional sam-
pling steps: Given x(*),

1. Draw y*+1) ~ Unif[0, ¢(x(*)] (vertical blue dashed line);
2. Draw x(*+1) uniformly from region X+ = {x € R? : ¢(x) > y+Y}
(horizontal red dashed line).

Then when t is large, (x(*),y®) ~ Unif(S) and x(*) ~ 7, achieving the goal of
sampling from .

Example 4 (t4-distribution). Use slice sampler to simulate from ¢-distribution
with d degree of freedom:

m(z) o (14 22/d)~@+D/2 .= ¢(z), z € R.

Suppose the sample at iteration ¢ is ;. The two steps to generate x;; are:

1. Draw y;41 ~ Unif[0, ¢(z4)], where q(z;) = (1 4 22 /d)~(@+1/2,
2. Draw x¢41 uniformly from the interval

Xiy1r = {z € R:q(®) > yer1} = [~0(Ye+1), b(ye+1)],

where b(y) = \/d(y—2/(d+1) —1). Note that +b(y) are the two roots of the
quadratic equation g(x) = y.
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2.2. Blocked Gibbs sampler

Partition {1,...,d} into two blocks, A and B: AUB = {1,...,d} and ANB = @.
For x = (z1,...,24), let 24 = (z; : j € A) and 2 = (z; : j € B) denote two
subvectors with components in the sets A and B, respectively. A two-block

Gibbs sampler iteratively sample from [z | zp] and [z | 4] in each iteration

of Algorithm 2: Given the current sample (x% , T B))

draw 2T ~ (w4l

draw xgH) ~ W(SUB‘.%SH—D).

Consider the Ising model on a graph G = (V, E), where V' = {1,...,d} is the
vertex set and E C V x V is the edge set of the graph G: There is an edge
between two vertices i, j if and only if (i,j) € E. Given G, define a Boltzmann
distribution for (Xi,..., X,) at temperature T' > 0:

(X1, ...,2q4) X €xXp Z xix; o, x; € {1,—1}. (8)
(z] JEE

Definition 1. For three random vectors X,Y,Z, we say X is conditionally
independent of Z given Y, denoted by X 1. Z | Y, if

P(X€A|Y,Z)=P(X €A|Y)

for any set A in the sample space of X. That is, the conditional distribution of
[X | Y, Z] does not depend on Z.

If (X,Y,Z) follows a joint distribution, then X Il Z |Y < Z 1L X | Y. The
joint distribution (8) implies the following conditional independence statements
among Xq,...,Xq4:

Theorem 1. Let N; denote the set of neighbors of vertex i in the graph G, i.e.
N; = {j € V : there is an edge between ¢ and j}. If k ¢ N; and k # i, then

X; AL Xy, | {XJ ZjENZ'}.
Proof. Tt follows from (8) that the conditional density of X; given X|_; is
(@i | x_y)) o< exp Z x;
JEN
= W(xi | x]m? € Ni)7

which only depends on z;,j € N;. O
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This theorem shows that the graph G (the neighborhoods of vertices) encodes
conditional independence statements among the random variables.

A few common examples of graphs G:
e Chain, £ = {(1,2),(2,3),...,(d — 1,d)}: 1-D Ising model (Example 3).

e Complete graph, E = {(i,7) : i < j}, i.e. there is an edge between every
pair of nodes 14, j. For example, a complete graph over four nodes (d = 4):

e Star topology, E = {(1,4) : i =2,...,d}: X; is the hub node (vertex) and
is the only neighbor of all other nodes Xs, ..., Xy.

XZJ.LX]|X1 fOI'auZ#jE{Q,,d} (9)

Example 5. If G has a star topology, we can develop a two-block Gibbs sampler
to sample from (8) by letting A = {1} and B = {2,...,d}. The two conditional
sampling steps in one iteration of the Gibbs sampler are:

1. Sample from [z4 | zp] = [z1 | Z2,. .., 24): Since
1
(x| 22y ...,2q) X €Xp T($2+~~+$d)$1 ,

for z; € {1, —1}, after normalization we have

exp [%(xg + .+ xd)xl}

m(xy | X2y ... xq) = )
exp [+ (z2 + ...+ 2a)] +exp[—F(z2+ ...+ 24)]
T € {1, 71}.
2. Sample from [zp | z4] = [z2,...,2q | z1]: We start from

d
1 -
m(22,...,%q | 1) X exp Txl(x2+,,,+xd)} = ||exp( }J>7
=2
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which shows that Xs,..., X, are independent given X; = 27 (9) and

m(x; | 1) o< exp (mlj?]) z;€{1,~-1}, j=2,...,d

Thus, we draw z; from [x; | 1] for all j = 2,...,d independently accord-
ing to:

exp (%xlxj)
exp (%) +exp (=)

7T(.’L‘j ‘ .’171) = s T; € {1,—1}.
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3. Missing Data Problems

Suppose we have data
iid
Yi,¥2, 5 ¥n ~ f(y | 9)7
where each data point y; = (yi1,¥i2, -, ¥ip) € RP. Put them into a data matrix
Y = (Yij)nxp- However, some data points contain missing elements, shown as
‘7’ in the following table, such as ya, and yp;.

112...0|p o
i 7: missing value (e.g. y22,Y2p, ** , Yn2)
5 5 Yous: observed elements of Y (observed data).
Y2 - - Yinis: missing elements of Y (missing data).
y = Y = (Yobs, Yimis): complete data.
n | 77

Denote by Y,;s the observed elements of Y and Y,,;s the missing elements of
Y. We call Y, the observed data, Y;,,;s the missing data, and Y = (Y,ps, Yinis)
the complete data. Our goal is to estimate the model parameter 6 based on the
observed data Y,ps.

3.1. Two-block Gibbs sampler

Bayesian inference for missing data problems (1) estimates 6 and (2) predicts
missing data Y,,;s based on the joint posterior distribution of (6, Yy,is):

p(@, Ymis|Yobs) X p(o)p(Yobsa Yinis | 0)7

where p(0) is the prior for § and
P(Yovs, Yimis | 0) =p(Y | 0) = [] /(¥ | 6)

is the complete-date likelihood.

Usually there are no closed-form formulas for posterior mean or quantiles of the
posterior distribution of 6:

(0| Yops) < p(0)p(Yos | 0)

= p(@) /p(Yobsa Ymis | e)de’LS7

which involves marginalization over the missing data Y,,;s. We need to draw
samples of (6, Y;,is) from the joint posterior distribution [0, Y,is | Yous] to per-
form Bayesian inference. To do that, we develop a two-block Gibbs sampler, one
iteration of which contains two conditional sampling steps:
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3 t+1
1. Given 6®), draw Yn(”s )~ P(Yimis | Yobs, 00);

2. Given Y'Y draw 94D ~ p(6 | Yobs,Y(t-Jrl)) = p( | YD), where

mis ms
YD = (Y, Y( ) is a complete data matrix with missing values imputed

( ) bs> tmis
t+1
as Y, ..

This two-block Gibbs sampler is illustrated by the following diagram:

9(0) 9(2) 19) g(t+1)
« AN/ NN SN
Y(l Y(2_ Y(t+1)

For many commonly used models, both conditional sampling steps are easy to
implement, as shown by the following examples.

3.2. Discrete data example

Example 6. Suppose x1,22, - , Ty i Discrete(61, 02, 63):
Pla; = k) = 0y, k=1,2,3.

As shown in the following table, the data is coarsened, in which z1, 9, x3 are
only partially classified: z1 € {2,3}, 22 € {1,3} and x5 € {1,2}, while the other

data points are fully classified: z4 = 1,...,2, = 2.
1 2 3
T ? ?
xy 7 ?: possible categories for an observation;
xIs ? ?
T4 v': observed category for an observation.
Tn v

Prior: 8 ~ Dir(ay,as,a3), (01 +602+65=1)

p(61,02,03) oc 6oy togs L
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Missing data in 21,9, x3, and Yops = (1 # 1,29 # 2,23 # 3,24, ..., Tp)-
p(9,$1,$2,$3|x4, e wxn) & p(e)p(xla T2, T3, T4y " 7xn|9)

3 3 3 (
« | Tos ( p(:z:,;|9)> I1¢;
j=1 i=1 j=1

obs)

3 3
o) o 1
o (J]O;7 <| |p(xia)>,
j=1 i=1

where C’;-’bs = >0 ,I(z; = j): observed counts for the jth category from x4 to

T

1. Given 0 = (91,92,93), P(l‘l = jle) o Hj fOI‘j = 1,2,3,

g.
= P(ry =gl #1,0) = —1—, j=23.

O + 03
Similarly,
P(zg = j 2.0)= U j—13
(mQ ]|x27é ; ) 91+93?.7 y O
. 0, .
P($3=J|x37§379)=01i92» j=12.

Draw x1,z2, 3 independently according to the above conditional proba-
bilities.

3
2. Given (z1,2,73), C’;mw) = Zf(xl =7),
i—1

3 :
C(.Obs)JrC(n”s)Jra'*l
then p(Q|zy,- -+, x,) H 0’ I * 7 . Draw 6 from

j=1
Q‘XN D?;T(C{Obs)+0£mis)+0¢1, C2(obs)+cémis)+a2’ C§0b5)+0§mis)+a3),
where x = (z1,...,2,) is complete data.
Iterate between steps 1 and 2 to generate (8, z%?)) fort=1,...,m.

Bayesian estimates: Op ~ % Do 6® and histogram of 9§-t).
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3.3. Gaussian data example

Example 7. y1,ys, -

-

Y;
Y1 ?
y2 v
yz v
ys v
Yn YV

iid
»Yn ~ ./\/'2(/’47 2)7 Yi = (yﬂ’ yi2)-

SNRNESEN fos

v

m\ y _( of poroa
wa ) ~~ pO109 o3 )

known

? : missing value,
v : observed value.

Tmproper flat prior: p(p) o 1.

Missing data Y,is = (y11, y22) and observed data Yops = (Y12, Y21, Y35 - - -, Yn)-

Data augmentation for this problem:

1. Given p, sample y11 and ya2, [y11|y12, , 2] ~? Recall 1 = (y11, y12)-

1 _
p(y11|y127ua E) X p(y117y12|/% E) X exp {—2(91 - M)TE 1(yl - M)}

1

=l

1

_|_

O'% 0109 J%

(yu —m)*  2p(y — 1) (12 — p2) | (Y12 — M2)2] }

2p0’1

X €xXp {—W {(yn - /11)2 - 72(3/12 — p2)(y11 — Ml)} }

1

- {‘2(1 —?)o?

2
ag
[yu — 1 — P2 1(912 —M2)] +C}-
g2

Soynlyiz, B~ N <M1 + %(ylz — p2), (1 - PQ)U%)

Similarly, ya2|yo1, t, X ~ N (M2 + E22(yo1 — 1), (1 — /72)0%)

Given u, draw y;; and yoo independently from the two normal distributions.
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2. Given y1; and ys2, sample u?
p(/l|y17y27 sy Yny E) X p(y17 te 7y7l|,u7 Z)

= [27%| 7% exp l—; D i i - u)]

i=1

Let g =), yi/n.

Z(# —)"S (- i)

2

=Z(u—y+z7—yi)TE*1(u—@+z7—yi>
= Z (=TS =)+ 20— DTS G~ ) + T —v) S 7 — wi)]
=n(p—y"'S (p-9) +C.

Therefore, ply1, -+, yn ~ Na (7, +3).

Iterate between steps 1 and 2.
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