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Goal: To estimate integrals


1. Expectations: µh = Eh(X) =

∫
D
h(x)f(x)dx,

X ∼ f, x ∈ D;

2. I =
∫
D
h(x)dx.

1. Importance Sampling

1.1. Given probability densities

Suppose X ∼ f, x ∈ D, such that
∫
D
f(x)dx = 1.

Want to compute Ef [h(X)] =
∫
D
h(x)f(x)dx.

But: we cannot sample from f directly!!

Find a trial distribution g(x),
∫
g(x)dx = 1, such that{

1. g(x) > 0 for all x ∈ D,
2. we can sample from g.

Key Idea: Suppose that D ⊂ S = supp(g) :={x : g(x) > 0}.

Efh(X) =

∫
D

h(x)f(x)dx

=

∫
S

h(x)f(x)dx (∵ f(x) = 0 for x /∈ D)

=

∫
S

h(x)
f(x)

g(x)
g(x)dx (g(x) > 0 for x ∈ S)

= Eg
[
h(X)

f(X)

g(X)

]
(X ∼ g)

≈
1

n

n∑
i=1

h(x(i))
f(x(i))

g(x(i))
(x(1), x(2), · · · , x(n) iid∼ g).
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Because by the strong law of large numbers, if x(i) iid∼ g for i = 1, . . . , n, then

1

n

n∑
i=1

h(x(i))
f(x(i))

g(x(i))

a.s.−→Eg
[
h(X)

f(X)

g(X)

]
= Ef [h(X)].

The precise statement of the strong law of large numbers:

Theorem 1. Let Xi, i = 1, 2, ... be a sequence of independent and identically
distributed random variables, each having a finite mean µ = E(Xi). Then

P
[

lim
n→∞

1

n

n∑
i=1

Xi = µ
]

= 1,

that is, 1
n

∑n
i=1Xi

a.s.−→µ as n→∞.

Definition 1. The importance weight of x(i) is w(x(i)) = f(x(i))
g(x(i))

.

Algorithm 1. Importance sampling (IS):

1. Draw x(1), · · · , x(n) from g independently, and calculate importance weight

w(x(i)) =
f(x(i))

g(x(i))
for i = 1, 2, · · · , n; (1)

2. Estimate Ef (h) by

µ̂h =
1

n

n∑
i=1

w(x(i))h(x(i)).

Then µ̂h
a.s.−→Ef [h(X)] as n→∞.

Example 1. Use IS to estimate Ef (X), where f is absolute normal, i.e.,

f(x) =

√
2

π
e−

x2

2 , (x ≥ 0).

In other words, X = |Z|, where Z ∼ N (0, 1).

Choose g(x) = 2e−2x (Exp(λ = 2)).∫∞
0
g(x)dx = 1, g(x) > 0 for x ≥ 0.

Importance weight w(x) = f(x)
g(x) = 1√

2π
e−

x2

2 +2x.

∴ Draw x(1), · · · , x(n) iid∼ Exp(λ = 2).

Then Ef (X) ≈ µ̂X = 1
n

n∑
i=1

w(x(i))x(i).
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Example 2. The mean & variance of importance weights.

1

n

n∑
i=1

w(x(i))
a.s.−→Eg[w(x(i))] =

∫
f(x)

g(x)
g(x)dx = 1.

Efficiency of Algorithm 1:

Eff =
1

Varg(w(X)) + 1
: the closer g(x) is to f(x), the more efficient.

Quantify the accuracy of µ̂h by estimating Var(µ̂h) = 1
n Varg[w(X)h(X)].

Since {x(i), i = 1, . . . , n} is an iid sample from g, we can estimate Varg[w(X)h(X)]
by the sample variance of {w(x(i))h(x(i)), i = 1, . . . , n}. Therefore, an estimate
of Var(µ̂h) is

V̂ =
1

n
· sample variance

{
w(x(1))h(x(1)), . . . , w(x(n))h(x(n))

}
=

1

n

[ 1

n− 1

n∑
i=1

{
w(x(i))h(x(i))− µ̂h

}2 ]
. (2)

The following code implements Example 1 with n = 5, 000 iterations. The vector
W stores all importance weights. The estimate µ̂X (mu h) = 0.782, which is close
the true expectation

Ef (X) =

∫ ∞
0

xf(x)dx =
√

2/π ≈ 0.798.

The estimated variance V̂ of µ̂X is V h, from which we get an estimated stan-
dard error se h=0.018. The histogram and the variance (var(W)=0.406) of the
importance weights show that this is a quite efficient design.
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Example 3. Use N(2, 1) as the trial distribution g to estimate the integral

µ =

∫ 5

0

exp
[
−0.5(x− 2)2 − 0.1| sin(2x)|

]
dx

by importance sampling. Generate n = 1000 samples to calculate µ̂ and estimate
its standard deviation.

To solve this problem, the first step is to write µ as an expectation with respect
to a target distribution f . Note that the integrand is

exp
[
−0.5(x− 2)2 − 0.1| sin(2x)|

]
= exp

[
−1

2
(x− 2)2

]
exp [−0.1| sin(2x)|] ,

for x ∈ (0, 5), where the first factor can be regarded as an unnormalized density
for N(2, 1) truncated to (0, 5). Thus we can write

µ =

∫ 5

0

{
1

Z
exp

[
−1

2
(x− 2)2

]}
{Z exp [−0.1| sin(2x)|]} dx

= Ef {Z exp [−0.1| sin(2x)|]} ,

where Z =
∫ 5

0
exp

[
−(x− 2)2/2

]
dx is the normalizing constant and the target

distribution

f(x) =
1

Z
exp

[
−1

2
(x− 2)2

]
I(0 < x < 5)

is N(2, 1) truncated to (0, 5). Now we may apply Algorithm 1 with g = N(2, 1)
and n = 1, 000 to compute µ̂ and use (2) to estimate its standard deviation. In
this process, the normalizing constant Z cancels when we compute w(x)h(x).

1.2. With unknown normalizing constant

In Example 1:

f(x) =
√

2
π e
− x22 (x ≥ 0): normalized density,

∫∞
0
f(x)dx = 1.

Let q(x) = e−
x2

2 (x ≥ 0): unnormalized density,
∫∞

0
q(x)dx =

√
π
2 6= 1.

Then Zq :=
∫∞

0
e−

x2

2 dx =
√

π
2 is the normalizing constant of q(x).

Definition 2. Suppose that q(x) > 0, for x ∈ D, and
∫
D
q(x)dx = Zq < ∞,

then we call q(x) an unnormalized density onD. The corresponding (normalized)
probability density is f(x) = 1

Zq
q(x).
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Want to estimate

Ef [h(X)] =

∫
D

h(x)f(x)dx =

∫
D

h(x)
q(x)

Zq
dx,

where X ∼ f(x) ∝ q(x), but Zq is unknown, and we cannot simulate from
f(x).

Use IS, let g(x) = 1
Zr
r(x), Zr =

∫
r(x)dx < ∞. So r(x) is an unnormlized

density for the trial distribution g, where Zr may be unknown.

Algorithm 2. Importance sampling without normalizing constants:

1. Draw x(1), · · · , x(n) from g independently, and calculate importance weight
w(x(i)) = q(x(i))/r(x(i)) for i = 1, 2, · · · , n;

2. Estimate Ef [h(X)] by

µ̂h =

n∑
i=1

w(x(i))h(x(i))

n∑
i=1

w(x(i))
. (3)

Then, µ̂h
a.s.−→Ef [h(X)] as n→∞.

Proof.

1

n

n∑
i=1

w(x(i))
a.s.−→Eg

[
q(X)

r(X)

]
=

∫
q(x)

r(x)
g(x)dx =

Zq
Zr
.

1

n

n∑
i=1

w(x(i))h(x(i))
a.s.−→Eg

[
q(X)

r(X)
h(X)

]
=

∫
q(x)

r(x)
h(x)g(x)dx

=
1

Zr

∫
q(x)h(x)dx.

By (3):

µ̂h
a.s.−→ 1

Zq

∫
q(x)h(x)dx =

∫
q(x)

Zq
h(x)dx =

∫
h(x)f(x)dx = Ef [h(X)].

Example 4. Repeat Example 1 using unnormalized densities:

f(x) ∝ q(x) = e−
x2

2 (x ≥ 0), g(x) ∝ r(x) = e−2x (x ≥ 0) [Exp(λ = 2)],

importance weight w(x) = q(x)
r(x) = e−

x2

2 +2x.
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Draw x(1), · · · , x(n) iid∼ Exp(λ = 2).
Then

Ef (X) ≈ µ̂X =

n∑
i=1

w(x(i))x(i)

n∑
i=1

w(x(i))
. (4)

Efficiency:

Eff =
1

Varg[
w(X)

Eg(w(X)) ] + 1
=

[Eg(w(X))]2

Varg(w(X)) + [Eg(w(X))]2
.

The following code estimates Ef (X) using (4) (mu h2=0.803). The variance

Varg[
w(X)

Eg(w(X)) ] = 0.413 is very comparable to the variance of W (var(W)=0.406)

in the implementation of Example 1.

Histogram of W/mean(W)
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Example 5 (Truncated normal). Suppose our target distribution has density

f(x) ∝ q(x) = φ(x)I(x > c) =

{
φ(x), if x > c,
0, otherwise,

where φ(x) is the density of N(0, 1), and we want to estimate

Ef [Xk] =

∫ ∞
c

xkf(x)dx =

∫ ∞
c

xk
q(x)

Zq
dx,

without calculating the normalizing constant Zq.

Use shifted Exp(λ) as the trial distribution g in Algorithm 2:

g(x) = λe−λ(x−c)I(x > c) =

{
λe−λ(x−c), for x > c;
0, otherwise.
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If X ′ ∼ Exp(λ), then X = X ′ + c ∼ g.

Then the importance weight for any x > c is

w(x) =
q(x)

g(x)
=

φ(x)

λe−λ(x−c) =
exp(−x

2

2 + λx− λc)
√

2πλ
∝ exp

(
− x2

2
+ λx

)
,

after ignoring all constant factors that do not depend on x.

Therefore, our estimate of Ef [Xk] is

µ̂ =

n∑
i=1

w(xi)(xi)
k

n∑
i=1

w(xi)
,

where xi ∼ Exp(λ) + c and w(xi) = exp(−x2
i /2 + λxi) for i = 1, . . . , n.

Remark 1. The estimate (3) is invariant to rescaling the importance weights
w(x(i)). That is why we can simply use w(xi) = exp(−x2

i /2 + λxi) in the above
example, ignoring the constant exp(−λc)/(

√
2πλ) in the importance weight.

1.3. Importance resampling

Note the importance sampling does not generate samples from the target dis-
tribution f . If we want to get samples from f , we may apply a resampling
approach according to the importance weights: Given samples with importance
weights {(x(i), w(i)) : i = 1, . . . , n}, where w(i) = w(x(i)), if we resample with
replacement x(∗i) from {x(1), . . . , x(n)} with probabilities proportional to the
importance weights, i.e.

P
[
x(∗i) = x(k)

∣∣{x(1), . . . , x(n)}
]

=
w(k)∑n
j=1 w

(j)
, (5)

then the distribution of {x(∗1), . . . , x(∗n)} is approximately the target distribu-
tion f when n is large. This method is called sampling-importance-resampling.

The following derivation justifies this resampling method: When n is large,

1

n

n∑
j=1

w(j) ≈ Eg[w(X)],

which is a constant. Thus, (5) is approximately

P
[
x(∗i) = x(k)

∣∣{x(1), . . . , x(n)}
]

=
w(k)/n

1
n

∑n
j=1 w

(j)
≈ w(k)/n

Eg[w(X)]
∝ w(k).
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Let p∗ be the density of x(∗i) (the samples after resampling). Then we have

p∗(x) ∝ g(x)w(x) ∝ g(x)
f(x)

g(x)
= f(x).

The following code implements the resampling approach for Example 4. The
histogram of X is Exp(λ = 2), while after resampling the histogram of Xrs is f
(the absolute normal).
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2. Estimating Volume and Normalizing Constant

2.1. Estimating VD by IS

Let D ⊂ Rp and h(x) = I(x ∈ D) =

{
1, if x ∈ D;
0, otherwise.

Then the volume of D: VD :=
∫
D
dx =

∫
Rp h(x)dx (Denote by |D|).

1. Find a region A s.t. :
a) D ⊂ A,
b) we can generate x ∼ Unif(A) := g,

g(x) =

{ 1
|A| , if x ∈ A;

0, otherwise.

2. Generate x(1), x(2), · · · , x(n) ∼ g(x), calculate w(i) = I(x(i)∈D)
g(x(i))

= |A|I(x(i) ∈ D);

3. Approximate |D| by V̂D = 1
n

n∑
i=1

w(i).

Then V̂D
a.s.−→|D|.

Proof. By the strong law of large numbers (SLLN),

V̂D =
1

n

∑
i

w(i) a.s.−→Eg(W ) = |A| · Eg[I(X ∈ D)] = |A| · |D|
|A|

= |D|.

D

A
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Now we quantify the accuracy of V̂D. The importance weight

W =
I(X ∈ D)

g(X)
= |A| · I(X ∈ D), X ∼ Unif(A) = g.

Note that I(X ∈ D) ∼ Bern(p = |D|/|A|). It is easy to see that V̂D is unbiased
for |D|:

E(V̂D) = |A|E[I(X ∈ D)] = |A| · P(X ∈ D) = |A|(|D|/|A|) = |D|.

Find the variance of V̂D:

Var[W ] = |A|2 ·Var(I(X ∈ D)) = |A|2 |D|
|A|

(
1− |D|
|A|

)
= |D|(|A| − |D|).

⇒ Var(V̂D) =
1

n
Var(W ) =

1

n
|D|(|A| − |D|).

• Choose A close to D: reduce variance of V̂D.
• In practice, V̂ar(V̂D) = 1

n V̂D(|A| − V̂D).

Example 6. Estimate the area of the unit disk D = {(x, y) : x2 + y2 ≤ 1}.

Choose A : [−1, 1]× [−1, 1]⇒ |A| = 4

(1) For i = 1, 2, · · · , n, generate x(i) ∼ Unif (−1, 1) and y(i) ∼ Unif (−1, 1)
independently; compute importance weights

w(i)(x(i), y(i)) = |A| · I((x(i), y(i)) ∈ D) =

{
4, if (x(i))2 + (y(i))2 ≤ 1;
0, otherwise.

(2) Estimated area V̂D = 1
n

∑n
i=1 w

(i);

Var(V̂D) =
1

n
|D|(|A| − |D|) =

1

n
· π(4− π) =

π(4− π)

n
.
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In the plot, the importance weights
w(i) for blue and black points are 4
and 0, respectively.
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2.2. Normalization Constant

Consider q(x) = I(x ∈ D) as an unnormalized density for the uniform distribu-
tion on D.

Normalizing constant of q: Zq =
∫
q(x)dx =

∫
I(x ∈ D)dx =

∫
D
dx = |D|.

⇒ q(x)
|D| =

{ 1
|D| , x ∈ D;

0, otherwise.
(normalized) pdf for Unif(D).

Example 7.

(1) q(x) = e−
x2

2 , x ∈ (−∞,∞): unnormalized density for N(0, 1).

Zq ,
∫ +∞
−∞ q(x)dx =

∫ +∞
−∞ e−

x2

2 dx =
√

2π

⇒ f(x) = q(x)
Zq

= 1√
2π
e−

x2

2 ∼ N(0, 1)

(2) q(x) = e−5x, x ≥ 0 : exp(λ = 5).

Zq =
∫∞

0
e−5xdx = 1

5

⇒ f(x) = q(x)
Zq

= 5e−5x

(3) q(x) = x3e−
1
2x, x ≥ 0: Gamma (α, β), pdf = βα

Γ(α)x
α−1e−βx.

⇒ α = 4, β = 1
2 .

∴ q(x) is unnormalized Gamma (4, 1
2 ).

⇒
∫ ∞

0

( 1
2 )4

Γ(4)
x3e−

1
2x︸ ︷︷ ︸

f(x):normalized

dx = 1 ⇒ Zq =

∫ ∞
0

x3e−
1
2xdx =

Γ(4)

( 1
2 )4

.

(4) q(x) = x3(1− x)2, x ∈ [0, 1] : Beta (α, β), pdf = Γ(α+β)
Γ(α)Γ(β)x

α−1(1− x)β−1.

⇒ α = 4, β = 3.

∴ f is Beta(4, 3) ⇒ Zq = Γ(4)Γ(3)
Γ(7) .
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2.3. Estimating Zq by IS

Given q(x) > 0, x ∈ D an unnormalized density, want to compute normalizing
constant

Zq =

∫
D

q(x)dx =

∫
q(x)I(x ∈ D)dx.

1. Find a trial distribution g(x) with known normalization constant (i.e. g(x)
is the pdf) and its domain fully covers D.

2. Generate x(1), · · · , x(n) ∼ g, and compute importance weights

w(i) =
q(x(i))

g(x(i))
I(x(i) ∈ D), ∀i = 1, · · · , n;

3. Estimate Ẑq = 1
n

n∑
i=1

w(i).

Then Ẑq
a.s.−→Zq as n→∞.

Proof.

Ẑq
a.s.−→Eg(w(X)) =

∫
q(x)I(x ∈ D)

g(x)
· g(x)dx =

∫
D

q(x)dx = Zq.

Let W = q(X)I(X ∈ D)/g(X). Then Var(Ẑq) = 1
n Varg(W ). An estimate of

Var(Ẑq):

V̂ =
1

n
· sample variance

{
w(1), . . . , w(n)

}
.

2.4. Estimating integrals

The above two problems are special cases of estimating integrals by IS. Suppose
we want to estimate

µ =

∫
D

h(x)dx,

where |µ| < ∞. Choose a distribution g such that g(x) > 0 for x ∈ D. i.e.
D ⊂ S = supp(g). Define h(x) = 0 for x /∈ D. Then

µ =

∫
D

h(x)dx =

∫
S

h(x)I(x ∈ D)dx

=

∫
S

h(x)I(x ∈ D)
g(x)

g(x)
dx = Eg

[h(X)I(X ∈ D)

g(X)

]
.
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Draw x(i) ∼ g independently for i = 1, . . . , n, and estimate µ by

µ̂ =
1

n

n∑
i=1

h(x(i))

g(x(i))
I(x(i) ∈ D)

a.s.−→µ, as n→∞. (6)

And the variance of µ̂, Var(µ̂) = 1
n Varg

[
h(X)I(X ∈ D)/g(X)

]
, can be esti-

mated by

V̂ =
1

n
· sample variance

{
h(x(1))

g(x(1))
I(x(i) ∈ D), . . . ,

h(x(n))

g(x(n))
I(x(i) ∈ D)

}
. (7)

In this general setting, h(x(i)) is not necessarily positive. In fact, Algorithm 1
in Section 1.1 can be regarded as a special case of this general method as well.
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3. Self-Avoid Walk

(not required for exams)

A simple model for (bio)polymers. Consider a simple 2-D lattice model.

Definition 3. A vector x = (x1, x2, · · · , xN ) is a self-avoid walk (SAW) on the
2-D lattice if

1. xt = (a, b), where a and b are integers;
2. distance(xt, xt+1) = 1;
3. xt+1 6= xk for all k < t.

x1 x2

x3x4

x5x6

x7

x8

An example SAW of length N = 8:

x1 = (0, 0), x2 = (1, 0), . . . , x8 = (−1, 0).

Assume every SAW of length N is equally likely ⇒ uniform distribution for x.

∴ f(x) = 1
ZN

, ZN = total # of different SAWs of length N .

Want to estimate, e.g. ZN (normalizing constant) and E‖xN − x1‖2 (the mean
squared extension).

Naive Simulation (random walk):

Start a random walk at (0, 0) ≡ x1, at step i, randomly choose one of the three
neighboring positions other than xi−1.

If the chosen position has been occupied by xt for some t < i, restart at (0, 0).

Success rate: r = ZN/(4× 3N−2) ⇒ N = 20, r ≈ 21.6%.
N = 48, r ≈ 0.79%.

Growing SAW by one-step-look-ahead:

1. x1 = (0, 0);
2. For t = 1, 2, · · · , N − 1:

We have already generated (x1, x2, · · · , xt) and xt = (i, j). Let

nt = # of unoccupied neighbors of xt.

If nt = 0, restart x1; otherwise, place xt+1 randomly in one of the nt
unoccupied neighbors.
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In summary, we draw xt+1 from the following conditional distribution:

P(xt+1 = (i′, j′)|x1, · · · , xt) =
1

nt
, t = 1, . . . , N − 1,

where (i′, j′) is one of the nt unoccupied neighbors of xt = (i, j).

The one-step-look-ahead “growth” method does not produce uniform SAWs. In
the following examples, the probability of generating the SAW on the left by
the growth method is greater than that of the SAW on the right. However, we
may use the growth method as a trial distribution in importance sampling.

x1 x2

x3x4

x5

x1 x2 x3 x4 x5

P =
1

4
× 1

3
× 1

3
× 1

2
> P =

1

4
× 1

3
× 1

3
× 1

3

Sequential importance sampling (SIS) for the growth method:

1. Initialize x1 = (0, 0), w1 = 1;
2. For t = 1, 2, · · · , N − 1, use one-step-ahead to draw xt+1 and update the

weight to
wt+1 = wt · nt. (8)

At the end of this algorithm, we will generate x = (x1, x2, · · · , xN ) with a weight
w(x) = wN = 1× n1 × n2 × · · · × nN−1. (If any nt = 0, w(x) = 0.)

Let g(x) be the probability for the chain x generated by the growth method,
which is used as the trial distribution in importance sampling. The target distri-
bution is f(x) = 1/ZN , uniform distribution over all SAWs of length N . Then
our problem is to estimate the normalizing constant ZN by IS, so the importance
weight is

w(x) =
1

g(x)
=

1
1
n1
× 1

n2
× · · · × 1

nN−1

= n1 × n2 × · · · × nN−1.

Run SIS m times: (x(1), w(1)), · · · , (x(m), w(m)), where wi = w(x(i)). Note that
this is a special case of Algorithm 2, IS without normalizing constant.

To estimate ZN :

ẐN =
1

m

m∑
i=1

w(i) a.s.−→Eg(w(x)) = ZN , as m→∞,
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since

Eg(w(x)) =
∑

x∈SN

w(x)g(x) =
∑

x∈SN

1

g(x)
· g(x) =

∑
x∈SN

1 = ZN ,

where SN := the set of all SAWs of length N .

Similarly, we can apply (3) to estimate Ef [h(x)]:

µ̂h =

m∑
i=1

w(i)h(x(i))

m∑
i=1

w(i)

. (9)

For example, the squared extension h(x) = ‖xN − x1‖2.
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4. Sequential Importance Sampling

(not required for exams)

Sequential importance sampling (SIS) and its parallel implementation, some-
times called sequential Monte Carlo.

4.1. The basic idea

High-dimensional problems x = (x1, . . . , xd): difficult to find a good trial distri-
bution g.

Build g sequentially:

g(x) = g1(x1)g2(x2 | x1) · · · gd(xd | x1, . . . , xd−1).

Decompose the target density:

π(x) = π(x1)π(x2 | x1) · · ·π(xd | x1, . . . , xd−1).

Then importance weight is

w(x) =
π(x1)π(x2 | x1) · · ·π(xd | x1, . . . , xd−1)

g1(x1)g2(x2 | x1) · · · gd(xd | x1, . . . , xd−1)
. (10)

Let xt = (x1, . . . , xt). Then (10) can be calcualated recursively

wt(xt) = wt−1(xt−1)
π(xt | xt−1)

gt(xt | xt−1)
, (11)

so that wd(xd) = w(x).

4.2. SIS algorithm

However, the difficulty in (11) is

π(xt | xt−1) =
π(xt)

π(xt−1)
.

We need marginal distribution π(xt) for each t, which is hard to calculate.

Find a sequence of “auxiliary distributions” πt(xt), t = 1, . . . , d, as an approxi-
mation to the marginal distributions π(xt) so that πd(x) = π(x).
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SIS algorithm: For t = 1, . . . , d

1. Draw xt ∼ gt(xt | xt−1) and put xt = (xt−1, xt).
2. Update importance weight

ut =
πt(xt)

πt−1(xt−1)gt(xt | xt−1)
, (12)

wt = wt−1ut, (13)

where we define π0(·) ≡ 1 and w0 ≡ 1.

Step 1 and 2 generate one weighted sample (x, w) = (xd, wd). Apply SIS algo-
rithm m times independently to obtain {(x(i), w(i)) : i = 1, . . . ,m}.

Example 8 (SAW). In one-step ahead method:

πt(xt) ∝ 1, gt(xt | xt−1) = 1/nt−1.

Thus, ut = nt−1 and wt = wt−1nt−1, identical to (8). Note that πt(xt) is not
the marginal distribution of π(x) ∝ 1.

Example 9 (Bayesian variable selection). Consider a linear model with d po-
tential predictors:

y =

d∑
j=1

βjXj + ε, (14)

where y,Xj , ε ∈ Rn and ε ∼ Nn(0, σ2In). To simplify, we assume that σ2 = 1 is
given. We want to select a subset of the d predictors to build a linear model, i.e.
some βj = 0 in (14). Let z = (z1, . . . , zd) ∈ {0, 1}d indicates which predictors
are in the linear model, i.e. zj = 1 if and only if βj 6= 0. Our goal is to sample
from the posterior distribution of z given the data y, which defines our target
distribution π(z):

π(z) := p(z | y) ∝ p(z)p(y | z), (15)

where p(z) is a prior over z and p(y | z) is the likelihood of y given z.

We choose p(z) ∝ exp(−λ
∑
j zj) for some λ > 0, i.e. the prior distribution favors

simpler models with fewer predictors. The likelihood part can be approximated
by the likelihood of y given the least-square estimate with selected predictors
Xz = {Xj : zj = 1}, that is

p(y | z) ∝ exp {−RSS(z)/2} ,

where RSS(z) = ‖y − Pzy‖2 is the sum of squared residuals after projecting y
onto Xz and Pz = Xz(XT

zXz)−1XT
z . Therefore, we have the following (unnor-

malized) target density

π(z) = π(z1, . . . , zd) ∝ exp
{
− 1

2
RSS(z)− λ

d∑
j=1

zj

}
. (16)
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Let zt = (z1, . . . , zt) ∈ {0, 1}t. Note that marginal distribution of zt defined by
(16) is

π(zt) =
∑
zt+1

· · ·
∑
zd

π(z1, . . . , zd)

which is hard to compute. To apply SIS, we make the following choices:

gt(zt | zt−1) ∝ exp(−λzt), zt ∈ {0, 1}, (17)

πt(zt) = π(z1, . . . , zt, 0, . . . , 0) ∝ exp

−RSS(zt)/2− λ
t∑

j=1

zj

 . (18)

Note that πd = π and πt would be the target distribution if there were only the
first t predictors to select from.

Plugging these choices into (12) and (13):

ut =
πt(zt)

πt−1(zt−1) exp(−λzt)
= exp

[
{RSS(zt−1)− RSS(zt)}/2

]
, (19)

wt = u1 × u2 × · · · × ut = exp
[
− RSS(zt)/2

]
. (20)

After the last step t = d, we have w(z) = wd = exp
[
− RSS(z)/2

]
. Note that

the probability of z in the trial distribution is

g(z) ∝ exp
(
− λ

d∑
j=1

zj

)
,

and thus indeed the importance weight

w(z) =
π(z)

g(z)
∝

exp
{
− 1

2RSS(z)− λ
∑d
j=1 zj

}
exp

(
− λ

∑d
j=1 zj

) = exp
{
− 1

2
RSS(z)

}
.

4.3. Parallel implementation

To improve the efficiency of SIS: (a) run m SIS processes in parallel; (b) resample

“good” partial samples. At some step t, if wt(x
(i)
t ) is much smaller than the

weights of other partial samples, we may want to discard the partial sample

x
(i)
t . How to do this in a correct way?
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Sampling-importance-resampling (SIR):

Given samples with importance weights {(x(i), w(i)) : i = 1, . . . ,m}, if we resam-
ple with replacement x(∗i) from {x(1), . . . ,x(m)} with probabilities proportional
to the importance weights, i.e.

P
[
x(∗i) = x(k)

∣∣{x(1), . . . ,x(m)}
]

=
w(k)∑
j w

(j)
,

then the distribution of {x(∗1), . . . ,x(∗m)} is approximately the target distribu-
tion when m is large.

Proof. Let p∗(·) be pdf of x(∗i). For x ∈ {x(1), . . . ,x(m)} ≡ X, write xo =
X \ {x}. Then by the resampling procedure,

p∗(x) =

(
m

1

)
g(x)

∫
g(xo)

w(x)∑
j w

(j)
dxo

= g(x)w(x)

∫
g(xo)∑
j w

(j)/m
dxo →

1

Zπ
π(x),

since
∑
j w

(j)/m
a.s.−→Zπ =

∫
π(y)dy (= 1 if π is normalized).

Sequential Monte Carlo (Parallel implementation with resampling):

Suppose x
(i)
t−1, i = 1, . . . ,m, are partial samples from the auxiliary distribution

πt−1(xt−1).

1. Draw x
(i)
t ∼ gt(xt | x

(i)
t−1) and put x

(i)
t = (x

(i)
t−1, x

(i)
t ).

2. Calculate weights as in (12):

w
(i)
t =

πt(x
(i)
t )

πt−1(x
(i)
t−1)gt(x

(i)
t | x

(i)
t−1)

, i = 1, . . . ,m. (21)

3. SIR the weighted samples {(x(i)
t , w

(i)
t )}mi=1 to get (x

(∗1)
t , . . . ,x

(∗m)
t ) and

replace x
(i)
t ← x

(∗i)
t , i = 1, . . . ,m.

Due to the resampling step 3, x
(i)
t = x

(∗i)
t ∼ πt approximately.

Remark 2. There are a few key differences between SIS and sequential Monte
Carlo: (i) The distribution of the partial sample xt = (x1, . . . , xt) is different. In
SIS, xt ∼ g(xt) while in sequential Monte Carlo xt ∼ πt due to resampling. (ii)
Accordingly, their importance weights are also calculated differently: compare

(13) and (21). The ut in (12) is the weight w
(i)
t in (21). (iii) In the end, we

obtain weighted samples (x, w) from SIS and need to use weighted average, e.g.
(3), to construct estimates. In sequential Monte Carlo, since x ∼ π after the
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last step, we simply use sample averages of x(i) to estimate expectations, i.e.
our estimate of Eπ[h(X)] is

1

m

m∑
i=1

h(x(i)).

Continuing Example 9, under the same choices of gt and πt as in (17) and (18),
the importance weight in sequential Monte Carlo will be the same as ut in (19),
so we have

w
(i)
t = exp

[
{RSS(z

(i)
t−1)− RSS(z

(i)
t )}/2

]
, i = 1, . . . ,m.

Therefore we have the following implementation for this problem:

For t = 1, . . . , d:

1. Draw z
(i)
t ∼ exp(−λz(i)

t ) and put z
(i)
t = (z

(i)
t−1, z

(i)
t ) for i = 1, . . . ,m.

2. Calculate weights:

w
(i)
t = exp

[
{RSS(z

(i)
t−1)− RSS(z

(i)
t )}/2

]
, i = 1, . . . ,m.

3. Resample the weighted samples {(z(i)
t , w

(i)
t )}mi=1 to get (z

(∗1)
t , . . . , z

(∗m)
t )

and replace z
(i)
t ← z

(∗i)
t , i = 1, . . . ,m.

R code for the resampling step: Suppose w is a numerical vector of length m

that stores the current importance weights {w(i)
t : i = 1, . . . ,m} and x is an

m × t matrix that stores the current partial samples {x(i)
t : i = 1, . . . ,m}, i.e.

each row of x corresponds to a partial sample.

s=sample(1:m,size=m,replace=TRUE,prob=w);

y=x[s,];

Then y stores the partial samples after resampling {x(∗i)
t : i = 1, . . . ,m}.
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