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This set of lecture notes, consisting of four chapters, is for an undergraduate
course on Monte Carlo methods. Two main references are:

1. Jun S. Liu (2001) Monte Carlo Strategies in Scientific Computing (first
edition), Springer.

2. Howard M. Taylor and Samuel Karlin (1998) An Introduction to Stochastic
Modeling (third edition), Academic Press.

In particular, materials for sequential importance sampling and Markov chain
Monte Carlo are mostly adapted from selected topics in chapters 2, 3, 5 and
6 of Liu (2001), supplemented with some simpler examples. A brief introduc-
tion to Markov chains is developed based on chapters 3 and 4 of Taylor and
Karlin (1998).

1. Introduction

Goal of Monte Carlo: Use computer simulation to generate random variables
from a given distribution p(x).

1.1. Calculating Area

y

xx1 x2

y1

y2

D

A

Want to compute the area of D
in R2.

Find rectangle A : [x1, x2]× [y1, y2] ⊃ D; Randomly generate n points in A and
suppose M of them in D. Then we estimate the area of D as

Ŝn(D) =
M

n
· S(A) =

M

n
· (x2 − x1)(y2 − y1). (1)
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Why is Ŝn(D) a reasonable estimate? Note that

P(a point in D) =
S(D)

S(A)
:= p. (2)

If n is large, the fraction of points in D will be close to p, i.e.

S(D)

S(A)
= p ≈M/n ⇒ S(D) ≈ M

n
· S(A).

To implement this method, suppose the boundary of D is given by the curve
f(x, y) = 0 and its interior is {(x, y) : f(x, y) < 0}. We first generate n uniform
points (x(i), y(i)) ∈ A, i = 1, . . . , n. Let M be the number of points satisfying
f(x(i), y(i)) ≤ 0. Then we use (1) to estimate S(D).

More rigorous justification: Let M (random variable) be the number of points
in D if n points are uniformly generated in A. Then

M ∼ Bin(n, p).

Apply the strong law of large numbers (SLLN), M =
∑n
i=1Xi, Xi ∼iid Bern(p):

M

n
=

1

n

n∑
i=1

Xi
a.s.−→E(X1) = p ⇒ Ŝn(D)

a.s.−→S(D), as n→∞.

Theorem 1 (The strong law of large numbers). Let X1, X2, . . . be a sequence
of independent and identically distributed (i.i.d.) random variables, each having
a finite mean µ = E(Xi). Then

P
[

lim
n→∞

1

n

n∑
i=1

Xi = µ
]

= 1.

For short, we write 1
n

∑n
i=1Xi

a.s.−→µ (converge almost surely).

Or we can calculate the bias and variance of p̂ = M/n which estimates the
probability p defined by (2):

E(M) = n · p ⇒ E
(
M

n

)
= p : unbiased.

Var(M) = np(1− p) ⇒ Var

(
M

n

)
=
p(1− p)

n
→ 0 as n→∞.

Recall that the mean squared error:

E
[
p̂− p

]2
= bias(p̂)2 + Var(p̂) =

p(1− p)
n

.
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Therefore,

lim
n→∞

E
[
p̂− p

]2
= 0 ⇒ lim

n→∞
E
[
Ŝn(D)− S(D)

]2
= 0.

To give a concrete example, suppose we want to estimate the area of a circle:

D = {(x, y) : x2 + y2 ≤ 1}.

Choose A = [−1, 1]× [−1, 1]. Then S(A) = 4 and Ŝn(D) = 4×M/n = 4p̂. The

standard error of Ŝn is

se =

√
Var(Ŝn) =

√
Var(4p̂) = 4

√
Var(p̂) = 4

√
p(1− p)/n,

which can be approximated as 4
√
p̂(1− p̂)/n.
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1.2. Approximating Integrals

Want to estimate

I =

∫
D

g(x)dx.

g(x)

xx1 x2
D=[x1, x2] 
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Generate x(1), x(2), · · · , x(n) ∼iid Unif(D). Apply SLLN

ĝn :=
1

n

n∑
i=1

g(x(i))
a.s.−−→ E[g(X)] =

∫
g(x) · 1

|D|
dx,

|D|: volume of D and X ∼ unif(D). Then

|D| · ĝn
a.s.−→

∫
g(x)dx.

Our estimate În = |D| · ĝn =
|D|
n

n∑
i=1

g(x(i))
a.s.−→ I as n → ∞.

1.3. Estimating Expectations

f(x): distribution of interest.

Want to estimate its mean and variance:

E(X) = µ =
∫
xf(x)dx, Var(X) =

∫
(x− µ)2f(x)dx = E(X − µ)2.

Generate samples x(1), x(2), · · · , x(n) ∼iid f .

µ̂n = x =
1

n

n∑
i=1

x(i) a.s.−→ E(X),

V̂n =
1

n

n∑
i=1

(x(i) − µ̂n)2 a.s.−→ Var(X) as n→∞.

In general, to estimate E(g(X)) for some function g of X:

1

n

n∑
i=1

g(x(i))
a.s.−→E(g(X)) =

∫
g(x)f(x)dx.
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2. Bayesian Inference

Two major tasks of statistical inference is (i) to estimate unknown model pa-
rameters from data; (ii) to quantify the uncertainty in the estimates. Suppose
we have collected data:

y1, y2, · · · , yn
iid∼ f(y | θ),

where f(y | θ) is a pdf (or pmf) of a distribution parameterized by θ. Then we
want to estimate θ and/or build a confidence interval for θ.

In general, denote the observed data by y = (y1, y2, · · · , yn). A common estima-
tion method is the maximum likelihood estimate (MLE). Define the likelihood
of y as

L(θ | y) := p(y1, · · · , yn | θ) =

n∏
i=1

f(yi | θ).

The MLE θ̂MLE is the maximizer of L(θ | y) over θ:

θ̂MLE = argmax
θ

L(θ | y).

Moreover, we often estimate the standard error of the MLE, denoted by ŝe, and
construct an approximate 95% confidence interval as

(θ̂MLE − 2ŝe, θ̂MLE + 2ŝe)

as a way to quantify the uncertainty in our estimate. The interpretation of the
interval is

P[θ ∈ (θ̂MLE − 2ŝe, θ̂MLE + 2ŝe)] = 0.95.

Here, θ̂MLE is regarded as a random variable as a function of the random sample
y, while θ is an unknown constant.

2.1. Main steps

Bayesian inference relies on posterior distributions to provide solutions to the
two inferential tasks (i) and (ii). The unknown parameter θ is regarded as a
random variable and thus we need to specify a marginal distribution for θ,
denoted by p(θ), which is called a prior distribution. Here, “prior” means before
observing any data, as the prior distribution does not depend on the data y.
Therefore, a Bayesian model for the data y is set up by two distributions:

Prior: θ ∼ p(θ), (3)

Data: y = (y1, . . . , yn) | θ iid∼ f(y | θ). (4)
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Together, they define a joint distribution for (θ,y):

p(θ,y) = p(θ)p(y | θ) = p(θ) ·
n∏
i=1

f(yi | θ). (5)

Based on (5), we find the conditional distribution [θ | y] to perform inference
on θ. This conditional distribution of θ given the data y is called the posterior
distribution, where “posterior” means the distribution of θ is now updated after
observing the data and thus depends on y. Applying Bayes formula,

p(θ | y) =
p(θ,y)

p(y)
=
p(θ)p(y | θ)

p(y)
=
p(θ) ·

∏n
i=1 f(yi | θ)
p(y)

,

where the marginal density p(y) =
∫
p(θ,y)dθ does not depend on θ and can

be regarded as a normalizing constant. Consequently, it is more convenient to
work with an unnormalized posterior density:

p(θ | y) ∝ p(θ)p(y | θ) = p(θ) ·
n∏
i=1

f(yi | θ). (6)

We may either recognize the posterior distribution via the unnormalized den-
sity on the right side or use Monte Carlo methods to draw samples given the
unnormalized density.

A Bayesian estimate of θ is usually constructed as the mean of the posterior
distribution,

θ̂B :=E(θ|y) =

∫
θ · p(θ | y)dθ. (7)

A (1 − 2α) Bayesian interval for θ can be constructed by the quantiles of the
posterior distribution: (θ(α), θ(1−α)), where θ(α) is the α-quantile for α ∈ (0, 1).
The interpretation of a Bayesian interval is

P(θ ∈ (θ(α), θ(1−α)) | y) = 1− 2α, (8)

where θ is a random variable following the posterior distribution p(θ | y).

θ

p(θ | y)

θ̂B
( )
θ(α) θ(1−α)

θ̂B = E(θ | y)

P(θ(α) < θ < θ(1−α) | y) = 1− 2α
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For complicated problems, Monte Carlo simulation, such as MCMC, is applied
to draw samples of θ from the posterior distribution p(θ | y), regarding (6) as
the target density. From the Monte Carlo samples, one can easily calculate the
sample mean and sample quantiles to approximate θ̂B and (θ(α), θ(1−α)).

In summary, the main steps of Bayesian inference are:

1. Choose a prior distribution p(θ).
2. Find the posterior distribution p(θ | y) by (6).
3. Apply a Monte Carlo algorithm to draw samples from p(θ | y).
4. Construct Bayesian estimates and intervals from the Monte Carlo samples.

2.2. Some basic models

We will demonstrate the main steps of Bayesian inference with a few simple
examples.

Example 1 (Binomial distribution). Consider independent coin tossing with
θ ∈ (0, 1) being the probability of heads. Suppose we toss n times and observe
heads x times. How to estimate θ?

Let X (random variable) be the number of times we observe heads. The distri-
bution of X given θ is

X | θ ∼ Bin(n, θ).

Thus, the likelihood

P(X = x | θ) =

(
n
x

)
θx(1− θ)n−x.

MLE: θ̂MLE =
x

n
.

Bayesian inference:

1. Choose a prior distribution for θ: Without any prior knowledge on θ, we
usually choose a flat prior,

θ ∼ Unif(0, 1), i.e. p(θ) = 1, θ ∈ (0, 1).

2. Then find the posterior distribution:

p(θ | X = x) ∝ p(θ) · P(X = x | θ)

=

(
n
x

)
θx(1− θ)n−x

∝ θx(1− θ)n−x, (9)

where θ is the random variable.



Zhou, Q/Monte Carlo Methods, Chapter 1 9

3. From (9), we recognize that it is an unnormalized Beta density. Therefore,
the posterior distribution is

θ | x ∼ Beta(x+ 1, n− x+ 1). (10)

As a reference, the pdf of Beta(α, β) is

Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1,

and its mean is E(θ) = α
α+β .

4. Given (10), we find Bayesian estimate

θ̂B = E(θ|x) =
x+ 1

n+ 2
.

To construct a 95% Bayesian interval, we use the 2.5% and 97.5% quantiles
of Beta(x + 1, n − x + 1). For example, if n = 10, x = 3, the posterior
distribution is Beta(4, 8), for which the two quantiles are

> qbeta(c(0.025,0.975),4,8)

[1] 0.1092634 0.6097426

So the 95% Bayesian interval is (0.109, 0.610). If n = 20, x = 6, the poste-
rior distribution is Beta(7, 15) with the quantiles given by

> qbeta(c(0.025,0.975),7,15)

[1] 0.1458769 0.5217511

In this case, Bayesian interval is (0.146, 0.522), which is shorter than the
first case as the sample size n is larger.

The following figure shows the shape of the prior (black) and the posterior
distributions: red for n = 10, x = 3 and blue for n = 20, x = 6.
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A Bayesian interval can be used to do hypothesis test. Suppose we want to
decide whether the coin is fair

H0 : θ = 0.5.

Based on the data n = 20, x = 6, the 95% Bayesian interval (0.146, 0.522)
covers 0.5, and therefore we will accept the null hypothesis H0. If we collect
more data and observe n = 50, x = 15, then θ | x ∼ Beta(16, 36) and a 95%
Bayesian interval will be (0.191, 0.438). Because 0.5 falls outside this interval,
we conclude with 95% probability that the coin is not fair (reject H0).

The uniform distribution Unif(0, 1) is equivalent to Beta(1, 1). We may choose
other Beta distribution as the prior for θ:

θ ∼ Beta(α, β), p(θ) ∝ θα−1(1− θ)β−1.

Then the posterior distribution

p(θ | X = x) ∝ p(θ) · P(X = x | θ)

∝ θα−1(1− θ)β−1 ·
(
n
x

)
θx(1− θ)n−x

∝ θx+α−1(1− θ)n−x+β−1,

and thus,

θ | x ∼ Beta(x+ α, n− x+ β).

We see that the posterior is in the same family of the prior, both Beta distribu-
tions, in which case we say the prior is a conjugate prior. That is, Beta prior is
conjugate to the Binomial distribution. The Bayesian estimate, i.e. the posterior
mean, under this prior is

θ̂B =
x+ α

n+ α+ β
. (11)

Compared to the MLE θ̂MLE = x/n, the prior parameters (α, β) may be regarded
as pseudo counts added to the two possible outcomes (heads or tails). If there
is no prior knowledge about θ, we choose small pseudo counts, α, β ∈ (0, 1]. If
there is strong prior for θ, say from historical data, one may choose larger values
of α, β to reflect such prior knowledge.

Example 2 (Multinomial distribution). We generalize Example 1 to multino-
mial data. Let θ = (θ1, θ2, · · · , θk) be the probabilities of k possible outcomes

in a random experiment, θj > 0,
∑k
j=1 θj = 1. Suppose we have done this ex-

periment n times independently and observed the jth outcome xj times. So the
observations follow a multinomial distribution:

x = (x1, x2, · · · , xk) | θ ∼ M(n, θ),
∑

xj = n.
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The likelihood is

p(x | θ) ∝ θx1
1 θx2

2 · · · θ
xk

k , (12)

and the MLE
(θ̂j)MLE =

xj
n
, j = 1, . . . , k.

To do Bayesian inference, let us first find a conjugate prior.

Definition 1 (Dirichlet distribution). Let θ = (θ1, · · · , θk) ∈ Rk be a random

vector such that θj ≥ 0 for all j = 1, . . . , k and
∑k
j=1 θj = 1. Then θ follows the

Dirichlet distribution Dir(α1, . . . , αk), αj > 0 for all j, if the pdf of θ is

p(θ) =
Γ(α1 + α2 + · · ·+ αk)

Γ(α1)Γ(α2) · · ·Γ(αk)
θα1−1

1 θα2−1
2 · · · θαk−1

k .

The mean of θ is

E(θj) =
αj

α1 + α2 + · · ·+ αk
, j = 1, . . . , k. (13)

How to sample θ from Dir(α1, . . . , αk)?

1. Draw vj ∼ Gamma(αj , 1) independently for j = 1, . . . , k.

2. Put S =
∑k
j=1 vj and define

θj =
vj
S

=
vj

v1 + · · ·+ vk
, j = 1, . . . , k.

Then θ = (θ1, θ2, · · · , θk) ∼ Dir(α1, α2, · · · , αk).

It turns out the Dirichlet is a conjugate prior for multinomial distribution. To
see that, let us assume the prior is θ ∼ Dir(α1, · · · , αk), i.e.

p(θ) ∝ θα1−1
1 θα2−1

2 · · · θαk−1
k . (14)

Then the posterior distribution, by multiplying (14) and (12),

p(θ | x) ∝ p(θ)p(x | θ)
∝ θx1+α1−1

1 θx2+α2−1
2 · · · θxk+αk−1

k ,

which is an unnormalized density of Dir(x1 + α1, . . . , xk + αk). Therefore,

θ | x ∼ Dir(x1 + α1, . . . , xk + αk). (15)

Put α0 =
∑k
j=1 αj . By (13), we find the Bayesian estimate of θ by the posterior

mean:

(θ̂j)B =
xj + αj
n+ α0

, j = 1, . . . , k.
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Similar to (11), here α1, · · · , αk are also interpreted as pseudo counts for the
k possible outcomes. Without any prior knowledge, we choose αj ∈ (0, 1]. In
particular, if αj = 1 for all j, the prior is a uniform distribution (p(θ) ∝ 1).

If we wish to build a Bayesian interval for θj , we can do so using the quantiles
of the posterior distribution [θj | x], which is simply a marginal distribution
of the Dirichlet distribution (15). By properties of Dirichlet distributions, the
marginal distribution is a Beta distribution:

θj | x ∼ Beta(xj + αj , n− xj + α0 − αj).

Then we can use the same procedure in Example 1 to construct a Bayesian
interval for each θj .

Example 3 (Normal data with known variance). Suppose we have observed

y1, · · · yn | θ
iid∼ N (θ, σ2),

where σ2 is known. Our goal is to make inference on θ. The likelihood of the
data is

p(y1, · · · , yn | θ) =

n∏
i=1

1√
2πσ

exp

{
− 1

2σ2
(yi − θ)2

}

∝ exp

{
− 1

2σ2

n∑
i=1

(yi − θ)2

}
.

The MLE θ̂MLE = ȳ = 1
n

∑
i yi. The standard error (standard deviation) of ȳ is

se = σ/
√
n. Thus, we can construct a 95% confidence interval (ȳ ± 2σ/

√
n).

Now consider Bayesian inference. A conjugate prior for θ is θ ∼ N (µ0, τ
2
0 ). Let

us consider a flat prior by choosing τ0 →∞:

p(θ) ∝ exp

{
− 1

2τ2
0

(θ − µ0)2

}
→ 1, as τ0 →∞.

Then, the posterior distribution [θ | y = (y1, . . . , yn)] is

p(θ | y) ∝ p(θ)p(y|θ) ∝ exp

{
− 1

2σ2

n∑
i=1

(θ − yi)2

}
.

Recall that θ is the random variable and y is constant. Using the equality

n∑
i=1

(θ − yi)2 =
∑
i

(θ − ȳ + ȳ − yi)2

= n(θ − ȳ)2 +

n∑
i=1

(yi − ȳ)2,
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we get

p(θ | y) ∝ exp

{
− 1

2σ2
n(θ − ȳ)2

}
= exp

{
− (θ − ȳ)2

2σ2/n

}
.

This shows that the posterior distribution

θ | y ∼ N (ȳ, σ2/n).

Then, the Bayesian estimate is θ̂B = E(θ|y) = ȳ and a 95% Bayesian interval,
constructed by the quantiles (q`, qu) of N (ȳ, σ2/n), is

(ȳ − 2σ/
√
n, ȳ + 2σ/

√
n).

See below for illustration:

θ

p(θ | y)

ȳ
( )
q` qu

E(θ | y) = ȳ

P(q` < θ < qu | y) = 0.95

Again, the interval length (4σ/
√
n) shrinks when n increases. For this example,

the Bayesian point and interval estimates both coincide with the MLE and the
confidence interval.
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3. Inverse-CDF Method

Consider a univariate random variable X. The cumulative distribution function
(c.d.f.) F of X is defined as

F (x) = P(X ≤ x), x ∈ R. (16)

Below are some important properties of the c.d.f. F :

1. F is nondecreasing: if a < b then F (a) ≤ F (b).
2. lima→−∞ F (a) = 0.
3. limb→∞ F (b) = 1.
4. F is right continuous: For any b and any decreasing sequence bn, n ≥ 1

such that bn → b, we have limn→∞ F (bn) = F (b).

See cases 1 and 2 below for typical examples of F .

Now suppose we have calculated the c.d.f. F of X. Can we make use of F to
simulate X? The following theorem shows how to do this by defining an inverse
of the c.d.f.:

Theorem 2. Let F (x) denote a c.d.f. with inverse

F−1(u) := min{z : F (z) ≥ u} for u ∈ (0, 1]. (17)

If U ∼ Unif(0, 1), then X = F−1(U) ∼ F , i.e., the c.d.f. of X is F .

Inverse-CDF method:

1. Find the c.d.f. F (x) = P(X ≤ x) for any x ∈ R.
2. Calculate its inverse c.d.f. F−1(u) by (17) for any u ∈ (0, 1].
3. Simulate U ∼ Unif(0, 1) and let X = F−1(U).

Case 1: F is invertible, in which case F−1, as defined in (17), is the inverse
function of F .

𝑋 = 𝐹$%(𝑈)

𝐹(𝑥)

𝑈

𝑥

1

{X = F−1(U) ≤ x} ⇔ {U ≤ F (x)}
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Case 2: F is discrete.

𝑋 = 𝐹$%(𝑈)

𝐹(𝑥)

𝑈

𝑥

1

X = F−1(U) := min{z : F (z) ≥ U}

Proof of Theorem 2. The overall idea of the proof is

P (X ≤ x) = P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x).

To establish the second equality, we need to show that

{F−1(U) ≤ x} ⇔ {U ≤ F (x)}.

This equivalence is easily seen in case 1 (the invertible case). For the general
case, it is implied by (a) and (b) as follows:

(a) F−1(U) ≤ x ⇒ U ≤ F (x).

X = F−1(U) = min{z : F (z) ≥ U} ⇒ X ∈ {z : F (z) ≥ U} ⇒ F (X) ≥ U .
Since X = F−1(U) ≤ x by assumption and F is non-decreasing, we have

F (x) ≥ F (X) ≥ U ⇒ U ≤ F (x).

(b) U ≤ F (x) ⇒ F−1(U) ≤ x.

U ≤ F (x) ⇒ x ∈ {z : F (z) ≥ U} ⇒ x ≥ min{z : F (z) ≥ U}=F−1(U)
⇒ F−1(U) ≤ x.

We will use the inverse-CDF method to simulate random variables from a few
distributions in the following examples:

Example 4. Unif (a, b):

f(x) =

{ 1

b− a
, x ∈ [a, b];

0, otherwise.

F (x) =

∫ x

a

1

b− a
du =

x− a
b− a

u = F (x) =
x− a
b− a

=⇒ solve for x: x = a+ (b− a)u :=F−1(u).
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1. Generate U ∼ Unif(0, 1);
2. Let X = a+ (b− a)U , then X ∼ Unif(a, b).

Check: U ∼ Unif (0, 1) ⇒ (b− a)U ∼ Unif(0, (b− a))
⇒ a+ (b− a)U ∼ Unif (a, b).

Example 5. Exponential Distribution exp(λ).

f(x) = λe−λx for x ≥ 0,

F (x) =

∫ x

0

λe−λudu = 1− e−λx = u ⇒ x = − 1

λ
log(1− u).

1. Generate U ∼ Unif(0, 1); [(1− U ∼Unif(0, 1))]
2. Let X = − 1

λ logU ∼ exp(λ).

Example 6. Geometric Distribution Ge(p).

Let X be the number of trials until the first success in a sequence of independent
Bern(p) trials. Then

P (X = k) = (1− p)k−1p = qk−1p, k = 1, 2, · · · ,

where q = 1− p. To find the c.d.f., note that

P (X ≥ k) = qk−1

is the probability that at least k trials are performed (first k − 1 all failures).
Then we have

P (X ≤ k) = 1− P (X ≥ k + 1) = 1− qk,

which shows that the c.d.f.

F (x) = P (X ≤ x) = P (X ≤ [x]) = 1− q[x], [x] : integer part of x.

Now we work out the inverse c.d.f. defined by (17):

F−1(U) = min{z : F (z) ≥ U}
= min{z : 1− q[z] ≥ U}.

1− q[z] ≥ U ⇒ [z] ≥ log(1− U)

log q
.

F−1(U) = min

{
z : [z] ≥ log(1− U)

log q

}
=

[
log(1− U)

log q

]
+ 1. (We can ignore the

case that log(1− U)/log q is an integer. Why?)

If U ∼ Unif(0, 1), then X = F−1(U) =

[
log(1− U)

log q

]
+ 1 ∼ Ge(p):
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1. U ∼ Unif(0, 1);
2. Let X = [logU/ log q] + 1 ∼ Ge(p).

The following code simulates n = 10, 000 samples from Ge(0.2) and use the
samples to estimate E(X) = 1/p = 5 and P (X = k) for k = 1, . . . , 10:
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4. Finite Discrete Distributions

P(X = xk) = pk, k = 1, 2, · · · ,m, x1 < x2 < · · · < xm. (18)
m∑
k=1

pk = 1, pk > 0. (19)

4.1. Bernoulli Distribution

X ∼ Bern(p). P(X = 1) = p, P(X = 0) = 1− p.

1. Generate U ∼ Unif (0, 1);
2. If U ≤ p, X = 1; otherwise, X = 0.

Proof. P (X = 1) = P (U ≤ p) = p, P (X = 0) = P (U > p) = 1− p.

4.2. General Finite Discrete Distributions

P(X = xk) = pk, k ∈ [m] :={1, . . . ,m} as in (18).

Put F0 = 0 and Fk =
k∑
i=1

pi for k ∈ [m]. Note Fk = P(X ≤ xk) and Fm = 1.

1. Generate U ∼Unif(0, 1);
2. If Fk−1 < U ≤ Fk, then X = xk.

Proof. P (X = xk) = P (U ∈ (Fk−1, Fk]) = Fk − Fk−1 = pk.

𝑋 = 𝐹$% 𝑈 = 𝑥2

𝐹2

𝑈

𝑥3

𝐹3 = 1

𝑥2𝑥1

𝐹1

This is in fact the inverse-cdf method: Let I(xi ≤ z < xi+1) be the indicator
function of {xi ≤ z < xi+1}. Then the c.d.f. of X is F (z) = FiI(xi ≤ z < xi+1).
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Thus, F (z) = FiI(xi ≤ z < xi+1) ≥ U ∈ (Fk−1, Fk] if and only if z ≥ xk. By
Theorem 2, if U ∈ (Fk−1, Fk],

X = F−1(U) = min{z : F (z) ≥ U} = min{z : z ≥ xk} = xk.

Example 7. Suppose the joint distribution of X and Y is given by:

X\Y 0 1
0 0.2 0.6
1 0.1 0.1

Then regard x1 = (0, 0), x2 = (0, 1), x3 = (1, 0) and x4 = (1, 1) and apply the
same algorithm.
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5. Composition Methods

5.1. Normal Distribution

5.1.1. Univariate Normal

Our goal is to simulate X ∼ N (0, 1). To do that, we consider two i.i.d. X,Y ∼
N (0, 1): Their joint pdf is

fXY (x, y) = fX(x)fY (y) =
1

2π
exp

(
−x

2 + y2

2

)
.

Consider polar coordinates:

{
x = r cos θ
y = r sin θ

.

Jacobian of (r, θ) 7→ (x, y) is

det

[
∂(x, y)

∂(r, θ)

]
= det

[
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

]
= r.

Apply change-of-variables: noting that x2 + y2 = r2 and dxdy = rdrdθ,

fXY (x, y)dxdy =
1

2π
exp

(
− r2

2

)
rdrdθ =

1

2π
dθ · 1

2
e−

r2

2 d(r2)

= fΘ,R2(θ, r2)d(r2)dθ.

Therefore, the density of (Θ, R2) is

fΘ,R2(θ, r2) =

(
1

2π

)
·
(

1

2
e−

r2

2

)
,

i.e. Θ ∼ Unif(0, 2π) and R2 ∼ Exp(1/2) are independent.

Now we can generate a pair of i.i.d. normal random variables by the following
algorithm:

(1) Draw Θ ∼ Unif (0, 2π) and R2 ∼ Exp(1/2) independently (Θ ⊥⊥ R2).

(2) Set

{
X =

√
R2 · cos Θ

Y =
√
R2 · sin Θ

.

Then we have X,Y ∼ N (0, 1) and X ⊥⊥ Y .

Remark 1. We say a pdf f(x) is spherically symmetric if

‖x‖ = ‖y‖ ⇒ f(x) = f(y),
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where ‖x‖ =
√
x2

1 + x2
2 is the Euclidean norm of x = (x1, x2) ∈ R2. In general,

if a pdf f(x) is spherically symmetric, usually it is convenient to use the polar
coordinate system for simulation. This idea also applies to spherically symmetric
tri-variate pdfs with x ∈ R3, for which we may consider using the spherical
coordinate system for simulation.

5.1.2. Multivariate Normal

We want to simulate a random vector

X = (X1, X2, · · · , Xp)
> ∼ N (µ,Σ),

where the mean vector and covariance matrix are

µ =

µ1

...
µp

 , Σ =

 σ2
1 . . . σ1p

...
. . .

...
σp1 . . . σ2

p

 .

That is, E(Xi) = µi, Var(Xi) = σ2
i and

Cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)] = σij .

Lemma 3. If Z = (Z1, · · · , Zp)> ∼ N (0, Ip) and A is an invertible p×p matrix,
then X = µ+AZ ∼ N (µ,AA>).

Basic idea: Using the algorithm in Section 5.1.1, we can draw i.i.d. samples
Z1, . . . , Zp from N (0, 1). Then put Z = (Z1, . . . , Zp)

> and apply the transfor-
mation X = µ+AZ, which gives us a random vector X ∼ N (µ,AA>) according
to Lemma 3. If we choose A such that AA> = Σ, then we achieve the goal of
simulating X ∼ N (µ,Σ). Cholesky decomposition is a way to find such an A
given Σ:

Theorem 4 (Cholesky decomposition). If Σ is positive definite (and symmet-
ric), there exists a unique lower triangular matrix T = (tij), (tij = 0, i < j) with
positive diagonal elements such that Σ = TT>.

Algorithm to sample from N (µ,Σ) (p-variate Normal):

1. Generate Z1, Z2, · · · , Zp
iid∼ N (0, 1), and let Z = (Z1, · · · , Zp)>;

2. Apply Cholesky decomposition of Σ to get a lower triangular matrix A
such that Σ = AA>;

3. Let X = µ+AZ. Then X ∼ N (µ,Σ).
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Computation of Cholesky Decomposition

B = (bij)n×n, B is symmetric and B > 0, B = TT>.
b11 b12 · · · b1n
b21 b22 · · · b2n
...

...
. . .

...
bn1 bn2 · · · bnn

 =


t11 0
t21 t22

...
...

. . .

tn1 tn2 · · · tnn



t11 t21 · · · tn1

t22 · · · tn2

. . .
...

0 bnn


1. t11 =

√
b11;

2. For i = 2, · · · , n, ti1 = bi1/t11;

3. For j = 2, · · · , n

tjj =

√
bjj −

j−1∑
k=1

t2jk;

for i = j + 1, · · · , n, tij =

(
bij −

j−1∑
k=1

tiktjk

)
/tjj ;

Example 8. Simulate from a tri-variate normal distribution:

µ = (0, 0, 0)> Σ =

 4 2 −2
2 2 1
−2 1 6

 .
First apply the Cholesky decomposition to find the lower-triangular matrix

A =

 2 0 0
1 1 0
−1 2 1

 .
Then draw Z1, Z2, Z3

iid∼ N (0, 1), put Z = (Z1, Z2, Z3)>, and let X = AZ (since
µ = 0). That isX1

X2

X3

 =

 2 0 0
1 1 0
−1 2 1

Z1

Z2

Z3

 =

 2Z1

Z1 + Z2

−Z1 + 2Z2 + Z3

 , (20)

which uses linear combinations of Z1, Z2, Z3 to generate correlations among
X1, X2, X3.

The following code implements this method to generate n = 1000 samples. Note
that the chol function in R returns an upper-triangular matrix (i.e. A>) so we
need to use its transpose.
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The pairwise scatter plots for Z and X confirm that while Z1, Z2, Z3 are inde-
pendent, X1, X2, X3 are indeed correlated due to the linear transformation (20).
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In fact, the idea of using linear combinations of independent random variables
to generate correlated random variables applies to any distributions, not just
normal distributions. This is illustrated in the following example.

Example 9. Simulate two random variables such that their correlation coeffi-
cient is 0.8.

For simplicity, we assume both random variables X1, X2 have zero mean and
unit variance. Then the covariance

Cov(X1, X2) = cor(X1, X2)
√

Var(X1) Var(X2) = 0.8.

Thus the covariance matrix of (X1, X2) is

Σ =

[
1 0.8

0.8 1

]
.
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Apply the Cholesky decomposition Σ = AA> to get a lower-triangular matrix

A =

[
1 0

0.8 0.6

]
.

First draw Z1, Z2 independently from some distributions with zero mean and
unit variance, i.e. Var(Z1) = Var(Z2) = 1 and Z1 ⊥ Z2 (independence). Then
put Z = (Z1, Z2)> and let X = AZ:[

X1

X2

]
=

[
1 0

0.8 0.6

] [
Z1

Z2

]
=

[
Z1

0.8Z1 + 0.6Z2

]
.

One can easily verify that

Var(X1) = Var(Z1) = 1,

Var(X2) = Var(0.8Z1 + 0.6Z2) = 0.82 + 0.62 = 1,

Cov(X1, X2) = Cov(Z1, 0.8Z1 + 0.6Z2)

= Cov(Z1, 0.8Z1) + Cov(Z1, 0.6Z2) = 0.8 Var(Z1) + 0 = 0.8,

and thus

cor(X1, X2) =
Cov(X1, X2)√

Var(X1) Var(X2)
= 0.8.

5.2. Mixture Distributions

A mixture distribution has pdf

f(x) =

K∑
i=1

θifi(x),

fi(x) : pdf of a component distribution,
∫
fidx = 1.

θi : mixture proportion (θi > 0,
∑K
i=1 θi = 1).

Example 10. f1(x) : N (0, 1), f2(x) : N (3, 22), θ1 = θ2 = 1/2.

X ∼ f =
1

2
f1 +

1

2
f2

⇔ X ∼
{
N (0, 1), with probability 1/2
N (3, 22), with prpbability 1/2
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Algorithm to draw from the mixture distribution f :

1. Generate Z ∼ Discrete (θ1, θ2, · · · , θK); i.e., P (Z = i) = θi for i =
1, . . . ,K.

2. Generate X ∼ fZ i.e. X ∼ fi if Z = i.

To verify this algorithm, we need to confirm that the pdf of X, pX(x), is indeed
f(x). Note that the algorithm generates a pair of random variables (Z,X).
Denote by pX,Z(x, i) the joint pdf of (X,Z). Then from the algorithm,

pX,Z(x, i) = P(Z = i)pX|Z(x | i) = θifi(x).

Accordingly, the distribution of X is given by marginalizing out the discrete
random variable Z:

pX(x) =

K∑
i=1

pX,Z(x, i) =

K∑
i=1

θifi(x) = f(x).

This shows that the pdf of X is f(x).
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6. Rejection Sampling

Suppose f(x) is a pdf defined on [a, b] and there exists M ≥ f(x) for all x ∈ [a, b].
Consider the following three-step algorithm:

(1) Draw X ∼ Unif (a, b), compute r(X) = f(X)/M ∈ [0, 1].
(2) Draw U ∼ Unif (0, 1).
(3) If U ≤ r(X), accept X; otherwise, repeat (1) and (2).

Lemma 5. If X is accepted in the above algorithm, then its pdf is f(x).

Proof. Want to show the conditional density pX(x | X is accepted) = f(x). Let
pX(x) denote the marginal probability density function of X. By Bayes rule:

pX(x|Accepted) =
P (X is accepted|X = x)pX(x)

P (X is accepted)
. (21)

By step (1), X ∼ Unif (a, b) and thus,

pX(x) = 1/(b− a) for any x ∈ [a, b]. (22)

According to steps (2) and (3), X is accepted if and only if U ≤ r(X). Therefore,

P (X is accepted|X = x) = P (U ≤ r(x)) = r(x) = f(x)/M, (23)

as U ∼ Unif(0, 1) and r(x) ∈ [0, 1]. Now note that

P (X is accepted) =

∫ b

a

P (X is accepted|X = x)pX(x)dx

=

∫ b

a

f(x)

M
· 1

b− a
dx

=
1

M(b− a)

∫ b

a

f(x)dx =
1

M(b− a)
, (24)
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since
∫ b
a
f(x)dx = 1 as a pdf. Now plugging (22), (23) and (24) into (21), we

have

pX(x|Accepted) =
P (X is accepted|X = x)pX(x)

P (X is accepted)

=

f(x)
M · 1

b−a
1

M(b−a)

= f(x).

Efficiency of this algorithm depends on the acceptance rate given in (24):

P (Acceptance) =
1

M(b− a)
.

The higher the acceptance rate, the more efficient. Thus we shall choose the
smallest M such that f(x) ≤M for all x ∈ [a, b].

Rejection Sampling:

Let f be a pdf defined on D. Our goal is to simulate X from the distribution
specified by the pdf f(x). Let g be another pdf such that there is M ≥ f(x)/g(x)
for all x ∈ D. The rejection sampling method is:

(1) Draw X ∼ g, compute r(X) =
f(X)

Mg(X)
∈ [0, 1].

(2) Draw U ∼ Unif (0, 1).
(3) If U ≤ r(X), accept X; otherwise, repeat (1) and (2).

Then the accepted X has pdf f(x). [f is called the target distribution; g is called
a trial distribution.]

Theorem 6. If X is accepted in the rejection sampling method, then its pdf is
f(x).
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Proof. Let “Acceptance” be the event that X is accepted.

P(Acceptance) =

∫
P(Acceptance|X = x)g(x)dx

=

∫
f(x)

Mg(x)
g(x)dx =

1

M
. (25)

Then

pX(x|Acceptance) =
P(Acceptance|X = x)g(x)

P(Acceptance)

=
(f(x)/Mg(x)) · g(x)

1/M
= f(x).

Efficiency of the rejection sampling algorithm depends on the acceptance rate
given in (25):

P(Acceptance) =
1

M
.

The higher the acceptance rate, the more efficient. Thus we shall choose the
smallest M such that f(x)/g(x) ≤ M for all x ∈ D. Therefore, a common
choice is

M = max
x∈D

f(x)

g(x)
. (26)

Example 11. Use rejection sampling to simulation from the distribution with
pdf f(x) = 1

2 sinx, x ∈ (0, π). [Verify this is indeed a pdf.]

Let g(x) be the pdf of Unif (0, π), so g(x) = 1
π for x ∈ (0, π), which serves as

our trial distribution.

Let

M = max
0<x<π

f(x)

g(x)
= max

0<x<π

π

2
sin(x) =

π

2
.

Then g(x) ·M = 1/2 ≥ f(x) ∀x ∈ (0, π).

Algorithm: Each iteration contains three steps; accepted X are the samples from
f(x).

1. Draw X ∼ Unif(0, π), and compute r(X) = f(X)
M ·g(X) = sin(X) ≤ 1.

2. Draw U ∼ Unif(0, 1).
3. If U ≤ sin(X), then accept X; otherwise reject.
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Acceptance probability:

P(Accetance) =
1

M
=

2

π
≈ 0.64.

The following code implements this example with n = 10, 000 trial samples, and
na = 6, 420 were accepted. The histogram of the accepted samples Xa shows
that the pdf is f(x) = 1

2 sinx, x ∈ (0, π).
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Let us illustrate the intuition behind rejection sampling using this example:
The acceptance criterion is U ≤ r(X) = f(X)/[Mg(X)] ⇔ UMg(X) ≤ f(X).
Putting Y = UMg(X), then X will be accepted if Y ≤ f(X), i.e., if the random
point (X,Y ) is under the curve y = f(x). In this example,

X ∼ Unif(0, π), Y = U/2 ∼ Unif(0, 1/2)⇒ (X,Y ) ∼ Unif([0, π]× [0, 1/2]).

In the following plot, the red curve is y = f(x) (pdf). The black dots are rejected
and the blue dots are accepted. The blue dots are uniformly distributed under
the red curve y = f(x), and their x-coordinates (accepted X) has pdf f(x).
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Code for the plot:

Example 12. Absolute normal Distribution.

Z ∼ N (0, 1). Let X = |Z|, then fX(x) =
√

2
π e
− x2

2 , (x ≥ 0).

This is because

fX(x) = φ(x) + φ(−x) = 2 · φ(x) =

√
2

π
e−

x2

2 ,

where φ(x) = 1√
2π

exp(−x2/2) is the pdf for N (0, 1).

Let us choose Exp(λ = 1) as a trial distribution, i.e. g(x) = e−x, x ≥ 0.

Then the minimum M is M = max
x≥0

f(x)

g(x)
= max

√
2

π

e−
x2

2

e−x
=

√
2

π
e−( x2

2 −x)

⇔ minx>0(x
2

2 − x) ⇒ x∗ = 1

∴M =
√

2e
π ≈ 1.32 (1/M ≈ 0.76)

Example 13. Truncated Normal.

φ(x): density of N (0, 1).

f(x) ∝ φ(x)I(x > c) =

{
φ(x), if x > c;
0, otherwise.

truncated normal

∫
φ(x)I(x > c)dx =

∫ ∞
c

φ(x)dx = 1− Φ(c), Φ(x): c.d.f. of N(0, 1).

⇒ f(x) = 1
1−Φ(c)φ(x)I(x > c)

(A) If c < 0, generate Z ∼ N (0, 1). Accept Z if Z > c. P (Acceptance) ≥ 0.5

(B) If c→∞, P (Acceptance) = 1− Φ(c)→ 0.
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Rejection sampling: Use shifted Exp(λ) as the trial distribution, so

g(x) =

{
λe−λ(x−c), for x > c;
0, otherwise.

If X ′ ∼ Exp(λ), then X = X ′ + c ∼ g. To find the optimal M :

M = max
x>c

f(x)

g(x)
= max

x>c

φ(x)

1− Φ(c)

eλ(x−c)

λ
=

maxx>c exp(−x
2

2 + λx− λc)
√

2πλ(1− Φ(c))
.

This is equivalent to

max
x>c

(
− x2

2
+ λx− λc

)
,

for which the maximizer x∗ = λ if λ > c. Plugging in x = λ ⇒

M =
exp(λ

2

2 − λc)√
2πλ(1− Φ(c))

, λ > c.

Since M = M(λ) depends on λ, to maximize P (Acceptance) = 1/M(λ), we
choose λ > c such that M(λ) is minimized:

⇒ λ∗ =
c+
√
c2 + 4

2
(> c).

Thus, we choose g(x) = λ∗e−λ
∗(x−c) as the trial distribution.

Under this design, P (Acceptance) = 1/M(λ∗) = 0.76, 0.88, 0.93 for c = 0, 1, 2,
respectively.

Remark 2. In fact, we do not need to know the normalizing constant to do
rejection sampling. Suppose we want to draw from p(x) = f(x)/Z, where Z =∫
fdx <∞ is the normalizing constant, and f(x) is given but Z is unknown or

cannot be computed easily. We can apply the same rejection sampling method
with f(x) (unnormalized). Then the distribution of an accepted sample X is
p(x). This can be shown by modifying the proof of Theorem 6: The normalizing
constant Z cancels when calculating pX(x | X is accepted).
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