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1. Definitions and Examples

X0 · · · Xn−1 Xn Xn+1 · · ·

A discrete-time Markov chain (M.C.), {Xt : t = 0, 1, · · · }, is a stochastic process
with the Markov property:

P (Xn+1 = j|X0 = i0, · · · , Xn−1 = in−1, Xn = i) = P (Xn+1 = j|Xn = i)

for all time index n and all states i0, · · · , in−1, i, j.

State space is the range of possible values for the random variables Xt.

Assume the state space is finite: {0, 1, · · · , N} or countable: {0, 1, 2, · · · }.

⇒ Discrete state discrete time Markov chain.

1.1. One-step transition probabilities

For a Markov chain, P (Xn+1 = j|Xn = i) is called a one-step transition proba-
bility. We assume that this probability does not depend on n, i.e.,

P (Xn+1 = j|Xn = i) = pij for n = 0, 1, . . .

is the same for all time indices. In this case, {Xt} is called a time homogeneous
Markov chain.

Transition matrix: Put all transition probabilities (pij) into an (N+1)×(N+1)
matrix,

P =


p00 p01 · · · p0N
p10 p11 · · · p1N
...

...
...

...
pN0 pN1 · · · pNN


pij ≥ 0, ∀i, j.

N∑
j=0

pij = 1, ∀i.

For countable space, replace N by ∞.

Example 1. The Ehrenfest urn model.

A

Xn

B

2a−Xn A total of 2a balls in two containers A and B.
At each step, a ball is randomly selected from
the 2a balls and moved to the other container.
Let Xn be the # of balls in urn A at step n.
(Xn ∈ {0, 1, · · · , 2a}).
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Then {X0, X1, · · · } is an M.C.

State space: {0, 1, 2, · · · , 2a}

Transition probabilities:

P (Xn+1 = i+ 1|Xn = i) = P (A ball is chosen from urn B | Xn = i) =
2a− i

2a
,

P (Xn+1 = i− 1|Xn = i) = P (A ball is chosen from urn A | Xn = i) =
i

2a
,

P (Xn+1 = j|Xn = i) = 0, j /∈ {i+ 1, i− 1}.

⇒ P = (pij)(2a+1)×(2a+1):

pij =


2a−i
2a , if j = i+ 1;
i
2a , if j = i− 1;
0, otherwise.

Example 2. 1D random walk.

Let Y1, Y2, · · · , Yn, · · · be iid: P (Yi = 1) = p, P (Yi = −1) = q, p+ q = 1.

Define

{
X0 = 0,
Xn = Xn−1 + Yn, for n = 1, 2, · · · .

⇒ Xn = Y1 + Y2 · · ·+ Yn =
n∑
i=1

Yi.

Then {Xn} is an M.C.

n

Xn

1 2 3 4 5 6 7 8

−1

0

1

2
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Proof. To show that Xt is a Markov chain:

P (Xn+1 = j|X1 = i1, · · · , Xn−1 = in−1, Xn = i)

= P (Yn+1 = j − i)

=


p, if j = i+ 1;

q, if j = i− 1;

0, otherwise.

This shows that P (Xn+1 = j|X1 = i1, · · · , Xn−1 = in−1, Xn = i) only depends
on Xn = i.

1.2. Joint probability

The joint distribution of a Markov chain is completely determined by its one-
step transition matrix and the initial probability distribution P (X0):

Theorem 1. If {Xt : t = 0, 1, · · · , n} is an M.C., then

P (X0 = i0, X1 = i1, · · · , Xn = in) = P (X0 = i0) · pi0i1 · · · pin−2in−1
pin−1in .

Proof.

P (X0 = i0, X1 = i1, · · · , Xn = in)

= P (X0 = i0, X1 = i1, · · · , Xn−1 = in−1)P (Xn = in|X0 = i0, · · · , Xn−1 = in−1)

= P (X0 = i0, X1 = i1, · · · , Xn−1 = in−1)P (Xn = in|Xn−1 = in−1)︸ ︷︷ ︸
pin−1in

= P (X0 = i0, X1 = i1, · · · , Xn−1 = in−1)pin−1in .

Now by induction we get

P (X0 = i0, X1 = i1, · · · , Xn = in) = P (X0 = i0)pi0i1pi1i2 · · · pin−1in .

Example 3. The state space of a Markov chain is S = {1, 2, 3} and the tran-
sition probability matrix

P =

0.7 0.3 0
0.1 0.6 0.3
0 0.5 0.5

 .
The initial state X0 is drawn uniformly over S, i.e. P (X0 = i) = 1/3 for i =
1, 2, 3.
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A few examples of joint probabilities:

P (X0 = 1, X1 = 1, X2 = 2) = P (X0 = 1)× p11 × p12 = 1/3× 0.7× 0.3;

P (X0 = 3, X1 = 2, X2 = 1) = P (X0 = 3)× p32 × p21 = 1/3× 0.5× 0.1;

P (X0 = 3, X1 = 3, X2 = 1) = P (X0 = 3)× p33 × p31 = 1/3× 0.5× 0 = 0.

The following code simulates from this Markov chain for t = 0, 1, . . . , n−1. The
plot shows the simulated values for the first 30 random variables.

0 5 10 15 20 25 30

1
.0

1
.5

2
.0

2
.5

3
.0

Index

X
[1

:3
0
]

1.3. n-step transition probabilities

We call p
(n)
ij , P (Xt+n = j|Xt = i) an n-step transition probability. Put them

into the n-step transition matrix P(n) = (p
(n)
ij ).

Theorem 2. The n-step transition probabilities of an M.C. satisfy

p
(n)
ij =

N∑
k=0

pikp
(n−1)
kj , n ≥ 2. (1)

In matrix notation,
P(n) = P× P× · · · × P︸ ︷︷ ︸

n factors

= Pn .

Proof. We show (1) by averaging over X1 in the conditional distribution of
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(Xn, X1) given X0 = i, i.e. [Xn, X1 | X0 = i]:

p
(n)
ij = P (Xn = j|X0 = i) =

N∑
k=0

P (Xn = j,X1 = k|X0 = i)

=

N∑
k=0

P (X1 = k|X0 = i)P (Xn = j|X1 = k,X0 = i)

(2)
=

N∑
k=0

pikP (Xn = j|X1 = k) =

N∑
k=0

pikp
(n−1)
kj .

To get equality (2), we used the fact that Xn is independent of X0 given X1:

P (Xn = j|X1 = k,X0 = i) = P (Xn = j|X1 = k).

In matrix notation, (1) means P(n) = P× P(n−1). Now by induction on P(n−1),
we arrive at P(n) = Pn.

Example 4. Two-state M.C.

Transition matrix P =

(
1− a a
b 1− b

)
, 0 < a, b < 1.

The n-step transition matrix of this Markov chain is

Pn =
1

a+ b

(
b a
b a

)
+

(1− a− b)n

(a+ b)

(
a −a
−b b

)
. (2)

Proof. By induction. Define

A =

(
b a
b a

)
, B =

(
a −a
−b b

)
.

Then (2) becomes

Pn = (a+ b)−1[A + (1− a− b)nB].

Simple calculation shows that

AP =

(
b a
b a

)(
1− a a
b 1− b

)
=

(
b a
b a

)
= A,

BP =

(
a −a
−b b

)(
1− a a
b 1− b

)
= (1− a− b)B.

1. It is easy to verify that (2) holds for n = 1:

1

a+ b

(
b a
b a

)
+

1− a− b
a+ b

(
a −a
−b b

)
=

(
1− a a
b 1− b

)
= P.
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2. Assume that (2) holds for n. Then

Pn+1 = PnP = (a+ b)−1[A + (1− a− b)nB]P

= (a+ b)−1[AP + (1− a− b)nBP]

= (a+ b)−1[A + (1− a− b)n+1B],

which shows that (2) holds for n+ 1 as well.

This competes the proof.

∵ |1− a− b| < 1 when 0 < a, b < 1⇒ (1− a− b)n → 0, as n→∞.

∴ lim
n→∞

Pn = 1
a+b

(
b a
b a

)
=

 b

a+ b

a

a+ b
b

a+ b

a

a+ b

 = P(∞).

lim
n→∞

P (Xn = 1|X0 = 0) = p
(∞)
01 =

a

a+ b
, lim
n→∞

P (Xn = 1|X0 = 1) =
a

a+ b
.

In the long run, this M.C. will be in state 1 with probability a
a+b and in state 0

with probability b
a+b , independent of the initial state (X0). That is,

π = (π0, π1) =

(
b

a+ b
,

a

a+ b

)
is the limiting distribution of this Markov chain. As shown in Example 5, π is
also a stationary distribution of this Markov chain.
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2. Limiting Behavior of Markov Chains

2.1. Stationary distribution

Definition 1. let P = (pij) be the transition matrix of a Markov chain on
{0, 1, · · · , N}, then any distribution π = (π0, π1, · · · , πN ) that satisfies the fol-
lowing set of equations is a stationary distribution of this Markov chain:

πj =

N∑
k=0

πk · pkj , j = 0, 1, · · · , N ; (in matrix notation: π = π P)

N∑
k=0

πk = 1.

(3)

For countable state space, let N =∞. In the above matrix multiplication, π is
regarded as a row vector.

Meaning of stationary distributions: If Xt ∼ π for any time point t, then Xt+n ∼
π for all n = 1, 2, . . . .

It is sufficient to verify this statement for n = 1: If P (Xt = i) = πi for all
i = 0, . . . , N , we want to verify that P (Xt+1 = i) = πi for all i as well. This is
done as follows: For any state j,

P (Xt+1 = j) =

N∑
k=0

P (Xt = k)P (Xt+1 = j|Xt = k) =

N∑
k=0

πk · pkj = πj , (4)

where last equality is from the first line in (3).

The derivation in (4) shows a useful relationship between the marginal distri-
butions of a Markov chain {Xt}: Let Dt = (θt0, . . . , θtN ) denote the marginal
distribution of Xt for t = 0, 1, . . ., i.e. P (Xt = i) = θti for all i. Then

θt+1,j =

N∑
k=0

θtk · pkj , j = 0, . . . , N,

or equivalently in matrix notation,

Dt+1 = Dt P. (5)

This can be viewed as an iterative algorithm that generates a sequence of dis-
tributions Dt. A stationary distribution π is a fixed point of this iteration: If
Dt = π, then Dt+1 = π.
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Example 5. Two-state M.C.

P =

[
1− a a
b 1− b

]
. Let π = [π0, π1].

π = π · P

⇒ [π0 π1] = [π0 π1]

[
1− a a
b 1− b

]
= [(1− a)π0 + bπ1, π0a+ π1(1− b)]

π0 = (1− a)π0 + bπ1; (6)

⇒ π1 = π0a+ π1(1− b); → redundant

π0 + π1 = 1. (7)

From (6) and (7) ⇒


π0 =

b

a+ b

π1 =
a

a+ b

.

Example 6. P =

 0.4 0.5 0.1
0.05 0.7 0.25
0.05 0.5 0.45

 , π = (π0, π1, π2).

(π0 π1 π2)P = (π0 π1 π2)

π0 + π1 + π2 = 1

}
⇒



π0 =
1

13

π1 =
5

8

π2 =
31

104

.

2.2. Irreducible Markov chains

Definition 2. State j is accessible from state i if p
(n)
ij > 0 for some n ≥ 0.

If two states i and j are accessible to each other, then i and j communicate:
i↔ j.

Definition 3. A Markov chain is irreducible if all states communicate with
each other.
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Example 7.

P =



1

2

1

2
0 0 0

1

4

3

4
0 0 0

0 0 0 1 0

0 0
1

2
0

1

2

0 0 0 1 0



0↔ 1

2↔ 3↔ 4 ⇒ 2↔ 4 (by transitivity)

Partition states into two classes, {0, 1} and {2, 3, 4}:
states between the two classes do not communicate.

M.C. is reducible.

Example 8 (Random walk with absorbing boundaries).

P =


1 0 0 0
q 0 p 0
0 q 0 p
0 0 0 1

 0 1 2 3

States form three classes: {0}, {1, 2}, {3}. Therefore,
this Markov chain is reducible.

n

Xn

1 2 3 4 5 6 7 8
0

1

2

3

2.3. Periodicity of a Markov chain

Definition 4. The period of state i, written d(i), is the greatest common divisor

(g.c.d.) of all integers n ≥ 1 for which p
(n)
ii > 0, that is

d(i) = g.c.d.{n ≥ 1 : p
(n)
ii > 0}.

In Example 8, d(1) = d(2) = 2, d(0) = d(3) = 1. (pii > 0 ⇒ d(i) = 1)
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Example 9. N -state M.C. with state space {1, 2, · · · , N}.

P =


0 1 0 · · · 0

0 0 1
...

...
. . . 1

1 0 · · · · · · 0

 d(i) = N, ∀i = 1, 2, · · · , N.

Example 10.

P =



0 1 0 0

0 0 1 0

0 0 0 1

1

2
0

1

2
0


0 1 2 3

p00 = 0, p
(2)
00 = 0, p

(3)
00 = 0, p

(4)
00 =

1

2
, p

(5)
00 = 0, p

(6)
00 =

1

4
, · · · ,

p
(n)
00 > 0 if n = 4, 6, 8, · · · . Thus, d(0) = g.c.d.{4, 6, 8, . . .} = 2.

Definition 5. An M.C. in which every state has period 1 is called aperiodic.

Proposition 1. If a Markov chain is irreducible and pii > 0 for some state i,
then the Markov chain is aperiodic.

Proof. Since pii > 0, d(i) = 1. For any j 6= i, since the Markov chain is irre-
ducible, there are directed paths j 7→ i and i 7→ j, which form a directed cycle
j 7→ i 7→ j. Suppose the length of this cycle is k ≥ 2. Since pii > 0, we may form
another directed cycle j 7→ i 7→ i 7→ j which has length k + 1. Therefore d(j) is
a common divisor of both k and k + 1 and thus d(j) = 1 for all j.

2.4. The basic limit theorem

Theorem 3. Suppose an irreducible and aperiodic Markov chain X0, X1, . . .
has a finite state space S = {0, 1, . . . , N}. Let π = (π0, . . . , πN ) be a stationary
distribution of the Markov chain. Then for any initial state X0 = i ∈ S,

lim
n→∞

p
(n)
ij = πj for all j ∈ S,

1

n

n∑
t=1

h(Xi)
a.s.−→Eπ[h(X)].

Here, π is called the limiting distribution of this Markov chain. This theorem
also implies that the stationary distribution is unique under its assumptions.
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Interpretation of the limiting distribution:

1. πj = lim
n→∞

p
(n)
ij = lim

n→∞
P (Xn = j|X0 = i).

In the long run, the probability of the chain in state j is πj , irrespective
of the starting state;

2. The fraction of time in state j for t = 1, · · · , n − 1, n, fixing X0 = i, is

Fj =
1

n

n∑
t=1

I(Xt = j).

The mean fraction:

E[Fj |X0 = i] =
1

n

n∑
t=1

E[I(Xt = j)|X0 = i]

=
1

n

n∑
t=1

P (Xt = j|X0 = i)

=
1

n

n∑
t=1

p
(t)
ij

n→∞−−−−→ πj .

Example 11. Use the three-state Markov chain in Example 3 to demonstrate
the limiting theorem. State space S = {1, 2, 3} and the transition probability
matrix

P =

0.7 0.3 0
0.1 0.6 0.3
0 0.5 0.5

 .
It is easy to verify that

π = (π1, π2, π3) = (5/29, 15/29, 9/29) ≈ (0.173, 0.517, 0.310)

is a stationary distribution: πP = π. For a function h(x) = x, its expectation
with respect to π is

Eπ[h] = π1 × 1 + π2 × 2 + π3 × 3 ≈ 2.138.

Based on Theorem 3, we can simulate this Markov chain X1, . . . , Xn long enough
(n large) and use sample average 1

n

∑
iXi to estimate Eπ[h]. Running the code

in Example 3 with n = 5, 000, we get the following results:
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We also see that the frequencies of {Xi} in the three states approximate π.

To demonstrate convergence to the limit distribution π, we use the relation
in (5) to calculate the marginal distribution Dt = (θt1, θt2, θt3) for each Xt,
starting with X1 = 1, i.e. D1 = (1, 0, 0). We also record the absolute deviation
between Dt and π:

rt =

3∑
i=1

|θti − πi|.

The following code calculates Dt and rt for t = 1, . . . , 50. It is seen that rt ≈ 0
for t ≥ 20, showing that the distribution of Xt (D[t,]) is already very close to
π (dst) after 20 iterations.

0 10 20 30 40 50

0
.0

0
.5

1
.0

1
.5

t

r_
t
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