Chapter 3 Markov Chains

Qing Zhou*

Contents

1 Definitions and Examples . 2
1.1 One-step transition probabilities 2
1.2 Joint probability . 4
$1.3 n$-step transition probabilities . 5
2 Limiting Behavior of Markov Chains 8
2.1 Stationary distribution . 8
2.2 Irreducible Markov chains . 9
2.3 Periodicity of a Markov chain . 10
2.4 The basic limit theorem . 11
*UCLA Department of Statistics (email: zhou@stat.ucla.edu).

1. Definitions and Examples

A discrete-time Markov chain (M.C.), $\left\{X_{t}: t=0,1, \cdots\right\}$, is a stochastic process with the Markov property:

$$
P\left(X_{n+1}=j \mid X_{0}=i_{0}, \cdots, X_{n-1}=i_{n-1}, X_{n}=i\right)=P\left(X_{n+1}=j \mid X_{n}=i\right)
$$

for all time index n and all states $i_{0}, \cdots, i_{n-1}, i, j$.
State space is the range of possible values for the random variables X_{t}.
Assume the state space is finite: $\{0,1, \cdots, N\}$ or countable: $\{0,1,2, \cdots\}$.
\Rightarrow Discrete state discrete time Markov chain.

1.1. One-step transition probabilities

For a Markov chain, $P\left(X_{n+1}=j \mid X_{n}=i\right)$ is called a one-step transition probability. We assume that this probability does not depend on n, i.e.,

$$
P\left(X_{n+1}=j \mid X_{n}=i\right)=p_{i j} \quad \text { for } n=0,1, \ldots
$$

is the same for all time indices. In this case, $\left\{X_{t}\right\}$ is called a time homogeneous Markov chain.

Transition matrix: Put all transition probabilities $\left(p_{i j}\right)$ into an $(N+1) \times(N+1)$ matrix,

$$
\mathbb{P}=\left[\begin{array}{cccc}
p_{00} & p_{01} & \cdots & p_{0 N} \\
p_{10} & p_{11} & \cdots & p_{1 N} \\
\vdots & \vdots & \vdots & \vdots \\
p_{N 0} & p_{N 1} & \cdots & p_{N N}
\end{array}\right] \quad \begin{aligned}
& p_{i j} \geq 0,
\end{aligned} \quad \forall i, j .
$$

For countable space, replace N by ∞.
Example 1. The Ehrenfest urn model.

X_{n}	
A	A total of $2 a$ balls in two containers A and B. At each step, a ball is randomly selected from the $2 a$ balls and moved to the other container. Let X_{n} be the \# of balls in urn A at step n. $\left(X_{n} \in\{0,1, \cdots, 2 a\}\right)$.

Then $\left\{X_{0}, X_{1}, \cdots\right\}$ is an M.C.
State space: $\{0,1,2, \cdots, 2 a\}$
Transition probabilities:
$P\left(X_{n+1}=i+1 \mid X_{n}=i\right)=P\left(\right.$ A ball is chosen from urn $\left.\mathrm{B} \mid X_{n}=i\right)=\frac{2 a-i}{2 a}$,
$P\left(X_{n+1}=i-1 \mid X_{n}=i\right)=P\left(\right.$ A ball is chosen from urn $\left.\mathrm{A} \mid X_{n}=i\right)=\frac{i}{2 a}$,
$P\left(X_{n+1}=j \mid X_{n}=i\right)=0, \quad j \notin\{i+1, i-1\}$.
$\Rightarrow \mathbb{P}=\left(p_{i j}\right)_{(2 a+1) \times(2 a+1)}$:

$$
p_{i j}= \begin{cases}\frac{2 a-i}{2 a}, & \text { if } j=i+1 ; \\ \frac{2}{2 a}, & \text { if } j=i-1 ; \\ 0, & \text { otherwise. }\end{cases}
$$

Example 2. 1D random walk.
Let $Y_{1}, Y_{2}, \cdots, Y_{n}, \cdots$ be iid: $P\left(Y_{i}=1\right)=p, \quad P\left(Y_{i}=-1\right)=q, p+q=1$.
Define $\left\{\begin{array}{l}X_{0}=0, \\ X_{n}=X_{n-1}+Y_{n},\end{array}\right.$ for $n=1,2, \cdots$.
$\Rightarrow X_{n}=Y_{1}+Y_{2} \cdots+Y_{n}=\sum_{i=1}^{n} Y_{i}$.
Then $\left\{X_{n}\right\}$ is an M.C.

Proof. To show that X_{t} is a Markov chain:

$$
\begin{aligned}
& P\left(X_{n+1}=j \mid X_{1}=i_{1}, \cdots, X_{n-1}=i_{n-1}, X_{n}=i\right) \\
& =P\left(Y_{n+1}=j-i\right) \\
& = \begin{cases}p, & \text { if } j=i+1 \\
q, & \text { if } j=i-1 ; \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

This shows that $P\left(X_{n+1}=j \mid X_{1}=i_{1}, \cdots, X_{n-1}=i_{n-1}, X_{n}=i\right)$ only depends on $X_{n}=i$.

1.2. Joint probability

The joint distribution of a Markov chain is completely determined by its onestep transition matrix and the initial probability distribution $P\left(X_{0}\right)$:
Theorem 1. If $\left\{X_{t}: t=0,1, \cdots, n\right\}$ is an M.C., then

$$
P\left(X_{0}=i_{0}, X_{1}=i_{1}, \cdots, X_{n}=i_{n}\right)=P\left(X_{0}=i_{0}\right) \cdot p_{i_{0} i_{1}} \cdots p_{i_{n-2} i_{n-1}} p_{i_{n-1} i_{n}}
$$

Proof.

$$
\begin{aligned}
& P\left(X_{0}=i_{0}, X_{1}=i_{1}, \cdots, X_{n}=i_{n}\right) \\
& =P\left(X_{0}=i_{0}, X_{1}=i_{1}, \cdots, X_{n-1}=i_{n-1}\right) P\left(X_{n}=i_{n} \mid X_{0}=i_{0}, \cdots, X_{n-1}=i_{n-1}\right) \\
& =P\left(X_{0}=i_{0}, X_{1}=i_{1}, \cdots, X_{n-1}=i_{n-1}\right) \underbrace{P\left(X_{n}=i_{n} \mid X_{n-1}=i_{n-1}\right)}_{p_{i_{n-1} i_{n}}} \\
& =P\left(X_{0}=i_{0}, X_{1}=i_{1}, \cdots, X_{n-1}=i_{n-1}\right) p_{i_{n-1} i_{n}} .
\end{aligned}
$$

Now by induction we get

$$
P\left(X_{0}=i_{0}, X_{1}=i_{1}, \cdots, X_{n}=i_{n}\right)=P\left(X_{0}=i_{0}\right) p_{i_{0} i_{1}} p_{i_{1} i_{2}} \cdots p_{i_{n-1} i_{n}}
$$

Example 3. The state space of a Markov chain is $\mathcal{S}=\{1,2,3\}$ and the transition probability matrix

$$
\mathbb{P}=\left[\begin{array}{ccc}
0.7 & 0.3 & 0 \\
0.1 & 0.6 & 0.3 \\
0 & 0.5 & 0.5
\end{array}\right]
$$

The initial state X_{0} is drawn uniformly over \mathcal{S}, i.e. $P\left(X_{0}=i\right)=1 / 3$ for $i=$ $1,2,3$.

A few examples of joint probabilities:

$$
\begin{aligned}
& P\left(X_{0}=1, X_{1}=1, X_{2}=2\right)=P\left(X_{0}=1\right) \times p_{11} \times p_{12}=1 / 3 \times 0.7 \times 0.3 \\
& P\left(X_{0}=3, X_{1}=2, X_{2}=1\right)=P\left(X_{0}=3\right) \times p_{32} \times p_{21}=1 / 3 \times 0.5 \times 0.1 \\
& P\left(X_{0}=3, X_{1}=3, X_{2}=1\right)=P\left(X_{0}=3\right) \times p_{33} \times p_{31}=1 / 3 \times 0.5 \times 0=0
\end{aligned}
$$

The following code simulates from this Markov chain for $t=0,1, \ldots, n-1$. The plot shows the simulated values for the first 30 random variables.

```
S=1:3 #state space
#transition matrix:
P=matrix(c(0.7,0.1,0,0.3,0.6,0.5,0,0.3,0.5),3,3)
n=100
X=numeric(n)
X[1]=sample(S,size=1,prob=c(1/3,1/3,1/3))
for(t in 2:n)
{
    X[t]=sample(S,size=1,prob=P[X[t-1],])
}
```


1.3. n-step transition probabilities

We call $p_{i j}^{(n)} \triangleq P\left(X_{t+n}=j \mid X_{t}=i\right)$ an n-step transition probability. Put them into the n-step transition matrix $\mathbb{P}^{(n)}=\left(p_{i j}^{(n)}\right)$.
Theorem 2. The n-step transition probabilities of an M.C. satisfy

$$
\begin{equation*}
p_{i j}^{(n)}=\sum_{k=0}^{N} p_{i k} p_{k j}^{(n-1)}, \quad n \geq 2 \tag{1}
\end{equation*}
$$

In matrix notation,

$$
\mathbb{P}^{(n)}=\underbrace{\mathbb{P} \times \mathbb{P} \times \cdots \times \mathbb{P}}_{n \text { factors }}=\mathbb{P}^{n}
$$

Proof. We show (1) by averaging over X_{1} in the conditional distribution of
$\left(X_{n}, X_{1}\right)$ given $X_{0}=i$, i.e. $\left[X_{n}, X_{1} \mid X_{0}=i\right]$:

$$
\begin{aligned}
p_{i j}^{(n)} & =P\left(X_{n}=j \mid X_{0}=i\right)=\sum_{k=0}^{N} P\left(X_{n}=j, X_{1}=k \mid X_{0}=i\right) \\
& =\sum_{k=0}^{N} P\left(X_{1}=k \mid X_{0}=i\right) P\left(X_{n}=j \mid X_{1}=k, X_{0}=i\right) \\
& \stackrel{(2)}{=} \sum_{k=0}^{N} p_{i k} P\left(X_{n}=j \mid X_{1}=k\right)=\sum_{k=0}^{N} p_{i k} p_{k j}^{(n-1)} .
\end{aligned}
$$

To get equality (2), we used the fact that X_{n} is independent of X_{0} given X_{1} :

$$
P\left(X_{n}=j \mid X_{1}=k, X_{0}=i\right)=P\left(X_{n}=j \mid X_{1}=k\right)
$$

In matrix notation, (1) means $\mathbb{P}^{(n)}=\mathbb{P} \times \mathbb{P}^{(n-1)}$. Now by induction on $\mathbb{P}^{(n-1)}$, we arrive at $\mathbb{P}^{(n)}=\mathbb{P}^{n}$.

Example 4. Two-state M.C.
Transition matrix $\mathbb{P}=\left(\begin{array}{cc}1-a & a \\ b & 1-b\end{array}\right), 0<a, b<1$.
The n-step transition matrix of this Markov chain is

$$
\mathbb{P}^{n}=\frac{1}{a+b}\left(\begin{array}{ll}
b & a \tag{2}\\
b & a
\end{array}\right)+\frac{(1-a-b)^{n}}{(a+b)}\left(\begin{array}{cc}
a & -a \\
-b & b
\end{array}\right)
$$

Proof. By induction. Define

$$
\mathbb{A}=\left(\begin{array}{ll}
b & a \\
b & a
\end{array}\right), \quad \mathbb{B}=\left(\begin{array}{cc}
a & -a \\
-b & b
\end{array}\right)
$$

Then (2) becomes

$$
\mathbb{P}^{n}=(a+b)^{-1}\left[\mathbb{A}+(1-a-b)^{n} \mathbb{B}\right]
$$

Simple calculation shows that

$$
\begin{gathered}
\mathbb{A} \mathbb{P}=\left(\begin{array}{cc}
b & a \\
b & a
\end{array}\right)\left(\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right)=\left(\begin{array}{ll}
b & a \\
b & a
\end{array}\right)=\mathbb{A}, \\
\mathbb{B} \mathbb{P}=\left(\begin{array}{cc}
a & -a \\
-b & b
\end{array}\right)\left(\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right)=(1-a-b) \mathbb{B} .
\end{gathered}
$$

1. It is easy to verify that (2) holds for $n=1$:

$$
\frac{1}{a+b}\left(\begin{array}{ll}
b & a \\
b & a
\end{array}\right)+\frac{1-a-b}{a+b}\left(\begin{array}{cc}
a & -a \\
-b & b
\end{array}\right)=\left(\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right)=\mathbb{P}
$$

2. Assume that (2) holds for n. Then

$$
\begin{aligned}
\mathbb{P}^{n+1} & =\mathbb{P}^{n} \mathbb{P}=(a+b)^{-1}\left[\mathbb{A}+(1-a-b)^{n} \mathbb{B}\right] \mathbb{P} \\
& =(a+b)^{-1}\left[\mathbb{A} \mathbb{P}+(1-a-b)^{n} \mathbb{B} \mathbb{P}\right] \\
& =(a+b)^{-1}\left[\mathbb{A}+(1-a-b)^{n+1} \mathbb{B}\right]
\end{aligned}
$$

which shows that (2) holds for $n+1$ as well.

This competes the proof.
$\because|1-a-b|<1$ when $0<a, b<1 \Rightarrow(1-a-b)^{n} \rightarrow 0$, as $n \rightarrow \infty$.
$\therefore \lim _{n \rightarrow \infty} \mathbb{P}^{n}=\frac{1}{a+b}\left(\begin{array}{ll}b & a \\ b & a\end{array}\right)=\left(\begin{array}{cc}\frac{b}{a+b} & \frac{a}{a+b} \\ \frac{b}{a+b} & \frac{a}{a+b}\end{array}\right)=\mathbb{P}^{(\infty)}$.
$\lim _{n \rightarrow \infty} P\left(X_{n}=1 \mid X_{0}=0\right)=p_{01}^{(\infty)}=\frac{a}{a+b}, \quad \lim _{n \rightarrow \infty} P\left(X_{n}=1 \mid X_{0}=1\right)=\frac{a}{a+b}$.
In the long run, this M.C. will be in state 1 with probability $\frac{a}{a+b}$ and in state 0 with probability $\frac{b}{a+b}$, independent of the initial state $\left(X_{0}\right)$. That is,

$$
\pi=\left(\pi_{0}, \pi_{1}\right)=\left(\frac{b}{a+b}, \frac{a}{a+b}\right)
$$

is the limiting distribution of this Markov chain. As shown in Example 5, π is also a stationary distribution of this Markov chain.

2. Limiting Behavior of Markov Chains

2.1. Stationary distribution

Definition 1. let $\mathbb{P}=\left(p_{i j}\right)$ be the transition matrix of a Markov chain on $\{0,1, \cdots, N\}$, then any distribution $\pi=\left(\pi_{0}, \pi_{1}, \cdots, \pi_{N}\right)$ that satisfies the following set of equations is a stationary distribution of this Markov chain:

$$
\left\{\begin{array}{l}
\pi_{j}=\sum_{k=0}^{N} \pi_{k} \cdot p_{k j}, \quad j=0,1, \cdots, N ;(\text { in matrix notation: } \pi=\pi \mathbb{P}) \tag{3}\\
\sum_{k=0}^{N} \pi_{k}=1
\end{array}\right.
$$

For countable state space, let $N=\infty$. In the above matrix multiplication, π is regarded as a row vector.

Meaning of stationary distributions: If $X_{t} \sim \pi$ for any time point t, then $X_{t+n} \sim$ π for all $n=1,2, \ldots$.

It is sufficient to verify this statement for $n=1$: If $P\left(X_{t}=i\right)=\pi_{i}$ for all $i=0, \ldots, N$, we want to verify that $P\left(X_{t+1}=i\right)=\pi_{i}$ for all i as well. This is done as follows: For any state j,

$$
\begin{equation*}
P\left(X_{t+1}=j\right)=\sum_{k=0}^{N} P\left(X_{t}=k\right) P\left(X_{t+1}=j \mid X_{t}=k\right)=\sum_{k=0}^{N} \pi_{k} \cdot p_{k j}=\pi_{j} \tag{4}
\end{equation*}
$$

where last equality is from the first line in (3).
The derivation in (4) shows a useful relationship between the marginal distributions of a Markov chain $\left\{X_{t}\right\}$: Let $D_{t}=\left(\theta_{t 0}, \ldots, \theta_{t N}\right)$ denote the marginal distribution of X_{t} for $t=0,1, \ldots$, i.e. $P\left(X_{t}=i\right)=\theta_{t i}$ for all i. Then

$$
\theta_{t+1, j}=\sum_{k=0}^{N} \theta_{t k} \cdot p_{k j}, \quad j=0, \ldots, N
$$

or equivalently in matrix notation,

$$
\begin{equation*}
D_{t+1}=D_{t} \mathbb{P} \tag{5}
\end{equation*}
$$

This can be viewed as an iterative algorithm that generates a sequence of distributions D_{t}. A stationary distribution π is a fixed point of this iteration: If $D_{t}=\pi$, then $D_{t+1}=\pi$.

Example 5. Two-state M.C.

$$
\begin{align*}
& \mathbb{P}=\left[\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right] . \text { Let } \pi=\left[\pi_{0}, \pi_{1}\right] . \\
& \pi=\pi \cdot \mathbb{P} \\
& \Rightarrow\left[\begin{array}{ll}
\pi_{0} & \pi_{1}
\end{array}\right]=\left[\begin{array}{ll}
\pi_{0} & \pi_{1}
\end{array}\right]\left[\begin{array}{cc}
1-a & a \\
b & 1-b
\end{array}\right]=\left[(1-a) \pi_{0}+b \pi_{1}, \pi_{0} a+\pi_{1}(1-b)\right] \\
& \Rightarrow \begin{array}{l}
\pi_{0}=(1-a) \pi_{0}+b \pi_{1} ; \\
\pi_{1}=\pi_{0} a+\pi_{1}(1-b) ; \rightarrow \text { redundant }
\end{array} \tag{6}\\
& \text { From (6) and }(7) \Rightarrow\left\{\begin{array}{l}
\pi_{0}=\frac{b}{a+b} \\
\pi_{1}=\frac{a}{a+b}
\end{array}\right.
\end{align*}
$$

Example 6. $\mathbb{P}=\left[\begin{array}{ccc}0.4 & 0.5 & 0.1 \\ 0.05 & 0.7 & 0.25 \\ 0.05 & 0.5 & 0.45\end{array}\right], \pi=\left(\pi_{0}, \pi_{1}, \pi_{2}\right)$.

$$
\left(\begin{array}{lll}
\pi_{0} & \pi_{1} & \pi_{2}
\end{array}\right) \mathbb{P}=\left(\begin{array}{lll}
\pi_{0} & \pi_{1} & \pi_{2}
\end{array}\right),\left\{\begin{array}{l}
\pi_{0}=\frac{1}{13} \\
\pi_{0}+\pi_{1}+\pi_{2}=1
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
\pi_{1}=\frac{5}{8} \\
\pi_{2}=\frac{31}{104}
\end{array}\right.
$$

2.2. Irreducible Markov chains

Definition 2. State j is accessible from state i if $p_{i j}^{(n)}>0$ for some $n \geq 0$.
If two states i and j are accessible to each other, then i and j communicate: $i \leftrightarrow j$.

Definition 3. A Markov chain is irreducible if all states communicate with each other.

Example 7.

$\mathbb{P}=\left[\begin{array}{lllll}\frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{4} & \frac{3}{4} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 0 & 1 & 0\end{array}\right]$
$0 \leftrightarrow 1$
$2 \leftrightarrow 3 \leftrightarrow 4 \Rightarrow 2 \leftrightarrow 4$ (by transitivity)
Partition states into two classes, $\{0,1\}$ and $\{2,3,4\}$: states between the two classes do not communicate. M.C. is reducible.

Example 8 (Random walk with absorbing boundaries).
$\mathbb{P}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ q & 0 & p & 0 \\ 0 & q & 0 & p \\ 0 & 0 & 0 & 1\end{array}\right]$

States form three classes: $\{0\},\{1,2\},\{3\}$. Therefore, this Markov chain is reducible.

2.3. Periodicity of a Markov chain

Definition 4. The period of state i, written $d(i)$, is the greatest common divisor (g.c.d.) of all integers $n \geq 1$ for which $p_{i i}^{(n)}>0$, that is

$$
d(i)=\text { g.c.d. }\left\{n \geq 1: p_{i i}^{(n)}>0\right\} .
$$

In Example $8, d(1)=d(2)=2, d(0)=d(3)=1 .\left(p_{i i}>0 \Rightarrow d(i)=1\right)$

Example 9. N-state M.C. with state space $\{1,2, \cdots, N\}$.

$$
\mathbb{P}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & & \vdots \\
\vdots & & & \ddots & 1 \\
1 & 0 & \cdots & \cdots & 0
\end{array}\right] \quad d(i)=N, \quad \forall i=1,2, \cdots, N .
$$

Example 10.

$$
\begin{gathered}
\mathbb{P}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0
\end{array}\right] \\
p_{00}=0, p_{00}^{(2)}=0, p_{00}^{(3)}=0, p_{00}^{(4)}=\frac{1}{2}, p_{00}^{(5)}=0, p_{00}^{(6)}=\frac{1}{4}, \cdots, \\
p_{00}^{(n)}>0 \text { if } n=4,6,8, \cdots \text {. Thus, } d(0)=\text { g.c.d. }\{4,6,8, \ldots\}=2 .
\end{gathered}
$$

Definition 5. An M.C. in which every state has period 1 is called aperiodic.
Proposition 1. If a Markov chain is irreducible and $p_{i i}>0$ for some state i, then the Markov chain is aperiodic.

Proof. Since $p_{i i}>0, d(i)=1$. For any $j \neq i$, since the Markov chain is irreducible, there are directed paths $j \mapsto i$ and $i \mapsto j$, which form a directed cycle $j \mapsto i \mapsto j$. Suppose the length of this cycle is $k \geq 2$. Since $p_{i i}>0$, we may form another directed cycle $j \mapsto i \mapsto i \mapsto j$ which has length $k+1$. Therefore $d(j)$ is a common divisor of both k and $k+1$ and thus $d(j)=1$ for all j.

2.4. The basic limit theorem

Theorem 3. Suppose an irreducible and aperiodic Markov chain X_{0}, X_{1}, \ldots has a finite state space $\mathcal{S}=\{0,1, \ldots, N\}$. Let $\pi=\left(\pi_{0}, \ldots, \pi_{N}\right)$ be a stationary distribution of the Markov chain. Then for any initial state $X_{0}=i \in \mathcal{S}$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} p_{i j}^{(n)}=\pi_{j} \quad \text { for all } j \in \mathcal{S}, \\
& \frac{1}{n} \sum_{t=1}^{n} h\left(X_{i}\right) \xrightarrow{\text { a.s. }} \mathbb{E}_{\pi}[h(X)]
\end{aligned}
$$

Here, π is called the limiting distribution of this Markov chain. This theorem also implies that the stationary distribution is unique under its assumptions.

Interpretation of the limiting distribution:

1. $\pi_{j}=\lim _{n \rightarrow \infty} p_{i j}^{(n)}=\lim _{n \rightarrow \infty} P\left(X_{n}=j \mid X_{0}=i\right)$.

In the long run, the probability of the chain in state j is π_{j}, irrespective of the starting state;
2. The fraction of time in state j for $t=1, \cdots, n-1, n$, fixing $X_{0}=i$, is $F_{j}=\frac{1}{n} \sum_{t=1}^{n} I\left(X_{t}=j\right)$.
The mean fraction:

$$
\begin{aligned}
\mathbb{E}\left[F_{j} \mid X_{0}=i\right] & =\frac{1}{n} \sum_{t=1}^{n} \mathbb{E}\left[I\left(X_{t}=j\right) \mid X_{0}=i\right] \\
& =\frac{1}{n} \sum_{t=1}^{n} P\left(X_{t}=j \mid X_{0}=i\right) \\
& =\frac{1}{n} \sum_{t=1}^{n} p_{i j}^{(t)} \xrightarrow{n \rightarrow \infty} \pi_{j}
\end{aligned}
$$

Example 11. Use the three-state Markov chain in Example 3 to demonstrate the limiting theorem. State space $\mathcal{S}=\{1,2,3\}$ and the transition probability matrix

$$
\mathbb{P}=\left[\begin{array}{ccc}
0.7 & 0.3 & 0 \\
0.1 & 0.6 & 0.3 \\
0 & 0.5 & 0.5
\end{array}\right]
$$

It is easy to verify that

$$
\pi=\left(\pi_{1}, \pi_{2}, \pi_{3}\right)=(5 / 29,15 / 29,9 / 29) \approx(0.173,0.517,0.310)
$$

is a stationary distribution: $\pi \mathbb{P}=\pi$. For a function $h(x)=x$, its expectation with respect to π is

$$
\mathbb{E}_{\pi}[h]=\pi_{1} \times 1+\pi_{2} \times 2+\pi_{3} \times 3 \approx 2.138
$$

Based on Theorem 3, we can simulate this Markov chain X_{1}, \ldots, X_{n} long enough (n large) and use sample average $\frac{1}{n} \sum_{i} X_{i}$ to estimate $\mathbb{E}_{\pi}[h]$. Running the code in Example 3 with $n=5,000$, we get the following results:
$>$ mean (X)
[1] 2.1604
$>\operatorname{sum}(X==1) / n$
[1] 0.1572
$>\operatorname{sum}(X==2) / n$
[1] 0.5252
$>\operatorname{sum}(X==3) / n$
[1] 0.3176

We also see that the frequencies of $\left\{X_{i}\right\}$ in the three states approximate π.
To demonstrate convergence to the limit distribution π, we use the relation in (5) to calculate the marginal distribution $D_{t}=\left(\theta_{t 1}, \theta_{t 2}, \theta_{t 3}\right)$ for each X_{t}, starting with $X_{1}=1$, i.e. $D_{1}=(1,0,0)$. We also record the absolute deviation between D_{t} and π :

$$
r_{t}=\sum_{i=1}^{3}\left|\theta_{t i}-\pi_{i}\right| .
$$

The following code calculates D_{t} and r_{t} for $t=1, \ldots, 50$. It is seen that $r_{t} \approx 0$ for $t \geq 20$, showing that the distribution of $X_{t}(\mathrm{D}[\mathrm{t}, \mathrm{]})$ is already very close to π (dst) after 20 iterations.

```
#transition matrix:
P=matrix(c(0.7,0.1,0,0.3,0.6,0.5,0,0.3,0.5),3,3)
n=50;
dst=c(5/29,15/29,9/29); #stationary distribution pi
D=matrix(0,nrow=n, ncol=3);
D[1,]=c(1,0,0); # initial state X_1=1
for(t in 2:n)
{
    D[t,]=D[t-1,]%*%P; #distribution of X_t
}
#calculate absolute deviation between D[t,] and dst
r=numeric(n);
for(t in 1:n){r[t]=sum(abs(D[t,]-dst));}
plot(1:n,r,xlab="t",ylab="r_t")
> D[1:20,]
                    [,1] [,2] [,3]
```

 [1,] 1.00000000 .00000000 .0000000
 [2,] 0.70000000 .30000000 .0000000
 [3,] 0.52000000 .39000000 .0900000
 [4,] 0.40300000 .43500000 .1620000
 [5,] 0.32560000 .46290000 .2115000
 [6,] 0.27421000 .48117000 .2446200
 \([7]\),
 \([8] \quad\),
 [9,] 0.20229210 .50665700 .2910509
 $[10]$,
[11,] $0.1856098 \quad 0.51256670 .3018235$
$[12] \quad$,
$[13] \quad 0.1782420 \quad$,
[14,] 0.17628700 .51586930 .3078437
$[15] \quad$,
[16,] 0.17412450 .51663540 .3092402
$[17] \quad$,
$[18] \quad$,
[19,] 0.1729159 0.5170635 0.3100206
$[20] \quad$,
$>$ dst
[1] 0.1724138 0.5172414 0.3103448

[1] 0.1724138 0.5172414 0.3103448

