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1. Definitions and Examples

A discrete-time Markov chain (M.C.), {X;: ¢ =0,1,---}, is a stochastic process
with the Markov property:

P(Xn11=41Xo=t0, y Xn-1=tn-1,Xn =1) = P(Xpn41 =41 Xn=1)
for all time index n and all states ig, - ,in_1,1,J.
State space is the range of possible values for the random variables X;.
Assume the state space is finite: {0,1,---, N} or countable: {0,1,2,---}.

= Discrete state discrete time Markov chain.

1.1. One-step transition probabilities

For a Markov chain, P(X,,11 = j| X, = i) is called a one-step transition proba-
bility. We assume that this probability does not depend on n, i.e.,

P(Xpt1 = j| X5 =1) = pij forn=0,1,...

is the same for all time indices. In this case, {X;} is called a time homogeneous
Markov chain.

Transition matrix: Put all transition probabilities (p;;) into an (N+1) x (N+1)
matrix,

Poo Por - DPON pij >0, Vi, j.
Pio P11 - DPIN
P=| . . ) . N
Z pij = ]., VZ.
PNO PN1 ° DPNN 7=0

For countable space, replace N by oo.

Example 1. The Ehrenfest urn model.

X, 2a — X, A total of 2a balls in two containers A and B.
O At each step, a ball is randomly selected from
O O O O the 2a balls and moved to the other container.

O O O O O Let X,, be the # of balls in urn A at step n.

(X, €{0,1,---,2a}).
A B )
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Then {Xo, X1,---} is an M.C.

State space: {0,1,2,---,2a}

Transition probabilities:

2a —1
2a ’

P(X,41 =1%—1|X,, =14) = P(A ball is chosen from urn A | X,, =) = i,

P(X,41 =i+ 1|X, =) = P(A ball is chosen from wrn B | X,, =) =

P(X,41 =j|X, =14) =0, je{i+1,i—1}.

= P = (pij)(2a+1)x (2a+1):

G i-itl
pij =9 30 Hj=i-1
0, otherwise.

Example 2. 1D random walk.
Let Y1,Y3,--+ Yy, -+ beiid: P(Y;=1)=p, P(Y;=-1)=¢q, p+q=1

XOZOa
X, =X, 1+Y,, forn=1,2---.

Define {
=X, =V1+Ys---+Y,= ZYz
Then {X,} is an M.C.

Xn
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Proof. To show that X; is a Markov chain:

P(Xn—i-l :j|X1 - ila"' 7Xn—1 - in—th = l)

:P(YnJrl:j_i)
p, ifj=i+1;
= q, ifj=1-—1;

0, otherwise.

This shows that P(X,,41 = j|X1 =41, -, X1 = ip—1, Xy, = i) only depends
on X, =1. O

1.2. Joint probability

The joint distribution of a Markov chain is completely determined by its one-
step transition matrix and the initial probability distribution P(Xy):

Theorem 1. If {X;:t=0,1,--- ,n} is an M.C., then
P(Xo =10, X1 =11, , Xpn =1in) = P(Xo =0) * Digir " Din—sin_1Pin_1in-
Proof.

P(Xo =i, X1 =1, , Xp = ip)
=P(Xo =10, X1 =11, , Xp—1 = tp_1)P(Xp, =in|Xo =0, -+, Xno1 =in_1)
=P(Xo=1i0, X1 =1, -, Xpn-1 = in—1) P(Xy, = 0| Xpo1 = ipn—1)

Pip_qin

= P(Xo =70, X1 =11, , X1 = in_1)Pi,_yi,-
Now by induction we get
P(Xo =i, X1 =101, , Xpn =tn) = P(X0 = 00)Pigir Piris * - Pin_1in-
O

Example 3. The state space of a Markov chain is § = {1, 2,3} and the tran-
sition probability matrix

0.7 03 0
P= (01 0.6 0.3
0 05 05

The initial state X is drawn uniformly over S, i.e. P(Xy = i) = 1/3 for i =
1,2,3.
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A few examples of joint probabilities:
P(Xo = 1,X1 = 1,X2 = 2) ZP(XO = 1) X P11 X p12 = 1/3 x 0.7 x 03,

P(X0:3,X1:2’X2:1):P(X0:3)Xp32 Xp21:1/3><0.5><0.1;
P(X0:3,X1:3,X2:].):P(X0:3)Xp33 ><P31=1/3><O.5><0:0.

The following code simulates from this Markov chain for ¢ = 0,1,...,n—1. The
plot shows the simulated values for the first 30 random variables.

S=1:3 #state space °

#transition matrix:

P=matrix(c(0.7,0.1,0,0.3,0.6,0.5,0,0.3,0.5),3,3) o 4

n=100 =

X=numeric(n) ; < A oo 0000 o o 0o

X[1]=sample(S,size=1,prob=c(1/3,1/3,1/3))

for(t in 2:n) -

{ "

X[t]=sample(S,size=1,prob=P[X[t-1],])

} S —-4 000000000 [elle)e) o o
T T T T T T T
0 5 10 15 20 25 30

Index

1.3. n-step transition probabilities

We call pE;) =

into the n-step transition matrix P(") = (pgjn))

(Xt4n = j| X = i) an n-step transition probability. Put them

Theorem 2. The n-step transition probabilities of an M.C. satisfy

N
= panli Y, n>2 (1)
=0

In matrix notation,
P =PxPx...xP=P".
N——

n factors

Proof. We show (1) by averaging over X; in the conditional distribution of
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(Xn,Xl) given Xo = i, i.e. [Xn,Xl ‘ Xo = ’L]

N
Py = P(X,=jlXo=1i) =Y P(X, =j,.X1 =k|Xo=1)
k=0

N

= Y P(Xi=kXo=1)P(X, = jlX1 =k Xo=1)

k=0
@ < al
= Y paP(X, =X =k) = Zpikpg;fl)-

k=0 k=0
To get equality (2), we used the fact that X, is independent of Xy given X;:

P(X,, = j|1X1 = k, Xo = i) = P(X, = j| X1 = k).

In matrix notation, (1) means P(™ = P x P(»=Y. Now by induction on P("~1)
we arrive at P(®) = P", U

Example 4. Two-state M.C.

1—a a

Transition matrix P = ( b 1—b

), 0<a, b< 1.

The n-step transition matrix of this Markov chain is
1 (b a 1-a-=0"(a -—a
P = — - . 2
a+b<b a)+ (a+0b) <—b b) (
Proof. By induction. Define

-2 (7).

P" = (a+b)"'A+(1—a—Db)"B.

~—

Then (2) becomes

Simple calculation shows that
b a\[(l—-a a b a
AP_(b a>< b 1—b>_<b a>_A’

BP = (_"b _b“> <1;a 1fb> =(1—a—"b)B.

1. Tt is easy to verify that (2) holds for n = 1:

1 b a Jr1—a—b a —a\ _ (l-a a
a+b\b a a+b -b b ) b 1-0

Il
=
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2. Assume that (2) holds for n. Then
Pl = P"P=(a+b) A+ (1 —a—b)"B|P
= (a+b) AP+ (1 — a — b)"BP)
= (a+b) A+ (1 —a—b)" B,
which shows that (2) holds for n + 1 as well.

This competes the proof. O

‘1l—a—-bl<lwhen0O<a, b<l=(1—a—b)"—0,asn— oco.
|

b a
b a
R n _ _1 _ b +b | _ p(o
Rt R C Al
a+b a+b
lim P(X, =1Xo=0)=p2 = -2 lim P(X, =1|Xo=1) = —~
n—oo n 01 a+b’ n— oo " a+b

In the long run, this M.C. will be in state 1 with probability a%_b and in state 0
with probability aLer’ independent of the initial state (Xp). That is,

b a
T = (mo, m1) = 7a+b’7a+b

is the limiting distribution of this Markov chain. As shown in Example 5, 7 is
also a stationary distribution of this Markov chain.
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2. Limiting Behavior of Markov Chains

2.1. Stationary distribution

Definition 1. let P = (p;;) be the transition matrix of a Markov chain on
{0,1,--+, N}, then any distribution = = (mg, 71, -+ ,7n) that satisfies the fol-
lowing set of equations is a stationary distribution of this Markov chain:

N
T = Zwk “Prj, J=0,1,---,N; (in matrix notation: 7 = 7 P)
k=0
(3)
N
Z T — 1.
k=0

For countable state space, let N = oco. In the above matrix multiplication, « is
regarded as a row vector.

Meaning of stationary distributions: If X; ~ 7 for any time point ¢, then X, ~
mforalln=1,2,....

It is sufficient to verify this statement for n = 1: If P(X; = i) = m; for all
i=20,...,N, we want to verify that P(X;11 =) = m; for all ¢ as well. This is
done as follows: For any state j,

N N
P(Xpp1=j) =Y P(Xy =k)P(Xep1 =jIXe = k) =Y m-prj =75, (4)
k=0 k=0

where last equality is from the first line in (3).

The derivation in (4) shows a useful relationship between the marginal distri-
butions of a Markov chain {X;}: Let D; = (040, ...,0:n) denote the marginal
distribution of X; for t =0,1,..., i.e. P(X; = i) = 0y for all i. Then

N

0t+1,jzzgtk'pkja J=0,...,N,
k=0

or equivalently in matrix notation,
Dt+1 = .Dt ]P) (5)

This can be viewed as an iterative algorithm that generates a sequence of dis-
tributions D;. A stationary distribution 7 is a fixed point of this iteration: If
Dt =T, then Dt+1 = T.
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Example 5. Two-state M.C.

1—
P:[ ba 1ib]~Let7T:[7T0»7T1]~

= [7T0 71'1]:[7'1'0 7T1] [1;a 135] :[(1—0,)7‘(0—{—[)71'1, 7T06L+7T1(1_b)]

o = (1 — a)mg + brry; (6)
= m =ma+m(1—0>); — redundant
o + M1 = 1. (7)
b
o =
From (6) and (7) = atb
a
= a+b
04 05 0.1
Example 6. P= |0.05 0.7 0.25|, 7= (mwo, 71, 72).
0.05 0.5 0.45
1
T3
(7T() 1 7T2)]P = (7‘(() 1 71'2) 5
= T = =
™0 —+ 1 + g = 1 8
_a
"7 104

2.2. Irreducible Markov chains

Definition 2. State j is accessible from state i if pgl) > 0 for some n > 0.

If two states ¢ and j are accessible to each other, then ¢ and j communicate:
14> 7.

Definition 3. A Markov chain is irreducible if all states communicate with
each other.



Example 7.
-
2 2
13
4 4
P=10 o
0 0
L0 0

S NI= O

0

1
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O N= O

01
24 3 4 = 2 4 (by transitivity)

Partition states into two classes, {0,1} and {2,3,4}:
states between the two classes do not communicate.

M.C. is reducible.

Example 8 (Random walk with absorbing boundaries).

oo

o O O

ooy O

_-8 oo

States form three classes: {0}, {1, 2}, {3}. Therefore,
this Markov chain is reducible.

2.3. Periodicity of a Markov chain

Definition 4. The period of state i, written d(i), is the greatest common divisor

(g.c.d.)

In Example 8, d(1) = d(2)

of all integers n > 1 for which pz(-?) > 0, that is

d(i) =gecd{n>1 :pgl) > 0}.

=2,d(0)=d(3)=1. (ps >0 = d(i) =1)
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Example 9. N-state M.C. with state space {1,2, -+, N}.

01 0 - 0
p= |0 0 1 : d(i) =N, ¥i=1,2,--- N.
N t. 1
10 0
Example 10.
0 1 0 0
00 1 0 .
P O—~O—2—(3)
00 0 1
1 1
5 0 5 0]

1 1

P > 0if n=4,6,8,---. Thus, d(0) = g.c.d.{4,6,8,...} = 2.
Definition 5. An M.C. in which every state has period 1 is called aperiodic.

Proposition 1. If a Markov chain is irreducible and p;; > 0 for some state 1,
then the Markov chain is aperiodic.

Proof. Since p; > 0, d(i) = 1. For any j # i, since the Markov chain is irre-
ducible, there are directed paths j +— ¢ and i — j, which form a directed cycle
j i+ j. Suppose the length of this cycle is k > 2. Since p;; > 0, we may form
another directed cycle j — i — i — j which has length &k + 1. Therefore d(j) is
a common divisor of both & and k + 1 and thus d(j) = 1 for all j. O

2.4. The basic limit theorem

Theorem 3. Suppose an irreducible and aperiodic Markov chain Xg, X1, ...
has a finite state space S = {0,1,...,N}. Let ®# = (mo,...,7N) be a stationary
distribution of the Markov chain. Then for any initial state Xg =i € S,

lim p(T-L)

n—oo’ W

LS h(X) S5 EL (X))

=T forallj €S,

Here, 7 is called the limiting distribution of this Markov chain. This theorem
also implies that the stationary distribution is unique under its assumptions.
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Interpretation of the limiting distribution:

1. ;= lim p{) = lim P(X,, = j|Xo = i).

n—oo
In the long run, the probability of the chain in state j is 7;, irrespective
of the starting state;
2. The fraction of time in state j for t = 1,--- ,n — 1,n, fixing Xy = ¢, is
12 _
Fy == I(Xy =)
=1

The mean fraction:

I R : .
E[Fj|Xo =1] = ~ > EI(X: = j)|Xo =]
t=1
1 n
==Y P(X; = j|Xo =)
n t=1
1 - (t) n— 00 -
n Y
t=

Example 11. Use the three-state Markov chain in Example 3 to demonstrate
the limiting theorem. State space S = {1,2,3} and the transition probability
matrix

0.7 03 O
P= (01 0.6 0.3
0 05 05

It is easy to verify that
m = (71,7, m3) = (5/29,15/29,9/29) ~ (0.173,0.517,0.310)

is a stationary distribution: 7P = 7. For a function h(z) = z, its expectation
with respect to 7 is

E [h] =m x 14 m X2+ 75 x 3~ 2.138.

Based on Theorem 3, we can simulate this Markov chain X, ..., X,, long enough

(n large) and use sample average = >, X; to estimate E.[h]. Running the code

in Example 3 with n = 5,000, we get the following results:

> mean(X)
[1] 2.1604
> sum(X==1)/n
[1] 0.1572
> sum(X==2)/n
[1] @.5252
> sum(X==3)/n
[1] 0.3176
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We also see that the frequencies of {X;} in the three states approximate .

To demonstrate convergence to the limit distribution w, we use the relation
in (5) to calculate the marginal distribution D; = (0;1,0:2,0:3) for each X,
starting with X; = 1, i.e. D1 = (1,0,0). We also record the absolute deviation
between D; and :

3
Ty = Z |01; — 73]
i=1

The following code calculates Dy and r; for t = 1,...,50. It is seen that r; =~ 0
for t > 20, showing that the distribution of X; (D[t,]) is already very close to
7 (dst) after 20 iterations.

#transition matrix:
P=matrix(c(@.7,0.1,0,0.3,0.6,0.5,0,0.3,0.5),3,3)

n=50;
dst=c(5/29,15/29,9/29); #stationary distribution pi
D=matrix(@,nrow=n,ncol=3);
D[1,]=c(1,0,0); # initial state X_1=1
for(t in 2:n)
{
D[t,]=D[t-1,]%*%P; #distribution of X_t
}

#calculate absolute deviation between D[t,] and dst
r=numeric(n);

for(t in 1:n){r[t]=sumCabs(D[t,]-dst));}
plot(l:n,r,xlab="t",ylab="r_t")

> D[1:20,]
[,1] [,2] [,3]
[1,] 1.0000000 ©.0000000 ©.0000000
[2,] ©.7000000 0.3000000 ©.0000000
[3,] ©.5200000 @.3900000 0.0900000 °
[4,] 0.4030000 0.4350000 ©.1620000 o |
[5,] 0.3256000 0.4629000 ©.2115000 -
[6,] 0.2742100 0.4811700 0.2446200
[7,] 0.2400640 0.4932750 ©.2666610
[8,] 0.2173723 0.5013147 ©.2813130 oo
[9,] 0.2022921 0.5066570 ©.2910509 2
[10,] ©.1922702 0.5102073 0.2975226
[11,] 0.1856098 0.5125667 ©.3018235 .
[12,] ©.1811836 0.5141347 0.3046817
[13,] 0.1782420 0.5151768 ©.3065813 g — °
[14,] 0.1762870 ©.5158693 ©.3078437
[15,] 0.1749879 0.5163295 ©.3086826 °
[16,] 0.1741245 0.5166354 0.3092402 %
[17,] 0.1735507 0.5168386 ©.3096107 o CO0000000000000EEEAEEEEEEEEE000000D
[18,] 0.1731693 ©.5169737 ©.3098569 bk ‘ ‘ ‘ ‘
[19,] ©.1729159 0.5170635 ©.3100206 0 10 20 30 40 50
[20,] 0.1727475 0.5171232 0.3101293
> dst t

[1] ©.1724138 0.5172414 0.3103448
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